TWI741340B - 記憶裝置及記憶裝置之製造方法 - Google Patents

記憶裝置及記憶裝置之製造方法 Download PDF

Info

Publication number
TWI741340B
TWI741340B TW108127823A TW108127823A TWI741340B TW I741340 B TWI741340 B TW I741340B TW 108127823 A TW108127823 A TW 108127823A TW 108127823 A TW108127823 A TW 108127823A TW I741340 B TWI741340 B TW I741340B
Authority
TW
Taiwan
Prior art keywords
insulator
laminate
memory device
manufacturing
layered body
Prior art date
Application number
TW108127823A
Other languages
English (en)
Other versions
TW202042227A (zh
Inventor
園田康幸
Original Assignee
日商東芝記憶體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝記憶體股份有限公司 filed Critical 日商東芝記憶體股份有限公司
Publication of TW202042227A publication Critical patent/TW202042227A/zh
Application granted granted Critical
Publication of TWI741340B publication Critical patent/TWI741340B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明之實施形態提供一種更高性能之記憶裝置及其製造方法。 實施形態之記憶裝置之製造方法包含在基底上空開間隔地形成第1積層體及第2積層體。形成第1絕緣體,該第1絕緣體具有:第1積層體之側面上之第1部分、第2積層體之側面上之第2部分、以及第1積層體及第2積層體之間之基底上之第3部分。利用離子束,邊殘留第1絕緣體之第3部分,邊將第1絕緣體之第1部分之一部分及第2部分之一部分減薄。在第1絕緣體之第1部分與第1絕緣體之第2部分之間形成第2絕緣體。

Description

記憶裝置及記憶裝置之製造方法
實施形態大致係關於一種記憶裝置及記憶裝置之製造方法。
業已知悉利用磁阻效應元件之記憶裝置。
本發明所欲解決之問題是欲提供一種更高性能之記憶裝置之製造法。
實施形態之記憶裝置之製造方法包含在基底上空開間隔地形成第1積層體及第2積層體。形成第1絕緣體,該第1絕緣體具有:上述第1積層體之側面上之第1部分、上述第2積層體之側面上之第2部分、以及上述第1積層體及上述第2積層體之間之上述基底上之第3部分。利用離子束,在殘留上述第1絕緣體之上述第3部分下,將上述第1絕緣體之上述第1部分之一部分及上述第2部分之一部分減薄。在上述第1絕緣體之上述第1部分與上述第1絕緣體之上述第2部分之間形成有第2絕緣體。
以下,參照圖式記述實施形態。在以下之記述中,有具有大致同一功能及構成之構成要素賦予同一符號,且省略重複之說明之情形。圖式係示意性圖式,厚度與平面尺寸之關係、各層之厚度之比率等可能與現實之情形不同。
針對某一實施形態之記述之全部內容除非明示或明確地排除,否則亦適合作為其他實施形態之記述。各實施形態係例示用於使該實施形態之技術性思想具體化之裝置或方法者,實施形態之技術性思想並不將構成零件之材質、形狀、構造、配置等特定於下述內容。
又,實施形態之方法之流程中之任一步驟也不限定於例示之順序,除非另有說明,則可以與例示之順序不同之順序及(或)與其他步驟並行地發生。
在本說明書及申請專利範圍中,所謂某一第1要素“連接”於另一第2要素係包含第1要素直接或始終或是選擇性地經由為導電性之要素連接於第2要素。
<第1實施形態> <1.1.構成(構造)> 圖1顯示第1實施形態之記憶裝置之功能區塊。如圖1所示,記憶裝置1包含:記憶體單元陣列11、輸入輸出電路12、控制電路13、列選擇電路14、行選擇電路15、寫入電路16、及讀出電路17。
記憶體單元陣列11包含:複數個記憶體單元MC、複數條字元線WL、及複數條位元線BL以及/BL。1條位元線BL與1條位元線/BL構成1個位元線對。
記憶體單元MC可非揮發地記憶資料。各記憶體單元MC與1條字元線WL及1個位元線對BL以及/BL連接。字元線WL與列(low)建立關聯。位元線對BL及/BL與行(column)建立關聯。利用1個列之選擇及1個或複數個行之選擇特定1個或複數個記憶體單元MC。
輸入輸出電路12自例如記憶體控制器2接收各種控制信號CNT、各種指令CMD、位址信號ADD、及資料(寫入資料)DAT,且朝例如記憶體控制器2發送資料(讀出資料)DAT。
列選擇電路14自輸入輸出電路12接收位址信號ADD,設為選擇與基於接收之位址信號ADD之列對應之1條字元線WL之狀態。
行選擇電路15自輸入輸出電路12接收位址信號ADD,設為選擇與基於接收之位址信號ADD之行對應之複數條位元線BL之狀態。
控制電路13自輸入輸出電路12接收控制信號CNT及指令CMD。控制電路13基於由控制信號CNT指示之控制及指令CMD控制寫入電路16及讀出電路17。具體而言,控制電路13在資料朝記憶體單元陣列11之寫入之期間對寫入電路16供給資料寫入所使用之電壓。又,控制電路13在資料自記憶體單元陣列11之讀出之期間對讀出電路17供給資料讀出所使用之電壓。
寫入電路16自輸入輸出電路12接收寫入資料DAT,基於控制電路13之控制及寫入資料DAT對行選擇電路15供給資料寫入所使用之電壓。
讀出電路17包含感測放大器,基於控制電路13之控制使用資料讀出所使用之電壓,計算保持於記憶體單元MC之資料。計算出之資料作為讀出資料DAT被供給至輸入輸出電路12。
圖2係第1實施形態之1個記憶體單元MC之電路圖。記憶體單元MC包含電阻變化元件VR及選擇電晶體ST。電阻變化元件VR在穩定狀態下處於2種電阻狀態之被選定之一者,2種電阻狀態之一者之電阻高於另一者之電阻。電阻變化元件VR可切換於低電阻之狀態與高電阻之狀態之間,且可利用2個電阻狀態之差異保持1位元之資料。電阻變化元件VR顯示例如磁阻效應,包含例如MTJ(magnetic tunnel junction,磁穿隧接面)元件。MTJ元件意指包含MTJ之構造。
選擇電晶體ST例如可設為n型MOSFET(metal oxide semiconductor field effect transistor,金屬氧化物半導體場效電晶體)。
電阻變化元件VR在第1端連接於1條位元線BL,在第2端連接於選擇電晶體ST之第1端。選擇電晶體ST之第2端連接於位元線/BL。選擇電晶體ST之閘極連接於1條字元線WL,源極連接於位元線/BL。
以下之記述基於電阻變化元件VR包含MTJ元件之例。
圖3顯示第1實施形態之記憶體單元陣列11之一部分之構造。更具體而言,圖1顯示複數個記憶體單元MC各者之電阻變化元件VR及其周圍。
在基板20之上方設置有複數個獨立之下部電極21。在下部電極21之間之區域設置有層間絕緣體22。層間絕緣體22例如埋入下部電極21之間之區域。下部電極21及層間絕緣體22作為該等層上之層之基底而發揮功能。
在各下部電極21之上表面上設置有1個積層體24。各積層體24包含積層之複數個層,至少包含構成電阻變化元件VR之層、例如構成MTJ元件之層。
在積層體24之間之區域設置有層間絕緣體26。層間絕緣體26例如埋入積層體24之間之區域,例如設置至高於積層體24之上表面之位置。層間絕緣體26包含例如氧化矽(SiO)、氮化矽(SiN)、氮化鋁(AlN)、或氮化鉿(HfN),或由SiO、SiN、AlN、或HfN構成。層間絕緣體26可包含該等材料中之複數種材料。
在各積層體24之上表面上設置有上部電極28。在層間絕緣體26之上表面上之區域中之未設置上部電極28之部分設置有層間絕緣體27。
圖4顯示第1實施形態之積層體24之細節之一例。如圖4所示,積層體24例如包含緩衝層31、MTJ元件32、覆蓋層33、硬遮罩34。緩衝層31位於1個下部電極21之上表面上。
緩衝層31包含Al、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Si、Zr、Hf、W、Cr、Mo、Nb、Ti、Ta、及V之1者或複數者。緩衝層31可包含該等材料之硼化物。
MTJ元件32位於緩衝層31之上表面上。MTJ元件32包含磁穿隧接面,而顯示磁阻效應。作為此種MTJ元件32之例,MTJ元件32包含鐵磁體321、絕緣體322、及鐵磁體323。
鐵磁體321位於下部電極21之上表面上,例如包含鈷鉑(CoPt)、鈷鎳(CoNi)、及鈷鈀(CoPd)之1者或複數者,或由CoPt、CoNi、及CoPd之任一者構成。
絕緣體322位於鐵磁體321之上表面上。絕緣體322包含非磁性絕緣體,或由非磁性絕緣體構成,例如包含氧化鎂(MgO)、氧化鋁(AlO),或由MgO或AlO構成。絕緣體322可包含鋁(Al)、矽(Si)、鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)、鈧(Sc)、釔(Y)、鑭(La)、鋯(Zr)、或鉿(Hf)等之元素之氮化物。
鐵磁體323位於絕緣體322之上表面上,例如包含鈷鐵硼(CoFeB)及硼化鐵(FeB)之1者或複數者,或由CoFeB及FeB之任一者構成。
鐵磁體321與鐵磁體323可相互調換。
鐵磁體321及323具有磁化,例如,具有沿貫穿鐵磁體321、絕緣體322、及鐵磁體323之界面之方向的易磁化軸(利用箭頭顯示)。鐵磁體321及323可具有沿鐵磁體321、絕緣體322、及鐵磁體323之界面之易磁化軸。
鐵磁體321之磁化方向即使因記憶裝置1中之一般動作、亦即資料之讀出及寫入也不變,可作為所謂之參考層而發揮功能。另一方面,鐵磁體323之磁化方向可變,可作為所謂之記錄層而發揮功能。絕緣體322可作為穿隧障壁而發揮功能。
具體而言,若鐵磁體321及323之磁化方向平行,則MTJ元件32顯示電阻值Rp。另一方面,若鐵磁體321及323之磁化方向反平行,則MTJ元件32顯示電阻值Rap。電阻值Rap高於電阻值Rp。顯示2個不同電阻值之狀態可分別分配給1位元之二值資料。
當自鐵磁體323朝向鐵磁體321流動寫入電流IwP 時,鐵磁體323之磁化方向與鐵磁體321之磁化方向變為平行。另一方面,當自鐵磁體321朝向鐵磁體323流動寫入電流IwAP 時,鐵磁體323之磁化方向與鐵磁體321之磁化方向變為反平行。
覆蓋層33位於MTJ元件32之上表面上。覆蓋層33為例如金屬之層,例如包含鉭(Ta)、釕(Ru)、鉑(Pt)、及鎢(W)之至少一者。
硬遮罩34位於覆蓋層33之上表面上。硬遮罩34為金屬之層。
積層體24可進一步包含導電體。此種導電體包含下部電極21與緩衝層31之間之基底層。
<1.2.製造方法> 參照圖1及圖5至圖9,記述圖3之構造之製造方法。圖5至圖9依序顯示第1實施形態之記憶裝置1之圖3所示之部分之製造工序之間之狀態。
如圖5所示,在基板20之沿xy面擴展之面之上方形成有層間絕緣體22及下部電極21。在層間絕緣體22之上表面上及下部電極21各者之上表面上形成有積層體24A。積層體24A之後被加工為積層體24,包含與積層體24中所含之複數種材料之層相同之複數種材料之層。基於圖4之例,積層體24A包含:導電體31A、鐵磁體321A、絕緣體322A、鐵磁體323A、覆蓋層33A、及硬遮罩34A。導電體31A、鐵磁體321A、絕緣體322A、鐵磁體323A、覆蓋層33A、及硬遮罩34A分別包含與緩衝層31、鐵磁體321、絕緣體322、鐵磁體323、覆蓋層33、及硬遮罩34相同之材料。
如圖6所示,在硬遮罩34A形成有開口41。硬遮罩34A在供形成積層體24之預定區域之上方殘留,在其他部分具有開口41。開口41自硬遮罩34A之上表面到達底面。
如圖7所示,將硬遮罩34A用作遮罩而蝕刻利用至此為止之工序獲得之構造。其結果為,積層體24A中之較硬遮罩34A更下方之部分成形,而形成複數個積層體24。圖7之蝕刻可採取適於積層體24之形成之任意之蝕刻,例如可採取IBE(ion beam etching,離子束蝕刻)及(或)RIE(reactive ion etching,反應離子蝕刻)。IBE例如可使用氬(Ar)、氙(Xe)、氪(Kr)、或氖(Ne)之離子進行。在圖7中之蝕刻使硬遮罩34A之上表面降低。相鄰之1對積層體24之間之區域被稱為積層體間區域43。積層體間區域43之上端位於與積層體24之上表面之高度相同之高度。
在圖7之階段中,積層體間區域43具有大於1之高寬比。亦即,若將積層體間區域43之寬度及高度分別設為L及H1,則H1/L>1成立。寬度L可為積層體間區域43之任何高度之寬度。H1也為積層體24之高度。
如圖8所示,在利用至此為止之工序獲得之構造之上表面之整體上堆積絕緣體26A。絕緣體26A利用例如CVD(chemical vapor deposition,化學汽相沈積)形成,構成層間絕緣體26之一部分,例如與層間絕緣體26相同地包含SiO、SiN、AlN、及HfN之1者以上。絕緣體26A覆蓋積層體24之表面(上表面及側面),以及在積層體間區域43中覆蓋層間絕緣體22之上表面。絕緣體26A中之層間絕緣體22之上表面上之部分有被稱為底部26Ab之情形。絕緣體26A中之積層體24之側面上之部分有被稱為側壁上部26AS之情形。絕緣體26A之底部26Ab具有厚度Tbot 。絕緣體26A之側壁上部26AS具有厚度TS-top 。厚度Tbot 與厚度TS-top 不同。絕緣體26A之厚度TS-top 具有積層體間區域43之寬度L之1/3以下之大小,例如具有1/4之大小之厚度。
如圖9所示,利用IBE局部地去除絕緣體26A。IBE與圖7之IBE相同地例如可利用Ar、Xe、Kr、或Ne之離子進行。離子束之角度θ1滿足由以下之等式(1)記述之條件。
[數1]
Figure 02_image001
θ1為相對於z軸之角度,TS-bot 為絕緣體26A之側壁上部26AS之厚度,尤其是為其下部之厚度。更具體而言,TS-bot 可能為絕緣體26A之側壁上部26AS中之與例如絕緣體26A之底部26Ab之上表面為相同高度處之厚度。
離子束去除絕緣體26A中之積層體24之上表面上之部分。又,一部分離子束在積層體間區域43中進行,局部地去除絕緣體26A之側壁上部26AS之上部。其結果為,絕緣體26A之側壁上部26AS在積層體24之側面上之上部變薄,且成為錐形狀。
另一方面,藉由角度θ1之離子束之蝕刻而產生陰影效應。亦即,離子束之另一部分由積層體24遮擋。因而,離子束不到達積層體間區域43之下部,或幾乎不到達。其結果為,絕緣體26A之側壁上部26AS之下部例如維持原本之(圖9之IBE前之)厚度,其厚度為例如TS-bot 。又,絕緣體26A之底部26Ab也維持原本之厚度Tbot
以下,圖9之工序之結果獲得之在積層體間區域43中不存在絕緣體26A之區域被稱為積層體間區域43A。積層體間區域43A之體積小於在圖7之階段中之高度H1及寬度L之積層體間區域43之體積。尤其是,由於絕緣體26A以厚度Tbot 原樣殘留在積層體間區域43之底部,故積層體間區域43A之高寬比小於積層體間區域43之高寬比。再者,積層體間區域43A之上端之寬度、亦即相鄰之積層體24之上表面之緣部間之間隔(寬度)寬於在圖8中之間隔(寬度)。積層體間區域43A之上端之寬度例如與圖7相同地為L。
如圖10所示,在利用至此為止之工序獲得之構造之上表面之整體上堆積絕緣體26B。絕緣體26B構成層間絕緣體26之一部分,例如與層間絕緣體26相同地包含SiO、SiN、AlN、及HfN之1者以上。絕緣體26B與絕緣體26A既可具有相同之特性及(或)組成,也可具有不同之特性及(或)組成。
如圖1所示,在層間絕緣體26之上表面上形成有層間絕緣體27且形成有上部電極28。
<1.3.效果> 根據第1實施形態,可提供一種更高密度且更高性能之記憶裝置。細節係如以下般。
包含如第1實施形態之積層體24之MTJ元件之積層體必須具有基於用於表現作為記憶體單元MC之功能之要件及用於製造之條件等決定之某一程度之高度。另一方面,為了提高記憶裝置之積體性,而較理想為小於積層體24之間隔。其結果為,積層體間區域43之高寬比不斷變大。因而,有在至此為止之製造方法中無法實現所期望之構造之情形。例如,在利用第1實施形態之記憶裝置之圖8之工序形成絕緣體26A時,起因於積層體間區域43之寬度較窄,而在絕緣體26A中之開口41中對向之2個側壁上部26AS相互接觸,而有在積層體間區域43中殘留空隙之情形。空隙之存在受之後之製造工序之影響,而有可能使記憶裝置1(例如記憶體單元MC)之特性劣化。另一方面,若為了避免形成空隙而減薄絕緣體26A之厚度,則產生其他問題。
圖11顯示參考用之磁性記憶裝置之製造工序之間之一狀態。圖11與第1實施形態之磁性記憶裝置之圖7之後之狀態對應。惟,在圖11中,絕緣體126A薄於在圖8中之絕緣體26A。在利用與圖8相同之工序形成絕緣體126A後,利用層間絕緣體130覆蓋絕緣體126A之上表面。為了以層間絕緣體130埋入積層體24之間之狹小之空間,而以高偏壓輸出之電漿(HDP)之氣體環境中之CVD(HDP-CVD)形成層間絕緣體130。然而,若使用HDP-CVD,則可確認絕緣體126A之一部分及積層體24之一部分、例如積層體24之上側之角之周圍之部分被非意圖地切削。其可能部分地起因於絕緣體126A較薄。此種構造使積層體24、甚至記憶體單元MC之性能降低。
根據第1實施形態,當在積層體24之表面堆積絕緣體26A後,維持絕緣體26A之底部26Ab,且使用IBE利用陰影效應局部地蝕刻側壁上部26AS。因而,積層體間區域43A之高寬比為小,至少小於積層體間區域43。因而,可以絕緣體26B容易地埋入積層體間區域43A。進而,藉由絕緣體26A之局部性蝕刻,而積層體間區域43之上端之寬度擴寬。其也容易實現絕緣體26B對積層體間區域43A之埋入。因而,可一面抑制在積層體間區域43A中產生空隙,一面在積層體24之間形成層間絕緣體26。
又,由於容易利用絕緣體26B埋入積層體間區域43A,故在絕緣體26B之埋入時無須使用HDP-CVD。因而,避免因HDP-CVD而非意圖地蝕刻積層體24。
<第2實施形態> <2.1.構成(構造)> 第2實施形態在積層體24之形狀之方面及在製造工序之方面與第1實施形態不同。第2實施形態主要針對與第1實施形態不同之方面進行記述。針對其他方面,與第1實施形態相同。
第2實施形態之記憶裝置1包含積層體53而取代第1實施形態中之積層體24。積層體53具有高於積層體24之高度。包含此種積層體53之構造基於各種理由,但並非由積層體53之細節限定第2實施形態。以下之記述基於積層體53之一例。
圖12顯示第2實施形態之記憶裝置1之功能區塊。各記憶體單元MC與1條字元線WL及1條位元線BL連接。
圖13係第1實施形態之1記憶體單元MC之電路圖。記憶體單元MC包含電阻變化元件VR及開關元件SW。開關元件SW具有2個端子,當在2端子間於第1方向施加未達第1臨限值之電壓時,該開關元件SW為高電阻狀態,例如在電性上為非導通狀態(off狀態)。另一方面,當在2端子間於第1方向施加第1臨限值以上之電壓時,該開關元件SW為低電阻狀態,例如在電性上為導通狀態(on狀態)。開關元件SW進而在與第1方向相反之第2方向也有與此種基於在第1方向施加之電壓之大小的高電阻狀態及低電阻狀態之間之切換功能相同之功能。利用開關元件SW之導通或關斷,可控制有無電流朝與該開關元件SW連接之電阻變化元件VR之供給、亦即該電阻變化元件VR之選擇或非選擇。
圖14顯示第2實施形態之記憶體單元陣列11之一部分之構造。更具體而言,圖14顯示複數個記憶體單元MC各者之電阻變化元件VR及其周圍。
在基板20之上方設置有導電體51。導電體51沿x軸延伸,例如可作為字元線WL及位元線BL之一者而發揮功能。導電體51可作為其上之層之基底而發揮功能。
在導電體51之上表面上設置有複數個積層體53。積層體53具有高度H2。高度H2高於第1實施形態之積層體24之高度H1。各積層體53包含層之複數個層,至少包含電阻變化元件VR、例如MTJ元件、及開關元件SW。
在積層體53之間之區域設置有層間絕緣體54。層間絕緣體54例如埋入積層體53之間之區域。層間絕緣體54可包含例如SiO、SiN、AlN、或HfN,或由SiO、SiN、AlN、或HfN構成。層間絕緣體54可包含該等材料中之不同之複數種材料。
在各積層體53之上表面上設置有導電體58。導電體58可作為字元線WL及位元線BL之另一者而發揮功能。在層間絕緣體54之上表面上之區域中之未設置導電體58之部分設置有層間絕緣體57。
圖15顯示第2實施形態之積層體53之細節之一例。如圖15所示,積層體53與例如第1實施形態同樣地包含緩衝層31、MTJ元件32、覆蓋層33、及硬遮罩34,進而包含可變電阻材料36。可變電阻材料36例如位於導電體51與緩衝層31之間。各可變電阻材料36可作為開關元件SW而發揮功能。
可變電阻材料36為例如2端子間開關元件,2端子中之第1端子相當於可變電阻材料36之上表面及底面之一者,2端子中之第2端子相當於可變電阻材料36之上表面及底面之另一者。可變電阻材料36作為一例,例如可包含選自由碲(Te)、硒(Se)、及硫(S)所組成之群之至少1種以上之硫屬元素。或,可變電阻材料36作為一例,例如可包含作為包含上述硫屬元素之化合物之硫屬化物。又,可變電阻材料36作為一例,例如可更包含選自由硼(B)、Al、鎵(Ga)、銦(In)、碳(C)、Si、鍺(Ge)、錫(Sn)、砷(As)、磷(P)、及銻(Sb)所組成之組之至少1種以上之元素。
<2.2.製造方法> 參照圖14及圖16至圖20,記述圖14之構造之製造方法。圖16至圖20依序顯示第2實施形態之記憶裝置1之圖14所示之部分之製造工序之間之狀態。
首先,進行與第1實施形態之圖5至圖7之工序同樣之工序。不同之處僅為下部電極21與導電體51之差異、以及積層體24及積層體53之差異。亦即,如圖16所示,在基板20之沿xy面擴展之面之上方形成有導電體51,在導電體51之上表面上形成有積層體53A。積層體53A包含與之後被加工為積層體53之複數種材料之層相同之複數種材料之層,基於圖15之例,積層體53包含:可變電阻材料36A、導電體31A、鐵磁體321A、絕緣體322A、鐵磁體323A、覆蓋層33A、及硬遮罩34A。可變電阻材料36A包含與可變電阻材料36相同之材料。
利用與圖6及圖7同樣之工序由積層體53A形成積層體53。積層體53之間之間隔與第1實施形態相同地為L。相當於積層體間區域43之積層體53之間之區域被稱為積層體間區域56。在利用與圖7同樣之工序形成積層體53之階段中,積層體間區域56具有大於1之高寬比。亦即,H2/L>1成立。
如圖16所示,在利用至此為止之工序獲得之構造之上表面之整體上堆積絕緣體54A。絕緣體54A構成層間絕緣體54之一部分,例如與層間絕緣體54相同地包含SiO、SiN、AlN、及HfN之1者以上。絕緣體54A覆蓋積層體53之表面(上表面及側面)、以及導電體51之積層體間區域56中之部分之上表面。絕緣體54A中之導電體51之上表面上之部分有被稱為底部54Ab之情形。絕緣體54A中之積層體53之側面上之部分有被稱為側壁上部54As之情形。絕緣體54A之底部54Ab具有厚度Tbot 。絕緣體54A之側壁上部54As具有厚度Ts-top
如圖17所示,與圖9同樣地利用IBE局部地去除絕緣體54A。圖17之IBE除離子束之角度之方面以外與圖9之IBE相同。
離子束之角度θ2滿足由以下之等式(2)記述之條件。
[數2]
Figure 02_image003
θ2為相對於z軸之角度,Ts-bot1 為絕緣體54A之側壁上部54As之厚度,尤其是其下部之厚度。更具體而言,Ts-bot1 可為絕緣體54A之側壁上部54As中之與例如絕緣體54A之底部54Ab之上表面為相同高度處之厚度。
利用IBE,與第1實施形態之圖9之IBE相同地,離子束使積層體53之上表面露出,絕緣體54A之側壁上部54As成為錐形狀。另一方面,絕緣體54A之側壁上部54As之下部例如維持原本(圖17之IBE前之)厚度,其厚度為例如Ts-bot1 。又,絕緣體54A之底部54Ab也維持原本(圖17之IBE前之)厚度Tbot1
以下,圖17之工序之結果獲得之在積層體間區域56中不存在絕緣體54A之區域被稱為積層體間區域56A。與第1實施形態中之積層體間區域43與43A之關係相同地,積層體間區域56A之體積在圖16之階段中小於高度H2及寬度L之積層體間區域56之體積。尤其是,由於絕緣體54A以厚度Tbot1 原樣殘留在積層體間區域56之底部,故積層體間區域56A之高寬比小於積層體間區域56之高寬比。再者,積層體間區域56A之上端之寬度寬於圖16中之寬度,例如為L。
如圖18所示,藉由在利用至此為止之工序獲得之構造之上表面之整體上堆積絕緣體54B,而形成絕緣體54C。絕緣體54B構成層間絕緣體54之一部分,例如與層間絕緣體54相同地包含SiO、SiN、AlN、及HfN之1者以上。絕緣體54B與絕緣體54A既可具有相同之特性及(或)組成,也可具有不同之特性及(或)組成。絕緣體54C中之導電體51之上表面上之部分有被稱為底部54Cb之情形。絕緣體54C中之積層體53之側面上之部分有被稱為側壁上部54Cs之情形。絕緣體54C之底部54Cb具有厚度Tbot2
如圖19所示,與圖9及圖17同樣地利用IBE局部地去除絕緣體54C。圖19之IBE除離子束之角度之方面以外與圖9及圖17之IBE相同。
離子束之角度θ3滿足由以下之等式(3)記述之條件。
[數3]
Figure 02_image005
θ3為相對於z軸之角度,TS-bot2 為絕緣體54C之側壁上部54Cs之下端之厚度。更具體而言,TS-bot2 可能為絕緣體54C之側壁上部54Cs中之與例如絕緣體54C之底部54Cb之上表面為相同高度處之厚度。
利用IBE,與圖9及圖17之IBE相同地,離子束使積層體53之上表面露出,絕緣體54C之側壁上部54Cs成為錐形狀。另一方面,絕緣體54C之側壁上部54Cs之下部例如維持原本之(圖19之IBE前之)厚度,其厚度為例如TS-bot2 。又,絕緣體54C之底部54Cb也維持原本之(圖19之IBE前之)厚度Tbot2
以下,圖19之工序結果獲得之在積層體間區域56A中不存在絕緣體54C之區域被稱為積層體間區域56B。積層體間區域56B之體積小於IBE前之圖18中之積層體間區域56A之體積。尤其是,由於絕緣體54C以厚度Tbot2 原樣殘留於積層體間區域56B之底部,故積層體間區域56B之高寬比小於積層體間區域56A之高寬比。再者,積層體間區域56B之上端之寬度寬於圖18中之寬度,例如為L。
如圖20所示,在利用至此為止之工序獲得之構造之上表面之整體上堆積絕緣體54D。絕緣體54D構成層間絕緣體54之一部分,例如與層間絕緣體54相同地包含SiO、SiN、AlN、及HfN之1者以上。絕緣體54D與絕緣體54A及54B既可具有相同之特性及(或)組成,也可具有不同之特性及(或)組成。
如圖14所示,在層間絕緣體54之上表面上形成有層間絕緣體57且形成有導電體58。
與圖16及圖17之組合、或圖18及圖19之組合相同的絕緣體之堆積及利用由帶有角度之離子束進行之蝕刻的絕緣體之局部性去除之組合可重複3次以上。
<2.3.效果> 根據第2實施形態,與第1實施形態相同地,當在積層體53之表面堆積絕緣體54A後,維持絕緣體54A之底部54Ab,且使用IBE利用陰影效應局部地蝕刻絕緣體54A之側壁上部54As。因而,獲得與第1實施形態相同之優點。再者,根據第2實施形態,重複此種絕緣體之堆積、及維持堆積之絕緣體之底部下之積層體53之側壁上之部分之去除。因而,即便為具有更高之積層體53之構造,也與第1實施形態相同地,可實現積層體53間之良好的層間絕緣體54之埋入。
雖然說明了本發明之若干個實施形態,但該等實施形態係作為例子而提出者,並非意欲限定本發明之範圍。該等實施形態可以其他各種形態實施,在不脫離發明之要旨之範圍內能夠進行各種省略、置換、變更。該等實施形態及其變化係與包含於發明之範圍及要旨內同樣地,包含於申請專利範圍所記載之發明及其均等之範圍內。 [相關申請案] 本發明申請案享有以日本專利申請案2019-064287號(申請日:2019年3月28日)為基礎申請案之優先權。本發明申請案藉由參照該基礎申請案而包含基礎申請案之全部內容。
1:記憶裝置 2:記憶體控制器 11:記憶體單元陣列 12:輸入輸出電路 13:控制電路 14:列選擇電路 15:行選擇電路 16:寫入電路 17:讀出電路 20:基板 21:下部電極 22:層間絕緣體 24:積層體 24A:積層體 26:層間絕緣體 26A:絕緣體 26Ab:底部 26As:側壁上部 26B:絕緣體 27:層間絕緣體 28:上部電極 31:緩衝層 32:MTJ元件 33:覆蓋層 34:硬遮罩 34A:硬遮罩 36:變電阻材料 41:開口 43:積層體間區域 43A:積層體間區域 51:導電體 53:積層體 54:層間絕緣體 54A:絕緣體 54Ab:底部 54As:側壁上部 54B:絕緣體 54C:絕緣體 54Cb:底部 54Cs:側壁上部 54D:絕緣體 56:積層體間區域 56A:積層體間區域 56B:積層體間區域 57:層間絕緣體 58:導電體 126A:絕緣體 130:層間絕緣體 321:鐵磁體 322:絕緣體 323:鐵磁體 ADD:位址信號 BL:位元線 CMD:指令 CNT:控制信號 DAT:資料(寫入資料)/ 資料(讀出資料) H1:高度 H2:高度 IWp:寫入電流 IWAP:寫入電流 L:寬度 MC:記憶體單元 ST:選擇電晶體 SW:開關元件 Tbot:厚度 Tbot1:厚度 Tbot2:厚度 Ts-bot:厚度 Ts-bot1:厚度 Ts-bot2:厚度 Ts-top:厚度 VR:電阻變化元件 WL:字元線 x:軸 y:軸 z:軸 /BL:位元線 θ1:角度 θ2:角度 θ3:角度
圖1顯示第1實施形態之記憶裝置之功能區塊。 圖2係第1實施形態之1個記憶體單元之電路圖。 圖3顯示第1實施形態之記憶體單元陣列之一部分之構造。 圖4顯示第1實施形態之積層體之例及磁化之狀態。 圖5顯示第1實施形態之記憶裝置之一部分之製造工序之間之狀態。 圖6顯示接續圖5之狀態。 圖7顯示接續圖6之狀態。 圖8顯示接續圖7之狀態。 圖9顯示接續圖8之狀態。 圖10顯示接續圖9之狀態。 圖11顯示參考用之記憶裝置之製造工序之間之一狀態。 圖12顯示第2實施形態之記憶裝置之功能區塊。 圖13顯示第2實施形態之1個記憶體單元之電路圖。 圖14顯示第2實施形態之記憶體單元陣列之一部分之構造。 圖15顯示第2實施形態之積層體之例及磁化之狀態。 圖16顯示第2實施形態之記憶裝置之一部分之製造工序之間之狀態。 圖17顯示接續圖16之狀態。 圖18顯示接續圖17之狀態。 圖19顯示接續圖18之狀態。 圖20顯示接續圖19之狀態。
20:基板
21:下部電極
22:層間絕緣體
24:積層體
26A:絕緣體
26Ab:底部
26As:側壁上部
43A:積層體間區域
H1:高度
L:寬度
Tbot:厚度
Ts-bot:厚度
x:軸
y:軸
z:軸
θ 1:角度

Claims (13)

  1. 一種記憶裝置之製造方法,其包含:在基底上空開間隔地形成第1積層體及第2積層體;形成第1絕緣體,該第1絕緣體具有:前述第1積層體之側面上之第1部分、前述第2積層體之側面上之第2部分、以及前述第1積層體及前述第2積層體之間之前述基底上之第3部分;利用離子束,邊殘留前述第1絕緣體之前述第3部分,邊將前述第1絕緣體之前述第1部分之一部分及前述第2部分之一部分減薄;及在前述第1絕緣體之前述第1部分與前述第1絕緣體之前述第2部分之間形成第2絕緣體。
  2. 如請求項1之記憶裝置之製造方法,其中前述第2絕緣體包含具有第1面及與前述第1面對向之第2面之第1部分,且前述第1面與前述第1積層體之前述第1部分相接,前述第2面與前述第2積層體之前述第2部分相接。
  3. 如請求項1之記憶裝置之製造方法,其中形成前述第2絕緣體係包含:對前述第1絕緣體之前述第1部分與前述第1絕緣體之前述第2部分之間的區域以前述第2絕緣體進行埋入。
  4. 如請求項1之記憶裝置之製造方法,其中前述第1積層體或前述第2積層體包含顯示磁阻效應之元件。
  5. 如請求項1之記憶裝置之製造方法,其中將前述第1絕緣體之前述第1部分及前述第1絕緣體之前述第2部分減薄係包含照射相對於前述第1積層體之前述側面或前述第2積層體之前述側面之延伸方向具有第1角度之離子束。
  6. 如請求項5之記憶裝置之製造方法,其中前述第1積層體或前述第2積層體包含雙向開關元件。
  7. 如請求項6之記憶裝置之製造方法,其中前述第1絕緣體之前述第1部分之前述一部分係前述第1絕緣體之前述第1部分之上側的部分;前述第1絕緣體之前述第2部分之前述一部分係前述第1絕緣體之前述第2部分之上側的部分。
  8. 如請求項6之記憶裝置之製造方法,其中前述第1角度為θ,且
    Figure 108127823-A0305-02-0030-1
    且L為前述第1積層體與前述第2積層體之間隔;Ts-bot為前述第1絕緣體之前述第1部分之前述一部分或前述第1絕緣體之前述第2部分之前述一部分的減薄前的厚度;H為前述第1積層體或前述第2積層體之高;Tbot為前述第1絕緣體之前述第3部分之厚度。
  9. 如請求項1之記憶裝置之製造方法,其中前述第1絕緣體之前述第1部分之前述一部分係前述第1絕緣體之前述第1部分之上側的部分;前述第1絕緣體之前述第2部分之前述一部分係前述第1絕緣體之前述第2部分之上側的部分。
  10. 如請求項1之記憶裝置之製造方法,其中滿足H/L>1,且H為前述第1積層體或前述第2積層體之高;L為前述第1積層體與前述第2積層體之間隔。
  11. 一種記憶裝置,其具備:第1積層體,其為基底之上的第1積層體,且前述第1積層體包含顯示磁阻效應之元件;第2積層體,其為在前述基底之上且與前述第1積層體具有間隔之第2積層體,前述第2積層體包含顯示磁阻效應之元件;第1絕緣體,其具有:存在於前述第1積層體之側面上且其一部分較薄之第1部分、存在於前述第2積層體之側面上且其一部分較薄之第2部分、以及前述第1積層體及前述第2積層體之間之前述基底之上的第3部分;及第2絕緣體,其存在於前述第1絕緣體之前述第1部分與前述第1絕緣體之前述第2部分之間。
  12. 如請求項11之記憶裝置,其中前述第1積層體或前述第2積層體包含雙向開關元件。
  13. 如請求項11之記憶裝置,其滿足H/L>1,其中H為前述第1積層體或前述第2積層體之高;L為前述第1積層體與前述第2積層體之間隔。
TW108127823A 2019-03-28 2019-08-06 記憶裝置及記憶裝置之製造方法 TWI741340B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-064287 2019-03-28
JP2019064287A JP2020167210A (ja) 2019-03-28 2019-03-28 記憶装置および記憶装置の製造方法

Publications (2)

Publication Number Publication Date
TW202042227A TW202042227A (zh) 2020-11-16
TWI741340B true TWI741340B (zh) 2021-10-01

Family

ID=72604924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127823A TWI741340B (zh) 2019-03-28 2019-08-06 記憶裝置及記憶裝置之製造方法

Country Status (4)

Country Link
US (1) US11165016B2 (zh)
JP (1) JP2020167210A (zh)
CN (1) CN111755599B (zh)
TW (1) TWI741340B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497212B2 (en) * 2011-02-28 2013-07-30 Globalfoundries Inc. Filling narrow openings using ion beam etch
US8691596B2 (en) * 2012-01-05 2014-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US20160049447A1 (en) * 2014-08-14 2016-02-18 Seung-jae Jung Resistive memory device and method of operating resistive memory device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423906B1 (ko) * 2001-08-08 2004-03-22 삼성전자주식회사 강유전성 메모리 장치 및 그 제조방법
KR100653701B1 (ko) * 2004-08-20 2006-12-04 삼성전자주식회사 반도체 소자의 작은 비아 구조체 형성방법 및 이를 사용한상변화 기억 소자의 제조방법
US7919826B2 (en) * 2007-04-24 2011-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
CN103066008A (zh) * 2012-12-26 2013-04-24 上海宏力半导体制造有限公司 一种提高闪存浅槽隔离工艺中凹槽电介质填孔能力的方法
CN106062945B (zh) 2014-03-11 2019-07-26 东芝存储器株式会社 磁存储器和制造磁存储器的方法
US9142762B1 (en) 2014-03-28 2015-09-22 Qualcomm Incorporated Magnetic tunnel junction and method for fabricating a magnetic tunnel junction
KR102192205B1 (ko) * 2014-04-28 2020-12-18 삼성전자주식회사 메모리 장치
KR20160070244A (ko) 2014-12-09 2016-06-20 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
KR20160135044A (ko) 2015-05-15 2016-11-24 삼성전자주식회사 패턴 형성 방법, 이를 이용한 자기기억소자의 제조방법, 및 이를 이용하여 제조된 자기기억소자
US10230042B2 (en) * 2016-03-03 2019-03-12 Toshiba Memory Corporation Magnetoresistive element and method of manufacturing the same
KR102494102B1 (ko) 2016-03-10 2023-02-01 삼성전자주식회사 자기 메모리 장치의 제조 방법
KR102634781B1 (ko) 2017-01-18 2024-02-13 삼성전자주식회사 자기 메모리 장치
US9871195B1 (en) * 2017-03-22 2018-01-16 Headway Technologies, Inc. Spacer assisted ion beam etching of spin torque magnetic random access memory
CN109087994B (zh) * 2017-06-13 2022-08-23 三星电子株式会社 半导体器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497212B2 (en) * 2011-02-28 2013-07-30 Globalfoundries Inc. Filling narrow openings using ion beam etch
US8691596B2 (en) * 2012-01-05 2014-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US20160049447A1 (en) * 2014-08-14 2016-02-18 Seung-jae Jung Resistive memory device and method of operating resistive memory device

Also Published As

Publication number Publication date
TW202042227A (zh) 2020-11-16
JP2020167210A (ja) 2020-10-08
CN111755599B (zh) 2024-05-17
US20200313082A1 (en) 2020-10-01
CN111755599A (zh) 2020-10-09
US11165016B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US9741415B2 (en) Magnetic devices having insulating spacer that surrounds portion of wiring structure and variable resistance structure and methods of manufacturing the same
US9231192B2 (en) Semiconductor memory device and method for manufacturing the same
US9306156B2 (en) Methods of manufacturing a magnetoresistive random access memory device
US9312476B2 (en) Magnetic memory
US11856866B2 (en) Magnetic tunnel junction devices
TWI699758B (zh) 磁性記憶體
CN110911547A (zh) 磁存储装置及其制造方法
US11682441B2 (en) Magnetoresistive memory device and method of manufacturing magnetoresistive memory device
US11818898B2 (en) Magnetoresistive memory device and method of manufacturing magnetoresistive memory device
US10957370B1 (en) Integration of epitaxially grown channel selector with two terminal resistive switching memory element
US10692925B2 (en) Dielectric fill for memory pillar elements
TWI741340B (zh) 記憶裝置及記憶裝置之製造方法
US11948616B2 (en) Semiconductor structure and manufacturing method thereof
TWI817639B (zh) 磁性記憶裝置及磁性記憶裝置之製造方法
US20240260480A1 (en) Low-resistance contact to top electrodes for memory cells and methods for forming the same
JP2022139933A (ja) 磁気記憶装置及び磁気記憶装置の製造方法
JP2024044579A (ja) 磁気記憶装置及び磁気記憶装置の製造方法
JP2023070118A (ja) 半導体装置及びその製造方法
KR20210148902A (ko) 메모리 셀용 상단 전극에 대한 저저항 컨택트 및 그 형성 방법
TW202137495A (zh) 磁性記憶裝置及磁性記憶裝置之製造方法
CN116249430A (zh) 半导体器件及其制造方法
CN117119789A (zh) 半导体存储器装置