TWI743034B - 用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置 - Google Patents

用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置 Download PDF

Info

Publication number
TWI743034B
TWI743034B TW105110808A TW105110808A TWI743034B TW I743034 B TWI743034 B TW I743034B TW 105110808 A TW105110808 A TW 105110808A TW 105110808 A TW105110808 A TW 105110808A TW I743034 B TWI743034 B TW I743034B
Authority
TW
Taiwan
Prior art keywords
particles
crystallization
gas
temperature
separation
Prior art date
Application number
TW105110808A
Other languages
English (en)
Other versions
TW201636381A (zh
Inventor
瑞能 哈根
烏都 穆爾保爾
Original Assignee
德商伍德伊文達菲瑟有限公司
德商蒂森克虜伯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商伍德伊文達菲瑟有限公司, 德商蒂森克虜伯公司 filed Critical 德商伍德伊文達菲瑟有限公司
Publication of TW201636381A publication Critical patent/TW201636381A/zh
Application granted granted Critical
Publication of TWI743034B publication Critical patent/TWI743034B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/021Heat treatment of powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本發明涉及一種方法,該方法能夠使一可結晶熱塑性材料的顆粒結晶、同時分離包含在該熱塑性材料中的低分子成分。該方法的特殊之處在於,該結晶階段和該分離階段在不同的顆粒溫度下進行。此外本發明還涉及一用於執行上述方法之裝置。

Description

用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置
本發明涉及一種方法,該方法能夠使一可結晶熱塑性材料的顆粒結晶、同時分離包含在該熱塑性材料中的低分子成分。該方法的特殊之處在於,該結晶階段和該分離階段在不同的顆粒溫度下進行。此外本發明還涉及一用於執行上述方法之裝置。
PLA主要由丙交酯藉由開環聚合在160與200℃之間的最終溫度下在熔體中製造。這種聚合導致化學上的環-鏈平衡,其中取決於最終溫度,存在3%與5%之間的未轉化的單體。這種聚合也可選擇性地在不完全轉化的情況下終止,此時單體濃度可以為多達20%或更多,取決於經濟上的考慮。無論如何,都必須將未轉化的單體從聚合物中分離,以便製造過程上可用的PLA。為此,條件係殘餘單體含量<0.5%,以便避免在加工時由於丙交酯而從熔體發煙、污染以及腐蝕環境。另外,更大的殘餘單體濃度不利地影響PLA製品的機械和熱學性質。在PLA中的殘餘丙交酯尤其促進了對濕氣的吸收和水解性降解。
在工業措施中這種分離一般藉由在真空中蒸發來完成(真空去單 體化)。對於這一步驟已經提出了各種不同的設備,尤其是除氣擠出機、薄層蒸發機、旋盤反應器。
這種工業措施要求最大的產品產率,使得分離的單體能送回到該過程中。即在真空中蒸發之後,單體必須以適合的形式分離並收集。單體的三相點給出了是否能夠以固態或液態形式完成分離。如果希望以液態形式分離丙交酯,則在從熔體分離時可使用的真空不能低於三相點的壓力。由此,可使用的真空並且因此殘餘單體含量受到限制。如果在三相點的壓力以下工作,實現在熔體中更低的殘餘單體含量,則必須考慮以固態形式分離丙交酯。這一般是與不連續的丙交酯分離運行相關的。
EP 0 499 747 A2中提出了用於單體分離的下落條除氣機(Fallstrangentgaser)、除氣擠出機或薄層蒸發機。來自除氣過程的蒸氣在一個或多個彼此前後連接的冷凝器中沈澱。為了產生真空,使用了產生直至0.002atm(=2mbar)真空的未詳細示出的一級或多級機組。為了降低待分離丙交酯的分壓並因此使蒸發更容易並減少聚合物中的殘餘單體含量,提及了可能添加氮、甲苯、乙基苯的夾帶劑(Schleppmitteln)。即使未詳細給出,使用術語“冷凝器”和2mbar的壓力表示蒸氣以液態形式沈澱。因此,同時限制了可使用的真空和殘餘單體含量。這種方法的缺點係,當所分離的丙交酯在其三相點以上以液態形式沈澱時,在單體蒸發之後相對較高的殘餘單體含量。如果選擇三相點以下的壓力,必須以固態形式沈澱丙交酯。為此需要必須不連續工作的反昇華器(Desublimatoren)。
WO 98/36012較佳的是一用於真空蒸發的下落條除氣機,其中聚合物熔體以絲的形式在一可開放的並非處在真空下的容器中落下。在該除氣機中吹入熱的惰性氣體如氮氣或乾燥空氣,以便使丙交酯從下落的絲表面的蒸發 更容易。含丙交酯的熱氣體在離開除氣設備之後快速冷卻到20-40℃,其中丙交酯作為晶態粉塵沈降出來。這較佳的是在一“結晶室”中藉由與冷空氣混合而完成。這種方法的缺點係丙交酯與大量的惰性氣體混合使得難以完全回收丙交酯並且要求非常大的設備來將氣體與丙交酯粉塵分離(旋風分離器、氣體過濾器)。最重要的缺點在於,在去單體化時大氣壓占主導且由此無法實現0.5%的殘餘單體含量。在此方面,下落條設備雖然產生了一大表面,但表面更新密切受限於流出熔體的噴嘴孔的周邊環境。因此材料交換性能總體上受到限制並且即使在真空中也無法達到0.5%數量級的殘餘單體濃度。
EP 755 956 B1描述了一過程,其中來自聚合過程的PLA熔體在沒有預先去單體化的情況下粒化,該顆粒結晶並且其中包含的單體在低於晶體熔點的溫度下借助於惰性氣體流從該顆粒中蒸發。
這種過程的缺點係在這兩個設備中的較長的顆粒停留時間,該停留時間為10與100h之間、較佳的是在20與50h之間。這主要歸因於120至140℃的非最佳溫度,這個溫度在此種安排下表現為可行的。
為了從氣相沈積所分離的單體,提及以固態形式(反昇華器)或液態形式冷凝。作為適合於此的設備,提到了冷凝器、旋風分離器、過濾器或用乳酸或熔融丙交酯工作的清洗器。
丙交酯可以藉由用流動丙交酯清洗,從惰性氣體流中以此方式不完全沈積。在用熔融丙交酯清洗排氣時,由於清洗時的高溫(>100℃,由於丙交酯的熔點),然後在惰性氣體流中作為蒸氣保留有過多的清洗液體。在惰性氣體的循環中,必須將其強制冷卻,將丙交酯反昇華,污染管道、儀器和風機,並導致它們藉由磨損而快速損壞。
在熔點以下沈積丙交酯導致粉塵狀的殘餘物質,該等殘餘物質構成氣溶膠並且藉由所述的設備不能完全從惰性氣體流中沈積。由於運動部件的磨損,丙交酯粉塵即使在很小的量也導致風機和其他機器的損壞。
因此,該文件也沒有提出惰性氣體的循環。這係一顯著的缺點,因為不僅氣體還有其中包含的單體都要被記錄為損失,由此有損於該方法的經濟性。
該文件認識到了在結晶過程中的顆粒團聚問題,並且這種現象歸因於由於所釋放的結晶熱造成的過度的溫度升高造成的熔化和黏合。然而沒有說到這種現象與結晶速度以及與PLA晶體熔化溫度的關係。為了減少團聚,給出了若干措施,該等措施使結晶“在如下狀態下執行,使得PLA顆粒的高流動性得以保留”。這係如何完成的並沒有詳細說明且僅證實了進行這一行為的適合的設備。
該文件此外並沒有給出如果將沈積的丙交酯返回到聚合過程中並且在聚合過程流程的哪個位置來完成。
本發明方法的一個目的係,從EP 755 956 B1出發,減小設備耗費(設備的數量和/或用於從PLA顆粒中分離單體的停留時間)。另一個目的係,用耗費更低的手段避免在PLA顆粒結晶過程中形成團聚體的問題。本發明的第三個目的係,在沒有實質性損失的情況下將從聚合物中分離的單體以連續運行完全沈積並返回到PLA過程中並且循環引導惰性氣體。更高級別的目標係,不僅降低設備成本還降低運行成本,並且由此實現PLA製造的更高經濟性。
這個目的藉由如專利申請專利範圍第1項之特徵所述的方法來實現。另外,前述目的藉由具有專利申請專利範圍第15項之特徵之裝置來實現。在此,相應的從屬專利申請專利範圍形成了有利的改進方案。
本發明因此涉及一用於結晶顆粒並且從具有至少130℃的晶體熔化溫度的可結晶熱塑性材料的顆粒中分離低分子成分之方法,其中該可結晶熱塑性材料的顆粒在結晶步驟中至少部分地結晶並且隨後在分離步驟中低分子成分從該至少部分結晶的顆粒中至少部分地分離,其中該結晶和該低分子成分的分離在不同的溫度下進行,較佳的是該結晶在比該分離更低的溫度下進行。
該結晶在此在上述結晶步驟中進行。在該方法中使用的顆粒因此可以是完全非晶態的,然而也可以是:該顆粒已經具有一定的部分結晶度。這種部分結晶度例如可以藉由已經在用於製造顆粒而進行的粒化過程時進行的該熱塑性材料的部分結晶或者藉由一分開的、接著該粒化步驟的部分結晶步驟來進行。尤其適合用於實現部分結晶度的是所謂的潛熱結晶。
出人意料地已經發現,藉由本發明的方式能夠總體上縮短顆粒的停留時間,在本發明的方式中進行了結晶步驟中的溫度與分離步驟中的溫度的解耦。由此,用於去單體化的溫度上限可以尤其向上提升例如最高達低於該熱塑性材料的熔點5℃,這導致了更短的停留時間。
根據一個特別較佳的實施方式,本發明的方法連續地運行,其中在結晶步驟中該可結晶熱塑性材料的顆粒連續加入並且在結晶和後續的分離之後低分子成分從該步驟中連續地排出。
本發明的方法流程的一個較佳實施方式提出,在低於該可結晶熱塑性材料的晶體熔化溫度20K的溫度下、較佳的是在低於該可結晶熱塑性材料 的晶體熔化溫度80K到20K之間的溫度下進行結晶。
替代或附加於此,同樣較佳的是,該低分子成分的分離在結晶時使用的溫度以上的溫度下進行,較佳的是在結晶時使用的溫度以上直至低於該可結晶熱塑性材料的晶體熔化溫度最高5K的溫度下進行。
根據本發明之方法還較佳的是,在結晶步驟中和分離步驟中氣體流過該顆粒,其中該氣體較佳的是與該顆粒的運輸方向逆流地引導,還較佳的是該氣體首先在分離步驟中加入並且在分離步驟中在流過該顆粒之後從該分離步驟中抽出並隨後加入到該結晶步驟中並在該結晶步驟中流過該顆粒,其中該氣體較佳的是氮氣和/或乾燥空氣並且還較佳的是具有<-20℃、特別較佳的是<-40℃的露點。
在本發明方法中還較佳的是,從該分離步驟抽出的氣體在加入到該結晶區域中之前與低溫氣體混合或者冷卻,並且將所產生的氣體混合物或所冷卻的氣體加入到該結晶步驟中,其中所產生的氣體混合物或所冷卻的氣體較佳的是被設定在該可結晶熱塑性材料的晶體熔化溫度以下20K以下。該低溫氣體在此有利地具有與所使用的氣體相同的品質,尤其在其組成方面和/或在其露點方面。
該顆粒尤其可以在藉由該分離步驟之後加入到冷卻步驟中並且被冷卻,較佳的是冷卻到<80℃、更較佳的是到<60℃、特別較佳的是到<50℃的溫度。
顆粒的冷卻在此可以間接地在一管束換熱器中用溫度小於顆粒溫度的氣體來進行,其中該顆粒在該等管中流動並且該氣體以交叉逆流圍繞該等管流動。
替代於此,同樣較佳的是且可行的是,該顆粒的冷卻直接借助於用溫度小於顆粒溫度的氣體流過該顆粒來實現。
根據另一個較佳的實施方式提出,該氣體在該冷卻步驟中流過該顆粒之後被加熱到該可結晶熱塑性材料的晶體熔化溫度以下最多20K至該可結晶熱塑性材料的晶體熔化溫度以下最多5K、並且被加入到該分離步驟。在此,將該氣體的至少一部分從該冷卻步驟抽出、加熱並加入到該分離步驟中。
向該分離步驟(或者適當時預先向該冷卻步驟)中加入的氣體的質量流量對應於所加入的顆粒的質量流量的較佳的是最小2.0倍、較佳的是2.5倍至5.0倍、特別較佳的是2.8至3.2倍。
替代或附加於此,同樣可行的是,作為氣體的質量流量與比熱容的乘積計算的、向該分離步驟或冷卻步驟中加入的氣體流的熱容被選擇為大於作為該可結晶熱塑性材料的質量流量與比熱容的乘積計算的、該顆粒流的熱容,較佳的是該氣體流的熱容與該顆粒流的熱容的比率較佳的是設定為在1.25與2.5之間。
較佳的是該顆粒在該結晶步驟中停留在0.5與10h之間、較佳的是在1與5h之間,和/或該結晶進行直至10至80%、較佳的是在20與70%之間的結晶度。
在分離步驟中,顆粒的停留時間較佳的是在1與30h之間,特別較佳的是在1與10h之間。
顆粒在該結晶步驟中尤其被機械地移動,較佳的是攪拌。
本發明的方法流程使得該低分子成分能夠分離直至低於1重量%、較佳的是低於0.5重量%、特別較佳的是低於0.2重量%的含量。
該熱塑性材料尤其選自由聚乳酸和乳酸共聚物組成的組。
聚乳酸的共聚物在此表示以下共聚物:該等共聚物除了乳酸單元之外還含有其他的與乳酸或丙交酯可聚合或可共縮聚的單體單元,其實例為能夠與丙交酯共聚成對應的共聚物的乙交酯和/或ε-己內酯。
較佳的是對應地在本發明的方法中可使用的聚乳酸選自可結晶的聚乳酸、尤其選自下組的聚乳酸,該組由具有6%的D-乳酸單元最大含量的聚-L-乳酸或者具有6%的L-乳酸單元最大含量的聚-D-乳酸組成。在聚-L-乳酸中的D-乳酸單元在此可以源自D-丙交酯或內消旋丙交酯,該等D-丙交酯或內消旋丙交酯被包含在用於製造該聚-L-乳酸的反應物中或者在製造中藉由L-丙交酯的光學活性碳原子的外消旋化而存在。對應的內容適用於聚-D-乳酸中的L-乳酸單元的含量。
待分離的低分子成分在此較佳的是選自由丙交酯、乳酸以及共聚單體、尤其L-丙交酯、D-丙交酯和內消旋丙交酯組成的組。
該方法由此使得能夠以至少130℃的晶體熔化溫度從聚乳酸或共聚物中分離丙交酯和/或乳酸。
本發明方法的另一個較佳的實施方式提出,該顆粒直接在其加入到該結晶區域中之前藉由聚合反應或縮聚反應在熔體中並且隨後在所獲得的聚合物的粒化中作為非晶態或部分晶態的顆粒(藉由潛熱結晶)來製造。
在熔體中獲得的低分子成分在此可以在粒化之前部分地去除,尤其借助於下落條蒸發機。部分去除在此較佳的是在相對於標準狀態減少的壓力下,例如在真空中進行,其中所獲得的低分子化合物轉變到氣相中,例如藉由蒸發。
還較佳的是,氣體流在從該結晶步驟中或該分離步驟中抽出之後經受純化,其中在氣體流中包含的低分子材料至少部分地分離,其中較佳的是純化後的氣體再次加入到該分離步驟或該冷卻步驟中和/或將分離的低分子成分重新用於製造聚合物。
本發明還涉及一用於執行從可結晶熱塑性材料的顆粒中結晶和分離低分子成分之裝置,該裝置包括a)用於可結晶熱塑性材料的顆粒的一結晶區域,該結晶區域具有用於可結晶熱塑性材料的顆粒一入口和一出口,b)用於從該可結晶熱塑性材料的顆粒中分離低分子成分的一分離區域,該分離區域具有用於可結晶熱塑性材料的顆粒一入口和一出口,其中該分離區域連接在該結晶區域的下游並且該結晶區域和該分離區域被設計為使得該等低分子成分的結晶和分離在不同的溫度下進行,尤其該結晶在比該低分子成分的分離更低的溫度下進行。
該裝置的一個較佳的實施方式提出,該分離區域具有用於加熱的氣體的供應器,該供應器較佳的是安排在該分離區域的顆粒出口處或者在該顆粒出口附近,其中還較佳的是在該供應器的上游連接一個氣體加熱器。
還有利的是,該結晶區域和該分離區域處於流體連接,其中該顆粒從該結晶區域的出口到該分離區域的入口的傳輸以及該氣體從該分離區域到該結晶區域的傳輸得以保障。
此外較佳的是,該分離區域的顆粒出口匯入到顆粒冷卻器的一顆粒入口中,其中該顆粒冷卻器具有用於該冷卻氣體的送入器,其中該顆粒冷卻器在該顆粒入口的區域中較佳的是包括可抽氣裝置(Abzugsmöglichkeit für Gas), 該可抽氣裝置匯入到用於該分離區域的加熱的氣體的一供應器中,該供應器較佳的是安排在該顆粒出口處或在該顆粒出口附近,其中還較佳的是在該供應器的上游連接一氣體加熱器,其中該可抽氣裝置較佳的是匯入到該氣體加熱器中。
該顆粒冷卻器的冷卻效果還可以進一步改進,其方式為,該顆粒冷卻器具有至少一個額外的器件用於支持該顆粒的冷卻。這可以例如藉由管束狀的插入件來進行,其中顆粒豎直地引導穿過該管束的該等管。在該等管之間或在該等管周圍的間隙中引導一用於冷卻該等管並因此冷卻該等顆粒的氣體或液體。圍繞該等管的空間可以在該冷卻器的上部用空氣載入、在下部用水載入,其中圍繞該等管的空間藉由垂直的分隔壁分成兩部分。於是在上部需要用於空氣的送入器和送出器,在下部需要用於水的送入器和送出器。
空氣冷卻和水冷卻也可以在兩個彼此分開的冷卻器中完成。在顆粒的流動方向上,水冷卻總是安排在空氣冷卻之後,並且僅具有補充性的功能(如果沒有用空氣單獨地實現所希望的50℃的顆粒溫度)。冷卻器還可以由兩個分開的部分組成,其中上部用空氣直接接觸地冷卻該顆粒,下部用水間接接觸地冷卻,如上所述。
替代或附加於此,同樣可行的是,在該顆粒冷卻器的內部空間中整合冷卻用的插入件,該等插入件能夠與該顆粒進行物理接觸並且被顆粒流過或沖刷。
該結晶區域可以具有一氣體出口,該氣體出口匯入到一用於從該氣體流中分離低分子成分的清洗裝置,其中較佳的是在該清洗裝置的下游連接一液體沈積器和/或一氣體乾燥器,借助於該液體沈積器和/或氣體乾燥器,該氣體流從液體中釋放,其中該氣體流在液體的沈積和/或乾燥之後重新加入到該顆粒冷卻器和該結晶區域中。在該液體沈積器和/或氣體乾燥器上游還較佳的是連 接一冷卻器,通過該冷卻器,來自該氣體中的液體可以在進入該液體沈積器和/或氣體乾燥器之前冷凝出來。由此使得氣體的乾燥更容易。
尤其提出的是,該結晶區域具有一用於機械地移動位於該結晶區域中的可結晶熱塑性材料的顆粒床的器件,較佳的是一顆粒攪拌器。
此外還有利的是,結晶區域、分離區域和較佳的是該顆粒冷卻器共同地安排在一井道設備(Schachtapparat)中。在此較佳的是結晶區域、分離區域和顆粒冷卻器豎直地彼此上下安排在一井道設備中,其中該結晶區域與該分離區域藉由一孔板處於連接中,其中該孔板設計為錐形並且具有一中部開口,通過該中部開口,顆粒可以從該結晶區域過渡到該分離區域。
替代於此,同樣較佳的是,結晶區域和分離區域彼此分開地安排並且通過一顆粒導管以及一氣體導管彼此處於流體連接,其中較佳的是分離區域和顆粒冷卻器安排在一井道設備中。
此外還可以提出,在該結晶區域的顆粒入口的上游連接一粒化裝置用於從可結晶熱塑性材料的熔體生產顆粒,其出口通過一顆粒導管與該結晶區域的入口處於流體連接,其中較佳的是在該粒化裝置的上游連接一用於生產可結晶熱塑性材料的熔體的反應器,其中在適當時在反應器與粒化器之間安排有一用於從該可結晶熱塑性材料的熔體中部分地分離低分子成分的裝置,尤其一下落條蒸發器。
將借助下面的實施方式更詳細地解釋本發明,而本發明並不受限於特定細節。下面在從聚乳酸中分離丙交酯的實例情況下描述本發明,然而這只是單純示例性的。本發明同樣能夠在分離所包含的揮發性、低分子化合物的情況下用其他可結晶熱塑性聚合物來進行。
1:聚合反應器
2:齒輪泵
3:粒化裝置
4:顆粒導管
5:結晶區域
5a:孔板
6:攪拌器
6':攪拌臂
7:分離區域
5-7:傳輸
7-5:傳輸
8:井道設備
9:顆粒冷卻器
9a:送入器
9b:可抽氣裝置
10:顆粒流
11:氣體流
11a:氣體加熱器
11b:風機
12:供應器
12a:氣體加熱器
13:氣體出口
14:清洗裝置
15:填料
16:泵
17:冷卻器
18:分配裝置
19:氣體冷卻器
20:液體沈積器
21:氣體乾燥器
22:脫礦質水
23:泵
24:固體用過濾器
100:下落條蒸發器
101:冷凝器
102:丙交酯純化器
〔圖1〕係根據實施方式a)的方法的流程。
〔圖2〕係根據實施方式b)的方法的流程。
〔圖3〕係根據實施方式c)的方法的流程。
根據本發明,尤其可行的是能夠執行本發明方法的三個實施方式。
根據第一實施方式(以下標為實施方式a)),該結晶和去單體化較佳的是在一豎直的井道設備中進行,其中該結晶區域安排在該去單體化區域上方。
實施方式b)提出,去單體化和結晶較佳的是在分開的裝置中進行,其中結晶區域連接在去單體化器的上游。
下面詳細解釋的實施方式c)在此主要涉及實施方式a),其中熱塑性材料(例如像聚乳酸)的熔體在粒化之前已經被部分地去單體化。
根據實施方式a)的方法流程
開篇所述的目的尤其藉由一種方法來實現,在該方法中含單體的PLA在藉由聚合來製造之後被粒化,並且非晶態的顆粒在一唯一的井道設備中借助於惰性氣體流來加熱並結晶並且在晶體熔點以下進行去單體化(實施方式a)。停留時間被縮短,其方式為使在結晶時與在去單體化時的顆粒溫度解耦。由此可以提高去單體化的溫度上限直至PLA熔點以下5℃,這導致了更短的停留時間。
在該設備的上部(在其中進行結晶)中的團聚用一具有豎直軸線 的攪拌器來避免。在此,該顆粒藉由在結晶過程中適當地引導該惰性氣體被設定到在待結晶PLA的熔點以下至少20℃的溫度。在井道結構的處於結晶區域以下的區域中,顆粒的溫度提高到直至該晶體熔點以下5℃並且去單體化在對應地提高的溫度下最終導致更短的停留時間。
離開該井道設備、載有單體的惰性氣體在一氣體清洗器中用水冷卻並清洗。在此,單體完全轉移到水中。將其作為含水的漿料或濾餅從清洗器循環中取出並返回到PLA過程中。完全純化的惰性氣體被引入循環,使得既不需要考慮惰性氣體的顯著損失也不需要考慮丙交酯的顯著損失。
已經發現,在顆粒在設備中小於20小時的停留時間下,可以實現在顆粒中的0.2%的殘餘單體含量。該方法使得在投資成本(所需設備的數量)和運行成本(沒有形成真空,沒有丙交酯和惰性氣體的損失)能夠特別經濟地實現PLA的去單體化。
根據實施方式a)的方法的流程在圖1中示出。
在聚合設施中(未展示),將90%的乳酸藉由縮聚以及所產生的寡聚物的後續解聚加工為丙交酯。丙交酯在純化後藉由精餾藉由開環聚合轉化成PLA。在聚合結束時丙交酯的含量可以是在2%與20%之間,也就是在藉由PLA環-鏈平衡在所使用的聚合溫度下存在的單體含量與藉由預先中斷聚合過程來設定的單體含量之間。該反應可以在連續設施中(例如在預先給定的反應器體積下藉由提高熔體流量)並且由此在縮短的停留時間下中斷,或者藉由使用低溫(在該低溫下在反應器中現有的停留時間係不足的)以便實現丙交酯濃度的平衡。對於實施方式a)較佳的單體含量最高達5%。
出於經濟性的考慮,不能放棄這部分單體。在將其從產物中分離 之後,必須將其回收並且返回到PLA的製造過程中。
含單體的熔體從聚合反應器1借助於齒輪泵2抽出並供應給粒化裝置3。適合用作粒化裝置的是水下熱模粒化(Unterwasser-Heißabschlag-Granulierung)、水下拉條粒化(Unterwasser-Stranggranulierung)或產生具有在5mg與100mg之間的中值微粒質量的顆粒的任何其他粒化裝置。微粒形狀可以是球形、圓柱形或棱柱形,它們對於該方法的效果沒有影響。依據粒化的實施方式,顆粒可以晶態或非晶態形式存在。下面描述用於非晶態顆粒的方法。
非晶態顆粒通過顆粒導管4輸送到井道設備8的入口。顆粒作為移動床與惰性氣體逆流地流動通過該設備,該惰性氣體承擔送出該單體和熱傳輸的任務。適合作為惰性氣體的是在該過程的溫度下不損害PLA、尤其不造成鏈斷裂反應(莫耳質量降低)、氧化或染色的氣體。已經證明適合的尤其是氮氣和乾燥空氣(露點溫度<-20℃,較佳的是<-40℃)。
井道設備8在顆粒的流動方向上包含三個區域:結晶器5,去單體化器7和顆粒冷卻器9。結晶器5將非晶態顆粒轉化成部分晶態的狀態。在去單體化區域7中形成了在顆粒中的所希望的殘餘單體含量。顆粒冷卻器9將溫度從過程溫度降低到在玻璃轉變溫度以下的溫度(低於60℃,依據用於聚合的丙交酯的光學純度,也可直到低於50℃)。
在結晶區域5中形成了結晶度,該結晶度取決於所選的顆粒溫度和顆粒的現有停留時間。結晶區域的體積被設計為,使其為顆粒流提供了在1與5h之間的停留時間。在結晶器5中不需要在顆粒中設定與所選的溫度對應的結晶平衡,該結晶平衡依據溫度和用於聚合的丙交酯的光學純度而處於30與70%的結晶度之間。設定一防止顆粒在後續的去單體化區域中黏合的結晶度就是足夠的。當結晶度大於10%、然而較佳的是大於20%時就已經是這種情況。
具有豎直安排的軸(在該軸處固定有葉片狀的攪拌臂)的攪拌器6穿過結晶器5中的移動床,其轉速可以處於0.1/min與5/min之間。轉速被選擇為,一方面在結晶過程中防止了顆粒的黏合,另一方面將待採用的轉矩保持較小,使得攪拌臂不受損傷並且不存在顯著的顆粒磨損。攪拌葉片的橫截面對於該方法僅具有如下的意義:該葉片一方面必須具有足夠的機械穩定性,且另一方面應當在其通過顆粒床運動時經受盡可能小的阻力。例如該橫截面理論上可以是矩形的,其中長邊與短邊的比率為大於20,短邊指向葉片的運行方向並且邊緣在運行方向上是傾斜的。在井道壁與攪拌器葉片劃出的圓之間的間距小於中值微粒直徑的20倍。結晶器通過由孔板5a形成的漏斗向下封閉。該等孔具有1mm的直徑,使得從下方來的氣體(例如空氣)能夠通過漏斗從分離區域7進入結晶區域5(在圖1中用參考標記“7-5”表示),然而顆粒不能向下穿過。顆粒流在分離區域7的方向上通過在井道軸線中安排在漏斗尖端的管支撐件(在圖1中用參考標記“5-7”表示)離開結晶區域5
根據實施方式a)在井道設備中設定不同的溫度藉由根據本發明的惰性氣體分配來實現。
結晶區域5向下藉由孔板漏斗5a的封閉使得從去單體化區域中上升的惰性氣體與低溫的第二惰性氣體流11共混更容易。藉由這兩個氣體流在孔板漏斗5a之下無顆粒的體積中的良好混合,第一氣流的溫度被降低直至能夠在結晶器5中達到比在去單體化區域7中更低的顆粒溫度。顆粒溫度借助於氣體流11的溫度(氣體加熱器11a)和質量流量(風機11b)來設定。
在根據圖1的井道設備8的下部區段中供應的惰性氣體質量流量應當是PLA顆粒的質量流量的至少2.0倍、較佳的是至少2.5倍並且典型地3.0倍。在設備8的上部區段中供應的惰性氣體的質量流量根據量和溫度如此測定,使得 在結晶器5中在這兩個惰性氣體流混合之後設定所希望的低溫。在下部區段中3.0的氣體/顆粒質量流量比率以及150℃的氣體進入溫度下,例如對於在上部區段中供應的氣體質量流量產生了在50℃的氣體溫度下0.5的比率。由此在這兩個氣體流混合之後在結晶器5之前並且由此還在結晶器5的顆粒中設定了120℃的溫度。
在結晶器5中設定了在待結晶的PLA的晶體熔點以下至少20℃的溫度。
離開結晶器5的顆粒流到達井道設備8的下部區段,即去單體化區域7。在那裡現已部分結晶的顆粒的溫度提高到直至該晶體熔點以下5℃。這藉由在顆粒進入該顆粒冷卻器9之前、在去單體化區域的下端引入一預加熱到所希望溫度的惰性氣體流12來完成。在此,該氣體的熱容(該氣體的質量流量與其比熱容的算術乘積)必須大於該顆粒的熱容(該顆粒的質量流量與其比熱容的算術乘積)。較佳的是該氣體的熱容的比率至少是該顆粒的熱容的1.5倍。只有這樣才能借助於所供應的氣體的溫度來設定所希望的顆粒溫度。
在顆粒在去單體化區域中20h(較佳的是更少)的停留時間情況下,殘餘單體含量降低到0.2%或以下。
隨後顆粒作為移動床流動到顆粒冷卻器9中。在此較佳的是管束冷卻器。顆粒流過該等管,在此期間從外側用水進行冷卻。有利的是,替代於水,在風機12b之後使用氣體流9b並且於是從顆粒回收熱量。於是氣體加熱器12a只需要施用熱量差即可設定在進入到去單體化區域7之前的確切溫度。
顆粒流10在冷卻器出口處的溫度為低於60℃、較佳的是低於50℃。如果這個溫度單獨使用氣體流12時無法實現,則顆粒冷卻器9的上部區段被設計成用氣體冷卻、下部區段用水冷。經冷卻的顆粒可以進入一倉,或者直接 進入包裝。
應理解的是,惰性氣體流不僅在其藉由去單體化區域7的路徑上接收單體,而且還在其藉由結晶器5的路徑上接收單體,即使在那裡接收的單體量係很少的(由於下降的溫度和更短的停留時間)。經載入的惰性氣體作為排氣流13在結晶區域以上離開該設備。
經載入的惰性氣體供應給清洗器14。這個清洗器由多個具有增大的彙集體積(Sumpfvolumen)的填充柱組成。惰性氣體在彙集部的水液面以上和填料15以下進入,向上流經該填料15並且用水逆流地冷卻到水溫並進行清洗。在此,所獲得的單體完全輸出到水中。出人意料地,在此在氣體流中也不保留任何氣溶膠。泵16將水從彙集部抽出,將其輸送通過冷卻器17並且將其藉由分配裝置18(例如噴嘴)均勻分配到填料散裝物上。循環的清潔水量被測定為,使得惰性氣體流完全達到這個水溫。冷卻器17設定該水溫。該水溫可以是在10℃與50℃之間,典型地30℃。該溫度對於該方法具有次要重要性,並且可以根據經濟觀點來選擇。
清潔器的彙集部被設計為,使固體能夠沈降出來並且在錐形的底部集中。除了單體之外,固體還表示PLA粉塵,該PLA粉塵與顆粒一起在粒化過程中形成或者在管線和設備中藉由顆粒的磨損產生並由排氣流夾帶。所集中的懸浮體用能夠輸送含固體的液體的適合的泵23從清洗器彙集部抽出。這個漿料供應給丙交酯製造的一過程步驟,其中能夠將輸送用水在不損傷其中包含的產物的情況下分離並且能夠利用該單體和粉塵。適合於此的例如是乳酸脫水,其中將所達到的約90%的乳酸濃縮到100%(這可以例如根據EP 2 030 667 B1,第9欄“乳酸的濃縮”來進行)。這種向回引導將否則評估為廢物的固體變回PLA顆粒。
替代於此,還可以將在清洗水中包含的固體用過濾器24沈澱。在 此情況下,不時取出濾餅、用水或乳酸攪拌成可流動的懸浮體並且供應到乳酸脫水過程中。
由於抽出而產生的清洗器循環中的水損失藉由供應脫礦質水22來補充。
經純化的惰性氣體在清洗器之後具有對應於加入填充散裝物的清洗水的溫度相對應的露點。在將惰性氣體返回到井道設備中之前可以將其乾燥。這較佳的是以兩個步驟完成:首先在冷卻器19中用冷水到例如6℃,以便將在第二步驟中使用的吸附空氣乾燥劑21去除,該冷卻器設定所需要的至少-20℃、較佳的是-40℃的露點。在冷水冷卻器之後結露出來的濕氣部分地作為霧存在。該濕氣在液滴和霧分離器20中分離並回到清洗器中。吸附空氣乾燥器藉由加熱的空氣來再生。如果使用空氣作為惰性氣體,則例如漢堡Munters公司的用吸附輪(Adsorptionsrad)連續工作的乾燥器係合適的。用氮氣作為惰性氣體的情況下,例如柏林矽膠方法過程公司的固體床乾燥器係合適的(Fa.Silica Gel Verfahrenstechnik Berlin)。在設定該露點之後,可以將惰性氣體流分配到支路1112上並因此閉合該循環。
如果使用氮氣作為惰性氣體,則由於氣體的成本,需要這種循環引導。在使用乾燥的空氣作為惰性氣體時,不一定需要循環引導。空氣還可能從周圍環境中取出並且在過濾和乾燥之後用於去單體化並且在回收丙交酯之後輸出到周圍環境。然而循環引導具有以下優點:不依賴於天氣條件和空氣雜質,並且避免了供應用於補充隨放氣的損失所需的脫礦質水。循環引導於是有助於節水和過程安全性。用於乾燥空氣和清洗排氣所需的裝備不僅在從環境空氣中取出和向環境空氣中排放時還在循環引導時是必需的,使得循環引導不造成任何經濟上更多的耗費。
根據實施方式b)的方法流程
在本發明的另一個實施方式b)中,該目的係藉由在加熱的同時在一具有水平攪拌器的自身的設備中結晶該顆粒、並且藉由在與之相連的豎直的第二井道設備中完成去單體化。結晶器中和在相接的井道設備中的最大溫度如在實施方式a)一樣地選擇。載入有單體的惰性氣體藉由用水清洗如在實施方式a)中一樣純化並引入循環中。
在這個實施方式中,在顆粒在設備中小於20小時的停留時間下,也可以實現在顆粒中的0.2%的殘餘單體含量。這個實施方式具有如下優點:需要比實施方式a)更小的惰性氣體流並且因此更小的用於純化、乾燥和返回氣體的設備。
根據實施方式b)的方法的流程在圖2中示出。在此相同的元件符號標記相同的部件並且部分地沒有特別地重新解釋。
如上在實施方式a)下所描述的,在一連續的設施中從乳酸製造PLA。將含單體的熔體(可以包含在2%與20%之間的丙交酯)從聚合反應器1中抽出並且供應給粒化裝置3。在這個實施方式中也適合用作粒化裝置的是水下熱模粒化、水下拉條粒化或產生具有在5與100mg之間的比微粒質量的可自由流動顆粒的任何其他粒化裝置。
將非晶態的顆粒供應到一分開的結晶器5。適合用作結晶器的是具有水平攪拌軸6的所謂的犁片混合器,在該攪拌軸處固定有攪拌臂6',該等攪拌臂在其末端承載類似犁片的混合和輸送元件。該等元件防止顆粒在壁上的黏合並且負責在結晶過程中產生的團聚體的分解,混合顆粒床並將其從入口輸送到出口。結晶器5的外罩空間形成為躺放的圓柱體,在其軸線中安排該攪拌軸。 該設備最大用顆粒填充直至該攪拌軸。它可以從外部用載熱介質(蒸氣、水、油)加熱,使得該顆粒能夠藉由與加熱的壁直接接觸而加熱到結晶溫度。藉由容器引導惰性氣體,較佳的是與顆粒的主流動方向逆流。惰性氣體用於在結晶過程中從顆粒中送出所釋放的單體。作為惰性氣體,較佳的是藉由導管7-5將在井道設備8中後續的去單體化區域7排氣13供應給犁片混合器。來自犁片混合器的排氣用清洗器14純化、乾燥、並引入循環,與對於實施方式a)所描述的一樣。所沈積的固體(單體和PLA粉塵)以相同方式返回到該過程中,如上所述。
替代於呈犁片混合器形式的結晶器5,可以使用轉鼓設備作為結晶器5。一水平地繞其軸線旋轉的轉鼓設置有用於顆粒和惰性氣體的入口和出口。將顆粒加入轉鼓的內側,該內側用一焊接上的螺旋帶將顆粒從入口輸送到出口。轉鼓的旋轉保持顆粒持續移動並且由此防止團聚體的形成。顆粒通量和停留時間藉由鼓的轉速和填充度來設定。顆粒流可以在其通過鼓的路徑上用在鼓長度上牢固安排的紅外發射器來加熱。顆粒溫度藉由發射器的加熱功率來控制。在結晶過程中從顆粒中釋放的單體用惰性氣體流送出,該惰性氣體流藉由旋轉的鼓較佳的是在顆粒的主流動方向相反的方向上引導。
還較佳的是將後續的井道設備8的排氣13供應給轉鼓設備以便結晶。排氣純化和固體返回如對於實施方式a)所描述的一樣進行。
來自結晶器5的預結晶的顆粒供應給井道設備8,該井道設備在此實施方式中不包含結晶區域和攪拌器。在該去單體化區域7中現已部分結晶的顆粒的溫度提高到直至該晶體熔點以下5℃。這藉由在該等顆粒過渡到該顆粒冷卻器9之前、在去單體化區域的下端引入一預加熱到所希望溫度的惰性氣體流12來完成。在此,該氣體的熱容(該氣體的質量流量與其比熱容的算術乘積)必須大於該顆粒的熱容(該顆粒的質量流量與其比熱容的算術乘積)。據此,在根據圖 2的井道設備的下部區段中供應的惰性氣體質量流量必須是PLA顆粒的質量流量的至少2.0倍、較佳的是至少2.5倍並且典型地3.0倍。只有這樣才能借助於所供應的氣體的溫度來設定所希望的顆粒溫度。
在顆粒在去單體化區域中20h(較佳的是更少)的停留時間情況下,殘餘單體含量降低到0.2%或以下。
隨後,顆粒作為移動床流入該顆粒冷卻器9中,該顆粒冷卻器已經在實施方式a)中進行了描述。
根據實施方式c)的方法流程
另一個實施方式c)在於兩步的去單體化:將在第1步驟中從聚合的熔體中藉由真空蒸發分離丙交酯並且在第二步驟中在熔體粒化之後從固體PLA顆粒中分離丙交酯組合。這種實施方式適合在聚合之後熔體中的高單體含量下。當不存在這個條件時,這導致在步驟2中<10h的特別短的停留時間。因為在第一步驟中對產物的殘餘丙交酯濃度沒有提出要求(最終值首先在第二步驟中設定)可以使用沒有可移動零件的廉價的設備,例如下落條設備。在第二步驟中使用具有根據實施方式a)的結晶步驟或具有與在實施方式b)中一樣分開的上游連接的結晶器的井道設備。丙交酯的回收在第一步驟中藉由在丙交酯的三相點以上的壓力以液態形式冷凝來完成。在第二步驟中,含丙交酯的惰性氣體如在實施方式a)中一樣用水清洗並引入循環。沈積的單體如上所述地返回。
根據實施方式c)的方法的流程在圖3中示出。在此相同的元件符號也涉及相同的組成部分並且部分地沒有特別地重新解釋。當在聚合之後的熔體包含超過5%的單體時或者當在固相中去單體化的情況下希望特別短的停留時間時,這種實施方式係較佳的。
如上在實施方式a)下所描述的,在一連續的設施中從乳酸製造PLA。將含單體的熔體1(可以包含在2%與20%之間的丙交酯)從聚合反應器中抽出並且供應給下落條除氣機100。在那裡,熔體借助於安排在上端的噴嘴板分配到多個豎直的孔上並因此分配成條,該等條在重力作用下通過一由容器尺寸預定的部段向下掉落。在容器中設定真空,該真空在丙交酯的三相點以上,例如在10mbar。在熔體中包含的單體從該條中蒸發並且引導到冷凝器101中,其中該單體以液體形式冷凝在該冷卻的表面處。在那裡保持了在丙交酯熔點以上的溫度,例如110℃。該單體收集在冷凝器中並且回到儲存源的設施部分中,例如回到開環聚合的丙交酯儲存源或者回到丙交酯純化器(元件符號102)。
在下落條除氣機中的熔體條浸沒到該容器底部的熔體儲器。泵2保持一預定的填充狀態並且將熔體輸送到顆粒裝置3中。在這個實施方式中也適合用作粒化裝置的是水下熱模粒化、水下拉條粒化或產生具有在5與100mg之間的比微粒質量的可自由流動顆粒的任何其他粒化裝置。
非晶態的顆粒進入井道設備8的結晶區域5中,該結晶區域裝備有豎直攪拌器6以便避免團聚。這個設備準確對應於如在實施方式a)中的描述。尤其保持與那裡相同的顆粒溫度和惰性氣體量。在藉由結晶區域5、去單體化區域7和顆粒冷卻器9之後,該顆粒包含少於0.2%的丙交酯並且供應給儲存器或包裝器。
清洗、乾燥載有單體的排氣13並將其供應給井道設備,如對於實施方式a)詳細描述的。在清洗器中沈積的單體返回到該過程中,同樣如上所述。
替代地,將來自粒化的顆粒供應給分開的結晶器5,該結晶器設計為犁片混合器或轉鼓設備,兩者都在實施方式b)下詳細說明。尤其在那裡所提及的溫度也都適用於這個實施方式c)。在結晶後,將顆粒供應給井道設備8,該 井道設備在此情況下實施為沒有結晶區域5(見實施方式b)。在藉由去單體化區域7和顆粒冷卻器之後,該顆粒包含少於0.2%的丙交酯並且供應給儲存器或包裝器。
來自井道設備的排氣較佳的是引導通過分開的結晶器、清洗、乾燥並再次供應給該井道設備,如對於實施方式b)所描述的。在清洗器中沈積的單體返回到該過程中,如對於實施方式a)所述。
先前提及的本發明方法的實施方式總體上可以替代於水而使用與水處於任何混合比率的乳酸作為清洗液體。特別經濟的是,使用為了製造丙交酯所用的、具有5至15%水含量的乳酸。從惰性氣體中沈積的單體保留在乳酸中、然後縮聚並且解聚成丙交酯。以此方式,在沒有其他措施的情況下將單體返回到聚合過程中。
對於先前體積的實施方式總體上同樣適用的是,替代於所分離的丙交酯用水或乳酸的冷卻和洗出,丙交酯還可以藉由惰性氣體流的冷卻和從經載入的惰性氣體流用常規乾燥除塵裝置分離。冷卻例如藉由將冷的惰性氣體流混入載入有單體的惰性氣體流來進行。在此,反昇華的丙交酯以粉塵形式沈積或不沈積。適合用作沈積丙交酯粉塵的裝置係旋風分離器和藉由篩動(Abrütteln)或壓力衝擊而具有連續提純的織物過濾器。丙交酯在此作為可傾倒的粉塵沈積並且在熔化之後返回該聚合過程中。反昇華的丙交酯傾向於構成氣溶膠,即通過所述的裝置不能100%沈積。粉塵形的丙交酯即使在很小的濃度下也作用於風機上並且在短時間內導致損壞。惰性氣體流的循環引導因此使不可行的。為了仍然能夠完全純化惰性氣體流,用水清洗該氣體。出人意料地已經發現,在根據本發明的氣體清洗器中用水清洗也防止了氣溶膠微粒,並且能夠實現惰性氣體的完全純化並由此實現循環引導。在水中沈積的丙交酯量係很少的(<0.1%相對於 PLA),使得返回到PLA過程中並不是強制必需的。
本發明的所有實施方式能夠實現完全連續的運行,其中在沒有所分離的殘餘單體以固體形式沈積的情況下在反昇華器中進行。避免了與之相關的不連續的運行,該不連續的運行由抽真空循環、以固體形式沈積到冷卻面上、壓力升高、從該等面上熔化丙交酯以及從液態丙交酯從反昇華器中抽出、重新抽真空等等。
本發明還可用於來自所謂的“潛熱結晶”的PLA顆粒。在針對此設計的粒化器系統中,在該條或液滴的內部仍未液體的過程中,分割成條或液滴的熔體用水壓制(abgeschreckt)和切割以僅形成固體外皮。在那裡PLA在PLA晶體熔點以下的溫度下從封閉的熔體結晶。在這個過程中,顆粒與水分離並且然後保持一定時間內機械地移動,直到該等微粒在外部壓力下不再改變其形狀。晶態的顆粒以晶態PLA的熔體以下5與50℃之間的溫度落下。然後顆粒直接轉移到沒有結晶區域的井道設備中並且在直至顆粒的晶體熔點以下5℃的溫度下去單體化。這個方法變體較佳的是適合於具有小於約2%的D-含量的快速結晶顆粒。在具有減小的結晶速度(也就是說具有在約2%與6%之間的D-含量)的PLA類型中,可能有利的是,顆粒首先轉移到根據實施方式a)或b)的結晶區域中,在其中顆粒停留直至結晶完成。
在這個方法變體中,省略了將顆粒冷卻到玻璃轉變溫度以下的溫度以及再次加熱以使非晶態顆粒的結晶。
本發明可用於具有高於130℃的晶體熔點的PLA。PLA係在有或沒有共混D-乳酸單元的情況下從L-乳酸單元構造的或者在有或沒有共混L-乳酸單元的情況下從D-乳酸單元構造的。在純的L-或D-乳酸單元的PLA具有約180℃的熔點,而隨著相反光學鏡像異構物的共混的增加,熔點下降。從在L-乳酸單元的 PLA中約6%的D-乳酸單元的含量或在D-乳酸單元的PLA中約6%的L-乳酸單元的含量開始,不再能觀察到晶態熔點。該等PLA類型在超過玻璃轉變溫度(約55℃)之後軟化而不結晶,並且構成熔體。然而本發明的去單體化係僅僅在至少130℃的溫度下就是可行的,因為那裡只達到了過程上所需要的處理時間(見下文表1)。本發明還提出,PLA構成固體的、自由流動的顆粒。本發明於是不可用於具有130℃以下熔點的PLA,和不具有晶態熔點的PLA。
實驗室規模的實驗(實例1)已經顯示出,顆粒中的溫度越高,去單體化進行得越多(根據所需的停留時間和計算的殘餘單體含量)。因此希望的是使用盡可能高的溫度。然而這個溫度受限於顆粒的熔點,在該熔點以上不再能夠稱為顆粒。依據在先前的結晶中實現的結晶狀態(藉由結晶度和晶粒大小表徵),然而最少在熔點以下約5℃,該顆粒軟化並構成團聚體。已經顯示出,連續運行的井道設備對團聚體係特別敏感的,因為它們中斷顆粒流。同時,去單體化過程需要停機,因為惰性氣體不再能流過該團聚體並將單體送出。
對於非晶態顆粒的結晶,更低的溫度極限也適用。非晶態PLA顆粒在加熱超過玻璃轉變溫度(60℃)、最遲在80-90℃時軟化。同時採用結晶,該結晶使聚合物的熔點從60℃的玻璃轉變溫度出發而提高。如果PLA具有足夠的結晶速度,則進一步的結晶阻止了過強的軟化或完全阻止在加熱顆粒時微粒的熔化。於是僅存在鬆散的團聚體,機械運動可以將其粉碎。如果結晶的流程過長,加熱過程超過結晶過程,顆粒在黏性至熔化的狀態中停留過長。在此出現粗粒的強團聚直至共同熔化。因而,作為顆粒黏合的原因,已經鑒別出是相對於加熱速度而言PLA的較小的結晶速度。
PLA的結晶速度的最大值依據用於聚合的丙交酯的光學純度處於約110至130℃。在更高的溫度下結晶速度再次下降。已經發現,當在結晶過程中 應當阻止團聚時,不能超過在顆粒的晶體熔點以下20℃的溫度。在此應注意,顆粒的熔點在PLLA中隨著增大的D-含量或在PDLA中隨著增大的L-含量而降低。即溫度極限隨著相應較小的鏡像異構物的含量增大而降低。
雖然在井道設備中在結晶和去單體化中相同的溫度允許簡單的設計和運轉,但在PLA的晶體熔點附近的溫度係不可行的,並且因此最優的停留時間或最優的殘餘單體含量也是不可行的。作為該問題的解決方案,在結晶區域(最大結晶速度的溫度)和去單體化區域(最大可能的去單體化速度的溫度)設定了不同溫度。也就是,結晶的溫度上限為去單體化的溫度上限以下約15℃。
藉由在結晶中釋放的熱量造成的顆粒中過多的溫度升高,如在EP 755 956 B1中作為團聚體形成的原因所提及的,藉由顆粒/惰性氣體在結晶區域中的逆流得以避免。典型地在沒有惰性氣體流的情況下在顆粒中出現18℃的溫度提升。在上述典型的在結晶區域中氣體與顆粒的質量流量比率下,氣體接收來自顆粒的結晶熱並且將其送出。與該質量流量比率相關的氣體/顆粒的逆流和在氣體和顆粒之間的高導熱係數不允許在顆粒中的溫度升高。在那裡設定了預定的氣體流溫度。因此與沒有惰性氣體流的情況相比,團聚體形成更容易掌控得多。
將借助下面的實例更詳細地解釋本發明,而本發明並不受限於特定參數。
為了本發明之目的使用了以下定義。
●所有百分比數值係質量百分比。
●PLLA,PDLA:來自具有最大6%的D-或L-乳酸單元比例的主要L-或D-丙交酯的聚乳酸或聚丙交酯(PLA)。
●乳酸單元:來自酯化的D-或L-乳酸的PLA分子鏈的構造單元
●單體:以下主要理解為丙交酯。在從聚合物或惰性氣體中分離的形式中,單體除丙交酯之外還包含很小濃度的伴隨物質,如PLA的線性二聚體和分解產物。
●三相點:在一純物質的壓力-溫度圖中的點,在該點中所有三個相態(即固態、液態和蒸氣態)共存。在三相點中,固/液、液/蒸氣和固/蒸氣的相分界線彼此相交。
對於純的L-丙交酯,這個點位於96.9℃和1.4mbar。在本發明的背景下,這個值不應視為絕對的,這取決於在所提供的方法中丙交酯的組成。不僅L-丙交酯、內消旋丙交酯和D-丙交酯的光學異構物中丙交酯的含量而且PLA聚合的副產物也作用於三相點,該副產物在該去單體化中與丙交酯一起蒸發或昇華。在此要提及乳酸和其他環狀或直鏈的PLA寡聚物,還有PLA聚合的分解產物。
●反昇華:一物質在三相點以下的壓力和溫度下直接從蒸氣狀態轉換成固體狀態,也就是說沒有在其間經過液體狀態。昇華的逆向作用。
●丙交酯沈積器,丙交酯沈積:以下將其理解為一方法過程的設備或一方法過程的操作,其中蒸氣狀的丙交酯要麼從載氣中沈積、要麼在真空中以固體或液體形式沈積。
●去單體化:藉由將單體轉移到氣相中並從將含單體的氣相與聚合物分離來從聚合物分離單體或者用於分離單體的設備。除了單體之外,在聚合物中總是含有其他揮發性成分,如乳酸、環狀和直鏈的寡聚物以及聚合物熱分解的產物,該等與單體一起分離。由於其與單體相比較低的濃度,在文中並沒有進一步提及並且總是同時包含在術語“單體”中。
●下落條除氣機:連續式除氣機,其中聚合物熔體流藉由多個噴嘴孔分配成條(或者還有絲),該等條在豎直下落中穿過一抽真空的容器的內部空間。在熔體從孔出來與碰撞到容器底部之間的下落時間中,所含的單體蒸發。熔體從容器底部連續抽出並排出。
●晶態熔點,晶態熔化溫度:熱塑性聚合物如PLA可以在其熔點以下以部分晶態或非晶態存在。部分晶態的PLA首先在“晶體熔點”轉化成熔體,也就是說,當在聚合物中的晶體區域熔化。這個熔點取決於聚合物的光學純度,也就是說例如在PLLA的情況下D-乳酸單元的含量。該熔點可以為在130℃(高D-含量)與180℃(小D-含量)之間。具有低於約6%的D-含量的PLLA在藉由用水壓平來粒化熔體之後大部分處於非晶態形式,然而可以在加熱超過玻璃轉變溫度時“結晶”,也就是說過渡成部分結晶的狀態。在此該非晶態的聚合物首先在玻璃轉變溫度軟化。在進一步加熱時,在80-90℃下實行結晶並且聚合物再次隨擴展的部分晶態結構而變為固體,直至在晶體熔點處過渡到熔體。
具有超過約6%的D-含量的PLLA可以在過程條件下不結晶且在玻璃轉變溫度(約60℃)以上作為熔體存在。
●固相:在晶態熔點以下的部分晶態的PLA或在玻璃轉變溫度以下的非晶態PLA。
為了確定物理參數,使用以下的分析方法。
●熔點:將待研究的PLA的樣品在一標識熱量流的示差掃描熱量儀(DSC)中以10℃/min的速度在氮氣中從環境溫度加熱到200℃的最終溫度。作為熔點,分析在此標識的吸熱的熔化峰的最大值。在部分晶態的樣品中在第一次加熱時取得該熔點。
在第1次加熱時非晶態的樣品通常不展現熔點並且在將樣品從200℃以10℃/min冷卻到40℃之後以相同速度經受第二次加熱過程。常規地,在此出現一熔化峰,其最大值作為熔點給出。
●比熔化熱:部分晶態的樣品的比熔化熱從熔化峰之下的面積和所稱入的樣品量來計算。除以完全晶態PLA的比熔化熱(91J/g)得出結晶度。
●PLA中的殘餘丙交酯含量:
將PLA樣品溶解在氯仿中並且用異丙醇沈澱。將所沈澱的PLA過濾出來,在此低分子的組成部分保留在溶液中。在添加五甲基苯作為內部標準之後,溶液在毛細柱DB-5;15/0.32上的氣相色譜中分離成其組成部分並且用火焰離子化檢測器定量地檢測丙交酯。
●NI,標準升:
相對於根據DIN 1343的物理標準狀態的體積。
實例1:實驗室規模的去單體化
進行了實驗室實驗來在惰性氣體流中對PLA顆粒去單體化。設備由帶有嵌入玻璃料的洗氣瓶,該玻璃料已經被插入過一用經調溫的油加熱的烘箱中。顆粒作為固定床以約30mm的高度放置在玻璃料上,預加熱的惰性氣體從底部流過該玻璃料。將用於測量顆粒溫度的溫度計引導通過洗氣瓶的蓋並且以其下端定位在顆粒床的中部。惰性氣體流用藉由流量測量器設定到2Nl/g/h,這個量排除了如下情況:去單體化的速度受到氣體量的限制。離開該設備的惰性氣體流藉由液體封閉物送出到周圍環境。由此阻止了潮濕空氣從周圍環境鑽入該設備中並且影響顆粒。
作為惰性氣體使用了合成空氣以及氮氣,均處於純度5.0。因此可 以排除濕氣影響。
將用顆粒填充的洗氣瓶插入預加熱的設備中並且開啟惰性氣體流。顆粒到預期的溫度的加熱時間係45分鐘。因此在將燒瓶插入烘箱中之後45分鐘定義為實驗開始。由此造成的誤差係可忽略的。使用了非晶態顆粒,以便避免預先的結晶已經將單體從顆粒中釋放並且於是使測量結果無效。在加熱時因此產生了團聚,這藉由在加熱過程之後搖動燒瓶而被倒轉。在預定時間之後將洗氣瓶從該設備取出並且在冷卻到環境溫度之後分析該顆粒以得到剩餘的丙交酯含量。表1包含結果。
Figure 105110808-A0305-02-0034-1
顯示出,去單體化的速度隨顆粒溫度而升高。也就是,對於最優的過程,希望在顆粒的熔點處盡可能大密度的功。氮氣或乾燥空氣同樣適合作為惰性氣體。
在恒定溫度下,顆粒的熔點在去單體化過程中增大。據此,在去單體化的時間流程中無需擔心熔化或軟化。在去單體化時更高的溫度水平也導致更高的熔點。因此,也無需擔心由於在去單體化過程中的溫度升高造成的熔化或軟化,只要沒有超過在處理之前測量的熔點。
實例2:根據實施方式c)的去單體化
這個實例展示帶有在下落條設備中的預去單體化的PLA顆粒的去單體化,該下落條設備與後續的去單體化在一根據圖3的實施方式c)的豎直井道設備中。結果包含在表2中在實驗編號1至5下。
Figure 105110808-A0305-02-0036-2
在一連續的中試設施中,藉由開環聚合丙交酯製造了PLA並且在根據圖3的井道設備中去單體化。借助於齒輪泵從用於預去單體化的下落條設備以40kg/h的物質流抽出了含單體的熔體並且將其供應給水下熱模粒化。粒化產生了具有2.5mm中值直徑的幾乎球形的PLA顆粒。該顆粒以非晶態狀態存在,可以從顆粒的透明度辨別。
在40kg/h的通過量下,井道設備提供了在結晶區域中3h的停留時間和在去單體化區域中5h的停留時間。作為惰性氣體使用了具有-40℃露點的乾燥空氣。攪拌器以2/分鐘的轉速運行。在這兩個區域中將顆粒溫度設定為相同的。在粒化之後的丙交酯含量處於1.5與2%之間。實驗設置編號1和3顯示,在PLA熔點與顆粒溫度之間的差為20℃時結晶能夠在無團聚的情況下進行。攪拌器可以在短時間內可靠地溶解所構成的團聚體。在15℃(實驗編號2)的溫度差下並且特別在10℃(實驗編號4)的溫度差下,在結晶區域中出現了不可逆的團聚,這導致顆粒流的阻塞和實驗的中斷。從實驗1認識到,在井道設備中8h的停留時間之內(在結晶區域和去單體化區域中的停留時間之和)僅用具有170℃熔點的PLA可實現低於0.2%的丙交酯含量。僅在此情況下,150℃的結晶溫度對於去單體化也是足夠的。實驗3和5相對於2和4顯示出,160℃和以下的PLA熔點僅允許不足以設定低於0.2%丙交酯含量的結晶溫度和去單體化溫度。只要結晶區域中的顆粒溫度與去單體化區域中一樣,團聚就阻止了設定更高的溫度,在該等更高的溫度下能夠實現小於0.2%的殘餘單體含量。
實例3:根據實施方式a)的去單體化
這個實例顯示了PLA顆粒在井道設備中的去單體化而沒有在熔體中的預去單體化。結果包含在表2中在實驗編號6和7下。
在一連續的中試設施中,藉由開環聚合丙交酯製造了PLA並且根據圖1去單體化。借助於齒輪泵從聚合反應器以20kg/h的物質流抽出了含單體的 熔體並且將其供應給水下熱模粒化。粒化產生了具有2.5mm中值直徑的幾乎球形的PLA顆粒。該顆粒以非晶態狀態存在,可以從顆粒的透明度辨別。
在20kg/h的PLA顆粒通過量下,井道設備提供了在結晶區域中6h的停留時間和在去單體化區域中10h的停留時間。如在實例2中一樣,供應具有-40℃露點的乾燥空氣作為惰性氣體。由於缺少預去單體化,在粒化之後的丙交酯含量處於約超過3%。攪拌器以2/分鐘的轉速運行。
將顆粒溫度在結晶區域中設定到120℃,在該溫度下處於PLA的結晶速度的最大值。在後續的去單體化區域中,藉由適當選擇所供應氣體的溫度和物質流將顆粒溫度提高到對應PLA類型的熔點以下10℃的溫度。由於這種溫度選擇,在結晶區域中不形成團聚體,並且去單體化可以在足夠高的溫度進行。實驗6和7的結果顯示,雖然有更高的起始濃度,在小於20h的停留時間中可實現0.20%或以下的丙交酯含量。
實例4:根據實施方式b)的去單體化
這個實例顯示出PLA顆粒在沒有在熔體中預去單體化的情況下藉由在分開的水平結晶器中去單體化以及隨後在豎直的根據實施方式b)的井道設備中去單體化。作為結晶器使用了一水平安排的、繞其軸線旋轉的轉鼓,該轉鼓帶有內部安排的紅外發射器用於加熱顆粒。該鼓在其內側上設置了一焊接的螺旋帶,用於引導顆粒。顆粒的停留時間藉由選擇轉速而設定為2h。結果包含在表2中在實驗編號8下。如在實例3中一樣,熔體沒有預去單體化。
在一連續的中試聚合中,藉由開環聚合丙交酯製造了PLA並且在與實例2和3中相同的井道設備中去單體化。借助於齒輪泵從聚合反應器以20kg/h的物質流抽出了含單體的熔體並且將其供應給水下熱模粒化。粒化產生了具有2.5mm中值直徑的幾乎球形的PLA顆粒。該顆粒以非晶態狀態存在,可以從顆粒的透明度辨別。
在20kg/h的通過量下,井道設備提供了在結晶區域中6h的停留時間和在去單體化區域中10h的停留時間。在這個實例中,兩個區域以相同的溫度工作並且用於去單體化。井道設備的結晶區域在無攪拌器的情況下工作。如在實例2中一樣,供應具有-40℃露點的乾燥空氣作為惰性氣體。由於缺少預去單體化,在粒化之後的丙交酯含量處於約超過3%。
顆粒以50℃離開粒化並且藉由在轉鼓結晶器中加熱在出口中設定到120℃,該溫度大約處於PLA的結晶速度的最大值。在井道設備中的顆粒溫度藉由適合的溫度選擇和所供應的空氣的物質流而設定到一個值,該值為150℃、在所製作的PLA顆粒的熔點以下10℃。由於在上游的轉鼓結晶器中的結晶,這個溫度可以在整個井道設備中得以保持。雖然沒有攪拌器地運行,但不會導致形成團聚體。去單體化於是可以在足夠高的溫度下進行。實驗8的結果顯示,雖然有更高的起始濃度,藉由這種設備安排也可以實現在小於20h的停留時間內0.20%的丙交酯含量。
1:聚合反應器
2:齒輪泵
3:粒化裝置
4:顆粒導管
5:結晶區域
5a:孔板
6:攪拌器
7:分離區域
5-7:傳輸
7-5:傳輸
8:井道設備
9:顆粒冷卻器
9a:送入器
9b:可抽氣裝置
10:顆粒流
11:氣體流
11a:氣體加熱器
11b:風機
12:供應器
12a:氣體加熱器
13:氣體出口
14:清洗裝置
15:填料
16:泵
17:冷卻器
18:分配裝置
19:氣體冷卻器
20:液體沈積器
21:氣體乾燥器
22:脫礦質水
23:泵
24:固體用過濾器

Claims (55)

  1. 一種用於結晶顆粒並從具有至少130℃晶體熔化溫度的可結晶熱塑性材料的顆粒分離低分子成分之方法,其中該可結晶熱塑性材料的顆粒在結晶步驟中至少部分地結晶並且隨後,在分離步驟中,低分子成分從該至少部分結晶的顆粒中至少部分地分離,其特徵在於,該結晶和該低分子成分的分離在不同的溫度下進行,在該結晶步驟中和該分離步驟中氣體流過該顆粒,該氣體首先在該分離步驟中加入並且在該分離步驟中在流過該顆粒之後從該分離步驟中抽出並隨後加入到該結晶步驟中並在該結晶步驟中流過該顆粒,從該分離步驟抽出的氣體在加入到該結晶步驟中之前與低溫氣體混合或者冷卻,並且將所產生的氣體混合物或所冷卻的氣體加入到該結晶步驟中。
  2. 如請求項1所述之方法,其中,該結晶在比該分離更低的溫度下進行。
  3. 如請求項1所述之方法,其中,a)在低於該可結晶熱塑性材料的晶體熔化溫度至少20K的溫度下進行結晶,和/或b)該低分子成分的分離在結晶時使用的溫度以上的溫度下進行。
  4. 如請求項3所述之方法,其中,a)在低於該可結晶熱塑性材料的晶體熔化溫度80K到20K之間的溫度下進行結晶,和/或b)該低分子成分的分離是在結晶時使用的溫度以上直至低於該可結晶熱塑性材料的晶體熔化溫度最多5K的溫度下進行。
  5. 如請求項1所述之方法,其中,該氣體是與該顆粒的運輸方向逆流地引導。
  6. 如請求項1所述之方法,其中,該氣體是氮氣和/或乾燥空氣。
  7. 如請求項1所述之方法,其中,該氣體具有<-20℃的露點。
  8. 如請求項7所述之方法,其中,該氣體具有<-40℃的露點。
  9. 如請求項1所述之方法,其中,所產生的氣體混合物或所冷卻的氣體是被設定在該可結晶熱塑性材料的晶體熔化溫度以下20K以下。
  10. 如請求項1所述之方法,其中,該顆粒在通過該分離步驟之後加入到冷卻步驟中並且被冷卻。
  11. 如請求項10所述之方法,其中,是冷卻到<80℃的溫度。
  12. 如請求項11所述之方法,其中,是冷卻到<60℃的溫度。
  13. 如請求項12所述之方法,其中,是冷卻到<50℃的溫度。
  14. 如請求項10所述之方法,其中,a)該顆粒的冷卻間接地在一管束換熱器中用溫度小於該顆粒溫度的氣體和/或液態熱載體來進行,其中該顆粒在該等管中流動並且該氣體以交叉逆流圍繞該等管流動,或者b)借助於溫度小於該顆粒溫度的氣體流過該顆粒來進行。
  15. 如請求項14所述之方法,其中,該氣體在離開該冷卻步驟之後被加熱到在該可結晶熱塑性材料的晶體熔化溫度以下20K與該可結晶熱塑性材料的晶體熔化溫度以下最多5K之間的溫度並且被加入到該分離步驟。
  16. 如請求項1所述之方法,其中,a)向該分離步驟或者向該冷卻步驟中加入的氣體的質量流量為所加入的顆粒的質量流量的最小2.0倍,和/或b)作為該氣體的質量流量與比熱容的算術乘積計算的、向該分離步驟或冷卻步驟中加入的氣體流的熱容被選擇為大於作為該可結晶熱塑性材 料的質量流量與比熱容的乘積計算的、該顆粒流的熱容。
  17. 如請求項16所述之方法,其中,a)向該分離步驟或者向該冷卻步驟中加入的氣體的質量流量為所加入的顆粒的質量流量的最小2.5倍至5.0倍,和/或b)該氣體流的熱容與該顆粒流的熱容的比率是設定為在1.25與2.5之間。
  18. 如請求項17所述之方法,其中,a)向該分離步驟或者向該冷卻步驟中加入的氣體的質量流量為所加入的顆粒的質量流量的最小2.8倍至3.2倍。
  19. 如請求項1所述之方法,其中,a)該顆粒在該結晶步驟中停留在0.5與10h之間,和/或該結晶進行直至10至80%之間的結晶度,和/或b)在該分離步驟中停留在1與30h之間。
  20. 如請求項19所述之方法,其中,a)該顆粒在該結晶步驟中停留在1與5h之間,和/或該結晶進行直至20與70%之間的結晶度,和/或b)在該分離步驟中停留在1與10h之間。
  21. 如請求項1所述之方法,其中,該顆粒在該結晶步驟中被機械地移動。
  22. 如請求項21所述之方法,其中,該顆粒在該結晶步驟中被攪拌。
  23. 如請求項1所述之方法,其中,該低分子成分能夠分離直至低於1重量%的含量。
  24. 如請求項23所述之方法,其中,該低分子成分能夠分離直至低於0.5重量%的含量。
  25. 如請求項24所述之方法,其中,該低分子成分能夠分離直至低於0.2重量%的 含量。
  26. 如請求項1所述之方法,其中,該熱塑性材料選自由以下各項組成之群組:聚乳酸和乳酸的共聚物;並且該等低分子成分選自由以下各項組成之群組:丙交酯、乳酸以及共聚單體。
  27. 如請求項26所述之方法,其中,該等低分子成分選自由以下各項組成之群組:L-丙交酯、D-丙交酯和內消旋丙交酯;該聚乳酸選自由以下各項組成之群組:具有最大6%D-乳酸單元含量的聚-L-乳酸或者具有最大6%L-乳酸單元含量的聚-D-乳酸。
  28. 如請求項1所述之方法,其中,該顆粒直接在其加入到該結晶步驟中之前藉由聚合反應或縮聚反應在熔體中並且隨後在所獲得的聚合物的粒化中作為非晶態或部分晶態的顆粒來製造。
  29. 如請求項28所述之方法,其中,在該熔體中包含的低分子成分在粒化之前部分地去除。
  30. 如請求項29所述之方法,其中,在該熔體中包含的低分子成分在粒化之前借助於下落條蒸發器部分地去除。
  31. 如請求項30所述之方法,其中,在相對於標準狀況減小的壓力下,在該熔體中包含的低分子成分在粒化之前借助於下落條蒸發器部分地去除。
  32. 如請求項1所述之方法,其中,該氣體流在從該結晶步驟中或該分離步驟中抽出之後經受純化,其中在該氣體流中包含的低分子材料至少部分地分離。
  33. 如請求項32所述之方法,其中,經純化的氣體再次加入到該分離步驟或該冷卻步驟中和/或將分離的低分子成分重新用於製造該聚合物。
  34. 一種用於執行從可結晶熱塑性材料的顆粒中結晶和分離低分子成分之裝置,該裝置包括a)用於可結晶熱塑性材料的顆粒的一結晶區域(5),該結晶區域具 有用於可結晶熱塑性材料的顆粒一入口和一出口,b)用於從該可結晶熱塑性材料的顆粒中分離低分子成分的一分離區域(7),該分離區域具有用於可結晶熱塑性材料的顆粒一入口和一出口,其中該分離區域(7)連接在該結晶區域(5)的下游並且該結晶區域(5)和該分離區域(7)被設計為使得該等低分子成分的結晶和分離在不同的溫度下進行。
  35. 如請求項34所述之裝置,其中,該結晶在比該低分子成分的分離更低的溫度下進行。
  36. 如請求項34所述之裝置,其中,該分離區域(7)具有用於經加熱的氣體的供應器(12)。
  37. 如請求項36所述之裝置,其中,該供應器是安排在該分離區域(7)的顆粒出口處或者在該顆粒出口附近。
  38. 如請求項36所述之裝置,其中,在該供應器的上游連接一氣體加熱器(12a)。
  39. 如請求項34所述之裝置,其中,該結晶區域(5)和該分離區域(7)處於流體連接(5-7,7-5),其中該顆粒從該結晶區域(5)的出口到該分離區域(7)的入口的傳輸(5-7)以及該氣體從該分離區域(7)到該結晶區域(5)的傳輸(7-5)得以保障。
  40. 如請求項34所述之裝置,其中,該分離區域(7)的顆粒出口匯入到一顆粒冷卻器(9)的顆粒入口中,其中該顆粒冷卻器(9)具有用於該冷卻氣體的送入器(9a)。
  41. 如請求項40所述之裝置,其中,該顆粒冷卻器(9)在該顆粒入口的區域中包括一可抽氣裝置(9b),該可抽氣裝置匯入到用於該分離區域(7)的經加熱的氣體的一供應器(12)中。
  42. 如請求項41所述之裝置,其中,該供應器是安排在該顆粒出口處或在該顆粒 出口附近。
  43. 如請求項41所述之裝置,其中,在該供應器的上游連接一氣體加熱器(12a)。
  44. 如請求項43所述之裝置,其中,該可抽氣裝置是匯入到該氣體加熱器(12a)中。
  45. 如請求項34所述之裝置,其中,該結晶區域(5)具有一氣體出口(13),該氣體出口匯入到一用於從該氣體流中分離低分子成分的清洗裝置(14)。
  46. 如請求項45所述之裝置,其中,在該清洗裝置(14)的下游連接一氣體冷卻器(19)和/或一液體沈積器(20)和/或一氣體乾燥器(21),借助於該氣體冷卻器和/或液體沈積器和/或氣體乾燥器,該氣體流從液體中釋放,其中該氣體流在液體的沈積和/或乾燥之後重新加入到該顆粒冷卻器(9)或該結晶區域(7)中。
  47. 如請求項34所述之裝置,其中,該結晶區域(5)具有一用於機械地移動位於該結晶區域(5)中的可結晶熱塑性材料的顆粒床的器件(6)。
  48. 如請求項47所述之裝置,其中,該器件(6)是一顆粒攪拌器。
  49. 如請求項34所述之裝置,其中,a)結晶區域(5)和分離區域(7)共同安排在一井道設備(8)中,或者b)結晶區域(5)和分離區域(7)彼此分開地安排並且通過一顆粒導管(5-7)以及一氣體導管(7-5)彼此處於流體連接。
  50. 如請求項49所述之裝置,其中,a)結晶區域(5)、分離區域(7)和該顆粒冷卻器(9)共同安排在一井道設備(8)中,或者b)分離區域(7)和顆粒冷卻器(9)安排在一井道設備中。
  51. 如請求項50所述之裝置,其中, a)結晶區域(5)、分離區域(7)和顆粒冷卻器(9)豎直地彼此上下安排在一井道設備(8)中,其中該結晶區域(5)與該分離區域(7)通過一孔板(5a)處於連接,其中該孔板(5a)設計為錐形並且具有一中部開口(5-7),通過該中部開口,該顆粒可以從該結晶區域(5)過渡到該分離區域(7)。
  52. 如請求項34所述之裝置,其中,在該結晶區域(5)的顆粒入口的上游連接一粒化裝置(3)用於從可結晶熱塑性材料的熔體生產顆粒,其出口通過一顆粒導管(4)與該結晶區域的入口處於流體連接。
  53. 如請求項52所述之裝置,其中,在該粒化裝置(3)的上游連接一用於生產可結晶熱塑性材料的熔體的反應器(1)。
  54. 如請求項53所述之裝置,其中,在反應器(1)與粒化器(3)之間安排有一用於從該可結晶熱塑性材料的熔體中部分地分離低分子成分的裝置。
  55. 如請求項54所述之裝置,其中,該用於從該可結晶熱塑性材料的熔體中部分地分離低分子成分的裝置是一下落條蒸發器(100)。
TW105110808A 2015-04-14 2016-04-06 用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置 TWI743034B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015206688.6A DE102015206688B4 (de) 2015-04-14 2015-04-14 Verfahren zur Kristallisation und Abtrennung niedermolekularer Komponenten aus einem Granulat eines kristallisationsfähigen thermoplastischen Materials sowie Vorrichtung hierzu
DE102015206688.6 2015-04-14

Publications (2)

Publication Number Publication Date
TW201636381A TW201636381A (zh) 2016-10-16
TWI743034B true TWI743034B (zh) 2021-10-21

Family

ID=55809077

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105110808A TWI743034B (zh) 2015-04-14 2016-04-06 用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置

Country Status (6)

Country Link
US (1) US20180118882A1 (zh)
EP (1) EP3283544B1 (zh)
CN (1) CN107667132B (zh)
DE (1) DE102015206688B4 (zh)
TW (1) TWI743034B (zh)
WO (1) WO2016166048A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024074459A1 (en) * 2022-10-03 2024-04-11 Totalenergies Corbion Bv Process for preparing crystallized polylactide
CN115958716B (zh) * 2022-12-30 2024-03-22 特固(江苏)塑料制品有限公司 一种塑料制品颗粒配料用混合下料装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671766A (zh) * 2002-08-09 2005-09-21 K&E有限公司 聚酯的固相聚合反应连续方法
CN101146845A (zh) * 2005-03-23 2008-03-19 比勒股份公司 具有改进的熔融性能和结晶性能的聚酯的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL96018C (zh) * 1957-02-20
US5136017A (en) 1991-02-22 1992-08-04 Polysar Financial Services S.A. Continuous lactide polymerization
DE59208466D1 (de) * 1992-11-13 1997-06-12 Fischer Karl Ind Gmbh Verfahren und Vorrichtung zum kontinuierlichen Kristallisieren von Kunststoffgranulat
US5773106A (en) * 1994-10-21 1998-06-30 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
DE69631305T2 (de) * 1995-07-25 2004-11-18 Toyota Jidosha K.K., Toyota Verfahren zur Herstellung von Polymilchsäure
AU5991798A (en) 1997-02-14 1998-09-08 Neste Oy Method for the removal and recovery of lactide from polylactide
DE102004010680A1 (de) * 2004-03-04 2005-10-06 Zimmer Ag Verfahren zur Herstellung von hochkondensierten Polyestern in der festen Phase
CN1976786B (zh) * 2004-05-26 2011-10-26 特里奥凡德国有限公司及两合公司 无定形塑料粒料的结晶方法
DE102007026737A1 (de) * 2006-07-21 2008-01-24 Bühler AG Verfahren zur Kristallisation eines langsam kristallisierenden Polymeren
EP2030667B1 (de) 2007-09-03 2011-03-16 Uhde Inventa-Fischer GmbH Verfahren zur Reinigung von Prozessdämpfen bei der Polylactidherstellung
EP2712881B1 (de) * 2012-09-26 2015-05-20 Bühler Thermal Processes AG Verfahren und Vorrichtung zur Direktkristallisation von Polymeren unter Inertgas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671766A (zh) * 2002-08-09 2005-09-21 K&E有限公司 聚酯的固相聚合反应连续方法
CN101146845A (zh) * 2005-03-23 2008-03-19 比勒股份公司 具有改进的熔融性能和结晶性能的聚酯的制备方法

Also Published As

Publication number Publication date
CN107667132B (zh) 2020-09-22
CN107667132A (zh) 2018-02-06
DE102015206688A1 (de) 2016-10-20
EP3283544B1 (de) 2021-06-09
TW201636381A (zh) 2016-10-16
EP3283544A1 (de) 2018-02-21
DE102015206688B4 (de) 2016-11-24
WO2016166048A1 (de) 2016-10-20
US20180118882A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP5591111B2 (ja) 高粘度ポリエステル溶融物でできた低加水分解性ポリエステル顆粒の製造方法、および該ポリエステル顆粒の製造装置
TWI535753B (zh) 利用聚酯顆粒之餘熱使聚酯顆粒分子量增加之方法
CN103502235B (zh) 聚羟基-羧酸的制备方法
US7819942B2 (en) Solid-phase polycondensation of polyester with process gas purification
US7683156B2 (en) Production of a high-molecular polycondensate
US9890115B2 (en) Urea finishing method
US8877107B2 (en) Method for increasing the molecular weight of a polyester granulate by using its residual heat
BR112015014084B1 (pt) Dispositivo e método para a separação e recuperação de um diéster cíclico
CN101230130A (zh) 聚对苯二甲酸乙二酯固相缩聚工艺
EA024875B1 (ru) Способ получения частиц сложного полиэфира при высокой производительности линии
TWI743034B (zh) 用於從可結晶熱塑性材料顆粒中結晶和分離低分子成分之方法及其裝置
JPH10253257A (ja) ポリマー顆粒を結晶化させる方法と装置
CN111152382B (zh) 用于缩聚物的直接结晶的方法和装置
US6461575B1 (en) Apparatus for crystallization of polytrimethylene terephthalate
RU2686464C2 (ru) Способ, относящийся к зоне твердофазной полимеризации
WO1998036012A1 (en) Method for the removal and recovery of lactide from polylactide
Mujumdar et al. 41 Drying of Polymers
RU2550356C2 (ru) Способ и устройство для получения частично кристаллизованного полимерного материала
TW202344590A (zh) 解聚合方法及系統