TWI737197B - 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法、系統、及裝置 - Google Patents

藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法、系統、及裝置 Download PDF

Info

Publication number
TWI737197B
TWI737197B TW109106159A TW109106159A TWI737197B TW I737197 B TWI737197 B TW I737197B TW 109106159 A TW109106159 A TW 109106159A TW 109106159 A TW109106159 A TW 109106159A TW I737197 B TWI737197 B TW I737197B
Authority
TW
Taiwan
Prior art keywords
lens
charged particle
particle beam
secondary charged
excitation
Prior art date
Application number
TW109106159A
Other languages
English (en)
Other versions
TW202036643A (zh
Inventor
馬蒂亞斯 費恩克斯
史帝芬 拉尼歐
迪特 溫克勒
Original Assignee
德商Ict積體電路測試股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商Ict積體電路測試股份有限公司 filed Critical 德商Ict積體電路測試股份有限公司
Publication of TW202036643A publication Critical patent/TW202036643A/zh
Application granted granted Critical
Publication of TWI737197B publication Critical patent/TWI737197B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1202Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices

Abstract

提供一種藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法,該方法包括以下步驟:將第一操作參數設定為第一值,第一操作參數係為將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度;將第一操作參數設定為第二值,第二值與第一值不同;在第一操作參數設定為第二值時,控制第一透鏡與第二透鏡的激發,並相對於在第一操作參數設定為第一值的情況下,藉由控制第一透鏡的磁場的激發、藉由控制第二透鏡的磁場的激發,或藉由第一透鏡與第二透鏡二者的磁場的激發,針對第二值補償次級帶電粒子束的拉莫爾旋轉。

Description

藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束 成像的方法、系統、及裝置
本文所述之實施例係關於帶電粒子束裝置,更具體為關於次級帶電粒子成像系統,例如用於檢測系統應用、測試系統應用、光刻系統應用、缺陷檢驗或臨界尺寸應用,或類似者。本文所述之實施例亦關於操作此種裝置及系統的方法,以及關於對次級帶電粒子束成像的方法。本文所述的進一步實施例係關於具有用於次級粒子的帶電粒子路徑的應用,例如用於電子束檢測(EBI)。
帶電粒子束設備在複數個工業領域中具有許多功能,包括但不限於,製造期間的半導體裝置的檢測、用於光刻的曝光系統、偵測裝置,及測試系統。因此,對於微米與奈米尺度中的結構化及檢測樣本存在很大的需求。
微米與奈米尺度的處理控制、檢驗或結構化經常利用帶電粒子束,例如電子束,其在帶電粒子束裝置中產生及聚焦,如電子顯微鏡或電子束圖形產生器。相較於例如光子束,而由於其短波長,帶電粒子束提供優越的空間解析度。
除了解析度之外,通量是此種裝置的問題。由於必須圖案化或檢測大的基板面積,而期望例如具有大於10 cm2/min的通量。在帶電粒子束裝置中,通量取決於圖像對比度的二次方。因此,需要增強對比度。
用於粒子束系統(例如電子顯微鏡)的粒子偵測器(例如電子偵測器)可用於電子束檢測(EBI)、缺陷檢驗(DR)或臨界尺寸(CD)測量、聚焦離子束系統(FIB),或類似物。在由初級電子束照射樣品之後,建立攜帶關於樣品的形貌、其化學成分、其靜電勢,及其他者的資訊的次級粒子(例如,次級電子(SE))。在簡單的偵測器中,將所有的SE收集並導引到感測器。建立圖像,其中灰階等級係與所收集的電子的數量成比例。
高解析度的電子光學系統可受益於物鏡與樣品之間的短工作距離。因此,次級電子收集通常在物鏡上方的柱體內完成。在現有電子束成像系統中常見的配置係示意性圖示於第1圖中。柱體具有長度104,並包括光束發射器105、物鏡10,及偵測器115,而與樣品125間隔開一段工作距離120。第1圖所示之偵測器115係為環形的次級電子偵測器。從光束發射器105發射的初級帶電粒子束130係通過偵測器115的開口135而引導至樣本125。次級帶電粒子束140(例如次級電子束)係以環繞初級帶電粒子束130的寬錐形從樣品125發射。一些次級電子係由偵測器115收集,以產生次級電子(SE)訊號145。
此外,期望提供高速偵測時增加成像資訊的許多應用。舉例而言,在由初級電子束照射樣品之後,建立攜帶關於樣品的形貌、其化學成分、其靜電勢,及其他者的資訊的次級電子(SE)。提供具有形貌資訊及/或次級粒子的能量資訊的高速偵測係為具有挑戰性的任務,並期望持續改良。因此,期望SEM式工具中的偵測的改良,更特定為高通量缺陷偵測或檢驗工具。附加或可替代地,期望多個訊號光束捆的分離(例如利用降低的串擾),以用於形貌資訊成像處的形貌偵測模式。
此外,帶電粒子束裝置可利用操作參數操作(如工作距離、物鏡的磁場強度等),且在一定範圍內變化,以下稱為操作窗口。期望良好的圖像可透過此操作窗口取得,更特定為與形貌偵測模式連接而取得。
根據實施例,提供一種藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法。該方法包括以下步驟:將第一操作參數設定為第一值,第一操作參數係為將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度;將第一操作參數設定為第二值,第二值與第一值不同;在第一操作參數設定為第二值時,控制第一透鏡與第二透鏡的激發,並相對於在第一操作參數設定為第一值的情況下,藉由控制第一透鏡的磁場的激發、藉由控制第二透鏡的磁場的激發,或藉由第一透鏡與第二透鏡二者的磁場的激發,針對第二值補償次級帶電粒子束的拉莫爾旋轉。
根據另一實施例,提供一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。該系統包括:透鏡系統,包括第一透鏡與第二透鏡;控制器,經配置以在第一操作參數設定為第二值時,控制第一透鏡的激發與第二透鏡的激發,以相對於在第一操作參數設定為第一值的情況下,針對第二值補償次級帶電粒子束的拉莫爾旋轉,第一操作參數係為將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度。
實施例亦關於用於操作所揭示的系統與裝置的方法,以及使用所揭示之系統,以執行根據本文所述之實施例的方法。該方法可以手動或自動實行,例如藉由用適當軟體程式化的電腦控制、藉由二者的任意組合,或以任何其他方式。
可與本文所述實施例結合的進一步的優點、特徵、態樣,及細節係從專利請求範圍、說明書,及圖式而明白。
現在將詳細地參考各種示例性實施例,其一或更多個實例圖示於每一圖中。每一實施例係藉故解釋之方式提供,並非意指為限制。舉例而言,圖示或描述為一個實施例的一部分的特徵可用於或與其他實施例結合以產生另外的實施例。本揭示包括該等修改及變化之意圖。
在圖式的下列描述中,相同的元件符號指稱相同的部件。一般而言,僅描述關於個別實施例的不同之處。在圖式中所示之結構並不一定以真實比例描繪,而是用於允許更好地理解實施例。
如本文所用之術語「樣品」可包括但不限於半導體晶圓、半導體工件,及其他工件,如記憶碟及類似物。實施例可應用到其上沉積材料、檢查或結構化的任何工件。樣品可包括表面被結構化、成像或在其上沉積層。如本文所用之術語「帶電粒子」可包括電子、離子、原子,或其他帶電粒子。術語「初級帶電粒子」係指稱藉由光束發射器發射並引導到樣品的帶電粒子。術語「次級帶電粒子」係指稱在樣品處或在樣品中產生的帶電粒子,及/或背散射帶電粒子。次級電子亦可稱為訊號電子。訊號電子可包括在樣品中或樣品上建立的電子、背散射電子,及/或歐傑電子。因此,如本文所用之術語「次級帶電粒子」亦可指稱或可替換為「訊號帶電粒子」。
本文所述之「成形」帶電粒子束之術語可包括調整帶電粒子束的發散。本文所述之「聚焦」帶電粒子束之術語可指稱降低帶電粒子束的發散。帶電粒子束可聚焦至或至少準直朝向隨後的光束光學元件,以減少由於發散或由於帶電粒子的阻斷的帶電粒子的損失。因此,「散焦」可理解為增加發散。
本文所述之實施例係關於一種允許次級帶電粒子束的高速形貌測量的次級帶電粒子成像系統,其中獨立於操作窗口中之系統的一或更多個操作參數的改變,而提供良好的圖像品質。第2a圖圖示根據本文所述之實施例的次級帶電粒子成像系統200。次級帶電粒子成像系統200適於成像次級帶電粒子束140。次級帶電粒子成像系統200係圖示為根據次級帶電粒子束140在形貌偵測模式中成像的操作的狀態。
次級帶電粒子成像系統200包括適應性次級帶電粒子光學元件210,適應性次級帶電粒子光學210元件包括透鏡系統220、孔徑板230,及控制器240。透鏡系統220包括第一透鏡222與第二透鏡224。如第2a圖所示,第一透鏡222可以與第二透鏡224間隔開。第一透鏡與第二透鏡之間的距離可以在40至200mm的範圍。
孔徑板230包括第一開口232與第二開口234。如第2a圖所示,第一開口232可以與第二開口234間隔開。如進一步圖示,孔徑板230可佈置為平行於第一透鏡222及/或第二透鏡224。就第2a圖之繪圖平面而言,第一透鏡222、第二透鏡224,及孔徑板230係沿著直立(「上下」方向)延伸。如所示,就直立方向而言,可在孔徑板230的上部形成第一開口232。可在孔徑板230的下部形成第二開口234。孔徑板230可定義光軸238。如進一步詳細討論於下,光軸238可延伸通過孔徑板230的中心。就第2a圖的繪圖平面而言,第2a圖所示的光軸238沿著水平(「左右」)方向延伸,而垂直於直立方向。如第2a圖所示,孔徑板230可以與第一透鏡222及/或與第二透鏡224間隔開。孔徑板的中心與第一透鏡的中心之間的距離可以在40到200mm的範圍。如第2a圖進一步圖示,第一透鏡222可佈置於孔徑板230與第二透鏡224之間。
第2a圖所示之次級帶電粒子成像系統200進一步包括偵測器佈置250,偵測器佈置250包括第一偵測元件252與第二偵測元件254。如第2a圖所示,第二偵測元件254可以與第一偵測元件252間隔開。如進一步所示,第一偵測元件252與第二偵測元件254可由偵測器佈置250的保持器251支撐。保持器251可包括保持器板,其上附接第一偵測元件252及/或第二偵測元件254。孔徑板230、第一透鏡222,及/或第二透鏡224可平行於由偵測佈置250所定義及/或由保持器251所定義之平面。就直立方向而言,第2a圖所示之第一偵測元件252係佈置於偵測器佈置250的上部。第2a圖所示之第二偵測元件254係佈置於偵測器佈置250的下部。第一偵測元件252與第一開口232可佈置於包含光軸238的參照平面的第一側上。第二偵測元件254與第二開口234可佈置於參照平面的第二側上,其中第二側在第一側的對面。
在第2a圖的繪圖平面中,次級帶電粒子束140從右行進到左。次級帶電粒子束140從第二透鏡224的右手側進入透鏡系統220的第二透鏡224。第2a圖所示之次級帶電粒子束140行進通過第二透鏡224,且隨後通過透鏡系統220的第一透鏡222。如圖所示,行進通過透鏡系統220的次級帶電粒子束140基本上沿著光軸238行進。
第一透鏡222及/或第二透鏡224可適於成形、聚焦,及/或散焦次級帶電粒子束140。第一透鏡222及/或第二透鏡224可適於調整次級帶電粒子束140的開口角度。次級帶電粒子束140可依據需要作成發散或收斂。因此,可改良偵測器佈置250的次級帶電粒子的收集效率。次級帶電粒子束140的開口角度可以是從光束彎曲器離開的次級帶電粒子束140的開口角度,光束彎曲器係佈置於就次級帶電粒子束140的傳播而言的透鏡系統220的上游,如下面更詳細所討論者。
透鏡系統220可適於提供次級帶電粒子束140的一或二個跨接(cross-over)。可替代地,透鏡系統可適於允許次級帶電粒子束沒有跨接而通過次級帶電粒子成像系統200。
第一透鏡222可包括靜電透鏡部及/或磁透鏡部。第一透鏡222可以是包括靜電透鏡部與磁透鏡部的複合透鏡。類似地,第二透鏡224可包括靜電透鏡部及/或磁透鏡部。第一透鏡222的靜電透鏡部及/或第二透鏡224的靜電透鏡部可適於成形、聚焦,及/或散焦次級帶電粒子束。如下面所進一步詳細討論,第一透鏡222及/或第二透鏡224的磁透鏡部可適於補償物鏡的拉莫爾旋轉。
如第2a圖進一步圖示,訊號帶電粒子束或次級帶電粒子束140可從第一透鏡222行進到孔徑板230。透鏡系統220適於將次級帶電粒子束140映射到孔徑板230。第一透鏡222與第二透鏡224可適於獨立成形、聚焦,及/或散焦次級帶電粒子束140,而使得次級帶電粒子束140映射到孔徑板230。本文所用之將次級帶電粒子束「映射」到孔徑板之術語可指稱將次級帶電粒子束引導、導引,及/或提供到孔徑板。
如第2a圖中所示,在次級帶電粒子成像系統200的形貌偵測模式中,次級帶電粒子束140通過第一開口232,並通過孔徑板230的第二開口234。次級帶電粒子束140可藉由第一透鏡222及/或藉由第二透鏡224成形,而使得從透鏡系統220行進到孔徑板230的次級帶電粒子束140略微發散。因此,可促進次級帶電粒子束140通過第一開口232與通過第二開口234。孔徑板230可包括電極。電極可以是適於將次級帶電粒子束分離成次級帶電粒子分束的分離電極。電壓可施加到電極,以用於對在孔徑板230處或附近產生減速場。在減速場的影響下,隨著次級帶電粒子接近孔徑板230,可減速從透鏡系統220行進到孔徑板230的次級帶電粒子。減速接近孔徑板230的次級帶電粒子的優點係為更容易將次級帶電粒子偏轉朝向孔徑板230的開口,例如朝向第一開口232與第二開口234。減速場可提供能量濾波器,其中具有預定能量範圍中的能量(例如在預定閥值之上的能量)的次級帶電粒子可在形貌偵測模式中通過孔徑板的開口。提供次級帶電粒子束的能量濾波器可增強系統對施加於樣品中的表面電位變化(電壓對比 -VC)的靈敏度。
在次級帶電粒子成像系統200的形貌偵測模式中,次級帶電粒子束140的第一分束142通過第一開口232。第一分束142從第一開口232行進到第一偵測元件252。隨後在形貌偵測模式中,由第一偵測元件252偵測到第一分束142。類似地,在形貌偵測模式中,第二分束144通過第二開口234。第二分束144從第二開口234行進到第二偵測元件254。隨後在形貌偵測模式中,藉由第二偵測元件254偵測到第二分束144。
第一分束142及/或第二分束144的次級帶電粒子以及從孔徑板230行進到偵測器佈置250的次級帶電粒子束140的其他潛在分束可藉由孔徑板230與偵測器佈置250之間產生的加速度場加速。次級帶電粒子可加速到與離開透鏡系統220的次級帶電粒子在進入減速場的孔徑板230之前大致相同的能量。加速接近偵測器佈置250的次級帶電粒子可提供聚焦效果,以允許次級帶電粒子束140的分束聚焦到相應偵測元件。因此,形貌對比度與明場成像可以同時實現(多角度成像)。
第2a圖所示之控制器240可經配置以用於控制第一透鏡222的激發與第二透鏡224的激發。控制第一透鏡222的激發可包括控制第一透鏡222的靜電透鏡部的激發及/或控制第一透鏡222的磁透鏡部的激發。類似的考慮亦適用於包括靜電及/或磁性透鏡部的第二透鏡224的情況。
第一透鏡222的靜電透鏡部可包括用於產生電場的一或更多個電極。電位可施加到電極,以用於產生電場。可在控制器240的控制下產生電場。更特定言之,電場的強度可在控制器240的控制下控制、決定及/或調整。第一透鏡222的磁透鏡部之每一者可包括用於產生磁場的一或更多個線圈。電流可通過線圈,以用於產生磁場。可在控制器240的控制下產生磁場。更特定言之,如場方向係由通過線圈的電流方向決定,磁場的強度可在控制器240的控制下控制、決定及/或調整。類似的考慮亦適用於包括在第二透鏡224中的靜電透鏡部及/或磁透鏡部。根據本文所述之實施例,第一透鏡可包括靜電透鏡部、磁透鏡部,或靜電透鏡部與磁透鏡部二者。根據本文所述之實施例,第二透鏡可包括靜電透鏡部、磁透鏡部,或靜電透鏡部與磁透鏡部二者。提供用於第一及/或第二透鏡的組合靜電磁透鏡(亦即具有靜電透鏡部與磁透鏡部)可允許增加調整訊號帶電粒子束的自由度,更特定為就下述之拉莫爾旋轉而言。
控制器240可經配置以獨立控制第一透鏡222的激發與第二透鏡224的激發。因此,控制器240可允許獨立於控制藉由第二透鏡224的次級帶電粒子束140的聚焦、散焦,及/或成形,控制藉由第一透鏡222的次級帶電粒子束140的聚焦、散焦,及/或成形。獨立控制第一透鏡222的激發與第二透鏡224的激發係提供,在次級帶電粒子成像系統200的形貌偵測模式中,第一分束142通過第一開口232,並由第一偵測元件252偵測到,而第二分束144通過第二開口234,並由第二偵測元件254偵測到。
第2b圖圖示包括根據本文所述之實施例的次級帶電粒子成像系統200的帶電粒子束裝置260。第2b圖所示之帶電粒子束裝置260包括光束發射器105。如第2b圖所示,初級帶電粒子束130係由光束發射器105發射,並引導到設置於台座270上的樣品125。第2b圖所示之帶電粒子束裝置260進一步包括物鏡10。物鏡10可經配置以將初級帶電粒子束130聚焦到樣品125。如第2b圖所示,物鏡可包括用於產生磁場282的磁性物鏡部280。如第2b圖進一步圖示,磁場282可作用於通過物鏡10的初級帶電粒子束130。在磁場282的影響下,初級帶電粒子束130可藉由物鏡10而聚焦。磁場282可以是可調整磁場。藉由調整磁場282的強度,初級帶電粒子束130的發散可調整成將初級帶電粒子束130聚焦到樣品125。可替代或附加於磁物鏡部280,物鏡10可包括靜電物鏡部(未圖示),靜電物鏡部經配置以用於產生作用於初級帶電粒子束130的電場,以促進初級帶電粒子束130聚焦到樣品125。
如第2b圖進一步圖示,物鏡10可定義光軸284。光軸284可以垂直於由樣品125定義的平面及/或由台座270定義的平面。透鏡10可佈置於離樣品125一段工作距離120。如第2b圖所示,工作距離120可指稱在物鏡10與樣品125之間的一段距離,例如在平行於由物鏡10所定義的光軸284的方向上。
工作距離120可以是可調整工作距離。可藉由相對於物鏡10(例如在平行於光軸284的方向上)位移台座270而調整工作距離120。舉例而言,在第2b圖所示之實施例中,物鏡10可佈置於帶電粒子束裝置260的固定位置上,並可藉由在平行於光軸284的方向上移動台座270而調整工作距離120。藉由調整工作距離120,可調整樣品125相對於物鏡10的位置,以用於改良成像。
如第2b圖進一步圖示,帶電粒子束裝置260可包括樣品電壓源285。樣品電壓源285可經配置以用於將樣品電壓施加到樣品125,以調整初級帶電粒子束130在樣品125上的降落能量。可調整降落能量,以利用不同能量探測樣品125,並可解決樣品125的不同結構的問題。如本文所使用之術語「降落能量」可指稱初級帶電粒子束撞擊到樣品上時的能量,例如平均能量。樣品電壓值影響相對於樣品加速或減速初級帶電粒子的電力強度。因此,調整樣品電壓值允許調整初級帶電粒子束的降落能量。
如第2b圖進一步圖示,帶電粒子束裝置260可包括可佈置於台座270與物鏡10之間的一或更多個proxi電極290。proxi電極290可提供提取場292,如第2b圖所示。如第2b圖所示,提取場292可影響次級帶電粒子束140。藉由調整提取場292的強度,可調整離開樣品125的次級帶電粒子束140的加速度。
如第2b圖進一步圖示,從樣品125行進到次級帶電粒子成像系統200的次級帶電粒子束140可通過物鏡10。可藉由磁場282影響次級帶電粒子束140。
第2b圖所示之示例性帶電粒子束裝置260包括台座270、樣品電壓源285、proxi電極290,及磁物鏡部280。可替代地,根據本文所述之實施例,帶電粒子束裝置可包括該等部件的任何單獨一者或該等部件的任何子集合。
工作距離120、降落能量、提取場292的強度,及/或磁場282的強度係為次級帶電粒子成像系統200的操作參數。可針對系統200的操作窗口的範圍中的操作參數不同值檢測樣品125。舉例而言,在樣品125的第一檢測回合中,工作距離120、降落能量、提取場強度,及/或磁場282的強度可設定為操作窗口的值的第一配置。對於樣品125的第二檢測回合(例如相較於第一檢測回合的稍後時刻),工作距離120、降落能量、提取場強度,及/或磁場282的強度可設定為操作窗口的值的第二配置。如上所述,針對操作參數的不同配置檢測樣品可提供關於如樣品的結構、形貌,及組成的各種態樣的資訊。
在調整工作距離120、降落能量、提取場292的強度,及/或磁場282的強度的情況下,在控制器240的控制下,可獨立調整第一透鏡222的激發與第二透鏡224的激發,以控制次級帶電粒子束的軌跡及/或形狀。因此,獨立於操作參數設定的值的配置,本文所述之實施例藉由透鏡系統220提供次級帶電粒子束140的成形,而使得次級帶電粒子束140映射到孔徑板。在形貌偵測模式中,第一分束142通過孔徑板230的第一開口232,隨後由第一偵測元件252偵測到,而第二分束144通過第二開口234,隨後由第二偵測元件254偵測到。
根據實施例,提供一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。該系統包括偵測器佈置與適應性次級帶電粒子光學元件。偵測器佈置包括第一偵測元件,用於在形貌偵測模式中偵測次級帶電粒子束的第一次級帶電粒子分束,例如第1a圖所示之第一分束142。偵測器佈置進一步包括第二偵測元件,用於在形貌偵測模式中偵測次級帶電粒子束的第二次級帶電粒子分束,例如第二分束144。第一偵測元件與第二偵測元件彼此分離。適應性次級帶電粒子光學元件包括孔徑板、透鏡系統,及控制器,透鏡系統用於將次級帶電粒子束映射到孔徑板。孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。透鏡系統包括第一透鏡與第二透鏡。控制器經配置以用於控制第一透鏡的激發與第二透鏡的激發。就次級帶電粒子束的傳播而言,孔徑板係佈置於偵測器佈置的上游,第一透鏡係佈置於孔徑板的上游,而第二透鏡係佈置於第一透鏡的上游。控制器經配置以獨立控制第一透鏡的激發與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板,而在形貌偵測模式中獨立於至少一個第一操作參數的變化,使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。至少一個第一操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
相較於包括用於聚焦次級帶電粒子束的單一透鏡的次級帶電粒子成像系統,本文所述之包括第一透鏡與第二透鏡的透鏡系統提供成形次級帶電粒子束的更多自由度。因此,本文所述之透鏡系統有幾個優點並描述於下。
改變一或更多個操作參數(例如至少一個第一操作參數的一或更多者)能在一些系統中導致次級帶電粒子束的軌跡及/或形狀的變化,例如焦點位置變化與開口角度變化。因此,次級帶電粒子束可以從目標軌跡及/或目標形狀偏離,而可能導致差的圖像品質。如本文所述之實施例提供的透鏡系統的第一透鏡與第二透鏡係根據獨立於系統的操作窗口的工作參數的變化的目標形狀與軌跡,允許在形貌偵測模式中(以及在明場偵測模式中,如本文所述)將次級帶電粒子束映射到孔徑板。舉例而言,如本文所述之提供第一透鏡與第二透鏡的實施例允許減少或消除以下至少一者:次級帶電粒子束進入偵測器佈置的跨接位置沿著由孔徑板定義的光軸的軸向位移;就垂直於孔徑板的光軸的平面而言的次級帶電粒子束的跨接位置的徑向位移;在次級帶電粒子束的跨接處的次級帶電粒子束的開口角度的變化;以及回應於由物鏡產生的磁場的強度的變化的次級帶電粒子束的拉莫爾旋轉的變化。
因此,可提供良好的圖像品質,以用於操作窗口的操作參數的所有配置。相較於包括用於聚焦次級帶電粒子束的單一透鏡的系統,本文所述之實施例提供用於更大操作窗口的良好圖像品質。更特定言之,相較於包括用於聚焦次級帶電粒子束的單一透鏡的系統,可藉由本文所述之實施例提供良好圖像品質的操作參數的該組配置係較大。
根據可與本文所述之其他實施例組合的本文所述之實施例,工作距離可以在0.1 mm至5 mm的範圍中,或者可以在0.1 mm至5 mm的範圍中變化,更特定為0.2 mm至3 mm,又更特定為0.5至2 mm,例如1 mm。根據可與本文所述之其他實施例組合的用於次級帶電粒子係為電子的帶電粒子束裝置的實施例,降落能量可以在0至20 keV的範圍中,或者可以在0至20 keV的範圍中變化,更特定為0.1至10 keV,又更特定為0.1至6 keV。提取場可以在為0至5000 V/mm的範圍中,或者可以在0至5000 V/mm的範圍中變化,更特定為0至 4000V/mm,又更特定為0至3000 V/mm。
本文所述之提供第一透鏡與第二透鏡的實施例的進一步優點係相對於第3a-c圖與第4a-4c圖討論。在第3a-c圖與第4a-c圖中的討論中,次級帶電粒子係為電子。
第3a圖圖示電子束系統300係在形貌偵測模式中以6 keV的降落能量與3000 V/mm的提取場操作的實例。如第3a圖所示,次級帶電粒子束140的跨接發生於單一透鏡310內部的跨接位置312處。因此,單一透鏡310可能不適於影響從跨接位置312行進離開的次級帶電粒子束140開口角度。對之,使用如本文所述之包括第一透鏡與第二透鏡的透鏡系統,可調整及控制開口角度。即使跨接發生於例如透鏡系統的第一透鏡內部,可藉由佈置於離第一透鏡一段距離的第二透鏡影響(例如放大)開口角度。
第3b圖圖示電子束系統300在形貌偵測模式中以1 keV的降落能量與80 V/mm的提取場操作的實例。如第3b圖所示,單一透鏡310上游的次級帶電粒子束140的開口角度316是大的,而使得進入單一透鏡310的次級帶電粒子束的直徑較單一透鏡310的內徑318更大。因此,次級帶電粒子束的一部分可以不通過單一透鏡310,而因此消失且未偵測到。對之,使用如本文所述之包括第一透鏡與第二透鏡的透鏡系統,可藉由第一透鏡與第二透鏡影響次級帶電粒子束,而使得整個次級帶電粒子束可通過透鏡系統,並到達偵測器佈置。舉例而言,第一透鏡可佈置於例如第3b圖所示之單一透鏡310的左側的位置,其中次級帶電粒子束的直徑是狹窄的。
第3c圖圖示電子束系統300在形貌偵測模式中以0.1 keV的降落能量與1000 V/mm的提取場操作的實例。如第3c圖所示,通過單一透鏡310的次級帶電粒子束140是狹窄的。因此,即使利用單一透鏡310的強激發,並藉由提供次級帶電粒子束140的附加跨接,次級帶電粒子束140的開口角度可能不夠大。因此,可以僅提供弱偵測訊號。對之,使用如本文所述之包括第一透鏡與第二透鏡的透鏡系統,即使是狹窄的次級帶電粒子束亦可藉由第一透鏡及藉由第二透鏡成形,而使得強偵測訊號產生。
第4a-c圖圖示包括透鏡系統220的帶電粒子束裝置在形貌偵測模式中針對降落能量的不同值與提取場的不同值操作的實施例,透鏡系統220包括第一透鏡222與第二透鏡224。第4a圖圖示帶電粒子束裝置以6 keV的降落能量與3000 V/mm的提取場操作的實施例。第4b圖圖示帶電粒子束裝置以6 keV的降落能量與80 V/mm的提取場操作的實施例。第4c圖圖示帶電粒子束裝置以0.1 keV的降落能量與1000 V/mm的提取場操作的實施例。如圖所示,即使第4a-c圖所示之實施例係關於降落能量與提取場的不同配置,次級帶電粒子束140係映射到孔徑板230,其中第一分束142通過第一開口232,第二分束144通過第二開口234,而第三分束546通過中央開口520。
第5及6圖圖示根據本文所述之實施例的次級帶電粒子成像系統200。第5及6圖所示之偵測器佈置250包括中央偵測元件510。如圖所示,中央偵測元件510可佈置於第一偵測元件252與第二偵測元件254之間。中央偵測元件510可固定到保持器251。第5及6圖所示之孔徑板230包括中央開口520。如圖所示,中央開口520可形成於第一開口232與第二開口234之間。
根據可與本文所述之其他實施例組合的實施例,並如第5圖所示,孔徑板230可定義光軸238。第一透鏡222與第二透鏡224可對準到孔徑板的光軸238。根據可與本文所述之其他實施例組合的實施例,光軸238可通過孔徑板230的中央開口520。第一開口232及/或第二開口234可從光軸238徑向朝外佈置。
根據可與本文所述之其他實施例組合的實施例,光軸238可延伸通過中央偵測元件510。光軸238可以垂直於或大致垂直於由孔徑板230定義的平面、由保持器251定義的平面、由第一透鏡222定義的平面,及/或由第二透鏡224定義的平面。術語「大致垂直」可指稱90與110度之間的角度。光軸238可以是孔徑板230、保持器251、第一透鏡222,及/或第二透鏡224的對稱軸。根據可與本文所述之其他實施例組合的實施例,第一偵測元件252與第二偵測元件254可從光軸238徑向朝外佈置。從第一透鏡222行進到第二透鏡224的次級帶電粒子束140可以基本上沿著光軸238行進。
類似於第2a圖,第5圖所示的次級帶電粒子成像系統200係在根據形貌偵測模式的操作狀態中。根據第5圖所示之實施例,次級帶電粒子束140通過第一開口232,通過第二開口234,並通過孔徑板230的中央開口520。如圖所示,次級帶電粒子束140的第三分束546可形成於孔徑板230的中央開口520。第三分束可由在接近孔徑板230之後沿著相對於光軸238的較小角度的路徑行進的次級帶電粒子組成。第一分束142與第二分束144可由在接近孔徑板230之後沿著相對於光軸238的較大角度的路徑行進的次級帶電粒子組成。
在形貌偵測模式中,第三分束546可通過中央開口520。第三分束546可從中央開口520行進到中央偵測元件510。可隨後在形貌偵測模式中藉由中央偵測元件510偵測到第三分束546。
根據可與本文所述之其他實施例組合的實施例,控制器240可經配置以獨立控制第一透鏡222的激發與第二透鏡224的激發,以將次級帶電粒子束140映射到孔徑板230,而使得次級帶電粒子束140的第三次級帶電粒子分束(例如第三分束546)可在形貌偵測模式中通過中央開口520。在控制器240的控制下,藉由獨立調整第一透鏡222的激發與第二透鏡224的激發,獨立於如本文所述的至少一個操作參數的變化,第一分束142、第二分束144,及第三分束546可以分別通過第一開口232、第二開口234、中央開口520。
第6圖所示之次級帶電粒子成像系統200係在根據明場偵測模式的操作狀態中。如第6圖所示,在明場偵測模式中,次級帶電粒子束140可以完全通過中央開口520。如第6圖所進一步圖示,在明場偵測模式中,次級帶電粒子束140可從中央開口520行進到中央偵測元件510。次級帶電粒子束可以基本上沿著光軸238行進。隨後可在明場偵測模式中藉由中央偵測元件510完全偵測到次級帶電粒子束140。在明場偵測模式中,第一偵測元件252與第二偵測元件254可以不用於偵測次級帶電粒子束140。
在明場偵測模式中,可關閉孔徑板230的減速場。可替代地,可在明場偵測模式中應用減速場。減速場可提供能量濾波器。根據一些實施例,當應用能量濾波器時,次級帶電粒子可在明場偵測模式中聚焦到孔徑板230的中央開口520的中央。
根據可與本文所述之其他實施例組合的實施例,控制器240可經配置以獨立控制第一透鏡222的激發與第二透鏡224的激發,以將次級帶電粒子束140映射到孔徑板230,而獨立於至少一個第二操作參數的變化,使得次級帶電粒子束140在明場偵測模式中完全通過中央開口520。至少一個第二操作參數係從下列一群組選出,包括:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離,如第2b圖所示。根據可與本文所述之其他實施例組合的實施例,至少一個第一操作參數係與至少一個第二操作參數相同。
第7a-b圖圖示根據針對降落能量與提取場的不同值的明場偵測模式操作提供第一透鏡222與第二透鏡224的帶電粒子束裝置的實施例。第7a圖圖示帶電粒子束裝置係以1 keV的降落能量與0 V/mm的提取場操作的實施例。第7b圖圖示帶電粒子束裝置係以1 keV的降落能量與3000 V/mm的提取場操作的實施例。如圖所示,根據第7a-b圖所示之實施例中之每一者,次級帶電粒子束140係映射到孔徑板230,其中次級帶電粒子束140完全通過中央開口520。
根據可與本文所述之其他實施例組合的實施例,控制器240可經配置以藉由調適第一透鏡222的激發與第二透鏡224的激發,在形貌偵測模式與明場偵測模式之間切換。在第一時刻,第一透鏡222的激發與第二透鏡224的激發可以在控制器240的控制下設定為第一配置,以在形貌偵測模式中成像次級帶電粒子束140。在第二(例如稍後)時刻,第一透鏡222的激發與第二透鏡224的激發可以在控制器240的控制下設定為第二配置,以在明場偵測模式中成像次級帶電粒子束140。因此而增強系統的靈活性。
相較於經配置而僅根據明場偵測模式或形貌偵測模式中之一者操作的系統,具有經配置以在形貌偵測模式與明場偵測模式之間切換的控制器的優點係在於可藉由單一系統分析樣品的多個態樣,例如關於形貌資訊、樣品上的缺陷、樣品的化學成分,及類似者。
第8a圖圖示根據本文所述實施例的次級帶電粒子成像系統的孔徑板230的正視圖。除了第一開口232、第二開口234,及中央開口520之外,孔徑板230可包括另外的開口,例如第8a圖所示的二個另外的開口836與838。第8a圖所示的孔徑板230包括五個開口232、234、520、836,及838。第一開口232、第二開口234,及另外的開口836與838係環繞光軸238定位,而使得孔徑板230具有相對於光軸238的四重旋轉對稱。第一開口232、第二開口234,及另外的開口836與838係相對於光軸238徑向朝外佈置。中央開口520的直徑或相應尺寸可以是1 mm至4 mm。對於第一開口232、第二開口234,及/或另外的開口836與838而言,直徑或相應尺寸可以是3 mm至15 mm。第一開口的中央與第二開口的中央之間的距離可以在4至15 mm的範圍中。
第8b圖圖示根據本文所述之實施例的次級帶電粒子成像系統的偵測器佈置250的正視圖。除了第一偵測元件252、第二偵測元件254,及中央偵測元件510之外,偵測器佈置250可包括另外的偵測元件,例如第8b圖所示的二個另外的偵測元件856與858。第8b圖所示的偵測器佈置250包括五個偵測元件252、254、510、856,及858,亦即偵測元件的數量係與第8a圖所示的孔徑板230提供的開口的數量相同。第8b圖所示的五個偵測元件的每一者係與第8a圖所示的孔徑板230中的一個相應開口相關聯。根據可與本文所述之其他實施例組合的實施例,偵測器佈置250包括整數數量N的另外的偵測元件,整數數量N係為零或大於零。孔徑板230可包含相同整數數量N的另外的開口,其中第一開口232、第二開口234,及N個另外的開口係環繞孔徑板230的光軸238定位,而使得孔徑板230具有相對於孔徑板230的光軸238的N+2重旋轉對稱。
偵測器佈置250的偵測元件(例如第一偵測元件252、第二偵測元件254,及/或中央偵測元件510)可以是例如pin二極體偵測器或閃爍器探測器。特別在EBI應用中期望高通量,而導致需要非常快的感測器。因此,可使用pin二極體偵測器。可取得頻寬可以取決於pin二極體偵測器的尺寸。可使用1 mm2或以下的感測器面積。
偵測器佈置250的第一偵測元件252、第二偵測元件254、中央偵測元件510,及/或另外的偵測元件可以是在空間上可彼此分離的獨立偵測器。可組合(例如,相減)由偵測器佈置的偵測元件取得的獨立訊號,以增強對比度。相較於例如佈置為彼此靠近的偵測元件(例如分段pin二極體),具有空間上分離的偵測元件提供可以更容易克服關於分離主動區段的pin二極體面積的問題(例如充電、訊號損耗、串擾)的優點。此外,空間上分離的偵測元件相對便宜,並具有更短的開發週期、感測器設計上的改良靈活性,及更快進入市場的時間。
第一偵測元件與第二偵測元件之間的距離可以在1至20 mm的範圍中。第一偵測元件與中央偵測元件之間的距離可以在1至14 mm的範圍中。
相較於例如明場偵測器,如本文所述包括多個偵測元件的偵測器佈置250提供對於樣品的形貌的變化(例如由於實際缺陷)的增強靈敏度。多個偵測元件可以僅收集從樣品的起飛角度在一定範圍中的次級帶電粒子。因此,亦可提供例如用於缺陷檢測工具與檢查工具或臨界尺寸工具的所檢測特徵及/或缺陷的增強對比度。
偵測器佈置250可以是整合式偵測器佈置。第一偵測元件252、第二偵測元件254,及/或中央偵測元件510可整合到偵測器佈置。偵測器佈置250的偵測元件可以在整合式偵測器佈置中彼此分離。偵測器佈置250的偵測元件可固定地定位於偵測器佈置250。偵測器佈置250的偵測元件可以固定於偵測器佈置250的保持器或保持器板上。
如第9圖所示,孔徑板230可具有外部部分903,例如圓形主體。第一開口232、第二開口234、中央開口520,及另外的開口836與838之間的面積係藉由分割條905提供。因此,相較於例如第8a圖所示之孔徑板230,開口之間的面積減少且更狹窄。在第9圖所示的孔徑板230中,提供中央開口520,例如具有針墊狀。第9圖所示的中央開口520具有凹入部分,亦即朝向開口的中央向內彎曲的部分。第9圖所示的中央開口520在周邊具有至少四個凹入區域。因此,可以平滑化外部開口(例如第一開口232、第二開口234,及另外的開口836與838)中的電位分佈,如此導致更好的聚焦特性,特別是外部開口的聚焦特性。如第9圖進一步圖示,可藉由桿(例如分割條905)在至少二個側定義外部開口。因此,外部開口具有其周邊的至少30%的長度的直邊界。
如上所述,可能提供次級帶電粒子在孔徑板的耗損從通常為約30%而減少到小於5%。次級帶電粒子的耗損係特別藉由減少裝置的正面截面而達成。換言之,本文所述之實施例具有被減少的橫截面的固體材料的面積。
孔徑板可具有5 mm或以上的厚度,更特定為厚度可以是10 mm至20 mm。孔徑板的厚度可以是孔徑板的軸向方向及/或平行於由孔徑板定義的光軸的方向的厚度。具有10 mm至20 mm的厚度可提供次級帶電粒子束的分束的分離的增加。增加的分離允許使用偵測器佈置,其中偵測元件(例如第一偵測元件、第二偵測元件,及/或中央偵測元件)可以是具有5 mm直徑的標準pin二極體。因此,可提供偵測器佈置的可行設計。此外,由於孔徑板與偵測器佈置之間產生的加速場的延展係由孔徑板的厚度影響,具有至少5 mm的最小厚度的孔徑板造成降低的操作電壓的有益副作用。因此,可提供更好的高電壓免疫力、可靠性,及穩定性。
第10圖圖示根據本文所述之實施例的次級帶電粒子成像系統200。次級帶電粒子成像系統200包括光束彎曲器1010,用於彎曲次級帶電粒子束140。光束彎曲器可以例如是半球形的扇面。光束彎曲器可適於改變次級帶電粒子束的方向,而使得相較於次級帶電粒子束離開光束彎曲器的行進方向,次級帶電粒子束進入光束彎曲器的行進方向係為不同。光束彎曲器可經佈置以引導次級帶電粒子束進一步遠離初級帶電粒子束。
根據可與本文所述之其他實施例組合的實施例,作用於次級帶電粒子束140的光束彎曲器1010係佈置在第二透鏡224相對於次級帶電粒子束140的上游。可替代或附加地,光束彎曲器可如本文所述佈置於光束分離器的下游。在第10圖的繪圖平面中,光束彎曲器1010佈置於第二透鏡224的右側。如圖所示,次級帶電粒子束140從下方進入光束彎曲器1010,並行進通過光束彎曲器1010。離開光束彎曲器的次級帶電粒子束140沿著大致水平的方向行進。次級帶電粒子束140從光束彎曲器1010行進到透鏡系統220的第二透鏡224。如第10圖所示,第二透鏡224可佈置於光束彎曲器1010相對於次級帶電粒子束140的直接下游。第二透鏡224可以是作用於離開光束彎曲器1010的次級帶電粒子束的下一個元件。如本文所述,次級帶電粒子束的開口角度可以是次級帶電粒子束離開光束彎曲器1010的開口角度。
將第二透鏡224盡可能佈置於接近光束彎曲器1010並將第一透鏡222佈置於足夠遠離光束彎曲器1010係被認為是有益的。根據可與本文所述之其他實施例組合的實施例,光束彎曲器1010與第二透鏡224之間的距離係為60 mm或以下,特定為45 mm或以下,更特定為20 mm至35 mm。根據可與本文所述之其他實施例組合的實施例,光束彎曲器1010與第一透鏡222之間的距離係為50 mm或以上,更特定為100 mm或以上,例如115 mm至180 mm。
如第10圖進一步圖示,次級帶電粒子成像系統200可包括一或更多個偏轉元件,用於影響次級帶電粒子束140。藉由提供一或更多個偏轉元件,隨著次級帶電粒子束140從樣品傳送到偵測器佈置250,由次級帶電粒子攜帶的資訊更容易保留。如圖所示,第一偏轉元件1022與第二偏轉元件1024可佈置於光束彎曲器1010與偵測器佈置250之間。根據可替代實施例,次級帶電粒子成像系統200可包括第一偏轉元件1022,而沒有第二偏轉元件1024,或反之亦然,或者可包括佈置於光束彎曲器1010與偵測器佈置250之間的附加偏轉元件。第三偏轉元件(未圖示)可提供於光束彎曲器1010與第二透鏡224之間。可替代地,第三偏轉元件可提供於光束彎曲器1010相對於次級帶電粒子束140的上游。舉例而言,如本文所述,第三偏轉元件可提供於光束分離器與光束彎曲器之間。第三偏轉元件改良偵測器佈置的次級帶電粒子束的對準及/或成像。因此,可改良訊號產生,並因此改良對比度。改良的訊號產生導致更好的通量,特別是對於EBI應用。第三偏轉元件可以是次級帶電粒子束140離開光束彎曲器1010通過的下一個偏轉元件。第三偏轉元件可佈置於光束彎曲器1010相對於次級帶電粒子束140的直接下游。可替換地,第三偏轉元件可提供於第一透鏡222與偵測器佈置250之間。如上所述,提供光束彎曲器與第二透鏡之間或第一透鏡與偵測器佈置之間的第三偏轉元件,相較於例如定位於光束分離器與光束彎曲器之間的第三偏轉元件(次級帶電粒子束與初級帶電粒子束之間的分隔不足),具有用於第三偏轉元件的潛在空間限制較不重要的優點。佈置於光束分離器與光束彎曲器之間的第三偏轉元件可提供次級帶電粒子束的改良反掃描。更特定言之,可以更容易地補償相對於從視場中央開始的次級帶電粒子束的軸線從偏軸位置發出的次級帶電粒子束的偏差。
如第10圖所示,第二偏轉元件1024可佈置於第一透鏡222與第二透鏡224之間。第二偏轉元件1024可影響從第二透鏡224行進到第一透鏡222的次級帶電粒子束140。第一偏轉元件1022可佈置於孔徑板230與第一透鏡222之間。第一偏轉元件1022可影響從第一透鏡222行進到孔徑板230的次級帶電粒子束140。第一偏轉元件1022及/或第二偏轉元件1024可以對齊光軸238,如第10圖所示。光軸238可縱向延伸通過第一偏轉元件1022及/或通過第二偏轉元件1024。
用於影響次級帶電粒子束的偏轉元件(例如第10圖所示之第一偏轉元件1022及/或第二偏轉元件1024)可以包括靜電偏轉部及/或磁偏轉部。靜電偏轉部可包括靜電偶極、四極,或更高階多極元件。磁偏轉部可包括磁偶極、四極,或更高階多極元件。偏轉元件可以包括二個偏轉板,佈置於由孔徑板定義的光軸的相對側及/或佈置於次級帶電粒子束的相對側。對於二個方向上的偏轉而言,可提供二個垂直的偶極場,或可提供可操作以允許用於一個偶極場的二個偏轉器,該偶極場可根據二個偏轉器的操作而旋轉。舉例而言,二個偏轉器的獨立場可分別包圍70°至110°的角度,例如90°。如第10圖所示,第一偏轉元件1022及/或第二偏轉元件1024之每一者可包括用於在第一方向上偏轉次級帶電粒子束的二個偏轉板。
用於影響次級帶電粒子束的偏轉元件可適於將次級帶電粒子束對準孔徑板的光軸,例如在明場偵測模式中。附加或可替代地,偏轉元件(例如本文所述的第三偏轉元件)可適於反掃描次級帶電粒子束。在樣品上掃描初級帶電粒子束的帶電粒子束裝置中可以反掃描次級帶電粒子束。在樣品上掃描初級帶電粒子束可提供次級帶電粒子束的不期望的偏轉,其中次級帶電粒子束撞擊到偵測器佈置上的位置及/或次級帶電粒子束相對於孔徑板的位置可以取決於在樣品上掃描的初級帶電粒子束的位置。此種依賴性可能導致不好的偵測品質與模糊的圖像。次級帶電粒子束的反掃描(例如藉由第10圖所示的第一偏轉元件1022及/或藉由第二偏轉元件1024)可獨立於在樣品上掃描的初級帶電粒子束的位置,補償由於掃描初級帶電粒子束產生的次級帶電粒子束的偏轉,及/或可將次級帶電粒子束對準目標軸,例如由孔徑板定義的光軸。因此,可避免次級帶電粒子束的偏軸像差。次級帶電粒子束的反掃描可以對於具有大視場的帶電粒子束裝置特別有利。根據可與本文所述之其他實施例組合的實施例,帶電粒子束裝置的視場可以為500 μm或以上。
為了利用偏轉元件提供次級帶電粒子束的反掃描,可將偏轉電壓施加到偏轉元件。偏轉電壓可以與初級帶電粒子束的掃描同步,以補償由於初級帶電粒子束的掃描而產生的次級帶電粒子束的偏轉。
經配置以用於反掃描次級帶電粒子束的偏轉元件可佈置在相對於次級帶電粒子束的孔徑板的上游、第一透鏡的上游,及/或第一透鏡與第二透鏡之間。相較於反掃描孔徑板下游的次級帶電粒子束,反掃描孔徑板的上游具有次級帶電粒子束可以更容易對準目標軸的優點。此外,反掃描孔徑板的上游可以為於在孔徑板處提供能量濾波器的系統是有利的,因為能量濾波器具有對於次級帶電粒子束相對於光軸238的位置的增加的敏感性。
如第10圖進一步圖示,第一透鏡222可包括適於產生磁場的第一磁透鏡部1030。第一磁透鏡部1030可包括用於產生磁場的線圈。第一磁透鏡部1030可以具有鐵包覆。類似地,第二透鏡224可包括第二磁透鏡部1040。第二磁透鏡部1040可包括相較於第一磁透鏡部1030的類似部件。第一磁透鏡部1030及/或第二磁透鏡部1040可適於補償次級帶電粒子束140的拉莫爾旋轉。由於帶電粒子束裝置的物鏡所產生的磁場的強度的變化(例如第2b圖所示的磁場282),可在次級帶電粒子束140中引入拉莫爾旋轉。第一磁透鏡部1030及/或第二磁透鏡部1040可適於旋轉次級帶電粒子束140。次級帶電粒子束140的旋轉可環繞由孔徑板230定義的光軸238旋轉,並可以是順時針或逆時針旋轉。第一磁透鏡部1030可適於以第一角度A1旋轉次級帶電粒子束140。第一角度A1可位於-45至45度的範圍。因此,可藉由第一磁透鏡部補償-45至45度的拉莫爾旋轉。第二磁透鏡部1040可適於以第二角度A2旋轉次級帶電粒子束140。第二角度A2可位於-45至-45度範圍。因此,可藉由第二磁透鏡部補償-45至45度的拉莫爾旋轉。第一透鏡包括第一磁透鏡部而第二透鏡包括第二磁透鏡部的透鏡系統(例如第10圖所示之透鏡系統220)可適於以總角度旋轉次級帶電粒子束,總角度係位於-|A1|-|A2|至|A1|+|A2|的範圍,其中|A1|與|A2|係分別表示A1與A2的絕對值。因此,位於-|A1|-|A2|至|A1|+|A2|的範圍的拉莫爾旋轉可由透鏡系統補償。舉例而言,可補償-90與90度之間的拉莫爾旋轉。
利用包括在第一透鏡中的第一磁透鏡部及/或包括在第二透鏡中的第二磁透鏡部補償次級帶電粒子束的拉莫爾旋轉的優點為不需要用於補償拉莫爾旋轉的孔徑板及/或偵測器佈置的機械旋轉。
根據第10圖所示的示例性實施例,第一透鏡222係為包括靜電透鏡部(未圖示)與第一磁透鏡部1030的複合透鏡。相較於包括靜電透鏡部而未包括第一磁透鏡部的第一透鏡,複合透鏡提供用於影響次級帶電粒子束的附加自由度。更特定言之,由第一磁透鏡部1030提供的二個如此的附加自由度可包括通過包括在第一磁透鏡部1030中的線圈的電流的幅度與方向。類似的考慮亦適用於第二透鏡為複合透鏡的實施例。
由第一磁透鏡部1030產生的磁場可影響次級帶電粒子束140聚焦到孔徑板230。可藉由將第一透鏡222的靜電透鏡部的激發設定成適當的值,以補償或進一步擴大該聚焦效果。舉例而言,可藉由減少或增加靜電透鏡部的折射力影響聚焦效果。因此,可以用期望的方式成形、聚焦,及/或散焦次級帶電粒子束140。因此,經由第一磁透鏡部1030與靜電透鏡部的組合動作,第一透鏡222可允許補償物鏡的拉莫爾旋轉並成形、聚焦,及/或散焦次級帶電粒子束140。類似的考慮亦適用於第二透鏡為複合透鏡的實施例。
然而,根據第10圖所示之實施例,第一透鏡222與第二透鏡224包括磁透鏡部,而根據本文所述之其他實施例,第一透鏡222與第二透鏡224中僅有一者可包括用於補償拉莫爾旋轉的磁透鏡部。根據可與本文所述之其他實施例組合的實施例,第一透鏡與第二透鏡中之至少一者包括用於補償物鏡的拉莫爾旋轉的磁透鏡部。控制器可經配置以獨立於物鏡的磁場強度的變化,控制、決定,及/或調整磁透鏡部的激發,以將次級帶電粒子束映射到孔徑板,而在形貌偵測模式中使得第一次級帶電粒子分束通過第一開口,而第二次級帶電粒子分束通過第二開口。
第10圖所示之示例性次級帶電粒子成像系統200包括光束彎曲器1010、第一偏轉元件1022、第二偏轉元件1024、第一磁透鏡部1030,及第二磁透鏡部1040。可替代地,根據本文所述之實施例,次級帶電粒子成像系統可包括該等部件中的任意單個或該等部件的任意組合。
根據進一步實施例,提供一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。如本文所述,次級帶電粒子成像系統包括偵測器佈置。次級帶電粒子成像系統進一步包括適應性次級帶電粒子光學元件。如本文所述,適應性次級帶電粒子光學元件包括孔徑板。適應性次級帶電粒子光學元件進一步包括用於將次級帶電粒子束映射到孔徑板的透鏡系統。透鏡系統包括第一透鏡,其中第一透鏡包括磁透鏡部,用於補償將初級帶電粒子束聚焦到樣品的物鏡的拉莫爾旋轉。適應性次級帶電粒子光學元件進一步包括用於控制第一透鏡的激發的控制器。相對於次級帶電粒子束的傳播而言,孔徑板係佈置於偵測器佈置的上游,而第一透鏡係佈置於孔徑板的上游。控制器經配置以獨立於物鏡的磁場強度的變化,控制第一透鏡的激發,以將次級帶電粒子束映射到孔徑板,而在形貌偵測模式中使得第一次級帶電粒子分束通過第一開口,而第二次級帶電粒子分束通過第二開口,控制第一透鏡的激發包括控制磁透鏡部的激發。
根據進一步實施例,並如第11-12圖所示,提供一種帶電粒子束裝置260。帶電粒子束裝置260包括光束發射器105,用於發射初級帶電粒子束130。光束發射器105可以是例如電子槍。帶電粒子束裝置進一步包括物鏡10,用於將初級帶電粒子束130聚焦到樣品125上。帶電粒子束裝置260進一步包括光束分離器1110,用於分離初級帶電粒子束130與從樣品125發出的次級帶電粒子束140。帶電粒子束裝置260進一步包括根據本文所述之實施例的次級帶電粒子成像系統200。相對於次級帶電粒子束140的傳播而言,次級帶電粒子成像系統200可佈置於光束分離器1110的下游。
如第11圖所示,從光束發射器105發射的初級帶電粒子束130可從光束發射器105行進到光束分離器1110。如進一步圖示,初級帶電粒子束130可以在光束分離器1110中偏轉。如進一步圖示,初級帶電粒子束130可從光束分離器1110行進到物鏡10,物鏡10適於將初級帶電粒子束130聚焦到樣品125上。根據第11圖所示之示例性實施例,初級帶電粒子束130在經由物鏡10從光束分離器1110行進到樣品125時,沿著由物鏡10定義的光軸284行進。在初級帶電粒子束130撞擊到樣品125之後,產生次級帶電粒子束140。如第11圖所示,次級帶電粒子束140可從樣品125行進到光束分離器1110,其中次級帶電粒子束140可行進在初級帶電粒子束130的相反方向上。光束分離器1110係作用於初級帶電粒子束130,並作用於次級帶電粒子束140,且適於分離初級帶電粒子束130與次級帶電粒子束140。如圖所示,次級帶電粒子束140可以在光束分離器1110中偏轉。偏轉可使得離開光束分離器的次級帶電粒子束被引導而遠離初級帶電粒子束130。次級帶電粒子束140從光束分離器1110行進到次級帶電粒子成像系統200。
光束分離器1110可包括適於產生磁場的磁光束分離部,例如包括一或更多個線圈。附加或可替代地,光束分離器1110可包括適於產生電場的靜電光束分離部,例如包括一或更多個電極。電場及/或磁場可作用於通過光束分離器1110的初級帶電粒子束130與次級帶電粒子束140。在磁場及/或電場的影響下,初級帶電粒子束130及/或次級帶電粒子束可以在光束分離器1110中偏轉。
如上所述,例如參照第2b圖,帶電粒子束裝置260可進一步包括下列至少一者:台座270,其中台座可以是可相對於物鏡10移動,以用於改變工作距離120;樣品電壓源285,適於改變初級帶電粒子束130的降落能量;一或更多個proxi電極290,適於改變作用於次級帶電粒子束140的提取場292的強度;磁物鏡部280,包括在物鏡10中,而適於產生磁場282。如以上所進一步描述,在控制器240的動作下,獨立於至少一個第一操作參數的變化及/或獨立於至少一個第二操作參數的變化,可將次級帶電粒子束140映射到孔徑板230,例如在形貌偵測模式中或在明場偵測模式中。
第12圖圖示根據本文所述之實施例的帶電粒子束裝置260。如第11圖的情況下,第12圖所示的帶電粒子束裝置260包括根據本文所述之實施例的次級帶電粒子成像系統200。如上所述,第12圖所示的次級帶電粒子成像系統200包括光束彎曲器1010。如以上所進一步討論,次級帶電粒子束140係藉由光束分離器1110引導,而遠離初級帶電粒子束130。如第12圖所示,光束彎曲器可引導次級帶電粒子束140進一步遠離初級帶電粒子束130。
第13a-b圖圖示根據本文所述之實施例的次級帶電粒子成像系統的孔徑板的正視圖。第13a圖圖示次級帶電粒子束140在形貌偵測模式中通過孔徑板230。在形貌偵測模式中,獨立於至少一個第一操作參數的變化,將次級帶電粒子束140映射到孔徑板230的第一區域1310。獨立於至少一個第一操作參數的變化,第一區域可對應於在形貌偵測模式中通過孔徑板230的次級帶電粒子束相對於繪圖平面的橫截面。
第13a圖所示的示例性第一區域1310具有圓盤形狀。如圖所示,第一區域1310具有邊界1312,而第13a圖所示的示例性第一區域1310係為圓形邊界。因此,獨立於至少一個第一操作參數的變化,第13a圖所示之第一區域1310可對應於在形貌偵測模式中通過孔徑板230的次級帶電粒子束140相對於繪圖平面的圓盤形橫截面。如第13a圖進一步圖示,第一區域1310可以與第一開口232、第二開口234,及/或另外的開口836與838重疊。中央開口520相對於繪圖平面的橫截面可以包含在第一區域1310中。如第13a圖進一步圖示,光軸238可延伸通過第一區域1310的中央。
根據可與本文所述之其他實施例組合的實施例,沿著參照方向的第一區域的大小可以從1%至70%,例如沿著參照方向的孔徑板的大小的50%。在第一區域1310與孔徑板230之每一者具有圓盤形狀的示例性情況下,如第13a圖所示,沿著參照方向的第一區域的大小可以是第一區域的直徑,而沿著參照方向的孔徑板的大小可以是孔徑板的直徑。
可藉由利用透鏡系統222與224調整區域1310的大小而最佳化形貌對比度。對於被減少的大小(例如孔徑板的大小的10%-25%),在訊號強度的成本上,外部二極體僅偵測到晶片上具有大起始角度的電子。對於大尺寸區域1310而言(例如孔徑板的大小的40%-70%),在外部二極體上收集到晶圓上大部分的起始角度,而增加訊號強度,並潛在降低形貌對比度。取決於偵測到的特徵,一個或其他設定可能是有利的。
如第13a圖所示,在形貌偵測模式中,映射到第一區域1310的次級帶電粒子束140可進入中央開口520、第一開口232、第二開口234,以及另外的開口836與838。因此,如上所述,在形貌偵測模式期間,第一次級帶電粒子分束可通過第一開口232,第二次級帶電粒子分束可通過第二開口234,及/或第三次級帶電粒子分束可通過中央開口520。次級帶電粒子束140的另外的分束可通過第13a圖所示的另外的開口836與838。
第13b圖圖示在明場偵測模式中通過孔徑板230的次級帶電粒子束140。在明場偵測模式中,獨立於至少一個第二操作參數的變化,將次級帶電粒子束140映射到孔徑板230的第二區域1320。獨立於至少一個第二操作參數的變化,第二區域可對應於在明場偵測模式中通過孔徑板的次級帶電粒子束相對於繪圖平面的橫截面。
第13b圖所示之示例性第二區域1320基本上具有圓盤形狀。如圖所示,第二區域1320具有邊界1322,而第13b圖所示的示例性第二區域1320係為圓形邊界。第13b圖所示之第二區域1320可對應於在明場偵測模式中通過孔徑板230的次級帶電粒子束140相對於繪圖平面的圓盤形橫截面。
如第13b圖中所示,中央開口520相對於繪圖平面的橫截面包含第二區域1320。第13b圖所示之第二區域1320並未重疊於或基本上不重疊於第一開口232,亦未重疊於或基本上不重疊於第二開口234,亦未重疊於或基本上不重疊於另外的開口836與838中之任一者。因此,在明場偵測模式中,次級帶電粒子束140進入中央開口520,但不進入第一開口232,亦未進入第二開口234,亦未進入另外的開口836與838中之任一者。在明場偵測模式中,次級帶電粒子束140可完全通過中央開口520。
根據進一步實施例,並如第14圖所示,提供一種藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法。如第14圖中利用元件符號1410所指示,如本文所述,該方法包括將第一操作參數設定為第一值。如第14圖中利用元件符號1420所指示,該方法進一步包括在第一操作參數設定為第一值時,控制第一透鏡的激發與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域。如本文所述,第一透鏡與第二透鏡可包括在透鏡系統中。第一區域重疊於孔徑板的第一開口以及重疊於孔徑板的第二開口。如第14圖中利用元件符號1430所指示,該方法進一步包括將第一操作參數設定為第二值,第二值與第一值不同。如第14圖中利用元件符號1440所指示,該方法進一步包括在第一操作參數設定為第二值時,控制第一透鏡的激發與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域。
根據可與本文所述之其他實施例組合的實施例,如本文所述,第一區域可重疊於孔徑板的中央開口。如本文所述,在形貌偵測模式中,可將次級帶電粒子束映射到孔徑板的第一區域。
如第13a圖所示,第一開口及/或第二開口可部分重疊於第一區域。孔徑板可定義孔徑板平面。舉例而言,就第13a-13b圖所示之實施例而言,孔徑板平面可指稱繪圖平面。第一區域可包含在孔徑板平面中。由孔徑板定義的光軸可延伸通過第一區域的中央。孔徑板平面可延伸通過第一開口,通過第二開口,及/或通過中央開口。如第13a圖所示,相對於孔徑板平面的第一開口的橫截面的一部分可包含在第一區域中。如第13a圖進一步圖示,相對於孔徑板平面的第一開口的橫截面的另一部分可位於第一區域之外。類似地,相對於孔徑板平面的第二開口的橫截面的一部分可包含在第一區域中。相對於孔徑板平面的第二開口的橫截面的另一部分可位於第一區域之外。如第13a圖所示,相對於孔徑板平面的中央開口的橫截面可包含在第一區域中。
根據可與本文所述之其他實施例組合的一些實施例,如本文所述,該方法進一步包括將第二操作參數設定為第三值。該方法進一步包括在第二操作參數設定為第三值時,控制第一透鏡的激發與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第二區域。第二區域完全重疊於中央開口,並包含在第一區域中。亦即,第二區域係在中央開口中,或等於中央開口。因此,第二區域並未延伸超過中央開口,亦即,與中央開口完全重疊。
如本文所述,在明場偵測模式中,可將次級帶電粒子束映射到孔徑板的第二區域。由孔徑板定義的光軸可延伸通過第二區域的中央。第二區域可以與第一區域不同。
第二區域可包含在孔徑板平面中。根據可與本文所述之其他實施例組合的實施例,第二區域的面積可以與相對於孔徑平面的中央開口的橫截面面積基本上相同。術語「基本上相同」的二個面積可指稱二個面積的比例位於0.01到1.1的範圍。第二區域的面積可以是中央開口的面積的1%至110%。根據可與本文所述之其他實施例組合的實施例,並如第13b圖所示,第二區域可包含在相對於孔徑板平面的中央開口的橫截面中。次級帶電粒子束沒有任何部分可以通過中央開口外面的孔徑板。
第一開口及/或第二開口可以與第二區域間隔及/或可以不與第二區域重疊。
根據可與本文所述之其他實施例組合的實施例,第二操作參數可以與第一操作參數相同。第三值可以與第一值相同,或者可以與第一值不同。第三值可以與第二值相同,或者可以與第二值不同。
根據可與本文所述之其他實施例組合的實施例,第二操作參數可以與第一操作參數不同。
根據可與本文所述之其他實施例組合的實施例,第一操作參數係為物鏡的磁場強度。在第一操作參數設定為第二值時,控制第一透鏡的激發與第二透鏡的激發包括相對於在第一操作參數設定為第一值的情況下,補償次級帶電粒子束的拉莫爾旋轉。可藉由第一透鏡的磁場、藉由第二透鏡的磁場或藉由第一透鏡與第二透鏡的磁場,補償拉莫爾旋轉。
本文描述進一步實施例。可以存在一種藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法。該方法可以包括以下步驟:將第一操作參數設定為第一值,第一操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離;在第一操作參數設定為第一值時,控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域上,其中第一區域重疊於孔徑板的第一開口與孔徑板的第二開口;將第一操作參數設定為第二值,第二值與第一值不同;以及在第一操作參數設定為第二值時,控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域上。
第一區域可以與孔徑板的中央開口重疊,其中第一開口與第二開口可以相對於由孔徑板定義的光軸從中央開口徑向朝外定位。
在另一實施例中,可以將第二操作參數設定為第三值,第二操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離;以及在第二操作參數設定為第三值時,控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第二區域上,第二區域與中央開口完全重疊,並包含在第一區域中。
在進一步實施例中,可以認為第一操作參數係為物鏡的磁場強度,且其中在第一操作參數設定為第二值時,控制第一透鏡與第二透鏡的激發之步驟包括以下步驟:相對於在第一操作參數設定為第一值的情況下,藉由第一透鏡的磁場、藉由第二透鏡的磁場,或藉由第一透鏡與第二透鏡二者的磁場,補償次級帶電粒子束的拉莫爾旋轉。
在另一實施例中,可以存在一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。該系統可以包括偵測器佈置,偵測器佈置包括:第一偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束,以及第二偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束,第一偵測元件與第二偵測元件彼此分離。
次級帶電粒子成像系統可以進一步包括適應性次級帶電粒子光學元件,適應性次級帶電粒子光學元件包括:孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口;透鏡系統,用於將次級帶電粒子束映射到孔徑板,透鏡系統包含第一透鏡與第二透鏡;以及控制器,用於控制第一透鏡的激發與第二透鏡的激發。
相對於次級帶電粒子束的傳播,孔徑板可以佈置於偵測器佈置的上游,第一透鏡可以佈置於孔徑板的上游,而第二透鏡可以佈置於第一透鏡的上游。
控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以獨立於至少一個第一操作參數的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口,至少一個第一操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
在另一實施例中,孔徑板可以定義光軸。第一透鏡與第二透鏡可以對準孔徑板的光軸。
孔徑板可以定義光軸,其中偵測器佈置可以進一步包括光軸通過的中央偵測元件,其中第一偵測元件與第二偵測元件可以從光軸徑向朝外佈置;孔徑板可以進一步包括光軸通過的中央開口,其中第一開口與第二開口可以從光軸徑向朝外定位;以及控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板,而在形貌偵測模式中,使得次級帶電粒子束的第三次級帶電粒子分束通過中央開口。
在另一實施例中,控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板,而獨立於至少一個第二操作參數的變化,在明場偵測模式中,使得次級帶電粒子束完全通過中央開口,至少一個第二操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
控制器可以經配置以藉由調適第一透鏡與第二透鏡的激發,在形貌偵測模式與明場偵測模式之間切換。
在另一實施例中,至少一個第一操作參數與至少一個第二操作參數可以是相同的至少一個操作參數。
在另一實施例中,孔徑板可以定義光軸,其中偵測器佈置可以包括整數數量N的另外的偵測元件,整數數量N可以是零或大於零,孔徑板可以包括相同整數數量N的另外的開口,其中第一開口、第二開口,及N個另外的開口可以環繞孔徑板的光軸定位,而使得孔徑板具有相對於孔徑板的光軸的N+2重旋轉對稱。
在另一實施例中,第一透鏡與第二透鏡中之至少一者包括磁透鏡部,用於補償物鏡的拉莫爾旋轉,其中控制器可以經配置以控制磁透鏡部的激發,以獨立於物鏡的磁場強度的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。
在另一實施例中,光束彎曲器可以作用於次級帶電粒子束,並且可以相對於次級帶電粒子束的傳播而佈置於第二透鏡的上游。
在另一實施例中,光束彎曲器與第二透鏡之間的距離係為60mm或以下。
在另一實施例中,光束彎曲器與第一透鏡之間的距離係為50mm或以上。
在實施例中,帶電粒子束裝置可以包括:發射器,用於發射初級帶電粒子束;物鏡,用於將初級帶電粒子束聚焦到樣品;光束分離器,用於將初級帶電粒子束從樣品發出的次級帶電粒子束分離;以及次級帶電粒子束成像系統,用於成像次級帶電粒子束,其中相對於次級帶電粒子束的傳播,次級帶電粒子束成像系統可以佈置於光束分離器的下游。
次級帶電粒子束成像系統可以包括偵測器佈置,偵測器佈置包括:第一偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束,以及第二偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束,其中第一偵測元件與第二偵測元件可以彼此分離。
次級帶電粒子成像系統可以包括適應性次級帶電粒子光學元件,適應性次級帶電粒子光學元件包括孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。
次級帶電粒子束成像系統可以包括透鏡系統,以用於將次級帶電粒子束映射到孔徑板,透鏡系統包括第一透鏡與第二透鏡。
次級帶電粒子束成像系統可以包括控制器,以用於控制第一透鏡的激發與第二透鏡的激發。
相對於次級帶電粒子束的傳播,孔徑板可以佈置於偵測器佈置的上游,第一透鏡可以佈置於孔徑板的上游,而第二透鏡可以佈置於第一透鏡的上游。
控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以獨立於至少一個第一操作參數的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口,至少一個第一操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
在另一實施例中,孔徑板可以定義光軸。偵測器佈置可以包括光軸通過的中央偵測元件,其中第一偵測元件與第二偵測元件可以從光軸徑向朝外佈置。孔徑板可以包括光軸通過的中央開口,其中第一開口與第二開口可以從光軸徑向朝外定位。
控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板,而在形貌偵測模式中,使得次級帶電粒子束的第三次級帶電粒子分束通過中央開口。
在另一實施例中,控制器可以經配置以獨立控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板,而獨立於至少一個第二操作參數的變化,在明場偵測模式中,使得次級帶電粒子束完全通過中央開口,至少一個第二操作參數係從下列一群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
控制器可以經配置以藉由調適第一透鏡與第二透鏡的激發,在形貌偵測模式與明場偵測模式之間切換。
在另一實施例中,第一透鏡與第二透鏡中之至少一者包括磁透鏡部,用於補償物鏡的拉莫爾旋轉,其中控制器可以經配置以控制磁透鏡部的激發,以獨立於物鏡的磁場強度的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。
在另一實施例中,光束彎曲器可以作用於次級帶電粒子束,其中光束彎曲器可以相對於次級帶電粒子束的傳播而佈置於第二透鏡的上游及/或光束分離器的下游。
在另一實施例中,用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統可以包括偵測器佈置,偵測器佈置包括:第一偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束,以及第二偵測元件,在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束。第一偵測元件與第二偵測元件可以彼此分離。
次級帶電粒子成像系統可以包括適應性次級帶電粒子光學元件,適應性次級帶電粒子光學元件包括孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。
次級帶電粒子束成像系統可以包括透鏡系統,以用於將次級帶電粒子束映射到孔徑板。透鏡系統可以包括第一透鏡,其中第一透鏡可以包括磁透鏡部,用於補償將初級帶電粒子束聚焦到樣品上的物鏡的拉莫爾旋轉。
次級帶電粒子成像系統可以包括控制器,以用於控制第一透鏡的激發。
相對於次級帶電粒子束的傳播,孔徑板可以佈置於偵測器佈置的上游,而第一透鏡可以佈置於孔徑板的上游。
控制器可以經配置以控制第一透鏡的激發,其中可以包括控制磁透鏡部的激發,以獨立於物鏡的磁場強度的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。
根據實施例,提供一種藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法。該方法包括以下步驟:將第一操作參數設定為第一值。第一操作參數係從下列群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。該方法進一步包括以下步驟:在第一操作參數設定為第一值時,控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域上。第一區域係重疊於孔徑板的第一開口與孔徑板的第二開口。該方法進一步包括以下步驟:將第一操作參數設定為第二值,第二值與第一值不同。該方法進一步包括以下步驟:在第一操作參數設定為第二值時,控制第一透鏡與第二透鏡的激發,以將次級帶電粒子束映射到孔徑板的第一區域上。
根據另一實施例,提供一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。該系統包括偵測器佈置與適應性次級帶電粒子光學元件。偵測器佈置包括第一偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束。偵測器佈置進一步包括第二偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束。第一偵測元件與第二偵測元件彼此分離。適應性次級帶電粒子光學元件包括孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。適應性次級帶電粒子光學元件進一步包括透鏡系統,以用於將次級帶電粒子束映射到孔徑板,透鏡系統包括第一透鏡與第二透鏡。適應性次級帶電粒子光學元件進一步包括控制器,以用於控制第一透鏡的激發與第二透鏡的激發。相對於次級帶電粒子束的傳播,孔徑板係佈置於偵測器佈置的上游,第一透鏡係佈置於孔徑板的上游,而第二透鏡係佈置於第一透鏡的上游。控制器經配置以獨立控制第一透鏡與第二透鏡的激發,以獨立於至少一個第一操作參數的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。至少一個第一操作參數係從下列群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
根據另一實施例,提供一種帶電粒子束裝置。帶電粒子束裝置包括發射器,以用於發射初級帶電粒子束。帶電粒子束裝置進一步包括物鏡,以用於將初級帶電粒子束聚焦到樣品。帶電粒子束裝置進一步包括光束分離器,以用於將初級帶電粒子束從樣品發出的次級帶電粒子束分離。帶電粒子束裝置進一步包括次級帶電粒子束成像系統,以用於成像次級帶電粒子束。相對於次級帶電粒子束的傳播,次級帶電粒子束成像系統係佈置於光束分離器的下游。次級帶電粒子束成像系統包括偵測器佈置與適應性次級帶電粒子光學元件。偵測器佈置包括第一偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束。偵測器佈置進一步包括第二偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束。第一偵測元件與第二偵測元件彼此分離。適應性次級帶電粒子光學元件包括孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。適應性次級帶電粒子光學元件進一步包括透鏡系統,以用於將次級帶電粒子束映射到孔徑板,透鏡系統包括第一透鏡與第二透鏡。適應性次級帶電粒子光學元件進一步包括控制器,以用於控制第一透鏡的激發與第二透鏡的激發。相對於次級帶電粒子束的傳播,孔徑板係佈置於偵測器佈置的上游,第一透鏡係佈置於孔徑板的上游,而第二透鏡係佈置於第一透鏡的上游。控制器經配置以獨立控制第一透鏡與第二透鏡的激發,以獨立於至少一個第一操作參數的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。至少一個第一操作參數係從下列群組選出,包含:樣品上的初級帶電粒子束的降落能量、用於樣品上的次級帶電粒子束的提取場強度、將初級帶電粒子束聚焦於樣品上的物鏡的磁場強度,及物鏡離樣品的工作距離。
根據另一實施例,提供一種用於藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的次級帶電粒子成像系統。該系統包括偵測器佈置與適應性次級帶電粒子光學元件。偵測器佈置包括第一偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第一次級帶電粒子分束。偵測器佈置進一步包括第二偵測元件,以在形貌偵測模式中用於偵測次級帶電粒子束的第二次級帶電粒子分束。第一偵測元件與第二偵測元件彼此分離。適應性次級帶電粒子光學元件包括孔徑板,孔徑板包括用於讓第一次級帶電粒子分束通過的第一開口以及用於讓第二次級帶電粒子分束通過的第二開口。適應性次級帶電粒子光學元件進一步包括透鏡系統,以用於將次級帶電粒子束映射到孔徑板。透鏡系統包括第一透鏡,其中第一透鏡包括磁透鏡部,以用於補償將初級帶電粒子束聚焦到樣品上的物鏡的拉莫爾旋轉。適應性次級帶電粒子光學元件進一步包括控制器,以用於控制第一透鏡的激發。相對於次級帶電粒子束的傳播,孔徑板係佈置於偵測器佈置的上游,而第一透鏡係佈置於孔徑板的上游。控制器經配置以控制第一透鏡的激發,第一透鏡的激發包括控制磁透鏡部的激發,以獨立於物鏡的磁場強度的變化,在形貌偵測模式中,將次級帶電粒子束映射到孔徑板,而使得第一次級帶電粒子分束通過第一開口以及第二次級帶電粒子分束通過第二開口。
儘管前述內容係關於本發明的一些實施例,但可以在不悖離下列專利請求範圍所決定的範圍而設計其他與進一步的實施例。
10:物鏡 104:長度 105:光束發射器 115:偵測器 120:工作距離 125:樣品 130:初級帶電粒子束 135:開口 140:次級帶電粒子束 142:第一分束 144:第二分束 145:次級電子(SE)訊號 200:次級帶電粒子成像系統 210:適應性次級帶電粒子光學 220:透鏡系統 222:第一透鏡 224:第二透鏡 230:孔徑板 232:第一開口 234:第二開口 238:光軸 240:控制器 250:偵測器佈置 251:保持器 252:第一偵測元件 254:第二偵測元件 260:帶電粒子束裝置 270:台座 280:磁物鏡部 282:磁場 284:光軸 285:樣品電壓源 290:proxi電極 292:提取場 300:電子束系統 310:單一透鏡 312:跨接位置 316:開口角度 318:內徑 510:中央偵測元件 520:中央開口 546:第三分束 836:開口 838:開口 856:偵測元件 858:偵測元件 903:外部部分 905:分割條 1010:光束彎曲器 1022:第一偏轉元件 1024:第二偏轉元件 1030:第一磁透鏡部 1040:第二磁透鏡部 1110:光束分離器 1310:第一區域 1312:邊界 1320:第二區域 1322:邊界 1410:元件符號 1420:元件符號 1430:元件符號 1440:元件符號
對該領域具有通常知識者為完整且可實現之揭示係參照隨附圖式更詳細地闡述於說明書之其餘部分中,其中: 第1圖圖示已知電子束成像系統; 第2a圖圖示根據本文所述之實施例的次級帶電粒子成像系統; 第2b圖圖示根據本文所述之實施例的帶電粒子束裝置; 第3a-c圖圖示包括單一透鏡的次級光學元件的實例; 第4a-c圖圖示根據本文所述之實施例的帶電粒子束裝置在用於降落能量與提取場強度的不同值中的形貌偵測模式中操作的實施例; 第5圖圖示在根據形貌偵測模式的操作狀態中的根據本文所述之實施例的次級帶電粒子成像系統; 第6圖圖示在根據明場偵測模式的操作狀態中的根據本文所述之實施例的次級帶電粒子成像系統; 第7a-b圖圖示根據本文所述之實施例的帶電粒子束裝置在用於降落能量與提取場強度的不同值的明場偵測模式中操作的實施例; 第8a圖圖示根據本文所述之實施例的次級帶電粒子成像系統的孔徑板; 第8b圖圖示根據本文所述之實施例的次級帶電粒子成像系統的偵測器佈置; 第9圖圖示根據本文所述之實施例的次級帶電粒子成像系統的孔徑板; 第10圖圖示根據本文所述之實施例的次級帶電粒子成像系統; 第11及12圖圖示根據本文所述之實施例的帶電粒子束裝置;以及 第13a-b圖圖示根據本文所述之實施例的次級帶電粒子成像系統的孔徑板。 第14圖圖示根據本文所述之實施例的成像次級帶電粒子束的方法。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
140:次級帶電粒子束
200:次級帶電粒子成像系統
210:適應性次級帶電粒子光學
220:透鏡系統
222:第一透鏡
224:第二透鏡
230:孔徑板
232:第一開口
234:第二開口
238:光軸
240:控制器
250:偵測器佈置
251:保持器
252:第一偵測元件
254:第二偵測元件
510:中央偵測元件
520:中央開口
1010:光束彎曲器
1022:第一偏轉元件
1024:第二偏轉元件
1030:第一磁透鏡部
1040:第二磁透鏡部

Claims (16)

  1. 一種藉由一初級帶電粒子束的撞擊對從一樣品發出的一次級帶電粒子束成像的方法,該方法包含以下步驟:將一第一操作參數設定為一第一值,該第一操作參數係為將該初級帶電粒子束聚焦於該樣品上的一物鏡的一磁場強度;將該第一操作參數設定為一第二值,該第二值與該第一值不同;在該第一操作參數設定為該第二值時,進行下列至少一者,以旋轉該次級帶電粒子束:將一第一透鏡的一激發控制成該第一透鏡的一第二激發值,以及將一第二透鏡的一激發控制成該第二透鏡的一第二激發值,相對於在該第一操作參數設定為該第一值的情況下,藉由控制該第一透鏡的一磁場的一激發、藉由控制該第二透鏡的一磁場的一激發,或藉由該第一透鏡與該第二透鏡二者的一磁場的一激發,針對該第二值補償該次級帶電粒子束的一拉莫爾旋轉,其中控制該第一透鏡的該激發係補償多達45度的拉莫爾旋轉的一幅度,以及控制該第二透鏡的該激發係與控制該第一透鏡的該激發組合以補償多達90度的拉莫爾旋轉的一幅度。
  2. 如請求項1所述的方法,其中控制該第一透鏡的該激發與該第二透鏡的該激發之步驟包含以下步驟:分別調整該第一透鏡的該磁透鏡部的該激發與該第二透 鏡的該磁透鏡部的該激發。
  3. 如請求項1所述的方法,其中控制該第一透鏡的該激發與該第二透鏡的該激發係將該次級帶電粒子束映射到一孔徑板,而使得一第一次級帶電粒子分束通過一第一開口以及一第二次級帶電粒子分束通過一第二開口。
  4. 如請求項3所述的方法,其中該次級帶電粒子束在形貌偵測模式中映射到該孔徑板。
  5. 如請求項3所述的方法,其中該次級帶電粒子束獨立於該物鏡的該磁場強度的一變化而映射到該孔徑板。
  6. 如請求項1所述的方法,進一步包含以下步驟:將一第二操作參數設定為一第三值,該第二操作參數係從下列一群組選出,包含:該樣品上的該初級帶電粒子束的降落能量、用於該樣品上的該次級帶電粒子束的提取場強度、將該初級帶電粒子束聚焦於該樣品上的一物鏡的磁場強度,及該物鏡離該樣品的工作距離;以及在該第二操作參數設定為該第三值時,控制該第一透鏡與該第二透鏡的該激發,相對於在該第一操作參數設定為該第一值的情況下,藉由控制該第一透鏡的一磁場的一激發、藉由控制該第二透鏡的一磁場的一激發,或藉由該第一透鏡與該第二透鏡二者的一磁場的一激發,針對該第三值補償該次級 帶電粒子束的一拉莫爾旋轉。
  7. 如請求項1所述的方法,進一步包含以下步驟:在該第一操作參數設定為該第一值時,將該第一透鏡的該激發控制成該第一透鏡的一第一激發值,並將一第二透鏡的一激發控制成該第二透鏡的一第一激發值,以將該次級帶電粒子束在一形貌偵測模式中映射到一孔徑板上的一第一尺寸的一區域。
  8. 如請求項7所述的方法,其中該第一尺寸的該區域係重疊於該孔徑板的一第一開口與該孔徑板的一第二開口。
  9. 如請求項8所述的方法,其中獨立控制該第一透鏡的該第一激發值與該第二透鏡的該第一激發值中之每一者,以調整該次級帶電粒子束的一開口角度,以將該次級帶電粒子束提供到該第一尺寸的該區域。
  10. 一種用於藉由一初級帶電粒子束的撞擊對從一樣品發出的一次級帶電粒子束成像的次級帶電粒子成像系統,該系統包含:一透鏡系統,包含一第一透鏡與一第二透鏡;一控制器,經配置以在將一第一操作參數設定為一第二值時,進行下列至少一者,以旋轉該次級帶電粒子束:將該第一透鏡的一激發控制成該第一透鏡的一第二激發值,以及將該第二透鏡的一激發控制成該第二透鏡的一第二激發值,以在相對於在該第一操作參數設定為一第 一值的情況下,針對第二值補償該次級帶電粒子束的一拉莫爾旋轉,其中該控制器經配置以控制該第一透鏡的該激發來補償多達45度的拉莫爾旋轉的一幅度,以及控制該第二透鏡的該激發來與控制該第一透鏡的該激發組合而補償多達90度的拉莫爾旋轉的一幅度,該第一操作參數係為將該初級帶電粒子束聚焦於該樣品上的一物鏡的一磁場強度。
  11. 如請求項10所述的次級帶電粒子成像系統,其中該控制器經配置以分別調整該第一透鏡的該磁透鏡部的該激發與該第二透鏡的該磁透鏡部的該激發,以控制該第一透鏡的該激發與該第二透鏡的該激發。
  12. 如請求項10所述的次級帶電粒子成像系統,其中該控制器經配置以控制該第一透鏡的該激發與該第二透鏡的該激發,以將該次級帶電粒子束映射到一孔徑板,而使得一第一次級帶電粒子分束通過一第一開口以及一第二次級帶電粒子分束通過一第二開口。
  13. 如請求項12所述的次級帶電粒子成像系統,其中該控制器經配置以控制該第一透鏡的該激發與該第二透鏡的該激發,以將該次級帶電粒子束在形貌偵測模式中映射到該孔徑板。
  14. 如請求項12所述的次級帶電粒子成像系統,其中該控制器經配置以控制該第一透鏡的該激發與該第二透鏡的該激發,以將該次級帶電粒子束獨立於該物鏡的該磁場強度的一變化而映射到該孔徑板。
  15. 如請求項10所述的次級帶電粒子成像系統,其中該控制器經配置以在將一第二操作參數設定為該第三值時,控制該第一透鏡的該激發與該第二透鏡的該激發,相對於在該第一操作參數設定為該第一值的情況下,藉由控制該第一透鏡的一磁場的一激發、藉由控制該第二透鏡的一磁場的一激發,或藉由該第一透鏡與該第二透鏡二者的一磁場的一激發,針對該第三值補償該次級帶電粒子束的一拉莫爾旋轉,其中該第二操作參數係從下列一群組選出,包含:該樣品上的該初級帶電粒子束的降落能量、用於該樣品上的該次級帶電粒子束的提取場強度、該物鏡的磁場強度,及該物鏡離該樣品的工作距離。
  16. 一種帶電粒子束裝置,包含:一發射器,用於發射一初級帶電粒子束;一物鏡,用於將該初級帶電粒子束聚焦至一樣品;一光束分離器,用於將該初級帶電粒子束從該樣品發出的一次級帶電粒子束分離;以及一次級帶電粒子束成像系統,用於成像該次級帶電粒子束,其中相對於該次級帶電粒子束的一傳播,該次級帶電粒子束成像系統係佈置於該光束分離器的下游,該次級帶電粒子束成像系統包含:一偵測器佈置,包含:一第一偵測元件,在一形貌偵測模式中用於偵測該次 級帶電粒子束的一第一次級帶電粒子分束,以及一第二偵測元件,在該形貌偵測模式中用於偵測該次級帶電粒子束的一第二次級帶電粒子分束,該第一偵測元件係與該第二偵測元件彼此分離;一適應性次級帶電粒子光學元件,包含:一孔徑板,包含用於讓該第一次級帶電粒子分束通過的一第一開口以及用於讓該第二次級帶電粒子分束通過的一第二開口;一透鏡系統,用於將該次級帶電粒子束映射到該孔徑板,該透鏡系統係為請求項10所述的次級帶電粒子束成像系統,其中相對於該次級帶電粒子束的該傳播,該孔徑板係佈置於該偵測器佈置的上游,該第一透鏡係佈置於該孔徑板的上游,而該第二透鏡係佈置於該第一透鏡的上游,以及其中一控制器經配置以獨立控制該第一透鏡的該激發與該第二透鏡的該激發,以獨立於至少一個第一操作參數的一變化,在該形貌偵測模式中,將該次級帶電粒子束映射到該孔徑板,而使得該第一次級帶電粒子分束通過該第一開口以及該第二次級帶電粒子分束通過該第二開口,該至少一個第一操作參數係從下列一群組選出,包含:該樣品上的該初級帶電粒子束的降落能量、用於該樣品上的該次級帶電粒子束的提取場強度、將該初級帶電粒子束聚焦於該樣品上的一物鏡的磁場強度,及該 物鏡離該樣品的工作距離。
TW109106159A 2015-07-02 2016-04-27 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法、系統、及裝置 TWI737197B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/790,950 US10103004B2 (en) 2015-07-02 2015-07-02 System and method for imaging a secondary charged particle beam with adaptive secondary charged particle optics
US14/790,950 2015-07-02

Publications (2)

Publication Number Publication Date
TW202036643A TW202036643A (zh) 2020-10-01
TWI737197B true TWI737197B (zh) 2021-08-21

Family

ID=57683583

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109106159A TWI737197B (zh) 2015-07-02 2016-04-27 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法、系統、及裝置
TW105113138A TWI689965B (zh) 2015-07-02 2016-04-27 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105113138A TWI689965B (zh) 2015-07-02 2016-04-27 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法

Country Status (3)

Country Link
US (2) US10103004B2 (zh)
JP (1) JP6955325B2 (zh)
TW (2) TWI737197B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805908B2 (en) * 2015-02-18 2017-10-31 Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Signal charged particle deflection device, signal charged particle detection system, charged particle beam device and method of detection of a signal charged particle beam
US10103004B2 (en) 2015-07-02 2018-10-16 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH System and method for imaging a secondary charged particle beam with adaptive secondary charged particle optics
US9666405B1 (en) * 2016-02-18 2017-05-30 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH System for imaging a signal charged particle beam, method for imaging a signal charged particle beam, and charged particle beam device
WO2018167924A1 (ja) * 2017-03-16 2018-09-20 株式会社ニコン 荷電粒子ビーム光学系、露光装置、露光方法、及び、デバイス製造方法
US10245448B2 (en) * 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
JP2019039884A (ja) * 2017-08-29 2019-03-14 株式会社日立ハイテクノロジーズ パターン測定方法、及びパターン測定装置
DE102017220398B3 (de) * 2017-11-15 2019-02-28 Carl Zeiss Microscopy Gmbh Verfahren zum Justieren eines Teilchenstrahlmikroskops
WO2019100600A1 (en) * 2017-11-21 2019-05-31 Focus-Ebeam Technology (Beijing) Co., Ltd. Low voltage scanning electron microscope and method for specimen observation
CN108010600B (zh) * 2017-12-28 2024-04-12 同方威视技术股份有限公司 带电粒子束扩散装置、x射线发射装置、产生带电粒子束的方法以及产生x射线的方法
US10395887B1 (en) * 2018-02-20 2019-08-27 Technische Universiteit Delft Apparatus and method for inspecting a surface of a sample, using a multi-beam charged particle column
CN113892163A (zh) * 2019-05-28 2022-01-04 Asml荷兰有限公司 具有低串扰的多带电粒子射束设备
KR20230017264A (ko) * 2020-07-20 2023-02-03 주식회사 히타치하이테크 에너지 필터, 및 그것을 구비한 에너지 애널라이저 및 하전 입자빔 장치
US20230253177A1 (en) * 2020-07-29 2023-08-10 Kulpreet Singh VIRDI Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device
WO2022063540A1 (en) * 2020-09-22 2022-03-31 Asml Netherlands B.V. Anti-scanning operation mode of secondary-electron projection imaging system for apparatus with plurality of beamlets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142496A1 (en) * 2000-11-02 2002-10-03 Mamoru Nakasuji Electron beam apparatus and method of manufacturing semiconductor device using the apparatus
US20120074316A1 (en) * 2010-08-03 2012-03-29 Kenji Watanabe Electro-optical inspection apparatus and method with dust or particle collection function
US20130270438A1 (en) * 2012-04-16 2013-10-17 Ict Integrated Circuit Testing Gesellschaft Fur Halbleiterpruftechnik Gmbh Switchable multi perspective detector, optics therefor and method of operating thereof
JP2014026834A (ja) * 2012-07-26 2014-02-06 Hitachi High-Technologies Corp 荷電粒子線応用装置
US20150083910A1 (en) * 2012-04-03 2015-03-26 Hitachi High-Technologies Corporation Charged particle beam apparatus
TW201703093A (zh) * 2015-07-02 2017-01-16 Ict積體電路測試股份有限公司 以適應性次級帶電粒子光學元件對次級帶電粒子束成像的系統及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644132A (en) * 1994-06-20 1997-07-01 Opan Technologies Ltd. System for high resolution imaging and measurement of topographic and material features on a specimen
JPH11242943A (ja) * 1997-12-18 1999-09-07 Nikon Corp 検査装置
JP2006153871A (ja) * 2000-11-17 2006-06-15 Ebara Corp 基板検査方法、基板検査装置及び電子線装置
JPWO2002056332A1 (ja) * 2001-01-10 2004-05-20 株式会社荏原製作所 電子線による検査装置、検査方法、及びその検査装置を用いたデバイス製造方法
EP1630862B1 (en) * 2003-05-30 2016-01-13 Ebara Corporation Sample inspection device and method, and device manufacturing method using the sample inspection device and method
JP4848017B2 (ja) 2005-12-06 2011-12-28 ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー 3次の開口収差及び1次1グレード(Grade)の軸上色収差を除去するための補正装置
JP4945463B2 (ja) 2008-01-18 2012-06-06 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5662039B2 (ja) * 2009-03-12 2015-01-28 株式会社荏原製作所 試料観察方法、試料検査方法、および試料観察装置
US8319181B2 (en) * 2011-01-30 2012-11-27 Fei Company System and method for localization of large numbers of fluorescent markers in biological samples
EP2682978B1 (en) * 2012-07-05 2016-10-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Contamination reduction electrode for particle detector
JP6074760B2 (ja) * 2012-09-13 2017-02-08 国立大学法人北海道大学 電子線照射装置
EP2747121A1 (en) * 2012-12-21 2014-06-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Secondary electron optics & detection device
US9134261B2 (en) * 2013-04-22 2015-09-15 Ebara Corporation Inspection apparatus
EP2827136B1 (en) * 2013-07-19 2020-02-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Switchable multi perspective detector, optics therefore and method of operating thereof
US9691588B2 (en) * 2015-03-10 2017-06-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
EP3249676B1 (en) * 2016-05-27 2018-10-03 FEI Company Dual-beam charged-particle microscope with in situ deposition functionality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142496A1 (en) * 2000-11-02 2002-10-03 Mamoru Nakasuji Electron beam apparatus and method of manufacturing semiconductor device using the apparatus
US20120074316A1 (en) * 2010-08-03 2012-03-29 Kenji Watanabe Electro-optical inspection apparatus and method with dust or particle collection function
US20150083910A1 (en) * 2012-04-03 2015-03-26 Hitachi High-Technologies Corporation Charged particle beam apparatus
US20130270438A1 (en) * 2012-04-16 2013-10-17 Ict Integrated Circuit Testing Gesellschaft Fur Halbleiterpruftechnik Gmbh Switchable multi perspective detector, optics therefor and method of operating thereof
JP2014026834A (ja) * 2012-07-26 2014-02-06 Hitachi High-Technologies Corp 荷電粒子線応用装置
TW201703093A (zh) * 2015-07-02 2017-01-16 Ict積體電路測試股份有限公司 以適應性次級帶電粒子光學元件對次級帶電粒子束成像的系統及方法

Also Published As

Publication number Publication date
US20170003235A1 (en) 2017-01-05
US9953805B2 (en) 2018-04-24
JP2017017031A (ja) 2017-01-19
JP6955325B2 (ja) 2021-10-27
TW202036643A (zh) 2020-10-01
US10103004B2 (en) 2018-10-16
US20170076910A1 (en) 2017-03-16
TWI689965B (zh) 2020-04-01
TW201703093A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
TWI737197B (zh) 藉由初級帶電粒子束的撞擊對從樣品發出的次級帶電粒子束成像的方法、系統、及裝置
TWI709992B (zh) 用於檢查試樣之方法以及帶電粒子多束裝置
KR102295389B1 (ko) 1차 하전 입자 빔렛들의 어레이를 이용하여 시료를 검사하기 위한 방법, 1차 하전 입자 빔렛들의 어레이를 이용한 시료의 검사를 위한 하전 입자 빔 디바이스, 및 시료의 검사를 위한 다중-컬럼 현미경
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
US11562880B2 (en) Particle beam system for adjusting the current of individual particle beams
KR102207766B1 (ko) 이차 전자 광학계 & 검출 디바이스
TWI488212B (zh) 用以在帶電粒子束裝置中改進對比度以檢驗樣品之配置及方法
JP2011187447A (ja) ツインビーム荷電粒子ビームコラム及びその作動方法
JP2022552751A (ja) 標本を検査する方法および荷電粒子ビーム装置
NL2029294B1 (en) Multiple particle beam microscope and associated method with fast autofocus around an adjustable working distance
JP5805831B2 (ja) 切り換え型マルチパースペクティブ検出器、切り換え型マルチパースペクティブ検出器用光学系、及び切り換え型マルチパースペクティブ検出器の動作方法
NL2031161B1 (en) Multiple particle beam microscope and associated method with fast autofocus with special embodiments
JP2016152233A (ja) 信号荷電粒子偏向装置、信号荷電粒子検出システム、荷電粒子ビーム装置、および信号荷電粒子ビームの検出の方法
KR20230079266A (ko) 조정 가능한 작동 거리 주위에서 고속 오토포커스를 갖는 복수 입자 빔 현미경 및 관련 방법
TW202141558A (zh) 泛流柱、帶電粒子工具及用於對樣本進行帶電粒子泛流之方法