TWI738588B - 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法 - Google Patents

用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法 Download PDF

Info

Publication number
TWI738588B
TWI738588B TW109144316A TW109144316A TWI738588B TW I738588 B TWI738588 B TW I738588B TW 109144316 A TW109144316 A TW 109144316A TW 109144316 A TW109144316 A TW 109144316A TW I738588 B TWI738588 B TW I738588B
Authority
TW
Taiwan
Prior art keywords
cavity
heat dissipation
side cavity
heat transfer
dissipation structure
Prior art date
Application number
TW109144316A
Other languages
English (en)
Other versions
TW202226930A (zh
Inventor
張天曜
郭哲瑋
莊翔智
Original Assignee
雙鴻科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雙鴻科技股份有限公司 filed Critical 雙鴻科技股份有限公司
Priority to TW109144316A priority Critical patent/TWI738588B/zh
Application granted granted Critical
Publication of TWI738588B publication Critical patent/TWI738588B/zh
Publication of TW202226930A publication Critical patent/TW202226930A/zh

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一種用於半導體元件的散熱結構,包括上腔體、第一側腔體、以及第二側腔體。上腔體向第一方向延伸。第一側腔體連接上腔體並向第二方向延伸。第一側腔體與上腔體流體連通。第二側腔體連接上腔體並向第三方向延伸。第二側腔體與上腔體流體連通。上腔體的下邊、第一側腔體的第一內邊以及第二側腔體的第二內邊圍繞定義出容置空間。下邊、第一內邊以及第二內邊上分別設置有多個熱傳凸塊。熱傳凸塊面向容置空間。

Description

用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法
本揭示內容係關於用於半導體元件的散熱結構以及半導體元件與散熱結構的接合方法。
此處的陳述僅提供與本揭示有關的背景信息,而不必然地構成現有技術。
近年來,電子元件的散熱漸漸成為重要的問題。相較於傳統的幫浦、壓縮機等大型機件,電子元件或電子構裝的散熱由於體積之限制,需要在小範圍達到好的散熱以及均溫效果,並且需考量設置散熱元件所產生的成本不能太高,因此實際上是頗具挑戰性的散熱領域議題。
隨著半導體產業最小線寬製程精度不斷提升,電子元件尺寸更是進一步縮小,但其發熱量和單位面積熱密度愈趨增大。為了使電子元件的運作時維持在許可的工作溫度,常見的做法是在電子元件上裝設各種類型的散熱器(例如,散熱片、均溫板、水冷散熱裝置等)。目前所知的裝設結構大多是透過導熱膠作為散熱器和電子元件之間的固定和熱傳導媒介,藉由導熱膠之可塑性高的性質以提升熱接觸面的接合品質。
然而,上述散熱方式所使用的導熱膠之熱傳導係數相較於導熱性較佳的金屬(例如,金、鋁、銅等)仍有一個數量級以上的差距,且在前述電子元件逐漸縮小的趨勢下也將漸漸不足以應付如此高密度且大量的熱能來源。因此,有必要提出進一步提升散熱效果的結構和方法。
有鑑於此,本揭示的一些實施方式揭露了一種用於半導體元件的散熱結構,包括上腔體、第一側腔體、以及第二側腔體。上腔體向第一方向延伸。第一側腔體連接上腔體並向第二方向延伸。第一側腔體與上腔體流體連通。第二側腔體連接上腔體並向第三方向延伸。第二側腔體與上腔體流體連通。上腔體的下邊、第一側腔體的第一內邊以及第二側腔體的第二內邊圍繞定義出容置空間。下邊、第一內邊以及第二內邊上分別設置有多個熱傳凸塊。熱傳凸塊面向容置空間。
於本揭示的一或多個實施方式中,第一方向垂直於第二方向和第三方向。
於本揭示的一或多個實施方式中,上腔體內位於第一側腔體和第二側腔體之間的部分包括至少一金屬實心柱。金屬實心柱的兩端分別接觸上腔體的上邊和下邊。上邊和下邊定義出上腔體垂直於第一方向的範圍。
於本揭示的一或多個實施方式中,第一側腔體內和第二側腔體內分別包括至少一金屬實心柱。位於第一側腔體內的金屬實心柱的兩端分別接觸第一側腔體的第一內邊和第一外邊。第一內邊和第一外邊定義出第一側腔體垂直於第二方向的範圍。位於第二側腔體內的金屬實心柱的兩端分別接觸第二側腔體的第二內邊和第二外邊。第二內邊和第二外邊定義出第二側腔體垂直於第三方向的範圍。
於本揭示的一或多個實施方式中,散熱結構更包括至少一毛細結構,貼附於上邊、下邊、第一內邊、第一外邊、第二內邊和第二外邊當中的至少一者上。毛細結構位於上腔體、第一側腔體或第二側腔體內。
於本揭示的一或多個實施方式中,散熱結構更包括至少一毛細支柱。毛細支柱的兩端分別接觸位於上邊的毛細結構和位於下邊的毛細結構。
於本揭示的一或多個實施方式中,熱傳凸塊係由鎳和金所組成。
於本揭示的一或多個實施方式中,第一側腔體和第二側腔體直接流體連通,且共同環繞容置空間。
於本揭示的一或多個實施方式中,第一側腔體與第二側腔體間隔開。
本揭示的一些實施方式揭露了一種半導體元件與散熱結構的接合方法,包括:將至少一個表面設置有熱傳墊的半導體元件置入散熱結構的容置空間中,容置空間係由散熱結構的上腔體、第一側腔體和第二側腔體所圍繞,設置在前述表面上的熱傳墊面向設置在上腔體上的多個熱傳凸塊;施加第一壓力使得熱傳墊接觸設置在上腔體的熱傳凸塊;以及將已相互接觸的熱傳凸塊和熱傳墊進行超音波焊接。
於本揭示的一或多個實施方式中,半導體元件與散熱結構的接合方法更包括施加第二壓力使得設置在半導體元件的另一表面的另一熱傳墊接觸設置在第一側腔體的另一些熱傳凸塊。
於本揭示的一或多個實施方式中,半導體元件與散熱結構的接合方法更包括以導熱膠填充於第二側腔體和半導體元件之間以使得第二腔體熱耦合至半導體元件。
本揭示藉由散熱結構三面以上接觸半導體元件的方式提高了散熱面積,且藉由金對金的直接超音波銲接降低熱傳遞時的熱阻,並輔以直接無縫接觸且連接散熱結構相對的兩個相隔金屬面的金屬實心柱提升超音波的震動傳遞量,達到同時提高散熱效能並降低設置均溫板於待散熱工作物之所需溫度及能量(即降低成本)之多重功效。
為了讓本揭示的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為使本揭示之敘述更加詳盡與完備,下文針對了本揭示的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本揭示具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。
在以下的描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本揭示之實施例。在其他情況下,為簡化圖式,熟知的結構與裝置僅示意性地繪示於圖中。
參考第1圖。第1圖繪示本揭示一些實施例中散熱結構100的剖面示意圖。散熱結構100包括上腔體120、第一側腔體140以及第二側腔體160。上腔體120向第一方向D1延伸。第一側腔體140連接上腔體120並向第二方向D2延伸,且第一側腔體140與上腔體120流體連通。第二側腔體160連接上腔體120並向第三方向D3延伸,且第二側腔體160與上腔體120流體連通。在一些實施例中,第一方向D1垂直於第二方向D2和第三方向D3。第二方向D2可以是平行於第三方向D3,但不以此為限。在一些擴展實施例中,第一方向D1與第二方向D2和第三方向D3所呈現的夾角可以為非垂直,亦即本揭示並不排除第一側腔體140或第二側腔體160自上腔體120往外斜向延伸的實施方式。此外,在一些特定實施例中,第二方向D2和第三方向D3甚至可以是非平行,亦即本揭示並不排除第一側腔體140或第二側腔體160協向延伸之方向不相同的實施方式。前述不同的延伸方向的各種組合之實施可能性,可以依據待散熱工作件(例如,半導體元件、晶片等生熱件)的形狀而製作。在一些實施例中,散熱結構100可以是包覆式均溫板。
在第1圖所示的實施例中,上腔體120的下邊122、第一側腔體140的第一內邊142以及第二側腔體160的第二內邊162圍繞定義出容置空間AS,且下邊122、第一內邊142以及第二內邊162上分別設置有多個熱傳凸塊1222、1422、1622,這些熱傳凸塊1222、1422、1622皆面向容置空間AS。因此,容置空間AS可用於放置待散熱工作件,並藉由熱傳凸塊1222、1422、1622將熱能經由散熱結構100傳導並散熱至他處。前述之下邊122、第一內邊142以及第二內邊162可視為散熱結構100接觸外界的外層或外殼,其主要由金屬(例如,銅)所製成。
在一些實施例中,熱傳凸塊1222、1422、1622係由鎳和金所組成。鎳可用以使金在散熱結構100上的附著性較佳。製作方式可為事先將鎳鍍於散熱結構100上,再鍍上金。倘若需調整不同區域的熱傳凸塊1222、1422、1622相較於散熱結構100的外層或外殼(例如,上述的下邊122、第一內邊142和第二內邊162)的高度,可先於欲增加高度的部位鍍上額外的銅,再接著鍍上鎳層和金層。在一些實施例中,不論熱傳凸塊1222、1422、1622的高度如何調整,皆以調整額外鍍上之銅的高度的方式為之,而鎳和金加起來的高度可控制在3微米左右,以達到較好的傳熱效率和製程中的傳遞超音波震動的效率。當然,上開細部數據描述並不直接用以限制本揭示的保護範圍。在一些實施例中,位於同一側(例如,下邊122)上的熱傳凸塊1222可設置為具有兩種以上的高度。如此一來,當進行超音波震動之接合製程時,會先由高度最高的一小部分熱傳凸塊1222開始與待散熱工作件產生鍵合,再循序擴張至高度較小的熱傳凸塊1222也產生鍵合。如此製程可降低金屬鍵合產生的溫度至約攝氏100-150度而降低待工作物於接合過程中產生結構損壞的機率,且亦減低鍵合製程所需能耗。
繼續參考第1圖。在一些實施例中,上腔體120內位於第一側腔體140和第二側腔體160之間的部分包括至少一金屬實心柱130。金屬實心柱130的兩端分別接觸上腔體120的上邊124和下邊122。上邊124和下邊122定義出上腔體120垂直於第一方向D1的範圍,即上腔體120內的空腔部分的邊界。藉由金屬實心柱130,上邊124和下邊122之間的熱傳導效率可增加,且超音波震動傳遞的能耗亦可大幅下降。在此架構下,若上邊124接收到外加的超音波震動,金屬實心柱130可更直接有效地將超音波震動傳遞至下邊122,對於將散熱結構100以超音波震動方式將熱傳凸塊1222與待散熱工作件接合的實施方式來說,很大程度幫助了製程順利及節省成本與耗能。此外,金屬實心柱130亦使得散熱結構100更為堅固而降低損壞率。
在一些實施例中,第一側腔體140內和第二側腔體160內分別包括至少一金屬實心柱150,位於第一側腔體140內的金屬實心柱150的兩端分別接觸第一側腔體140的第一內邊142和第一外邊144。第一內邊142和第一外邊144定義出第一側腔體140垂直於第二方向D2的範圍,即第一側腔體140內的空腔部分的邊界。位於第二側腔體160內的金屬實心柱150的兩端分別接觸第二側腔體160的第二內邊162和第二外邊164。第二內邊162和第二外邊164定義出第二側腔體160垂直於第三方向D3的範圍,即第二側腔體160內的空腔部分的邊界。同樣地,藉由金屬實心柱150,第一內邊142和第一外邊144之間以及第二內邊162和第二外邊164之間的熱傳導效率可增加,且超音波震動傳遞的能耗亦可大幅下降。在此架構下,若第一外邊144接收到外加的超音波震動,其金屬實心柱150更直接有效地將超音波震動傳遞至第一內邊142,若第二外邊164接收到外加的超音波震動,金屬實心柱150可更直接有效地將超音波震動傳遞至第二內邊162,對於將散熱結構100以超音波震動方式將熱傳凸塊1422、1622與待散熱工作件接合的實施方式來說,很大程度幫助了製程順利及節省成本與耗能。金屬實心柱130、150可以是與散熱結構100的版料蝕刻一體成型,亦可以是獨立的金屬柱經過燒結、加壓焊、電阻焊、超音波焊等工法,使其與散熱結構100緊密無縫接合。
繼續參考第1圖。在一些實施例中,散熱結構100還包括至少一毛細結構170,貼附於上邊124、下邊122、第一內邊142、第一外邊144、第二內邊162和第二外邊164當中的至少一者上。毛細結構170位於上腔體120、第一側腔體140或第二側腔體160內。第1圖所示乃示例毛細結構170存在於所有前述結構中的實施例,但不須以此為限。在一些實施例中,散熱結構100還包括至少一毛細支柱180,毛細支柱180的兩端分別接觸位於上邊124的毛細結構170和位於下邊122的毛細結構170。在一些實施例中,毛細支柱180可以是貼合於毛細結構170,再經由燒結、加壓焊、電阻焊或超音波焊等工法,使其與散熱結構100(例如,上邊124和下邊122)無縫緊密接合。
參考第2A圖和第2B圖。此二圖分別繪示本揭示實施例中散熱結構100A、100B的兩種示例態樣的立體示意圖,其旨在顯示整體三維結構的特徵,因此細部結構如熱傳凸塊1222、1422、1622等特徵在此二圖予以省略。在第2A圖的實施例中,散熱結構100A有三面可用來設置熱傳凸塊1222、1422、1622以接觸待散熱工作件。此三面可對應至前面已詳加描述過的下邊122、第一內邊142和第二內邊162。在第2B圖的實施例中,散熱結構100B有五面可用來接觸待散熱工作件,此五面的其中一面可對應至下邊122,另外四面可對應至第一內邊142和第二內邊162。與第2A圖不同的是,第2B圖的第一內邊142和第二內邊162在X-Y平面上形成一個封閉內面,環繞並在X-Y方向上包圍容置空間AS,因而在第2B圖的實施例中形成如同正方體四個側面之結構。如此一來,散熱效果由於接觸面積增加(由三個面變為五個面)而更好。在第2A圖的實施例所呈現的架構下,第一側腔體140與第二側腔體160間隔開,須通過上腔體120方能達到第一側腔體140與第二側腔體160之間的流體連通。在第2B圖的實施例所呈現的架構下,第一側腔體140和第二側腔體160不須藉由上腔體120即可直接流體連通,且第一側腔體140和第二側腔體160共同環繞容置空間AS。
參考第3圖至第4C圖。第3圖繪示本揭示一些實施例中接合散熱結構100與半導體元件200的流程示意圖。第4A圖至第4C圖繪示本揭示一些實施例中接合散熱結構100與半導體元件200的中間階段之剖面示意圖。本揭示一些實施例揭露一種接合散熱結構100與半導體元件200的方法S。方法S於操作S1開始,將至少一個表面A1設置有多個熱傳墊220的半導體元件200置入散熱結構100的容置空間AS中。容置空間AS由散熱結構100的上腔體120、第一側腔體140和第二側腔體160所圍繞。設置在表面A1的熱傳墊220面向設置在上腔體120上的多個熱傳凸塊1222(參考第4A圖和第4B圖)。方法S接著進行至操作S2,施加第一壓力P1使得熱傳墊220A1接觸設置在上腔體120的熱傳凸塊1222。在一些實施例中,操作S2亦施加第二壓力P2使得設置在半導體元件200的另一表面A2的另一些熱傳墊220A2接觸設置在第一側腔體140的另一些熱傳凸塊1422(參考第4B圖)。在一些實施例中,施加第一壓力P1的方向為垂直於第一方向D1,施加第二壓力P2的方向為垂直於第二方向D2。
方法S接著進行至操作S3,將已相互接觸的熱傳凸塊1222和熱傳墊220A1進行超音波焊接,使得多個熱傳凸塊1222與熱傳墊220A1產生鍵合。在一些實施例中,熱傳凸塊1422亦和熱傳墊220A2接觸並進行超音波焊接,且多個熱傳凸塊1422與熱傳墊220A2亦產生鍵合(參考第4B圖和第4C圖)。雖然圖式中顯示熱傳墊220A1(或220A2)為單一連續結構,但在一些實施例中,熱傳墊220A1(或220A2)亦可為多個分別對應多個熱傳凸塊1222、1422的複數凸塊結構。超音波震動的頻率大於16千赫茲,可為40千赫茲至120千赫茲,但不以此為限。超音波震動源可以是如第一壓力P1的箭頭所示方向接觸上邊124以傳遞超音波震動,亦可如第二壓力P2的箭頭所示方向接觸第一外邊144以傳遞震動。第4C圖所繪示的半導體元件200與第二側腔體160的第二內邊162尚有一縫隙G,乃實際製程可能遇到的情況,此縫隙G可於後續製程填補。當然,在一些實施例中,超音波銲接後亦不排除半導體元件200位於容置空間AS中的至少三個面(如A1~A3)或每個面都與散熱結構100完全金對金接合的情形,換言之,在進行超音波銲接前,半導體元件200不排除置入容置空間AS中的至少三個面或每個面皆可設置熱傳墊,且散熱結構100圍繞成容置空間AS的面不排除設置對應半導體元件200之傳熱墊的熱傳凸塊,但不以此為限。
由上開關於散熱結構100的結構描述可知,上腔體120、第一側腔體140和第二側腔體160內有預先使用金屬實心柱130、150以直接且低消耗地傳遞超音波震動自上邊124至下邊122以及自第一外邊144至第一內邊142(一些實施例中亦可自第二外邊164至第二內邊162,於此不詳述),進而使得接合製程可行且經濟。在一些實施例中,熱傳墊220亦由金和鎳等材料所組成,且金的部分與熱傳凸塊1222、1422在操作S2時直接接觸。因此,超音波震動會傳遞至金對金的接觸面並產生摩擦熱,且由於金凸塊在接合時之單個接合面尺寸夠小(熱傳凸塊1222、1422、1622的側向長度一般而言會在100微米以下,一些實施例中約為25微米),其熔點會遠低於大片銅板(或整片金膜)直接銲接的架構,因此所需完成焊接的總能量較低,可以在散熱結構100內部溫度升高至造成漲版或破壞半導體元件200之前完成焊接。
參考第5圖。第5圖繪示本揭示一些實施例中散熱結構100與半導體元件200接合後的剖面示意圖。在一些實施例中,方法S進一步以導熱膠300填充第4C圖於第二側腔體160和半導體元件200之間的縫隙G以使得第二側腔體160熱耦合至半導體元件200。在一些實施例中,可在第二側腔體160上設置熱傳凸塊1622,使得熱傳凸塊1622熱耦合至熱傳墊220A3。上述方式可在散熱能力已相較於現有技術大幅提升(因為半導體元件200已有至少兩面藉由超音波接合而與散熱結構100產生金對金鍵合)的前提下省去其它面的超音波接合,進而降低製造成本。在前述導熱膠300以填充縫隙G的實施例中,可選擇性地不設置第二側腔體160上的熱傳凸塊1622。
綜上所述,本揭示的實施例提供了一種用於半導體元件的散熱結構以及半導體元件與散熱結構的接合方法,其藉由三面以上的散熱接觸面以及前述三面中至少兩面的金對金直接鍵合面,達到超音波銲接時熱傳凸塊與熱傳墊之熱阻較現有技術降低之效果,因而使半導體元件可以更高功率執行其功能,並降低散熱模組、風道設計或進一步水冷設計的需求之功效。此外,金屬實心柱的設置亦使得超音波產生的超音波震動更易低耗能地傳遞至銲接接合面,進一步降低完成焊接的所需能量。
雖然本揭示已以實施例揭露如上,然並非用以限定本揭示,任何熟習此技藝者,在不脫離本揭示之精神和範圍內,當可作各種之更動與潤飾,因此本揭示之保護範圍當視後附之申請專利範圍所界定者為準。
100,100A,100B:散熱結構
120:上腔體
122:下邊
124:上邊
1222,1422,1622:熱傳凸塊
130,150:金屬實心柱
140:第一側腔體
142:第一內邊
144:第一外邊
160:第二側腔體
162:第二內邊
164:第二外邊
170:毛細結構
180:毛細支柱
200:半導體元件
220,220A1,220A2,220A3:熱傳墊
300:導熱膠
D1:第一方向
D2:第二方向
D3:第三方向
AS:容置空間
S:方法
S1,S2,S3:操作
A1,A2,A3:表面
P1:第一壓力
P2:第二壓力
G:縫隙
第1圖繪示本揭示一些實施例中散熱結構的剖面示意圖。 第2A圖繪示本揭示一些實施例中散熱結構的立體示意圖。 第2B圖繪示本揭示一些實施例中散熱結構的立體示意圖。 第3圖繪示本揭示一些實施例中接合散熱結構與半導體元件的流程示意圖。 第4A圖繪示本揭示一些實施例中接合散熱結構與半導體元件的中間階段之剖面示意圖。 第4B圖繪示本揭示一些實施例中接合散熱結構與半導體元件的中間階段之剖面示意圖。 第4C圖繪示本揭示一些實施例中接合散熱結構與半導體元件的中間階段之剖面示意圖。 第5圖繪示本揭示一些實施例中散熱結構與半導體元件接合後的剖面示意圖。
100:散熱結構
120:上腔體
122:下邊
124:上邊
1222,1422,1622:熱傳凸塊
130,150:金屬實心柱
140:第一側腔體
142:第一內邊
144:第一外邊
160:第二側腔體
162:第二內邊
164:第二外邊
170:毛細結構
180:毛細支柱
D1:第一方向
D2:第二方向
D3:第三方向
AS:容置空間

Claims (18)

  1. 一種用於半導體元件的散熱結構,包括:一上腔體,向一第一方向延伸;一第一側腔體,連接該上腔體並向一第二方向延伸,該第一側腔體與該上腔體流體連通;以及一第二側腔體,連接該上腔體並向一第三方向延伸,該第二側腔體與該上腔體流體連通;其中,該上腔體的一下邊、該第一側腔體的一第一內邊以及該第二側腔體的一第二內邊圍繞定義出一容置空間,且該下邊上設置有複數個熱傳凸塊,該些熱傳凸塊面向該容置空間,其中該容置空間用以置入一半導體元件。
  2. 如請求項1所述之散熱結構,其中該第一內邊與該第二內邊的至少一者分別設置有複數個熱傳凸塊。
  3. 如請求項2所述之散熱結構,其中該些熱傳凸塊係由鎳和金所組成。
  4. 如請求項1所述之散熱結構,其中該第一方向垂直於該第二方向和該第三方向。
  5. 如請求項1所述之散熱結構,其中該上腔體內位於該第一側腔體和該第二側腔體之間的部分包括至 少一金屬實心柱,該金屬實心柱的兩端分別接觸該上腔體的一上邊和該下邊,該上邊和該下邊定義出該上腔體垂直於該第一方向的範圍。
  6. 如請求項1所述之散熱結構,其中該第一側腔體內和該第二側腔體內分別包括至少一金屬實心柱,位於該第一側腔體內的該金屬實心柱的兩端分別接觸該第一側腔體的該第一內邊和一第一外邊,該第一內邊和該第一外邊定義出該第一側腔體垂直於該第二方向的範圍,位於該第二側腔體內的該金屬實心柱的兩端分別接觸該第二側腔體的該第二內邊和一第二外邊,該第二內邊和該第二外邊定義出該第二側腔體垂直於該第三方向的範圍。
  7. 如請求項1所述之散熱結構,更包括至少一毛細結構,貼附於該上腔體的一上邊、該下邊、該第一內邊、該第一側腔體的一第一外邊、該第二內邊和該第二側腔體的一第二外邊當中的至少一者上,該毛細結構位於該上腔體、該第一側腔體或該第二側腔體內。
  8. 如請求項7所述之散熱結構,更包括至少一毛細支柱,該毛細支柱的兩端分別接觸位於該上邊的該毛細結構和位於該下邊的該毛細結構。
  9. 如請求項1所述之散熱結構,其中該第一 側腔體和該第二側腔體直接流體連通,且共同環繞該容置空間。
  10. 如請求項1所述之散熱結構,其中該第一側腔體與該第二側腔體間隔開。
  11. 一種半導體元件與散熱結構的接合方法,包括:將至少一個表面設置有一熱傳墊的一半導體元件置入一散熱結構的一容置空間中,該容置空間係由該散熱結構的一上腔體、一第一側腔體和一第二側腔體所圍繞,設置在該表面上的該熱傳墊面向設置在該上腔體上的複數個熱傳凸塊;施加一第一壓力使得該熱傳墊接觸設置在該上腔體的該些熱傳凸塊;以及將已相互接觸的該些熱傳凸塊和該熱傳墊進行超音波焊接。
  12. 如請求項11所述之方法,更包括:施加一第二壓力使得設置在該半導體元件的另一表面的另一熱傳墊接觸設置在該第一側腔體的另一些熱傳凸塊。
  13. 如請求項11所述之方法,更包括:以導熱膠填充於該第二側腔體和該半導體元件之間以使 得該第二側腔體熱耦合至該半導體元件。
  14. 如請求項11所述之方法,其中該上腔體向一第一方向延伸,該第一側腔體連接該上腔體並向一第二方向延伸該第一側腔體與該上腔體流體連通,該第二側腔體連接該上腔體並向一第三方向延伸,該第二側腔體與該上腔體流體連通,該第一方向不同於該第二方向和該第三方向。
  15. 如請求項14所述之方法,其中該上腔體內位於該第一側腔體和該第二側腔體之間的部分包括至少一金屬實心柱,該金屬實心柱的兩端分別接觸該上腔體的一上邊和一下邊,該上邊和該下邊定義出該上腔體垂直於該第一方向的範圍。
  16. 如請求項14所述之方法,其中該第一側腔體內和該第二側腔體內分別包括至少一金屬實心柱,位於該第一側腔體內的該金屬實心柱的兩端分別接觸該第一側腔體的一第一內邊和一第一外邊,該第一內邊和該第一外邊定義出該第一側腔體垂直於該第二方向的範圍,位於該第二側腔體內的該金屬實心柱的兩端分別接觸該第二側腔體的一第二內邊和一第二外邊,該第二內邊和該第二外邊定義出該第二側腔體垂直於該第三方向的範圍。
  17. 如請求項11所述之方法,其中該散熱結構包括至少一毛細結構,貼附於該上腔體的一上邊和一下邊、該第一側腔體的一第一內邊和一第一外邊、該第二側腔體的一第二內邊和一第二外邊當中的至少一者,該毛細結構位於該上腔體、該第一側腔體或該第二側腔體內。
  18. 如請求項17所述之方法,其中該散熱結構更包括一毛細支柱,該毛細支柱的兩端分別接觸位於該上邊的該毛細結構和位於該下邊的該毛細結構。
TW109144316A 2020-12-15 2020-12-15 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法 TWI738588B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109144316A TWI738588B (zh) 2020-12-15 2020-12-15 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109144316A TWI738588B (zh) 2020-12-15 2020-12-15 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法

Publications (2)

Publication Number Publication Date
TWI738588B true TWI738588B (zh) 2021-09-01
TW202226930A TW202226930A (zh) 2022-07-01

Family

ID=78777925

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144316A TWI738588B (zh) 2020-12-15 2020-12-15 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法

Country Status (1)

Country Link
TW (1) TWI738588B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM571957U (zh) * 2018-12-21 Temperature uniform plate radiator structure
TW202041826A (zh) * 2019-05-10 2020-11-16 訊凱國際股份有限公司 均溫板及其製造方法
US20200365485A1 (en) * 2019-05-15 2020-11-19 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM571957U (zh) * 2018-12-21 Temperature uniform plate radiator structure
TW202041826A (zh) * 2019-05-10 2020-11-16 訊凱國際股份有限公司 均溫板及其製造方法
US20200365485A1 (en) * 2019-05-15 2020-11-19 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method for manufacturing the same

Also Published As

Publication number Publication date
TW202226930A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
TWI643268B (zh) 堆疊封裝結構的製造方法
US8772927B2 (en) Semiconductor package structures having liquid cooler integrated with first level chip package modules
US8115302B2 (en) Electronic module with carrier substrates, multiple integrated circuit (IC) chips and microchannel cooling device
JPS5928989B2 (ja) 回路パツケ−ジ及びその製造方法
JP6287789B2 (ja) パワーモジュール及びその製造方法
JP6189015B2 (ja) 放熱装置および放熱装置の製造方法
WO2020199043A1 (zh) 封装芯片及封装芯片的制作方法
JP2007305799A (ja) 半導体装置の製造方法
JPH11204724A (ja) パワーモジュール
KR100810491B1 (ko) 전자소자 패키지 및 그 제조방법
JP4502204B2 (ja) 半導体装置
JP4299783B2 (ja) 半導体装置及びその製造方法
TWI738588B (zh) 用於半導體元件的散熱結構及半導體元件與散熱結構的接合方法
JP2008016653A (ja) 半導体パッケージ、その製造方法、プリント基板及び電子機器
TW201820468A (zh) 半導體裝置及其製造方法
CN213907273U (zh) 用于半导体元件的散热结构
TWM610399U (zh) 散熱器結構
TWM609258U (zh) 用於半導體元件的散熱器
JPH06302728A (ja) セラミック多層基板上におけるlsi放熱構造
CN109920766B (zh) 带有散热结构的大尺寸芯片系统级封装结构及其制作方法
JP7490974B2 (ja) 半導体モジュール及び半導体モジュールの製造方法
CN102142421B (zh) 免用焊料的金属柱芯片连接构造
JP6909126B2 (ja) 半導体装置の製造方法
JP4850029B2 (ja) 半導体装置
TWI283447B (en) Thermally enhanced flip-chip-on-film package