TWI732280B - 串級自舉式GaN功率開關及驅動器 - Google Patents

串級自舉式GaN功率開關及驅動器 Download PDF

Info

Publication number
TWI732280B
TWI732280B TW108130665A TW108130665A TWI732280B TW I732280 B TWI732280 B TW I732280B TW 108130665 A TW108130665 A TW 108130665A TW 108130665 A TW108130665 A TW 108130665A TW I732280 B TWI732280 B TW I732280B
Authority
TW
Taiwan
Prior art keywords
bootstrap
node
terminal connected
transistor
gate
Prior art date
Application number
TW108130665A
Other languages
English (en)
Other versions
TW202025632A (zh
Inventor
愛德華 李
拉維 阿南斯
麥可 強普曼
麥克 A 德魯義
羅伯特 畢曲
Original Assignee
美商高效電源轉換公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高效電源轉換公司 filed Critical 美商高效電源轉換公司
Publication of TW202025632A publication Critical patent/TW202025632A/zh
Application granted granted Critical
Publication of TWI732280B publication Critical patent/TWI732280B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

一種串級自舉式閘極驅動器經組配以提供一高側功率開關FET之快速接通及低靜態電流消耗。一初始自舉級包括一電阻器以減小電晶體斷開期間之靜態電流消耗。一輔助自舉級包括一具有一低導通電阻之GaN FET電晶體,該電晶體由該初始自舉級驅動。該GaN FET電晶體之一源極端子經組配以為該高側功率開關FET提供一閘極驅動電壓。該GaN FET電晶體之該低導通電阻提供該高側功率開關FET之快速接通。該串級自舉式閘極驅動器中之電晶體較佳為增強模式GaN FET且可整合至一單一半導體晶粒中。

Description

串級自舉式GaN功率開關及驅動器
發明領域
本發明大體上係關於高側場效電晶體(FET)閘極驅動器,且更特定言之,係關於一種具有更快速接通及更佳效能之自舉式閘極驅動器。
發明背景
典型的高側FET閘極驅動器依賴於電荷泵電路或自舉電路以為該高側FET之閘極端子提供增大電壓。電荷泵閘極驅動器及自舉式閘極驅動器將能量儲存於電容器中,同時斷開相關高側FET且使用所儲存之能量以將大於供應電壓之電壓施加至高側FET之閘極端子,儘管高側FET之源極端子上之電壓增大仍使其保持接通。
圖1A至1B說明用於高側功率開關之習知電荷泵閘極驅動器的示意圖。在圖1A中,系統100包括電荷泵閘極驅動器170、高側功率開關電晶體185及負載190。電荷泵閘極驅動器170耦接至功率開關電晶體185之閘極端子。功率開關電晶體185之汲極端子耦接至提供供應電壓Vdd 之供應電壓源110,且功率開關電晶體185之源極端子耦接至輸出節點195之負載190。電荷泵閘極驅動器170接收控制信號CTL 105且基於CTL 105驅動功率開關電晶體185。CTL 105為邏輯高時指示功率開關電晶體185應斷開,且CTL 105為邏輯低時指示功率開關電晶體185應接通。功率開關電晶體185充當基於電荷泵閘極驅動器170及CTL 105之輸出連接負載190及供應電壓源110的閉合開關。
電荷泵閘極驅動器170包括電晶體120、135以及165,電阻器130及145,以及電容器150。電晶體120之閘極端子接收CTL 105,且電晶體120之源極端子耦接至接地節點115。電晶體120之汲極端子耦接至節點125之電阻器130。電阻器130進一步耦接至供應電壓源110。電晶體120及電阻器130構成反相器155。電容器150耦接至節點125且耦接至節點140之電晶體135之源極端子。電晶體135之閘極端子及汲極端子耦接至供應電壓源110,將電晶體135組配為二極體。電阻器145耦接至節點140之電晶體135及電容器150且耦接至節點160之電晶體165之汲極端子。電晶體165之閘極端子接收CTL 105,且電晶體165之源極端子耦接至接地節點115。功率開關電晶體185之閘極端子耦接至節點160。
回應於CTL 105為邏輯高,電晶體120及165充當閉合開關。電晶體165將功率開關電晶體185之閘極端子連接至接地端,使得功率開關電晶體185充當斷開開關且使負載190與供應電壓源110斷開連接。電容器150經由電晶體135及120由供應電壓源110充電。回應於CTL 105為邏輯低,電晶體120及165充當閉合開關。充當斷開開關之電晶體165使功率開關電晶體185與接地端115斷開連接,允許節點160上之電壓增加超過功率開關電晶體185之臨限電壓VTh 且將其接通。
功率開關電晶體185隨後充當閉合開關且將負載190連接至供應電壓源110。上拉電阻器130使得節點125上之電壓增加至大約供應電壓Vdd 。儲存於電容器150中之能量經由節點140放電,從而增加節點140上之電壓,且由此可推論節點160上之電壓大於供應電壓Vdd 。大於節點160上之Vdd 的增加電壓及功率開關電晶體185之低導通電阻隨著其源極端子上之電壓增加至大約Vdd 而使功率開關電晶體185保持接通。
在圖1B中,斷開電晶體180併入至圖1A中示出之系統100中。電晶體180之閘極端子接收CTL 105,且電晶體180之源極端子耦接至接地節點115。電晶體180之汲極端子耦接至輸出節點195。回應於CTL 105為邏輯高,電晶體180充當閉合開關,將節點195連接至接地端115且將節點195上之電壓自大約Vdd 快速減小至接地電壓。電阻器130及145可用於平衡圖1A至1B中所示之電荷泵閘極驅動器170在斷開功率開關電晶體185期間之靜態電流與接通時間長度。電阻器130及145之較大電阻減小電荷泵閘極驅動器170中之靜態電流且降低電荷泵閘極驅動器170之總功耗,以及減緩功率開關電晶體185之接通。
圖2A至2B說明用於高側功率開關之習知自舉式閘極驅動器的示意圖。在圖2A中,系統200包括自舉式閘極驅動器270、高側功率開關電晶體285及負載290。自舉式閘極驅動器270耦接至功率開關電晶體285之閘極端子。功率開關電晶體285之汲極端子耦接至提供供應電壓Vdd 之供應電壓源210,且功率開關電晶體285之源極端子耦接至輸出節點295之負載290。自舉式閘極驅動器270接收控制信號CTL 205且基於CTL 205驅動功率開關電晶體285。CTL 205為邏輯高時指示功率開關電晶體285應斷開,且CTL 205為邏輯低時指示功率開關電晶體285應接通。功率開關電晶體285充當閉合開關,基於自舉式閘極驅動器270之輸出及CTL 205將負載290連接至供應電壓源210。
自舉式閘極驅動器270包括電晶體220及235、電阻器245及電容器250。電晶體220之閘極端子接收CTL 205,且電晶體220之源極端子耦接至接地節點215。電晶體220之汲極端子耦接至在節點255之電阻器245。電阻器245進一步耦接至在節點240之電晶體235的源極端子。電晶體235之閘極端子及汲極端子耦接至供應電壓源210,將電晶體235組配為二極體。電容器250耦接在節點240與輸出節點295之間。功率開關電晶體285之閘極端子耦接至節點255。
回應於CTL 205為邏輯高,電晶體220充當將節點255連接至接地節點215之閉合開關,進而致使功率開關電晶體285斷開,且充當斷開開關並且使負載290與供應電壓源210斷開連接。電容器250經由電晶體235及電晶體220由供應電壓源210充電。回應於CTL 205為邏輯低,電晶體220充當斷開開關,使節點255與接地端215斷開連接。二極體組配之電晶體235及上拉電阻器245將節點255上之電壓增加超過功率開關電晶體185之臨限電壓VTh 且將其接通。
功率開關電晶體285隨後充當閉合開關且將負載290連接至供應電壓源210。隨著輸出節點295上之電壓增加,儲存於電容器250中之能量經由節點240、上拉電阻器245及節點255放電,其增加節點240及255上之電壓。 當輸出節點295上之電壓接近供應電壓Vdd 時,節點255上之電壓增加至大約輸出節點295上之電壓加電容器250兩端之電壓,大於供應電壓Vdd 。大於節點255上之Vdd 的增加電壓及功率開關電晶體285之低導通電阻隨著其源極端子上之電壓增加至大約Vdd 而使功率開關電晶體285保持接通。
在圖2B中,斷開電晶體280併入至圖2A中示出之系統200中。電晶體280之閘極端子接收CTL 205,且電晶體280之源極端子耦接至接地節點215。電晶體280之汲極端子耦接至輸出節點295。回應於CTL 205為邏輯高,電晶體280充當閉合開關,將輸出節點295連接至接地端215且將節點295上之電壓自大約Vdd 快速減小至接地電壓。類似於圖1A至1B中所示之電荷泵閘極驅動器170,圖2A至2B中所示之自舉式閘極驅動器270使用電阻器245來平衡在斷開功率開關電晶體285期間之靜態電流與接通時間長度。電阻器245之較大電阻減小自舉式閘極驅動器270中之靜態電流且降低自舉式閘極驅動器270之總功耗,以及減緩功率開關電晶體285之接通。
發明概要
本發明藉由提供併入有氮化鎵(GaN) FET電晶體開關之串級自舉式閘極驅動器來解決上文所論述之習知自舉式閘極驅動器的缺點,該等電晶體開關減小串級自舉式閘極驅動器之電阻且加速由串級自舉式閘極驅動器驅動之相關功率開關之接通。
本發明如本文所描述包含連接至輔助自舉級之初始自舉級。初始級包含連接至電阻器且經組配以接收控制信號之第一GaN FET。電阻器進一步連接至經組配為二極體且連接至供應電壓源的第二GaN FET。第一電容器連接至電阻器及第二GaN FET,且連接至輔助自舉級。輔助自舉級包含連接至第一電容器之第三GaN FET及第四GaN FET,且經組配以接收控制信號。第四GaN FET進一步連接至第一GaN FET及電阻器,且連接至組配為二極體且連接至供應電壓源的第五GaN FET。
第二電容器連接至第四及第五GaN FET,且連接至由串級自舉式閘極驅動器驅動之功率開關電晶體之源極端子。功率開關電晶體之閘極端子連接至第三及第四GaN FET。串級自舉式閘極驅動器中之GaN FET小於功率開關電晶體且允許第一電容器具有比第二電容器更低的電容。GaN FET之降低導通電阻加速接通時間且使電阻器能夠具有更大的電阻且降低靜態電流消耗,從而提高串級自舉式閘極驅動器之效能而不影響接通時間。
在GaN FET之最大閘極至源極電壓小於供應電壓源之電壓減GaN FET之臨限電壓的另一實施例中,第一電容器經耦接至功率開關電晶體之源極端子。
本文中所描述之上述以及其他較佳特徵,包括實施方案以及元件組合之各種新穎細節現將參考隨附圖式更具體地描述並在申請專利範圍中指出。應理解,特定方法以及裝置僅藉助於說明展示且並不作為申請專利範圍之限制。如熟習此項技術者將瞭解,可在不同及諸多實施例中採用本文中教示之原理以及特徵而不背離申請專利範圍之範疇。
較佳實施例之詳細說明
在以下詳細描述中,參考某些實施例。此等實施例經足夠詳細地描述以使熟習此項技術者能夠實踐該等實施例。應理解,可利用其他實施例且可進行各種結構、邏輯及電氣改變。以下詳細描述中揭露之特徵的組合可能在最廣泛意義上不必實踐教示,而僅為了具體地描述本發明教示之代表性實例而教示。
圖3說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器390。系統300包括串級自舉式閘極驅動器390、斷開電晶體392、高側功率開關電晶體394及負載396。斷開電晶體392及功率開關電晶體394較佳地為增強模式GaN FET半導體裝置,其連同串級自舉式閘極驅動器390單片地整合於單一半導體晶粒上。由於GaN FET能夠攜載較大電流、負載高電壓,且比習知電晶體更快速地切換,所以斷開電晶體392及功率開關電晶體394能夠使系統300提供比實施其他電晶體(諸如MOSFET)之類似系統更快的接通及斷開時間。
串級自舉式閘極驅動器390耦接至功率開關電晶體394之閘極端子。功率開關電晶體394之汲極端子耦接至提供供應電壓Vdd 之供應電壓源310,且功率開關電晶體394之源極端子耦接至在輸出節點398之負載396。串級自舉式閘極驅動器390接收控制信號CTL 305且基於CTL 305驅動功率開關電晶體394。CTL 305為邏輯高時指示功率開關電晶體394應斷開,且CTL 305為邏輯低時指示功率開關電晶體394應接通。
功率開關電晶體394充當閉合開關,基於串級自舉式閘極驅動器390之輸出及CTL 305將負載396連接至供應電壓源310。斷開電晶體392之汲極端子耦接至輸出節點398,且斷開電晶體392之源極端子耦接至接地節點315。斷開電晶體392之閘極端子接收控制信號CTL 305。回應於CTL 305為邏輯高,斷開電晶體392充當將輸出節點398連接至接地端315之閉合開關,從而將輸出節點398上之電壓自大約Vdd 加速減小至接地電壓。
串級自舉閘極驅動器390包括初始自舉級350及輔助自舉級385。初始自舉級350包括電晶體320及335、電阻器330及電容器345。輔助自舉級385包括電晶體355、365以及375及電容器380。電晶體320、335、355、365及375較佳地為增強模式GaN FET半導體裝置,該等電晶體連同系統300之其他組件單片地整合至單一半導體晶粒上。如本文先前關於斷開電晶體392及功率開關電晶體394所描述,GaN FET比習知電晶體更快速地切換且允許串級自舉式閘極驅動器390比實施其他電晶體(諸如MOSFET)之類似系統更快速地接通及斷開功率開關電晶體394。電晶體320、335、355、365、375、392及394具有大約相同的臨限電壓VTh 及大約相同的最大閘極至源極電壓VGS (MAX ) ,其大於Vdd -VTh
在初始自舉級350中,電晶體320之閘極端子接收CTL 305,且電晶體320之源極端子耦接至接地節點315。電晶體320之汲極端子耦接至在節點325之電阻器330。電阻器330進一步耦接至在節點340之電晶體335之源極端子。電晶體335之閘極端子及汲極端子耦接至供應電壓源310,將電晶體335組配為二極體。電容器345耦接至節點340及輔助自舉級385中之節點360。
輔助自舉級385類似於初始自舉級350但用電晶體365代替電阻器330。選擇電晶體365小於功率開關電晶體394,且電晶體365之閘極端子由初始自舉級350驅動。電晶體355之閘極端子接收CTL 305,且電晶體355之源極端子耦接至接地節點315。電晶體355之汲極端子連接至在節點360之電晶體365之源極端子。電晶體365之閘極端子耦接至初始自舉級350中之節點325,且電晶體365之汲極端子耦接至在節點370之電晶體375之源極端子。電晶體375之閘極端子及汲極端子耦接至供應電壓源310,將電晶體375組配為二極體。電容器380耦接至輸出節點398。功率開關電晶體394之閘極端子耦接至節點360。
回應於CTL 305為邏輯高,電晶體320、355及392充當閉合開關。充當閉合開關之電晶體320將節點325連接至接地端315,從而減小節點325上之電壓。充當閉合開關之電晶體355將節點360連接至接地端315,從而減小節點360上之電壓。在電晶體365之閘極端子處的節點325及在電晶體365之源極端子處的節點360上之遞減電壓使電晶體365斷開。充當閉合開關之斷開電晶體392將輸出節點398連接至接地端315,從而減小輸出節點398上之電壓。在功率開關電晶體394之閘極端子處的節點360及在功率開關電晶體394之源極端子處的輸出節點398上之遞減電壓使功率開關電晶體394斷開,從而使負載396與供應電壓源310斷開連接。來自供應電壓源310之能量經由二極體連接之電晶體335及電晶體355儲存於電容器345中。類似地,來自供應電壓源310之能量經由二極體連接之電晶體375及斷開電晶體392儲存於電容器380中。電容器345及380兩端之電壓增加至大約Vdd -VTh ,此係由於臨限電壓分別在二極體連接之電晶體335或375兩端下降。靜態電流僅經由電阻器330及電晶體335及320來汲取。
回應於CTL 305為邏輯低,電晶體320、355及392充當斷開開關。充當斷開開關之電晶體392使輸出節點398與接地端315斷開連接,從而允許節點398上之電壓增加。充當斷開開關之電晶體320使節點325與接地端315斷開連接。節點340上之初始電壓約等於Vdd -VTh ,此係由於臨限電壓在電晶體335兩端下降,且經由電阻器330增加節點325上之電壓。當節點325上之電壓增加大於VTh 時,接通電晶體365。充當斷開開關之電晶體355使節點360與接地端315斷開連接,從而允許節點360上之電壓在電晶體365接通時增加且電流經由電晶體375及365自供應電壓源310流動至節點360。當節點360上之電壓增加大於VTh 時,接通功率開關電晶體394。功率開關電晶體394隨後充當閉合開關且將負載396連接至供應電壓源310。隨著輸出節點398上之電壓增加,儲存於電容器380中之能量按比例地增加節點370上之電壓,以使得節點370上之電壓約等於輸出節點398上之電壓加Vdd -VTh 。由於電晶體365接通,節點360上之電壓實質上等於節點370上之電壓且與輸出節點398上之電壓增加成比例的增加。隨著節點360上之電壓增加,儲存於電容器345中之能量按比例地增加節點340上之電壓,以使得節點340上之電壓約等於節點340上之電壓加Vdd -VTh 。節點340上之電壓增加經由電阻器330增加節點325上之電壓。在電晶體365之閘極端子處的節點325上之電壓增加使其隨著其源極端子處的節點360上之電壓增加而保持接通。使電晶體365保持接通使節點370及節點360保持耦接至一起,以使得功率開關電晶體394之VGS 大致上等於電容器380兩端之電壓且功率開關電晶體394隨著其源極端子處的輸出節點398上之電壓增加至供應電壓Vdd 仍保持接通。未汲取到靜態電流。
回應於CTL 305為邏輯低且充當閉合開關之電晶體365將節點370及節點360耦接在一起,電容器380上之電荷再分配於電容器380與電晶體394之閘極至源極電容之間,進而減小電容器380兩端之電壓。因此,回應於CTL 305為邏輯高,電晶體394之VGS 小於電容器380兩端之初始電壓。在一些實施例中,電容器380具有比電晶體394之閘極至源極電容大約大九倍之電容以維持電容器380上之初始充電電壓的大約90%以使得足夠第VGS 應用於電晶體394。由於電晶體365小於功率開關電晶體394,電容器345可小於電容器380。輔助自舉級385中之電晶體365加速功率開關電晶體394之接通,此係由於電晶體365之接通電阻比圖2A至2B中所示之自舉式閘極驅動器270中的電阻器245之電阻小得多。此外,由於電晶體365之尺寸較小,電阻器330可較大且減小更多的靜態電流而對電晶體365之接通時間之影響較小,且由此可推論功率開關電晶體394之接通時間。
圖4說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器490,其包括多個(N個)自舉級。串級自舉式閘極驅動器490類似於圖3中所示之串級自舉式閘極驅動器390,但包括N-1個輔助自舉級485A-485N-1。各電晶體465由前述自舉級驅動,例如電晶體465A由自舉級485B驅動。接通功率開關電晶體494之延遲時間隨著自舉級之數目N增加。
各電晶體465小於後續自舉級485中之電晶體465。舉例而言,電晶體465B小於電晶體465A,其二者均小於功率開關電晶體494。類似地,各電容器480小於後續自舉級485中之電容器480。舉例而言,電容器480B具有比電容器480A更小的電容。初始自舉級450可包括唯一電阻器430,其可能極大以回應於CTL 405為邏輯高且功率開關電晶體494經斷開而減小靜態電流。
圖5說明根據本發明之第二實施例的用於高側功率開關之串級自舉式閘極驅動器590,其中供應電壓VddH 大於電晶體之最大閘極至源極電壓評定值VGS (MAX ) 。在此實例中,VddH 大於三倍電晶體之臨限電壓VTh 且小於2VGS (MAX ) +VTh 。裝置500包括串級自舉式閘極驅動器590、高側功率開關電晶體594、斷開電晶體592及負載596。斷開電晶體592及功率開關電晶體594較佳地為增強模式GaN FET半導體裝置,其與串級自舉式閘極驅動器590單片地整合於單一半導體晶粒上。由於GaN FET能夠攜載較大電流、負載高電壓,且比習知電晶體更快速地切換,所以斷開電晶體592及功率開關電晶體594能夠使系統500提供比實施其他電晶體(諸如MOSFET)之類似系統更快的接通及斷開時間。斷開電晶體592、功率開關電晶體594及串級自舉式閘極驅動器590中之電晶體具有基本上相同的臨限電壓VTh 及基本上相同第VGS (MAX )
串級自舉式閘極驅動器590類似於圖3中所示之串級自舉式閘極驅動器390,但電容器545耦接在節點540與輸出節點598之間,不同於耦接在節點340與節點360之間的電容器345。由於電容器545耦接至輸出節點598而非節點560,所以節點540上之電壓與輸出節點598上之電壓相關聯,而非與節點560上之電壓相關聯。因此,節點540上之電壓基於節點598上之電壓及功率開關電晶體594之源極端子上之電壓增加。回應於CTL 505為邏輯高電容器545兩端之初始電壓再分配於電容器545與電晶體565及電晶體594之串聯閘極至源極電容之間。節點525與輸出節點598之間的所得電壓經劃分為二個閘極至源極電壓,亦即電晶體565之閘極至源極電壓及功率開關電晶體594之閘極至源極電壓,而非僅一個。額外的電壓劃分確保節點560及598上之電壓之間的差值不超出VGS (MAX ) 。此外,由於節點560及電容器545未耦接至一起,所以節點560上之電壓由充當驅動功率開關電晶體594之源極隨耦器的電晶體565驅動,且輸出節點598上之電壓增加至大約VddH
回應於CTL 505為邏輯高,電晶體520、555及592充當閉合開關。充當閉合開關之電晶體520將節點525連接至接地端515,從而減小節點525上之電壓。充當閉合開關之電晶體555將節點560連接至接地端515,從而減小節點560上之電壓。在電晶體565之閘極端子處的節點525及在電晶體565之源極端子處的節點560上之遞減電壓使電晶體565斷開。充當閉合開關之斷開電晶體592將輸出節點598連接至接地端515,從而減小輸出節點598上之電壓。在功率開關電晶體594之閘極端子處的節點560及在功率開關電晶體594之源極端子處的輸出節點598上之遞減電壓使功率開關電晶體594斷開,從而使負載596與供應電壓源510斷開連接。來自供應電壓源510之能量經由二極體連接之電晶體535及電晶體592儲存於電容器545中。類似地,來自供應電壓源510之能量經由二極體連接之電晶體575電晶體592儲存於電容器580中。電容器545及580兩端之電壓增加至大約Vdd -VTh ,此係由於臨限電壓分別在二極體連接之電晶體535或575兩端下降。靜態電流僅經由電阻器530及電晶體535及520來汲取。
回應於CTL 505為邏輯低,電晶體520、555及592充當斷開開關。充當斷開開關之電晶體592使輸出節點598與接地端515斷開連接且允許節點598上之電壓增加。充當斷開開關之電晶體520使節點525與接地端515斷開連接。節點540上之初始電壓約等於Vdd -VTh ,此係由於臨限電壓在電晶體535兩端下降,且經由電阻器530增加節點525上之電壓。當節點525上之電壓增加大於VTh 時,接通電晶體565。充當斷開開關之電晶體555使節點560與接地端515斷開連接,從而允許節點560上之電壓在電晶體565接通時增加且電流經由電晶體575及565自供應電壓源510流動至節點560。當節點560上之電壓增加大於VTh 時,接通功率開關電晶體594。功率開關電晶體594隨後充當閉合開關且將負載596連接至供應電壓源510。隨著輸出節點598上之電壓增加,儲存於電容器580及545中之能量按比例地增加節點570及540上之電壓,以使得節點570及540上之電壓約等於輸出節點598上之電壓加VddH -VTh 。節點540上之電壓增加經由電阻器530增加節點525上之電壓。電容器545兩端之電壓約等於電晶體565之VGS 加電晶體594之VGS 。因此,回應於CTL 505為邏輯高,電容器545兩端之初始電壓約等於VddH -VTh ,且劃分在二個閘極至源極電壓(電晶體565及594之閘極至源極電壓)中,以使得電晶體565及594之閘極至源極電壓並不超出VGS (MAX ) 。在電晶體565之閘極端子處的節點525上之電壓增加隨著在其源極端子處的節點560上之電壓增加使其保持接通,此使得電晶體565充當源極隨耦器且允許儲存於電容器580中之電荷增加節點560上之電壓。節點560上之電壓與節點525上之電壓按比例地增加,其繼而與輸出節點598上之電壓按比例地增加,進而隨著在其源極端子處的輸出節點598上之電壓增加至大約VddH 使電晶體594保持接通,且負載596連接至供應電壓510。
電晶體520、535、555、565及575較佳地為增強模式GaN FET半導體裝置,該等電晶體連同系統500之其他組件單片地整合至單一半導體晶粒上。如本文先前關於斷開電晶體592及功率開關電晶體594所描述,GaN FET比習知電晶體更快速地切換且允許串級自舉式閘極驅動器590比實施其他電晶體(諸如MOSFET)之類似系統更快速地接通及斷開功率開關電晶體594。類似於圖3中所示之串級自舉式閘極驅動器390中之電阻器330,由於電晶體565相比於功率開關電晶體594之尺寸更小,串級自舉式閘極驅動器590中之電阻器530可具有更大的電阻且減小更多的靜態電流而對電晶體565之接通時間之影響較小,且由此可推論功率開關電晶體594之接通時間。
圖6說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器690,其包括多個(N個)自舉級。串級自舉式閘極驅動器690類似於圖5中所示之串級自舉式閘極驅動器590,但包括N-1個輔助自舉級685A-685N-1。在此實例中,供應電壓VddH 大於系統600中之電晶體之最大閘極至源極電壓評定值VGS (MAX ) 。VddH 大於(N+1)VTh 且小於NVGS (MAX ) +VTh 。接通功率開關電晶體694之延遲時間隨著自舉級之數目N增加。
各電晶體665由前述自舉級驅動。舉例而言,電晶體665A由自舉級686B驅動。各電晶體665小於後續自舉級685中之電晶體665。舉例而言,電晶體665B小於電晶體665A,其二者均小於功率開關電晶體694。類似地,各電容器680小於後續自舉級685中之電容器680。舉例而言,電容器680B小於電容器680A。初始自舉級650可包括唯一電阻器630,其可能極大以回應於CTL 605為邏輯高且功率開關電晶體694經斷開而減小靜態電流。
以上描述及圖式僅被認為達成本文中所描述之特徵及優點的特定實施例的說明。可對特定製程條件作出修改及替代。因此,本發明之實施例不被視為受前述描述及圖式限制。
100、200、300、400、500、600:系統 105、205、305、405、505、605:控制信號CTL 110、210、310、410、510、610:供應電壓源 115、215、315、415、515、615:接地節點/接地端 120、135、165、220、235、320、335、355、365、375、420、435、455A、455B、465、465A、465B、475A、475B、520、535、555、565、575、620、635、655A、655B、665、665A、665B、675A、675B:電晶體 125、140、160、195、240、255、325、340、360、370、425、440、460A、460B、470A、470B、525、540、560、570、625、640、660A、660B、670A、670B:節點 130、145、245、330、430、530、630:電阻器 150、250、345、380、480、480A、480B、545、580、645、680、680A、680B:電容器 155:反相器 170:電荷泵閘極驅動器 180、280、392、492、592、692:斷開電晶體 185、285、394、494、594、694:高側功率開關電晶體 190、290、396、496、596、696:負載 270:自舉式閘極驅動器 295、398、498、598、698:輸出節點 350、450、550、650:初始自舉級 385、485、485A、585B、585、685、685A、685B:輔助自舉級 390、490、590、690:串級自舉式閘極驅動器
根據下文結合圖式所闡述之詳細描述,本揭露內容之特徵、目標及優點將變得更顯而易見,在該等圖式中,相似元件符號始終對應地識別且其中:
圖1A至1B說明用於高側功率開關之習知電荷泵閘極驅動器的示意圖。
圖2A至2B說明用於高側功率開關之習知自舉式閘極驅動器的示意圖。
圖3說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器。
圖4說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器,其包括N個自舉級。
圖5說明根據本發明之第二實施例的用於高側功率開關之串級自舉式閘極驅動器,其中供應電壓大於高側功率開關之最大閘極至源極電壓評定值。
圖6說明根據本發明之第一實施例的用於高側功率開關之串級自舉式閘極驅動器,其包括N個自舉級。
300:系統
305:控制信號CTL
310:供應電壓源
315:接地節點/接地端
320、335、355、365、375:電晶體
325、340、360、370:節點
330:電阻器
345、380:電容器
350:初始自舉級
385:輔助自舉級
390:串級自舉式閘極驅動器
392:斷開電晶體
394:高側功率開關電晶體
396:負載
398:輸出節點

Claims (16)

  1. 一種用於高側功率電晶體之串級自舉式閘極驅動器,該高側功率電晶體具有連接至一供應電壓的一汲極端子、連接至一輸出的一源極端子、及一閘極端子,該串級自舉式閘極驅動器包含:一初始自舉級,其包含有包括一自舉電容器、及用以減少靜態電流消耗之一電阻器的一電路;以及至少一輔助自舉級,其包含有該初始自舉級之該電路,但包括代替該初始自舉級中之該電阻器的一電晶體;其中該初始自舉級提供一第一驅動電壓給該輔助自舉級,以及該輔助自舉級提供一第二驅動電壓給該高側功率電晶體之該閘極端子,其中該第二驅動電壓大於該第一驅動電壓。
  2. 如請求項1之串級自舉式閘極驅動器,其中該初始自舉級包含:一第一氮化鎵(GaN)場效電晶體(FET),其具有連接至一輸入節點之一閘極端子、連接至接地端之一源極端子、以及一連接至一第一節點之一汲極端子;一電阻器,其具有連接至該第一節點的一第一端子、及連接至一第二節點的一第二端子;一第二GaN FET,其具有連接至該第二節點之一源極端子、及一起連接至該供應電壓的一閘極端子與一汲極端子;以及一第一電容器,其具有連接至該第二節點的一第 一端子、及連接至該高側功率電晶體之該閘極端子的一第二端子,其中該第一電容器包含該初始自舉級的該自舉電容器;以及其中該輔助自舉級包含:一第三GaN FET,其具有連接至該輸入節點之一閘極端子、連接至接地端的一源極端子、以及連接至該高側功率電晶體的該閘極端子之一汲極端子;一第四GaN FET,其具有連接至該第一節點之一閘極端子、連接至該高側功率電晶體的該閘極端子之一源極端子、以及連接至一第三節點之一汲極端子,其中該第四GaN FET包含有取代該初始自舉級中的該電阻器之該電晶體;一第五GaN FET,其具有連接至該第三節點之一源極端子、及一起連接至該供應電壓的一閘極端子與一汲極端子;以及一第二電容器,其具有連接至該第三節點的一第一端子、及連接至該輸出的一第二端子,其中該第二電容器包含該輔助自舉級的該自舉電容器。
  3. 如請求項2之串級自舉式閘極驅動器,其中該等第一、第二、第三、第四以及第五GaN FET為增強模式GaN FET。
  4. 如請求項2之串級自舉式閘極驅動器,其中該供應電壓小於該等第一、第二、第三、第四以及第五GaN FET之一最大閘極至源極電壓額定值加該等GaN FET之一臨界電壓。
  5. 如請求項2之串級自舉式閘極驅動器,其中該第四GaN FET小於該高側功率電晶體。
  6. 如請求項1之串級自舉式閘極驅動器,其進一步包含連接在該輔助自舉級與該高側功率電晶體之間的至少一個額外輔助自舉級,其中該額外輔助自舉級包含該輔助自舉級的該電路,其中該輔助自舉級提供該第二驅動電壓給該額外輔助自舉級,且該額外輔助自舉級提供一額外第二驅動電壓給該高側功率電晶體之該閘極端子,其中該額外第二驅動電壓大於該第二驅動電壓。
  7. 如請求項6之串級自舉式閘極驅動器,其中該額外輔助自舉級包含:一額外第三GaN FET,其具有連接至該輸入節點之一閘極端子、連接至接地端之一源極端子、以及連接至該高側功率電晶體之該閘極端子的一汲極端子;一額外第四GaN FET,其具有連接至該第三GaN FET之該汲極端子與該第四GaN FET之該源極端子的一閘極端子、連接至該高側功率電晶體之該閘極端子的一源極端子、以及連接至一第四節點的一汲極端子,其中該額外第四GaN FET包含取代該初始自舉級中的該電阻器之該電晶體;一額外第五GaN FET,其具有連接至該第四節點的一源極端子、以及一起連結至該供應電壓的一閘極端子與一汲極端子;以及 一額外第二電容器,其具有連接至該第四節點的一第一端子、以及連接至該輸出的一第二端子,其中該額外第二電容器包含該額外輔助自舉級的該自舉電容器。
  8. 如請求項7之串級自舉式閘極驅動器,其中該額外第四GaN FET小於該高側功率電晶體,其中該第四GaN FET小於該額外第四GaN FET,且其中該第二電容器小於該額外第二電容器。
  9. 如請求項1之串級自舉式閘極驅動器,其中該初始自舉級包含:一第一氮化鎵(GaN)場效電晶體(FET),其具有連接至一輸入節點之一閘極端子、連接至接地端之一源極端子、以及連接至一第一節點之一汲極端子;一電阻器,其具有連接至該第一節點的一第一端子、及連接至一第二節點的一第二端子;一第二GaN FET,其具有連接至該第二節點之一源極端子、及一起連接至該供應電壓的一閘極端子與一汲極端子;以及一第一電容器,其具有連接至該第二節點的一第一端子、及連接至該輸出的一第二端子,其中該第一電容器包含該初始自舉級的該自舉電容器;以及其中該輔助自舉級包含:一第三GaN FET,其具有連接至該輸入節點之一閘極端子、連接至接地端的一源極端子、以及連接至 該高側功率電晶體的該閘極端子之一汲極端子;一第四GaN FET,其具有連接至該第一節點之一閘極端子、連接至該高側功率電晶體的該閘極端子之一源極端子、以及連接至一第三節點之一汲極端子,其中該額外第四GaN FET包含取代該初始自舉級中的該電阻器之該電晶體;一第五GaN FET,其具有連接至該第三節點之一源極端子、及一起連接至該供應電壓的一閘極端子與一汲極端子;以及一第二電容器,其具有連接至該第三節點的一第一端子、及連接至該輸出的一第二端子,其中該第二電容器包含該輔助自舉級的該自舉電容器。
  10. 如請求項9之串級自舉式閘極驅動器,其中該等第一、第二、第三、第四以及第五GaN FET為增強模式GaN FET。
  11. 如請求項9之串級自舉式閘極驅動器,其中該供應電壓小於該等GaN FET之一最大閘極至源極電壓額定值之N倍加該等GaN FET之一臨界電壓、且大於該等GaN FET之該臨界電壓之(N+1)倍,其中N表示該串級自舉式閘極驅動器中之級數。
  12. 如請求項9之串級自舉式閘極驅動器,其中該第一電容器兩端的一電壓經劃分為該第四GaN FET之一閘極至源極電壓、及該高側功率電晶體之一閘極至源極電壓。
  13. 如請求項9之串級自舉式閘極驅動器,其中該第四GaN FET小於該高側功率電晶體。
  14. 如請求項9之串級自舉式閘極驅動器,其進一步包含連接在該輔助自舉級與該高側功率電晶體之間的至少一個額外輔助自舉級,其中該額外輔助自舉級包含該輔助自舉級的該電路,其中該輔助自舉級提供該第二驅動電壓給該額外輔助自舉級,且該額外輔助自舉級提供一額外第二驅動電壓給該高側功率電晶體之該閘極端子,其中該額外第二驅動電壓大於該第二驅動電壓。
  15. 如請求項14之串級自舉式閘極驅動器,其中該額外輔助自舉級包含:一額外第三GaN FET,其具有連接至該輸入節點之一閘極端子、連接至接地端之一源極端子、以及連接至該高側功率電晶體之該閘極端子的一汲極端子;一額外第四GaN FET,其具有連接至該第三GaN FET之該汲極端子與該第四GaN FET之該源極端子的一閘極端子、連接至該高側功率電晶體之該閘極端子的一源極端子、以及連接至一第四節點的一汲極端子,其中該額外第四GaN FET包含取代該初始自舉級中的該電阻器之該電晶體;一額外第五GaN FET,其具有連接至該第四節點的一源極端子、及一起連接至該供應電壓的一閘極端子與一汲極端子;以及一額外第二電容器,其具有連接至該第四節點的一第 一端子、及連接至該輸出的一第二端子,其中該額外第二電容器包含該額外輔助自舉級的該自舉電容器。
  16. 如請求項15之串級自舉式閘極驅動器,其中該額外第四GaN FET小於該高側功率電晶體,其中該第四GaN FET小於該額外第四GaN FET,且其中該第二電容器小於該額外第二電容器。
TW108130665A 2018-08-28 2019-08-27 串級自舉式GaN功率開關及驅動器 TWI732280B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862723864P 2018-08-28 2018-08-28
US62/723,864 2018-08-28

Publications (2)

Publication Number Publication Date
TW202025632A TW202025632A (zh) 2020-07-01
TWI732280B true TWI732280B (zh) 2021-07-01

Family

ID=69640254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108130665A TWI732280B (zh) 2018-08-28 2019-08-27 串級自舉式GaN功率開關及驅動器

Country Status (7)

Country Link
US (1) US10790811B2 (zh)
EP (1) EP3844875A4 (zh)
JP (1) JP2021535703A (zh)
KR (1) KR20210053314A (zh)
CN (1) CN113196662A (zh)
TW (1) TWI732280B (zh)
WO (1) WO2020047125A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715137B2 (en) * 2017-10-23 2020-07-14 Taiwan Semiconductor Manufacturing Company Limited Generating high dynamic voltage boost
FR3104862B1 (fr) * 2019-12-12 2022-06-24 Commissariat Energie Atomique Dispositif de commande d’interrupteur
CN111583882A (zh) * 2020-05-21 2020-08-25 深圳市华星光电半导体显示技术有限公司 阵列基板以及显示面板
US20220197844A1 (en) * 2020-12-23 2022-06-23 Intel Corporation Bootstrapping circuit, sampling apparatuses, receiver, base station, mobile device and method of operating a bootstrapping circuit
WO2023107906A1 (en) 2021-12-08 2023-06-15 Efficient Power Conversion Corporation Multi-voltage bootstrapping drivers
WO2023107885A1 (en) 2021-12-08 2023-06-15 Efficient Power Conversion Corporation Active bootstrapping drivers
WO2023107917A1 (en) 2021-12-10 2023-06-15 Efficient Power Conversion Corporation Pre-driven bootstrapping drivers
TW202401962A (zh) 2022-06-29 2024-01-01 美商高效電源轉換公司 通用功率場效電晶體(fet)驅動器積體電路(ic)架構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160105175A1 (en) * 2014-10-10 2016-04-14 Rohm Co., Ltd. Power semiconductor drive circuit, power semiconductor circuit, and power module circuit device
WO2017190652A1 (en) * 2016-05-04 2017-11-09 The Hong Kong University Of Science And Technology Power device with integrated gate driver
US20170346475A1 (en) * 2016-05-25 2017-11-30 Efficient Power Conversion Corporation Enhancement mode fet gate driver ic

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2324664B (en) * 1997-04-23 2001-06-27 Int Rectifier Corp Resistor in series with bootstrap diode for monolithic gate device
US6717459B2 (en) 2002-02-21 2004-04-06 Micron Technology, Inc. Capacitor charge sharing charge pump
WO2007013010A2 (en) 2005-07-26 2007-02-01 Koninklijke Philips Electronics N.V. A multiple input circuit
US7948220B2 (en) * 2007-04-11 2011-05-24 International Rectifier Corporation Method and apparatus to reduce dynamic Rdson in a power switching circuit having a III-nitride device
CN202094794U (zh) * 2011-05-18 2011-12-28 南京博兰得电子科技有限公司 一种自举型门极驱动控制电路
KR101939662B1 (ko) * 2011-06-14 2019-01-18 인피니언 테크놀로지스 오스트리아 아게 전력 트랜지스터 게이트 드라이버
US8593211B2 (en) * 2012-03-16 2013-11-26 Texas Instruments Incorporated System and apparatus for driver circuit for protection of gates of GaN FETs
US9171738B2 (en) * 2012-12-18 2015-10-27 Infineon Technologies Austria Ag Systems and methods for integrating bootstrap circuit elements in power transistors and other devices
US9007103B2 (en) * 2013-08-01 2015-04-14 Infineon Technologies Austria Ag Switch circuit arrangements and method for powering a driver circuit
US9859732B2 (en) * 2014-09-16 2018-01-02 Navitas Semiconductor, Inc. Half bridge power conversion circuits using GaN devices
US9667245B2 (en) * 2014-10-10 2017-05-30 Efficient Power Conversion Corporation High voltage zero QRR bootstrap supply
CN105976775B (zh) * 2016-05-18 2019-01-15 武汉华星光电技术有限公司 基于ltps半导体薄膜晶体管的goa电路
US10050621B2 (en) * 2016-09-29 2018-08-14 Taiwan Semiconductor Manufacturing Company Limited Low static current semiconductor device
KR102236287B1 (ko) * 2016-12-01 2021-04-07 이피션트 파워 컨버젼 코퍼레이션 GaN 트랜지스터 기반 파워 컨버터를 위한 부트스트랩 커패시터 과전압 관리 회로

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160105175A1 (en) * 2014-10-10 2016-04-14 Rohm Co., Ltd. Power semiconductor drive circuit, power semiconductor circuit, and power module circuit device
WO2017190652A1 (en) * 2016-05-04 2017-11-09 The Hong Kong University Of Science And Technology Power device with integrated gate driver
US20170346475A1 (en) * 2016-05-25 2017-11-30 Efficient Power Conversion Corporation Enhancement mode fet gate driver ic

Also Published As

Publication number Publication date
US10790811B2 (en) 2020-09-29
EP3844875A1 (en) 2021-07-07
TW202025632A (zh) 2020-07-01
CN113196662A (zh) 2021-07-30
WO2020047125A1 (en) 2020-03-05
JP2021535703A (ja) 2021-12-16
US20200076415A1 (en) 2020-03-05
EP3844875A4 (en) 2022-08-17
KR20210053314A (ko) 2021-05-11

Similar Documents

Publication Publication Date Title
TWI732280B (zh) 串級自舉式GaN功率開關及驅動器
TWI641218B (zh) 增強模式fet閘極驅動器ic
US7889002B2 (en) Power amplifier
US8629706B2 (en) Power switch and operation method thereof
US8860472B2 (en) Power switch driving circuits and switching mode power supply circuits thereof
TW201338365A (zh) 上橋驅動電路
US20120229189A1 (en) High speed level shifters and method of operation
US10666137B2 (en) Method and circuitry for sensing and controlling a current
WO2023134381A1 (zh) 开关电源电路及终端设备
JPWO2015182175A1 (ja) ドライバ回路
US11038503B2 (en) GaN driver using active pre-driver with feedback
US10523197B2 (en) Switch circuit, corresponding device and method
US20230179203A1 (en) Active bootstrapping drivers
US11303277B2 (en) Voltage level shifter
US20230179195A1 (en) Multi-voltage bootstrapping drivers
US10715138B1 (en) Open drain driver circuit
US20230188127A1 (en) Pre-driven bootstrapping drivers
US11606030B1 (en) Driver for driving a p-type power switch