TWI729631B - Method for measuring impedance - Google Patents

Method for measuring impedance Download PDF

Info

Publication number
TWI729631B
TWI729631B TW108146310A TW108146310A TWI729631B TW I729631 B TWI729631 B TW I729631B TW 108146310 A TW108146310 A TW 108146310A TW 108146310 A TW108146310 A TW 108146310A TW I729631 B TWI729631 B TW I729631B
Authority
TW
Taiwan
Prior art keywords
value
under test
voltage
device under
test
Prior art date
Application number
TW108146310A
Other languages
Chinese (zh)
Other versions
TW202124977A (en
Inventor
杜嘉豪
吳健銘
黃志忠
童恒進
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW108146310A priority Critical patent/TWI729631B/en
Application granted granted Critical
Publication of TWI729631B publication Critical patent/TWI729631B/en
Publication of TW202124977A publication Critical patent/TW202124977A/en

Links

Images

Abstract

The invention discloses a method for measuring impedance of a device under test, briefly named DUT. In a first mode, a first end of the DUT is powered the cross voltage of the DUT is measured by the first testing module to obtain a first voltage value, and the current flow through the DUT is measured by the second testing module to obtain a first current value. In a second mode, a second end of the DUT is powered, the cross voltage of the DUT is measured by the second testing module to obtain a second voltage value, and the current flow through the DUT is measured by the first testing module to obtain a second current value. A real impedance value of the DUT is calculated according to the first voltage value , the second voltage value, the first current value, and the second current value.

Description

阻抗量測方法Impedance measurement method

本發明係關於一種量測方法,特別是關於一種待測元件的阻抗量測方法。The present invention relates to a measurement method, in particular to an impedance measurement method of a component under test.

為了因應待測元件具多腳位及功能越來越複雜的趨勢,測試裝置已經逐漸採用具備更大彈性的多通道量測架構。例如,測試裝置為了支援高同測功能(high parallel test),可以採用任意針腳(any pin)的量測架構。也就是說,不論待測元件如何連接到測試裝置的針腳,測試裝置都可以經由內部的不同量測電路取得電子元件的電壓、電流或者其他的電性參數。藉此,有彈性的多通道量測架構可以增加使用者的操作便利性,並且可以提高產品的競爭力。In order to cope with the trend that the device under test has multiple pins and more and more complex functions, testing devices have gradually adopted a multi-channel measurement architecture with greater flexibility. For example, in order to support the high parallel test function, the test device can adopt any pin measurement structure. In other words, no matter how the device under test is connected to the pins of the test device, the test device can obtain the voltage, current or other electrical parameters of the electronic component through different internal measurement circuits. In this way, the flexible multi-channel measurement architecture can increase the user's operating convenience and can improve the competitiveness of the product.

然而,由不同的量測電路取得電子元件的電壓、電流或者其他的電性參數,實際上會遇到一些問題。舉例來說,量測電路可能因為內部元件的偏差、老化或者環境因素(如溫度與濕度),而產生量測上的誤差。特別是,不同的量測電路在誤差的程度上很有可能並不相同,從而導致誤差無法在計算時被抵銷。因此,業界需要一種新的量測方法,以解決不同量測線路取得的電壓與電流存在誤差的問題。However, obtaining the voltage, current or other electrical parameters of electronic components by different measurement circuits will actually encounter some problems. For example, the measurement circuit may cause measurement errors due to internal component deviation, aging, or environmental factors (such as temperature and humidity). In particular, the degree of error in different measurement circuits is likely to be different, resulting in errors that cannot be offset in calculations. Therefore, the industry needs a new measurement method to solve the problem of errors in voltage and current obtained by different measurement circuits.

本發明提供一種阻抗量測方法,可以從不同方向對待測元件提供電能,再利用不同的量測電路分別量測取得電壓與電流,便可以由計算抵銷不同的量測電路的誤差。The present invention provides an impedance measurement method, which can provide electrical energy from different directions for the component under test, and then use different measurement circuits to measure the voltage and current respectively, so that the errors of different measurement circuits can be offset by calculation.

本發明提出一種阻抗量測方法,應用於量測待測元件,待測元件的第一端電性連接第一測試模組,待測元件的第二端電性連接第二測試模組,所述阻抗量測方法包含下列步驟。於第一模式中,供電給待測元件的第一端。於第一模式中,由第一測試模組量測待測元件的跨電壓以取得第一電壓值,並且由第二測試模組量測流經待測元件的電流以取得第一電流值。於第二模式中,供電給待測元件的第二端。於第二模式中,由第二測試模組量測待測元件的跨電壓以取得第二電壓值,並且由第一測試模組量測流經待測元件的電流以取得第二電流值。依據第一電壓值、第二電壓值、第一電流值以及第二電流值,計算待測元件的真實阻抗值。The present invention provides an impedance measurement method, which is applied to measure the component under test. The first end of the component under test is electrically connected to the first test module, and the second end of the component under test is electrically connected to the second test module. The impedance measurement method includes the following steps. In the first mode, power is supplied to the first terminal of the device under test. In the first mode, the first test module measures the voltage across the device under test to obtain the first voltage value, and the second test module measures the current flowing through the device under test to obtain the first current value. In the second mode, power is supplied to the second end of the device under test. In the second mode, the second test module measures the voltage across the device under test to obtain the second voltage value, and the first test module measures the current flowing through the device under test to obtain the second current value. According to the first voltage value, the second voltage value, the first current value, and the second current value, the true impedance value of the component under test is calculated.

於一些實施例中,所述阻抗量測方法於計算待測元件的真實阻抗值的步驟中,更可以包含下列步驟。於第一模式中,可以將第一電壓值除以第一電流值,以取得第一阻抗量測值。並且,於第二模式中,可以將第二電壓值除以第二電流值,以取得第二阻抗量測值,其中真實阻抗值關聯於第一阻抗量測值與第二阻抗量測值。此外,所述阻抗量測方法更可以將第一阻抗量測值與第二阻抗量測值相乘取得第一計算值,並且可以將第一計算值開根號以取得真實阻抗值。另外,第一電壓值與第二電流值可以均包含關聯於第一測試模組的第一電路誤差因子,第二電壓值與第一電流值可以均包含關聯於第二測試模組的第二電路誤差因子。In some embodiments, the impedance measurement method may further include the following steps in the step of calculating the true impedance value of the device under test. In the first mode, the first voltage value can be divided by the first current value to obtain the first impedance measurement value. Also, in the second mode, the second voltage value can be divided by the second current value to obtain the second impedance measurement value, wherein the real impedance value is related to the first impedance measurement value and the second impedance measurement value. In addition, the impedance measurement method can further multiply the first impedance measurement value by the second impedance measurement value to obtain the first calculation value, and can take the root of the first calculation value to obtain the true impedance value. In addition, the first voltage value and the second current value may both include a first circuit error factor associated with the first test module, and the second voltage value and the first current value may both include a second circuit error factor associated with the second test module. Circuit error factor.

於一些實施例中,於供電給待測元件的第一端的步驟中,可以由第一測試模組供電給待測元件的第一端。並且,於供電給待測元件的第二端的步驟中,可以由第二測試模組供電給待測元件的第二端。In some embodiments, in the step of supplying power to the first end of the device under test, the first test module may supply power to the first end of the device under test. Moreover, in the step of supplying power to the second end of the component under test, the second test module can supply power to the second end of the component under test.

綜上所述,本發明提供的阻抗量測方法,可以從待測元件的第一端與第二端對待測元件提供電能,再利用第一測試模組和第二測試模組各自的量測電路分別量測取得電壓與電流。並且,可以將第一測試模組和第二測試模組取得的電壓與電流進行交互運算,藉此經由計算抵銷不同測試模組之間的誤差。In summary, the impedance measurement method provided by the present invention can provide electrical energy from the first end and the second end of the device under test, and then use the respective measurement of the first test module and the second test module. The circuit measures the voltage and current respectively. In addition, the voltage and current obtained by the first test module and the second test module can be interactively calculated, thereby offsetting errors between different test modules through calculation.

下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。The features, objectives and functions of the present invention will be further disclosed below. However, the following are only examples of the present invention, and should not be used to limit the scope of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention will still be the essence of the present invention. Without departing from the spirit and scope of the present invention, it should be regarded as a further implementation aspect of the present invention.

請參閱圖1,圖1係繪示依據本發明一實施例之使用阻抗量測方法的電路示意圖。如圖1所示,本發明的阻抗量測方法可以應用於第一測試模組10和第二測試模組12之間,並且第一測試模組10和第二測試模組12可以用來量測同一個待測元件20的電壓、電流與阻抗等元件特性。本實施例在此不特別限制第一測試模組10和第二測試模組12對應到的硬體元件,例如第一測試模組10和第二測試模組12可以是兩張獨立的測試卡,且第一測試模組10和第二測試模組12可以設置於同一個測試裝置(圖未示)中。或者,第一測試模組10和第二測試模組12可以各自為一個獨立的設備,分別電性連接到同一個待測元件20。此外,本實施例也不限制待測元件20的種類,只要待測元件20需要使用第一測試模組10和第二測試模組12來進行電壓、電流與阻抗等元件特性的量測,皆屬於本實施例所稱待測元件20的範疇。以下分別就第一測試模組10和第二測試模組12的內部元件來進行說明。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a circuit using an impedance measurement method according to an embodiment of the present invention. As shown in FIG. 1, the impedance measurement method of the present invention can be applied between the first test module 10 and the second test module 12, and the first test module 10 and the second test module 12 can be used to measure Measure the component characteristics such as voltage, current and impedance of the same component under test 20. This embodiment does not particularly limit the hardware components corresponding to the first test module 10 and the second test module 12, for example, the first test module 10 and the second test module 12 may be two independent test cards. , And the first test module 10 and the second test module 12 can be arranged in the same test device (not shown). Alternatively, the first test module 10 and the second test module 12 may each be an independent device, and are electrically connected to the same device under test 20, respectively. In addition, this embodiment does not limit the type of the component under test 20, as long as the component under test 20 needs to use the first test module 10 and the second test module 12 to measure the characteristics of the components such as voltage, current, and impedance. It belongs to the category of the component under test 20 referred to in this embodiment. The internal components of the first test module 10 and the second test module 12 are respectively described below.

第一測試模組10可以包含電壓感測單元100、電流感測單元102以及量測電路104,電壓感測單元100與電流感測單元102可以電性連接到待測元件20的第一端200,並且量測電路104可以電性連接到電壓感測單元100與電流感測單元102。在此,雖然圖1的例子中繪示了第一測試模組10包含電源106,且電源106也會電性連接到待測元件20的第一端200,但實務上電源106並非必要元件。舉例來說,電源106也可以設置於第一測試模組10之外,例如可以是外部的電源供應器。換句話說,只要電源106能由第一端200供電給待測元件20,即符合本實施例電源106的範疇。The first test module 10 may include a voltage sensing unit 100, a current sensing unit 102, and a measurement circuit 104. The voltage sensing unit 100 and the current sensing unit 102 may be electrically connected to the first terminal 200 of the device under test 20 And the measuring circuit 104 can be electrically connected to the voltage sensing unit 100 and the current sensing unit 102. Here, although the example in FIG. 1 shows that the first test module 10 includes a power supply 106, and the power supply 106 is also electrically connected to the first end 200 of the device under test 20, the power supply 106 is not a necessary component in practice. For example, the power supply 106 may also be provided outside the first test module 10, for example, it may be an external power supply. In other words, as long as the power supply 106 can supply power to the device under test 20 from the first end 200, it is in line with the scope of the power supply 106 in this embodiment.

同樣地,第二測試模組12可以包含電壓感測單元120、電流感測單元122以及量測電路124,電壓感測單元120與電流感測單元122可以電性連接到待測元件20的第二端202,並且量測電路124可以電性連接到電壓感測單元120與電流感測單元122。如同電源106,電源126也可以設置於第二測試模組12之外,例如同樣可以是外部的電源供應器。為了方便說明,本實施例假設第一測試模組10和第二測試模組12包含電源106和電源126。此外,雖然圖1用兩個訊號輸出入端做為示範,並非用來限制待測元件20的訊號輸出入端的數量。實務上,待測元件20還可以包含更多的訊號輸出入端,而第一端200和第二端202可能只是其中的兩個訊號輸出入端。Similarly, the second test module 12 may include a voltage sensing unit 120, a current sensing unit 122, and a measuring circuit 124. The voltage sensing unit 120 and the current sensing unit 122 may be electrically connected to the first device under test 20. The two terminals 202 and the measuring circuit 124 can be electrically connected to the voltage sensing unit 120 and the current sensing unit 122. Like the power supply 106, the power supply 126 can also be provided outside the second test module 12, for example, it can also be an external power supply. For the convenience of description, this embodiment assumes that the first test module 10 and the second test module 12 include a power supply 106 and a power supply 126. In addition, although FIG. 1 uses two signal input and output terminals as an example, it is not used to limit the number of signal input and output terminals of the device under test 20. In practice, the component under test 20 may also include more signal input and output terminals, and the first terminal 200 and the second terminal 202 may only be two of the signal input and output terminals.

以實際的例子來說,第一測試模組10和第二測試模組12可以操作於兩個模式,在此稱為第一模式與第二模式。於第一模式中,電源106可以供電給待測元件20的第一端200,由第一測試模組10量測待測元件20的電壓,並且由第二測試模組12量測待測元件20的電流。實務上,第一測試模組10中的電壓感測單元100可以用來量測待測元件20的跨電壓,並將對應待測元件20跨電壓的資料傳送給量測電路104,由量測電路104換算取得第一電壓值。此外,第二測試模組12中的電流感測單元122用來量測流經待測元件20的電流,並將對應流經待測元件20的電流的資料傳送給量測電路124,由量測電路124換算取得第一電流值。於一個例子中,第一測試模組10和第二測試模組12的共地端(圖未示)可以連接在一起,從而電壓感測單元100可以經由第一端200和共地端取得待測元件20的跨電壓。並且,電流感測單元122可以利用電阻串聯或電流耦合的方式量測流經待測元件20的電流,由於量測電流的手段很多,本實施例並不特別限制。In a practical example, the first test module 10 and the second test module 12 can operate in two modes, which are referred to herein as the first mode and the second mode. In the first mode, the power supply 106 can supply power to the first terminal 200 of the device under test 20, the first test module 10 measures the voltage of the device under test 20, and the second test module 12 measures the device under test. 20 current. In practice, the voltage sensing unit 100 in the first test module 10 can be used to measure the voltage across the device under test 20, and transmit data corresponding to the voltage across the device under test 20 to the measurement circuit 104, and the measurement The circuit 104 obtains the first voltage value through conversion. In addition, the current sensing unit 122 in the second test module 12 is used to measure the current flowing through the device under test 20, and send data corresponding to the current flowing through the device under test 20 to the measuring circuit 124, The measuring circuit 124 obtains the first current value through conversion. In one example, the common ground terminal (not shown) of the first test module 10 and the second test module 12 can be connected together, so that the voltage sensing unit 100 can obtain the standby terminal through the first terminal 200 and the common ground terminal. Measure the voltage across the element 20. In addition, the current sensing unit 122 can measure the current flowing through the device under test 20 in a resistance series connection or current coupling manner. Since there are many methods for measuring current, this embodiment is not particularly limited.

為了簡化測試的條件,電源106和電源126可以設定成不同時工作,也就是電源126在第一模式內可以是關閉的狀態。此時,如果將量測電路104換算出的第一電壓值表示為V1,將量測電路124換算出的第一電流值表示為I1,則待測元件20的第一阻抗量測值Z1可以表示為下列算式(1): Z1 = V1 / I1                                                (1) In order to simplify the test conditions, the power supply 106 and the power supply 126 can be set to not work at the same time, that is, the power supply 126 can be turned off in the first mode. At this time, if the first voltage value converted by the measuring circuit 104 is expressed as V1, and the first current value converted by the measuring circuit 124 is expressed as I1, then the first impedance measurement value Z1 of the component under test 20 can be Expressed as the following formula (1): Z1 = V1 / I1 (1)

於一個例子中,第一阻抗量測值Z1可以由測試裝置的處理器,或外部的電腦來計算,本實施例在此不加以限制。此外,由於第一電壓值V1是經由量測電路104取得,還包含了量測電路104本身的誤差,從而第一電壓值V1並非是待測元件20實際上的跨電壓。同樣地,第一電流值I1由於也是經由量測電路124取得,還包含了量測電路124本身的誤差,從而第一電流值I1並非是實際上流經待測元件20的電流。假設本實施例將量測電路104本身的誤差表示為Gm1,將量測電路124本身的誤差表示為Gm2。實務上,量測電路104和量測電路124存在誤差的原因很多,例如不同電路之間的溫度差異、濕度差異、老化程度差異、內部元件誤差等,本實施例在此不特別限定誤差的原因。承接上述,如果將量測電路104和量測電路124本身的誤差Gm1與Gm2代入算式(1),則可以將算式(1)整理成算式(2): Z1 = (Vdut × Gm1) / (Idut × Gm2)             (2) In an example, the first impedance measurement value Z1 can be calculated by the processor of the test device or an external computer, which is not limited in this embodiment. In addition, since the first voltage value V1 is obtained through the measurement circuit 104 and also includes the error of the measurement circuit 104 itself, the first voltage value V1 is not the actual cross voltage of the device under test 20. Similarly, since the first current value I1 is also obtained through the measuring circuit 124, it also includes the error of the measuring circuit 124 itself, so the first current value I1 is not actually the current flowing through the device under test 20. Suppose that in this embodiment, the error of the measurement circuit 104 itself is expressed as Gm1, and the error of the measurement circuit 124 itself is expressed as Gm2. In practice, there are many reasons for errors in the measurement circuit 104 and the measurement circuit 124, such as temperature differences, humidity differences, aging differences, internal component errors, etc. between different circuits. This embodiment does not specifically limit the reasons for the errors. . Continuing the above, if the errors Gm1 and Gm2 of the measurement circuit 104 and the measurement circuit 124 itself are substituted into equation (1), equation (1) can be sorted into equation (2): Z1 = (Vdut × Gm1) / (Idut × Gm2) (2)

其中Vdut為待測元件20實際上的跨電壓,並且Idut為實際上流經待測元件20的電流。換句話說,由於Vdut與Idut分別是待測元件20實際上的跨電壓與電流,將Vdut除以Idut之後,理論上可以得到待測元件20實際上的阻抗值,在此本實施例將待測元件20實際上的阻抗值稱為真實阻抗值,並且表示為Zdut。如果將Vdut/Idut用Zdut表示,則可以將算式(2)整理成算式(3): Z1 = Zdut × (Gm1/Gm2)                            (3) Where Vdut is the actual voltage across the device under test 20, and Idut is the current actually flowing through the device under test 20. In other words, since Vdut and Idut are the actual voltage and current of the device under test 20, respectively, after dividing Vdut by Idut, the actual impedance value of the device under test 20 can be theoretically obtained. The actual impedance value of the measuring element 20 is called the true impedance value, and is expressed as Zdut. If Vdut/Idut is expressed by Zdut, then equation (2) can be sorted into equation (3): Z1 = Zdut × (Gm1/Gm2) (3)

由此可知,傳統上如果用不同的測試模組量測同一個待測元件時,量測到待測元件的阻抗值是包含了兩個測試模組各自的誤差項的,很有可能與待測元件實際上的阻抗值不相同。據此,本實施例在第一模式之後,更還會進入第二模式,再次量測一次待測元件20的阻抗值。於第二模式中,電源106可以是關閉的狀態,改由電源126可以供電給待測元件20的第二端202。接著,由第二測試模組12量測待測元件20的電壓,並且由第一測試模組10量測待測元件20的電流。與第一模式相類似地,第二測試模組12中的電壓感測單元120可以用來量測待測元件20的跨電壓,並將對應待測元件20跨電壓的資料傳送給量測電路124,由量測電路124換算取得第二電壓值。此外,第一測試模組10中的電流感測單元102用來量測流經待測元件20的電流,並將對應流經待測元件20的電流的資料傳送給量測電路104,由量測電路104換算取得第二電流值。It can be seen that, traditionally, if different test modules are used to measure the same component under test, the measured impedance value of the component under test contains the respective error items of the two test modules, which is likely to be different from that of the component under test. The actual impedance value of the test element is not the same. Accordingly, this embodiment will enter the second mode after the first mode, and measure the impedance value of the device under test 20 again. In the second mode, the power supply 106 can be turned off, and the power supply 126 can supply power to the second end 202 of the device under test 20 instead. Then, the second test module 12 measures the voltage of the device under test 20, and the first test module 10 measures the current of the device under test 20. Similar to the first mode, the voltage sensing unit 120 in the second test module 12 can be used to measure the voltage across the device under test 20, and transmit data corresponding to the voltage across the device under test 20 to the measurement circuit 124. The second voltage value is obtained by conversion by the measuring circuit 124. In addition, the current sensing unit 102 in the first test module 10 is used to measure the current flowing through the component under test 20, and send data corresponding to the current flowing through the component under test 20 to the measuring circuit 104, The measuring circuit 104 obtains the second current value through conversion.

此時,如果將量測電路124換算出的第二電壓值表示為V2,將量測電路104換算出的第二電流值表示為I2,則待測元件20的第二阻抗量測值Z2可以表示為下列算式(4): Z2 = V2 / I2                                                (4) At this time, if the second voltage value converted by the measurement circuit 124 is represented as V2, and the second current value converted by the measurement circuit 104 is represented as I2, the second impedance measurement value Z2 of the component under test 20 can be Expressed as the following formula (4): Z2 = V2 / I2 (4)

與第一模式相類似地,第二阻抗量測值Z2同樣可以由測試裝置的處理器,或外部的電腦來計算,本實施例在此不加以限制。此外,由於第二模式中的第二電壓值V2是經由量測電路124取得,還包含了量測電路124本身的誤差,從而第二電壓值V2也不是待測元件20實際上的跨電壓。同樣地,第二電流值I2由於也是經由量測電路104取得,還包含了量測電路104本身的誤差,從而第二電流值I2也不是實際上流經待測元件20的電流。如果將前述量測電路104和量測電路124本身的誤差Gm1與Gm2代入算式(4),則可以將算式(4)整理成算式(5): Z2 = (Vdut × Gm2) / (Idut × Gm1)             (5) Similar to the first mode, the second impedance measurement value Z2 can also be calculated by the processor of the test device or an external computer, and this embodiment is not limited herein. In addition, since the second voltage value V2 in the second mode is obtained through the measuring circuit 124, it also includes the error of the measuring circuit 124 itself, so the second voltage value V2 is not the actual cross voltage of the device under test 20 either. Similarly, since the second current value I2 is also obtained through the measuring circuit 104, it also includes the error of the measuring circuit 104 itself, so the second current value I2 is not actually the current flowing through the device under test 20. If the errors Gm1 and Gm2 of the aforementioned measurement circuit 104 and the measurement circuit 124 itself are substituted into equation (4), equation (4) can be sorted into equation (5): Z2 = (Vdut × Gm2) / (Idut × Gm1) (5)

接著,待測元件20實際上的跨電壓與電流Vdut與Idut相除,得到待測元件20的真實阻抗值Zdut。如果將Vdut/Idut用Zdut表示,則可以將算式(5)整理成算式(6): Z2 = Zdut × (Gm2/Gm1)                            (6) Next, the actual cross-voltage and current Vdut and Idut of the component under test 20 are divided to obtain the true impedance value Zdut of the component under test 20. If Vdut/Idut is expressed by Zdut, then equation (5) can be sorted into equation (6): Z2 = Zdut × (Gm2/Gm1) (6)

於一個例子中,為了要求得待測元件20的真實阻抗值Zdut,可以由測試裝置的處理器,或外部的電腦來將算式(3)與算式(6)相乘,計算得出算式(7): Z1 × Z2 = Zdut 2× [(Gm1×Gm2)/(Gm2×Gm1)]         (7) In one example, in order to obtain the true impedance value Zdut of the component under test 20, the processor of the test device or an external computer can multiply the equation (3) and the equation (6) to calculate the equation (7) ): Z1 × Z2 = Zdut 2 × [(Gm1×Gm2)/(Gm2×Gm1)] (7)

由於算式(7)中的「(Gm1×Gm2)/(Gm2×Gm1)」可以相銷成1,從而可以看出真實阻抗值Zdut會直接關聯於第一阻抗量測值Z1與第二阻抗量測值Z2的乘積。換句話說,真實阻抗值Zdut可以由下列算式(8)計算而得: Zdut=

Figure 02_image001
(8) Since "(Gm1×Gm2)/(Gm2×Gm1)" in equation (7) can be pinned to 1, it can be seen that the real impedance value Zdut will be directly related to the first impedance measurement value Z1 and the second impedance value The product of the measured value Z2. In other words, the true impedance value Zdut can be calculated by the following formula (8): Zdut=
Figure 02_image001
(8)

另一方面,從算式(1)和算式(4)可知,由於第一阻抗量測值Z1是直接關聯於第一電壓值V1和第一電流值I1,第二阻抗量測值Z2是直接關聯於第二電壓值V2和第二電流值I2,因此算式(8)也可以表示為算式(9): Zdut=

Figure 02_image003
(9) On the other hand, from equation (1) and equation (4), since the first impedance measurement value Z1 is directly related to the first voltage value V1 and the first current value I1, the second impedance measurement value Z2 is directly related Based on the second voltage value V2 and the second current value I2, the equation (8) can also be expressed as the equation (9): Zdut=
Figure 02_image003
(9)

可以看出,待測元件的真實阻抗值Zdut是依據第一電壓值V1、第二電壓值V2、第一電流值I1以及第二電流值I2計算出來的。值得一提的是,本實施例在此不限制第一模式和第二模式的先後順序,例如第二模式也可以先於第一模式。此外,本實施例也不限制真實阻抗值Zdut必須由算式(8)或算式(9)算出,所屬技術領域具有通常知識者應可以理解,實際電路的不理想因素很多,本實施例只是將不理想因素歸納成量測電路104和量測電路124本身的誤差Gm1與Gm2,並不用來限制計算真實阻抗值Zdut的方法。例如,第一電壓值V1帶有偏移量(offset),則可能還需要經過校正的步驟。因此,本實施例僅說明待測元件的真實阻抗值Zdut關聯於第一電壓值V1、第二電壓值V2、第一電流值I1以及第二電流值I2,但不以此為限。It can be seen that the true impedance value Zdut of the component under test is calculated based on the first voltage value V1, the second voltage value V2, the first current value I1, and the second current value I2. It is worth mentioning that this embodiment does not limit the sequence of the first mode and the second mode. For example, the second mode may also precede the first mode. In addition, this embodiment does not limit that the true impedance value Zdut must be calculated by formula (8) or formula (9). Those with ordinary knowledge in the technical field should understand that there are many undesirable factors in the actual circuit. This embodiment just does not The ideal factors are summarized into the errors Gm1 and Gm2 of the measurement circuit 104 and the measurement circuit 124 themselves, and are not used to limit the method of calculating the true impedance value Zdut. For example, if the first voltage value V1 has an offset (offset), a correction step may be required. Therefore, this embodiment only illustrates that the true impedance value Zdut of the device under test is related to the first voltage value V1, the second voltage value V2, the first current value I1, and the second current value I2, but it is not limited thereto.

為了說明本實施例的阻抗量測方法,以下搭配圖1的電路架構進行說明。請一併參閱圖1與圖2,圖2係繪示依據本發明一實施例之阻抗量測方法的步驟流程圖。如圖所示,於步驟S30中,示範了於第一模式中,電源106可以供電給待測元件20的第一端200。於步驟S32中,示範了於第一模式中,由第一測試模組10中的電壓感測單元100量測待測元件20的跨電壓,並將對應待測元件20跨電壓的資料傳送給量測電路104,再由量測電路104換算取得第一電壓值V1。並且,由第二測試模組12中的電流感測單元122量測流經待測元件20的電流,並將對應流經待測元件20的電流的資料傳送給量測電路124,再由量測電路124換算取得第一電流值I1。In order to illustrate the impedance measurement method of this embodiment, the following description will be made with the circuit structure of FIG. 1. Please refer to FIG. 1 and FIG. 2 together. FIG. 2 is a flowchart illustrating the steps of an impedance measurement method according to an embodiment of the present invention. As shown in the figure, in step S30, it is demonstrated that in the first mode, the power supply 106 can supply power to the first terminal 200 of the device under test 20. In step S32, it is demonstrated that in the first mode, the voltage sensing unit 100 in the first test module 10 measures the voltage across the device under test 20, and transmits the data corresponding to the voltage across the device under test 20 to The measuring circuit 104 then converts the measuring circuit 104 to obtain the first voltage value V1. In addition, the current sensing unit 122 in the second test module 12 measures the current flowing through the device under test 20, and transmits data corresponding to the current flowing through the device under test 20 to the measuring circuit 124, and then the measurement The measuring circuit 124 obtains the first current value I1 through conversion.

接著於步驟S34中,示範了於第二模式中,電源126可以供電給待測元件20的第二端202。於步驟S36中,示範了於第二模式中,由第二測試模組12中的電壓感測單元120量測待測元件20的跨電壓,並將對應待測元件20跨電壓的資料傳送給量測電路124,再由量測電路124換算取得第二電壓值V2。並且,由第一測試模組10中的電流感測單元102量測流經待測元件20的電流,並將對應流經待測元件20的電流的資料傳送給量測電路104,再由量測電路104換算取得第二電流值I2。最後,於步驟S38中,可以由測試裝置的處理器,或外部的電腦依據第一電壓值V1、第二電壓值V2、第一電流值I1以及第二電流值I2,計算待測元件20的真實阻抗值Zdut。本實施例所述阻抗量測方法的其餘細節,皆已於前一實施例說明過,本實施例在此不予贅述。Next, in step S34, it is demonstrated that in the second mode, the power supply 126 can supply power to the second end 202 of the device under test 20. In step S36, it is demonstrated that in the second mode, the voltage sensing unit 120 in the second test module 12 measures the voltage across the device under test 20, and transmits the data corresponding to the voltage across the device under test 20 to The measuring circuit 124 then converts the measuring circuit 124 to obtain the second voltage value V2. In addition, the current sensing unit 102 in the first test module 10 measures the current flowing through the device under test 20, and transmits data corresponding to the current flowing through the device under test 20 to the measurement circuit 104, and then the measurement The measuring circuit 104 obtains the second current value I2 by conversion. Finally, in step S38, the processor of the test device or an external computer can calculate the value of the device under test 20 according to the first voltage value V1, the second voltage value V2, the first current value I1, and the second current value I2. The true impedance value Zdut. The remaining details of the impedance measurement method in this embodiment have been described in the previous embodiment, and this embodiment will not be repeated here.

綜上所述,本發明提供的阻抗量測方法,可以從待測元件的第一端與第二端對待測元件提供電能,再利用第一測試模組和第二測試模組各自的量測電路分別量測取得電壓與電流。並且,可以將第一測試模組和第二測試模組取得的電壓與電流進行交互運算,藉此經由計算抵銷不同測試模組之間的誤差。In summary, the impedance measurement method provided by the present invention can provide electrical energy from the first end and the second end of the device under test, and then use the respective measurement of the first test module and the second test module. The circuit measures the voltage and current respectively. In addition, the voltage and current obtained by the first test module and the second test module can be interactively calculated, thereby offsetting errors between different test modules through calculation.

10:第一測試模組 100:電壓感測單元 102:電流感測單元 104:量測電路 106:電源 12:第一測試模組 120:電壓感測單元 122:電流感測單元 124:量測電路 126:電源 20:待測元件 200:第一端 202:第二端 S30~S38:步驟流程10: The first test module 100: Voltage sensing unit 102: current sensing unit 104: Measuring circuit 106: Power 12: The first test module 120: Voltage sensing unit 122: current sensing unit 124: measurement circuit 126: Power 20: component under test 200: first end 202: second end S30~S38: Step flow

圖1係繪示依據本發明一實施例之使用阻抗量測方法的電路示意圖。FIG. 1 is a schematic diagram of a circuit using an impedance measurement method according to an embodiment of the present invention.

圖2係繪示依據本發明一實施例之阻抗量測方法的步驟流程圖。FIG. 2 is a flowchart showing the steps of an impedance measurement method according to an embodiment of the present invention.

no

S30~S38:步驟流程 S30~S38: Step flow

Claims (6)

一種阻抗量測方法,應用於量測一待測元件,該待測元件的一第一端電性連接一第一測試模組,該待測元件的一第二端電性連接一第二測試模組,所述阻抗量測方法包含: 於一第一模式中,供電給該待測元件的該第一端; 於該第一模式中,由該第一測試模組量測該待測元件的跨電壓以取得一第一電壓值,並且由該第二測試模組量測流經該待測元件的電流以取得一第一電流值; 於一第二模式中,供電給該待測元件的該第二端; 於該第二模式中,由該第二測試模組量測該待測元件的跨電壓以取得一第二電壓值,並且由該第一測試模組量測流經該待測元件的電流以取得一第二電流值;以及 依據該第一電壓值、該第二電壓值、該第一電流值以及該第二電流值,計算該待測元件的一真實阻抗值。 An impedance measurement method is applied to measure an element under test, a first end of the element under test is electrically connected to a first test module, and a second end of the element under test is electrically connected to a second test Module, the impedance measurement method includes: In a first mode, power is supplied to the first end of the device under test; In the first mode, the first test module measures the voltage across the device under test to obtain a first voltage value, and the second test module measures the current flowing through the device under test to Obtain a first current value; In a second mode, power is supplied to the second end of the device under test; In the second mode, the second test module measures the voltage across the device under test to obtain a second voltage value, and the first test module measures the current flowing through the device under test to Obtain a second current value; and According to the first voltage value, the second voltage value, the first current value, and the second current value, a true impedance value of the device under test is calculated. 如請求項1所述之阻抗量測方法,其中於計算該待測元件的該真實阻抗值的步驟中,更包含: 於該第一模式中,將該第一電壓值除以該第一電流值,以取得一第一阻抗量測值;以及 於該第二模式中,將該第二電壓值除以該第二電流值,以取得一第二阻抗量測值; 其中該真實阻抗值關聯於該第一阻抗量測值與該第二阻抗量測值。 The impedance measurement method of claim 1, wherein the step of calculating the true impedance value of the component under test further includes: In the first mode, dividing the first voltage value by the first current value to obtain a first impedance measurement value; and In the second mode, divide the second voltage value by the second current value to obtain a second impedance measurement value; The real impedance value is related to the first impedance measurement value and the second impedance measurement value. 如請求項2所述之阻抗量測方法,更包含: 將該第一阻抗量測值與該第二阻抗量測值相乘取得一第一計算值;以及 將該第一計算值開根號以取得該真實阻抗值。 The impedance measurement method described in claim 2 further includes: Multiplying the first impedance measurement value and the second impedance measurement value to obtain a first calculation value; and Root the first calculated value to obtain the true impedance value. 如請求項3所述之阻抗量測方法,其中該第一電壓值與該第二電流值均包含關聯於該第一測試模組的一第一電路誤差因子,該第二電壓值與該第一電流值均包含關聯於該第二測試模組的一第二電路誤差因子。The impedance measurement method of claim 3, wherein the first voltage value and the second current value both include a first circuit error factor associated with the first test module, and the second voltage value and the second current value Each current value includes a second circuit error factor associated with the second test module. 如請求項1所述之阻抗量測方法,其中於供電給該待測元件的該第一端的步驟中,係由該第一測試模組供電給該待測元件的該第一端。The impedance measurement method according to claim 1, wherein in the step of supplying power to the first end of the device under test, the first test module supplies power to the first end of the device under test. 如請求項1所述之阻抗量測方法,其中於供電給該待測元件的該第二端的步驟中,係由該第二測試模組供電給該待測元件的該第二端。The impedance measurement method of claim 1, wherein in the step of supplying power to the second end of the device under test, the second test module supplies power to the second end of the device under test.
TW108146310A 2019-12-18 2019-12-18 Method for measuring impedance TWI729631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108146310A TWI729631B (en) 2019-12-18 2019-12-18 Method for measuring impedance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108146310A TWI729631B (en) 2019-12-18 2019-12-18 Method for measuring impedance

Publications (2)

Publication Number Publication Date
TWI729631B true TWI729631B (en) 2021-06-01
TW202124977A TW202124977A (en) 2021-07-01

Family

ID=77517075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146310A TWI729631B (en) 2019-12-18 2019-12-18 Method for measuring impedance

Country Status (1)

Country Link
TW (1) TWI729631B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777471A (en) * 2021-09-09 2021-12-10 杭州广立微电子股份有限公司 Method for calibrating relative voltage offset error of measurement module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615588A (en) * 2009-07-31 2009-12-30 上海集成电路研发中心有限公司 A kind of integrated circuit resistance and capacitance technological parameter fluctuation detector and using method
CN203275627U (en) * 2012-11-23 2013-11-06 浙江省电力公司电力科学研究院 DC resistance tester calibration system
TW201537202A (en) * 2014-03-26 2015-10-01 Nidec Read Corp Resistance detection device, substrate inspection device, inspection method, and method for maintaining inspection jig
US20160054424A1 (en) * 2012-06-08 2016-02-25 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
TW201829993A (en) * 2016-11-01 2018-08-16 英商伊門勒汀斯有限公司 Resistance measurement and current control
CN109188096A (en) * 2018-11-12 2019-01-11 广东电网有限责任公司 Measuring contact resistance method and device
CN110456161A (en) * 2019-08-09 2019-11-15 合肥工业大学 The impedance measurement method of forcing frequency and disturbance amplitude self adaptive control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615588A (en) * 2009-07-31 2009-12-30 上海集成电路研发中心有限公司 A kind of integrated circuit resistance and capacitance technological parameter fluctuation detector and using method
US20160054424A1 (en) * 2012-06-08 2016-02-25 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
CN203275627U (en) * 2012-11-23 2013-11-06 浙江省电力公司电力科学研究院 DC resistance tester calibration system
TW201537202A (en) * 2014-03-26 2015-10-01 Nidec Read Corp Resistance detection device, substrate inspection device, inspection method, and method for maintaining inspection jig
TW201829993A (en) * 2016-11-01 2018-08-16 英商伊門勒汀斯有限公司 Resistance measurement and current control
CN109188096A (en) * 2018-11-12 2019-01-11 广东电网有限责任公司 Measuring contact resistance method and device
CN110456161A (en) * 2019-08-09 2019-11-15 合肥工业大学 The impedance measurement method of forcing frequency and disturbance amplitude self adaptive control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777471A (en) * 2021-09-09 2021-12-10 杭州广立微电子股份有限公司 Method for calibrating relative voltage offset error of measurement module

Also Published As

Publication number Publication date
TW202124977A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN111123076A (en) Calibration device and automatic test equipment
WO2020006749A1 (en) Chip impedance testing method and system
TWI729631B (en) Method for measuring impedance
CN103235176A (en) Method and server for acquiring component power consumption
CN212008827U (en) Calibration device and automatic test equipment
CN104101777A (en) Power test device
CN113009223B (en) Impedance measuring method
US20060176046A1 (en) Power meter for biasing an audio amplifier
TWI645692B (en) Power supply device, detect circuit and power supply method thereof
CN103529285A (en) Test equipment for automatically detecting power consumption of PCIE (Peripheral Component Interface Express) equipment
JP2008014781A (en) Method for network analyzer calibration and network analyzer
TWI749978B (en) Multi-channel calibration method
JP2012013446A (en) Pin electronics circuit and testing apparatus using the same
CN109061524B (en) Power supply test circuit and method
CN203535111U (en) Test device for PCIE device power consumption automation detection
JP4310280B2 (en) Impedance conversion circuit, input / output circuit and semiconductor test equipment
KR101897522B1 (en) Internal Resistance Measuring Device
CN217980578U (en) Platinum thermal resistance simulation board card and simulation test device
KR102563797B1 (en) Quality measuring device, measuring method thereof and recording medium thereof
CN108717138A (en) A kind of substrate current test circuit and system
CN102455413A (en) Conversion efficiency testing device and using method thereof
CN216350898U (en) Wire rod capable of being detected bidirectionally
CN211375012U (en) Input current's test equipment and server
US8143882B2 (en) Current measuring apparatus
CN116153385B (en) Power consumption measuring method