TWI749978B - Multi-channel calibration method - Google Patents

Multi-channel calibration method Download PDF

Info

Publication number
TWI749978B
TWI749978B TW109146996A TW109146996A TWI749978B TW I749978 B TWI749978 B TW I749978B TW 109146996 A TW109146996 A TW 109146996A TW 109146996 A TW109146996 A TW 109146996A TW I749978 B TWI749978 B TW I749978B
Authority
TW
Taiwan
Prior art keywords
test
module
impedance value
voltage
test module
Prior art date
Application number
TW109146996A
Other languages
Chinese (zh)
Other versions
TW202227831A (en
Inventor
杜嘉豪
吳健銘
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW109146996A priority Critical patent/TWI749978B/en
Application granted granted Critical
Publication of TWI749978B publication Critical patent/TWI749978B/en
Publication of TW202227831A publication Critical patent/TW202227831A/en

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The invention discloses a multi-channel calibration method comprising the following steps. A first and a second reference module are connected to two ends of a standard component respectively. The first reference module measures the voltage across the standard component, and the second reference module measures the current of the standard component to calculate a reference impedance value. The first reference module measures the voltage across the standard component, and a first test module measures the current of the standard component to calculate a first impedance value. According to the reference and the first impedance values, a first current correction coefficient is calculated. The first test module measures the voltage across the standard component, and the second reference module measures the current of the standard component to calculate a second impedance value. According to the reference and the second impedance values, a first voltage correction coefficient is calculated.

Description

多通道校正方法Multi-channel calibration method

本發明係關於一種校正方法,特別是關於一種多通道的校正方法。The present invention relates to a calibration method, in particular to a multi-channel calibration method.

為了因應待測元件具多腳位及功能越來越複雜的趨勢,測試裝置已經逐漸採用具備更大彈性的多通道量測架構。例如,測試裝置為了支援高同測功能(high parallel test),可以採用任意針腳(any pin)的量測架構。也就是說,不論待測元件如何連接到測試裝置的針腳,測試裝置都可以經由內部的不同測試模組(測試通道)取得電子元件的電壓、電流或者其他的電性參數。藉此,有彈性的多通道量測架構可以增加使用者的操作便利性,並且可以提高產品的競爭力。In order to cope with the trend that the device under test has multiple pins and more and more complex functions, testing devices have gradually adopted a multi-channel measurement architecture with greater flexibility. For example, in order to support the high parallel test function, the test device can adopt any pin measurement structure. That is to say, no matter how the device under test is connected to the pins of the test device, the test device can obtain the voltage, current, or other electrical parameters of the electronic component through different internal test modules (test channels). In this way, the flexible multi-channel measurement architecture can increase the user's operating convenience and improve the competitiveness of the product.

然而於多通道量測架構中,每一個測試模組可能因為內部元件的偏差、老化或者環境因素(如溫度與濕度),而產生量測上的誤差。因此,測試裝置需要先對測試模組進行校正,才有可能量測出更精準可靠的數據。實務上,於前述任意針腳的量測架構下,由於測試裝置可以任意選擇兩個測試模組搭配使用,這些測試模組通常會產生大量的排列組合,導致校正的過程十分費時。舉例來說,如果測試裝置有五個測試模組,由於使用上可以任意選擇五個測試模組中的兩個,則會有 5P 2共20種的測試模組排列組合。傳統上,由於每一種測試模組排列組合都需要被校正,一旦測試模組的總數更多,所花費在校正的時間將會大幅增加。因此,業界需要一種新的多通道校正方法,以減少任意針腳的量測架構下的測試模組校正時間。 However, in a multi-channel measurement architecture, each test module may have measurement errors due to internal component deviation, aging, or environmental factors (such as temperature and humidity). Therefore, the test device needs to calibrate the test module before it is possible to measure more accurate and reliable data. In practice, under the aforementioned measurement framework of any pin, since the test device can choose two test modules to be used together, these test modules usually produce a large number of permutations and combinations, which makes the calibration process very time-consuming. For example, if the test device has five test modules, since two of the five test modules can be arbitrarily selected for use, there will be a total of 20 test module permutations and combinations of 5 P 2. Traditionally, since every arrangement and combination of test modules needs to be calibrated, once the total number of test modules is larger, the time spent in calibration will increase significantly. Therefore, the industry needs a new multi-channel calibration method to reduce the calibration time of the test module under any pin measurement framework.

本發明提供一種多通道校正方法,可以用於校正多個測試模組,以減少任意針腳的量測架構下的測試模組校正時間。The present invention provides a multi-channel calibration method, which can be used to calibrate a plurality of test modules, so as to reduce the calibration time of the test modules under any pin measurement structure.

本發明提出一種多通道校正方法,包含下列步驟。分別連接第一參考模組與第二參考模組至標準元件的兩端。由第一參考模組量測標準元件的跨電壓,並且由第二參考模組量測流經標準元件的電流,據以計算關聯於標準元件的參考阻抗值。將第二參考模組替換為第一測試模組,由第一參考模組量測標準元件的跨電壓,並且由第一測試模組量測流經標準元件的電流,據以計算關聯於標準元件的第一阻抗值。依據參考阻抗值與第一阻抗值,計算關聯於第一測試模組的第一電流校正係數。將第一參考模組替換為第一測試模組,由第一測試模組量測標準元件的跨電壓,並且由第二參考模組量測流經標準元件的電流,據以計算關聯於標準元件的第二阻抗值。依據參考阻抗值與第二阻抗值,計算關聯於第一測試模組的第一電壓校正係數。The present invention provides a multi-channel calibration method, which includes the following steps. Connect the first reference module and the second reference module to the two ends of the standard component respectively. The first reference module measures the voltage across the standard component, and the second reference module measures the current flowing through the standard component to calculate the reference impedance value associated with the standard component. Replace the second reference module with the first test module. The first reference module measures the voltage across the standard element, and the first test module measures the current flowing through the standard element, and calculates the correlation with the standard The first impedance value of the component. According to the reference impedance value and the first impedance value, a first current correction coefficient associated with the first test module is calculated. Replace the first reference module with the first test module. The first test module measures the voltage across the standard component, and the second reference module measures the current flowing through the standard component, and calculates the correlation with the standard The second impedance value of the component. According to the reference impedance value and the second impedance value, a first voltage correction coefficient associated with the first test module is calculated.

於一些實施例中,第一電壓校正係數與第一電流校正係數可以儲存於第一測試模組。所述多通道校正方法可以依據參考阻抗值與關聯於標準元件的標準阻抗值,計算參考校正係數。並且,所述多通道校正方法更可以包含下列步驟。分別連接第一測試模組與第二測試模組至待測元件的兩端。由第一測試模組量測待測元件的跨電壓,並且由第二測試模組量測流經待測元件的電流,據以計算關聯於待測元件的第一待測阻抗值。依據第一待測阻抗值、第一電壓校正係數、第二電流校正係數與參考校正係數,計算關聯於待測元件的真實阻抗值。以及,分別連接第二測試模組與第二參考模組至標準元件的兩端。由第二測試模組量測標準元件的跨電壓,並且由第二參考模組量測流經標準元件的電流,據以計算關聯於標準元件的第三阻抗值。依據參考阻抗值與第三阻抗值,計算關聯於第二測試模組的第二電流校正係數。In some embodiments, the first voltage correction coefficient and the first current correction coefficient can be stored in the first test module. The multi-channel correction method can calculate the reference correction coefficient based on the reference impedance value and the standard impedance value associated with the standard component. Moreover, the multi-channel calibration method may further include the following steps. The first test module and the second test module are respectively connected to the two ends of the component to be tested. The first test module measures the cross-voltage of the device under test, and the second test module measures the current flowing through the device under test to calculate the first impedance value to be tested related to the device under test. According to the first impedance value under test, the first voltage correction coefficient, the second current correction coefficient and the reference correction coefficient, the true impedance value associated with the component under test is calculated. And, respectively connect the second test module and the second reference module to the two ends of the standard component. The second test module measures the cross voltage of the standard element, and the second reference module measures the current flowing through the standard element, so as to calculate the third impedance value associated with the standard element. According to the reference impedance value and the third impedance value, a second current correction coefficient associated with the second test module is calculated.

於一些實施例中,所述多通道校正方法更可以包含下列步驟。分別連接第一測試模組與第二測試模組至待測元件的兩端。由第二測試模組量測待測元件的跨電壓,並且由第一測試模組量測流經待測元件的電流,據以計算關聯於待測元件的第二待測阻抗值。依據第二待測阻抗值、第一電流校正係數、第二電壓校正係數與參考校正係數,計算關聯於待測元件的真實阻抗值。以及,分別連接第二參考模組與第二測試模組至標準元件的兩端。由第二參考模組量測標準元件的跨電壓,並且由第二測試模組量測流經標準元件的電流,據以計算關聯於標準元件的第四阻抗值。依據參考阻抗值與第四阻抗值,計算關聯於第二測試模組的第二電壓校正係數。In some embodiments, the multi-channel calibration method may further include the following steps. The first test module and the second test module are respectively connected to the two ends of the component to be tested. The second test module measures the cross-voltage of the device under test, and the first test module measures the current flowing through the device under test, so as to calculate the second impedance value to be tested associated with the device under test. According to the second impedance value to be measured, the first current correction coefficient, the second voltage correction coefficient and the reference correction coefficient, the true impedance value associated with the component to be tested is calculated. And, respectively connect the second reference module and the second test module to the two ends of the standard component. The second reference module measures the voltage across the standard element, and the second test module measures the current flowing through the standard element, so as to calculate the fourth impedance value associated with the standard element. According to the reference impedance value and the fourth impedance value, a second voltage correction coefficient associated with the second test module is calculated.

綜上所述,本發明提供的多通道校正方法,可以用於校正多個測試模組。其中,本發明先以其中兩個測試模組做為參考模組,再量測其他測試模組相對於參考模組的誤差,從而可以減少任意針腳的量測架構下的測試模組校正時間。In summary, the multi-channel calibration method provided by the present invention can be used to calibrate multiple test modules. Among them, the present invention first uses two of the test modules as reference modules, and then measures the errors of other test modules relative to the reference module, thereby reducing the calibration time of the test modules under the measurement framework of any pin.

下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。The features, objectives and functions of the present invention will be further disclosed below. However, the following are only examples of the present invention, and should not be used to limit the scope of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention will still be the essence of the present invention. Without departing from the spirit and scope of the present invention, it should be regarded as a further implementation aspect of the present invention.

請參閱圖1,圖1係繪示依據本發明一實施例之測試裝置的電路示意圖。如圖1所示,本發明的多通道校正方法可以應用具有多個測試模組(或稱測試通道)的測試裝置,所述測試裝置可以是使用任意針腳的量測架構,並且任意兩個測試模組可以是相同的。首先,本實施例會先從多個測試模組選擇其中兩個測試模組,並定義為其中一個測試模組為第一參考模組10,而另一個測試模組為第二參考模組12。例如,第一參考模組10與第二參考模組12可以分別為排列在第一個與第二個的測試模組,當然本實施例不以此為限。此外,第一參考模組10與第二參考模組12會分別連接至一個標準元件20的兩端,例如第一參考模組10連接標準元件20的第一端200,第二參考模組12連接標準元件20的第二端202。Please refer to FIG. 1. FIG. 1 is a schematic circuit diagram of a testing device according to an embodiment of the present invention. As shown in Figure 1, the multi-channel calibration method of the present invention can be applied to a test device with multiple test modules (or called test channels). The test device can be a measurement architecture using any pins, and any two tests The modules can be the same. First, in this embodiment, two test modules are selected from a plurality of test modules, and one of the test modules is defined as the first reference module 10 and the other test module is the second reference module 12. For example, the first reference module 10 and the second reference module 12 may be the first and second test modules, respectively, although the embodiment is not limited thereto. In addition, the first reference module 10 and the second reference module 12 are respectively connected to two ends of a standard component 20. For example, the first reference module 10 is connected to the first end 200 of the standard component 20, and the second reference module 12 is The second end 202 of the standard component 20 is connected.

第一參考模組10和第二參考模組12可以用來量測同一個標準元件20的電壓、電流與阻抗等元件特性。本實施例在此不特別限制第一參考模組10和第二參考模組12對應到的硬體元件,例如第一參考模組10和第二參考模組12可以是兩張獨立的測試卡,且第一參考模組10和第二參考模組12可以設置於同一個測試裝置(圖未示)中。或者,第一參考模組10和第二參考模組12可以各自為一個獨立的設備,分別電性連接到同一個標準元件20。此外,本實施例也不限制標準元件20的種類,只要標準元件20需要使用第一參考模組10和第二參考模組12來進行電壓、電流與阻抗等元件特性的量測,皆屬於本實施例所稱標準元件20的範疇。以下分別就第一參考模組10和第二參考模組12的內部元件來進行說明。The first reference module 10 and the second reference module 12 can be used to measure component characteristics such as voltage, current, and impedance of the same standard component 20. This embodiment does not particularly limit the hardware components corresponding to the first reference module 10 and the second reference module 12, for example, the first reference module 10 and the second reference module 12 may be two independent test cards. And the first reference module 10 and the second reference module 12 can be set in the same testing device (not shown). Alternatively, the first reference module 10 and the second reference module 12 may each be an independent device, and are electrically connected to the same standard component 20 respectively. In addition, this embodiment does not limit the types of the standard components 20. As long as the standard components 20 need to use the first reference module 10 and the second reference module 12 to measure the characteristics of the components such as voltage, current, and impedance, they all belong to the present invention. The scope of the standard component 20 referred to in the embodiment. The internal components of the first reference module 10 and the second reference module 12 are respectively described below.

第一參考模組10可以包含電壓感測單元100、電流感測單元102以及量測電路104,電壓感測單元100與電流感測單元102可以電性連接到標準元件20的第一端200,並且量測電路104可以電性連接到電壓感測單元100與電流感測單元102。在此,雖然圖1的例子中繪示了第一參考模組10包含電源106,且電源106也會電性連接到標準元件20的第一端200,但實務上電源106並非必要元件。舉例來說,電源106也可以設置於第一參考模組10之外,例如可以是外部的電源供應器。換句話說,只要電源106能由第一端200供電給標準元件20,即符合本實施例電源106的範疇。The first reference module 10 may include a voltage sensing unit 100, a current sensing unit 102, and a measurement circuit 104. The voltage sensing unit 100 and the current sensing unit 102 may be electrically connected to the first terminal 200 of the standard element 20, In addition, the measurement circuit 104 can be electrically connected to the voltage sensing unit 100 and the current sensing unit 102. Here, although the example in FIG. 1 shows that the first reference module 10 includes a power supply 106 and the power supply 106 is also electrically connected to the first end 200 of the standard component 20, the power supply 106 is not a necessary component in practice. For example, the power supply 106 may also be provided outside the first reference module 10, for example, it may be an external power supply. In other words, as long as the power supply 106 can supply power to the standard component 20 from the first terminal 200, it conforms to the scope of the power supply 106 in this embodiment.

同樣地,第二參考模組12可以包含電壓感測單元120、電流感測單元122以及量測電路124,電壓感測單元120與電流感測單元122可以電性連接到標準元件20的第二端202,並且量測電路124可以電性連接到電壓感測單元120與電流感測單元122。如同電源106,電源126也可以設置於第二參考模組12之外,例如同樣可以是外部的電源供應器。為了方便說明,本實施例假設第一參考模組10和第二參考模組12包含電源106和電源126。此外,雖然圖1用兩個訊號輸出入端做為示範,並非用來限制標準元件20的訊號輸出入端的數量。實務上,標準元件20還可以包含更多的訊號輸出入端,而第一端200和第二端202可能只是其中的兩個訊號輸出入端。Similarly, the second reference module 12 may include a voltage sensing unit 120, a current sensing unit 122, and a measurement circuit 124. The voltage sensing unit 120 and the current sensing unit 122 may be electrically connected to the second part of the standard component 20. The terminal 202 and the measurement circuit 124 can be electrically connected to the voltage sensing unit 120 and the current sensing unit 122. Like the power supply 106, the power supply 126 can also be provided outside the second reference module 12, for example, it can also be an external power supply. For the convenience of description, this embodiment assumes that the first reference module 10 and the second reference module 12 include a power supply 106 and a power supply 126. In addition, although FIG. 1 uses two signal input and output terminals as an example, it is not used to limit the number of signal input and output terminals of the standard component 20. In practice, the standard component 20 may also include more signal input and output terminals, and the first terminal 200 and the second terminal 202 may only be two of the signal input and output terminals.

以實際的例子來說,第一參考模組10的電源106可以供電給標準元件20的第一端200,由第一參考模組10量測標準元件20的跨電壓,並且由第二參考模組12量測標準元件20的電流。詳細來說,第一參考模組10中的電壓感測單元100可以用來量測標準元件20的跨電壓,並將對應標準元件20跨電壓的資料傳送給量測電路104,由量測電路104換算取得第一電壓值。此外,第二參考模組12中的電流感測單元122用來量測流經標準元件20的電流,並將對應流經標準元件20的電流的資料傳送給量測電路124,由量測電路124換算取得第一電流值。於一個例子中,第一參考模組10和第二參考模組12的共地端(圖未示)可以連接在一起,從而電壓感測單元100可以經由第一端200和共地端取得標準元件20的跨電壓。並且,電流感測單元122可以利用電阻串聯或電流耦合的方式量測流經標準元件20的電流,由於量測電流的手段很多,本實施例並不特別限制。Take a practical example, the power supply 106 of the first reference module 10 can supply power to the first end 200 of the standard component 20, the first reference module 10 measures the voltage across the standard component 20, and the second reference module Group 12 measures the current of the standard component 20. In detail, the voltage sensing unit 100 in the first reference module 10 can be used to measure the cross voltage of the standard element 20, and transmit data corresponding to the cross voltage of the standard element 20 to the measuring circuit 104, and the measuring circuit 104 104 is converted to obtain the first voltage value. In addition, the current sensing unit 122 in the second reference module 12 is used to measure the current flowing through the standard component 20, and send data corresponding to the current flowing through the standard component 20 to the measuring circuit 124, and the measuring circuit 124 converts to obtain the first current value. In an example, the common ground terminal (not shown) of the first reference module 10 and the second reference module 12 can be connected together, so that the voltage sensing unit 100 can obtain the standard through the first terminal 200 and the common ground terminal. The voltage across the element 20. In addition, the current sensing unit 122 can measure the current flowing through the standard element 20 in a resistance series connection or current coupling manner. Since there are many methods for measuring current, this embodiment is not particularly limited.

為了簡化測試的條件,電源106和電源126可以設定成不同時工作,也就是電源126在電源106工作時可以是關閉的狀態。此時,如果將量測電路104換算出的第一電壓值表示為V 12,將量測電路124換算出的第一電流值表示為I 12,則標準元件20的參考阻抗值Z 12可以表示為下列算式(1): Z 12= V 12/ I 12(1) In order to simplify the test conditions, the power supply 106 and the power supply 126 can be set to not work at the same time, that is, the power supply 126 can be turned off when the power supply 106 is working. At this time, if the first voltage value converted by the measuring circuit 104 is expressed as V 12 , and the first current value converted by the measuring circuit 124 is expressed as I 12 , the reference impedance value Z 12 of the standard component 20 can be expressed as It is the following formula (1): Z 12 = V 12 / I 12 (1)

於一個例子中,參考阻抗值Z 12可以由測試裝置的處理器,或外部的電腦來計算,本實施例在此不加以限制。此外,由於第一電壓值V 12是經由量測電路104取得,還包含了量測電路104本身的誤差,從而第一電壓值V 12並非是標準元件20實際上的跨電壓。同樣地,第一電流值I 12由於也是經由量測電路124取得,還包含了量測電路124本身的誤差,從而第一電流值I 12並非是實際上流經標準元件20的電流。不過,本實施例並不在意第一電壓值V 12和第一電流值I 12的誤差,理由容後敘明。此外,由於標準元件20是經過校正的元件,因此標準元件20應當具有已知的阻抗值,本實施例在此稱為標準元件20的標準阻抗值Z std。也就是說,因為不同電路之間的溫度差異、濕度差異、老化程度差異、內部元件誤差等,參考阻抗值Z 12實際上很可能不等於標準元件20的標準阻抗值Z std。在此,參考阻抗值Z 12和標準阻抗值Z std之間的關係式可以由下列算式(2)表示: Z std=Z 12× K 12(2) In an example, the reference impedance value Z 12 can be calculated by the processor of the test device or an external computer, and this embodiment is not limited herein. In addition, since the first voltage value V 12 is obtained through the measurement circuit 104 and also includes the error of the measurement circuit 104 itself, the first voltage value V 12 is not the actual cross voltage of the standard component 20. Similarly, since the first current value I 12 is also obtained through the measuring circuit 124, it also includes the error of the measuring circuit 124 itself, so the first current value I 12 is not actually the current flowing through the standard component 20. However, this embodiment does not care about the error between the first voltage value V 12 and the first current value I 12 , and the reason will be explained later. In addition, since the standard element 20 is a calibrated element, the standard element 20 should have a known impedance value, which is referred to herein as the standard impedance value Z std of the standard element 20 in this embodiment. In other words, because of temperature differences, humidity differences, aging differences, internal component errors, etc. between different circuits, the reference impedance value Z 12 may actually not be equal to the standard impedance value Z std of the standard component 20. Here, the relational expression between the reference impedance value Z 12 and the standard impedance value Z std can be expressed by the following formula (2): Z std = Z 12 × K 12 (2)

其中K 12即為以第一參考模組10量測電壓,以第二參考模組12量測電流時,所得到的參考阻抗值Z 12和標準阻抗值Z std之間的參考校正係數。於所屬技術領具有通常知識者可以理解,若是改以第一參考模組10量測電流,以第二參考模組12量測電壓時,所得到的參考阻抗值將有可能不同於參考阻抗值Z 12,從而參考校正係數也有可能不同於參考校正係數K 12K 12 is the reference correction coefficient between the reference impedance value Z 12 and the standard impedance value Z std obtained when the first reference module 10 is used to measure the voltage and the second reference module 12 is used to measure the current. Those with ordinary knowledge in the relevant technology can understand that if the first reference module 10 is used to measure current and the second reference module 12 is used to measure voltage, the obtained reference impedance value may be different from the reference impedance value. Z 12 , so the reference correction coefficient may also be different from the reference correction coefficient K 12 .

接著,本實施例的多通道校正方法會陸續校正所有的測試模組。值得注意的是,所有的測試模組係並依序被校正而非同時被校正。請一併參閱圖1和圖2A,圖2A係為依據圖1的電路校正一個測試模組的電路示意圖。如圖所示,首先會將前述的第二參考模組12替換為第一測試模組30,即第一參考模組10連接標準元件20的第一端200,第一測試模組30連接標準元件20的第二端202。第一測試模組30可以是排列在m個的測試模組。如前所述,由於每個測試模組可以是相同的,本實施例在此不再贅述第一測試模組30的內部元件。於校正第一測試模組30時,可以由第一參考模組10量測標準元件20的跨電壓,並且由第一測試模組30量測流經標準元件20的電流。如同前述,本實施例將第一參考模組10量測出的電壓值表示為V 1m,將第一測試模組30量測出的電流值表示為I 1m,則可以算出關於標準元件20的一個阻抗值(第一阻抗值)Z 1m可以表示為下列算式(3): Z 1m= V 1m/ I 1m(3) Next, the multi-channel calibration method of this embodiment will calibrate all test modules one after another. It is worth noting that all test modules are calibrated in sequence rather than at the same time. Please refer to FIG. 1 and FIG. 2A together. FIG. 2A is a schematic circuit diagram of calibrating a test module according to the circuit of FIG. 1. As shown in the figure, the aforementioned second reference module 12 is first replaced with the first test module 30, that is, the first reference module 10 is connected to the first end 200 of the standard component 20, and the first test module 30 is connected to the standard The second end 202 of the element 20. The first test module 30 may be m test modules arranged in number. As mentioned above, since each test module can be the same, the internal components of the first test module 30 will not be repeated in this embodiment. When calibrating the first test module 30, the first reference module 10 can measure the voltage across the standard element 20, and the first test module 30 can measure the current flowing through the standard element 20. As mentioned above, in this embodiment, the voltage value measured by the first reference module 10 is expressed as V 1m , and the current value measured by the first test module 30 is expressed as I 1m , then the value of the standard component 20 can be calculated An impedance value (first impedance value) Z 1m can be expressed as the following formula (3): Z 1m = V 1m / I 1m (3)

進一步來說,由於第一參考模組10量測出的電壓值V 1m和電壓值V 12應當是相同的,本實施例還可以由上述算式(1)和算式(3),繼續推導出關聯於第一測試模組30的第一電流校正係數K Im,如下列算式(4)、算式(5)和算式(6): Z 12× I 12= V 12= V 1m= Z 1m× I 1m(4) I 12=I 1m× K Im(5) K Im= Z 1m/ Z 12(6) Furthermore, since the voltage value V 1m and the voltage value V 12 measured by the first reference module 10 should be the same, this embodiment can also continue to derive the correlation from the above equations (1) and (3) The first current correction coefficient K Im in the first test module 30 is as follows: (4), (5) and (6): Z 12 × I 12 = V 12 = V 1m = Z 1m × I 1m (4) I 12 = I 1m × K Im (5) K Im = Z 1m / Z 12 (6)

其中第一電流校正係數K Im即為第一測試模組30和第二參考模組12在量測電流時的誤差。或者說,如果將第一測試模組30量測出的電流以第一電流校正係數K Im校正之後,應當會等於第二參考模組12量測出的電流。並且如上述算式(6)可以看出,第一電流校正係數K Im可以由已經取得的參考阻抗值Z 12和第一阻抗值Z 1m推算出來。 The first current correction coefficient K Im is the error between the first test module 30 and the second reference module 12 when measuring current. In other words, if the current measured by the first test module 30 is corrected by the first current correction coefficient K Im , it should be equal to the current measured by the second reference module 12. And as can be seen from the above formula (6), the first current correction coefficient K Im can be calculated from the reference impedance value Z 12 and the first impedance value Z 1m that have been obtained.

類似地,本實施例會再將前述的第一參考模組10連替換為第一測試模組30,即第一測試模組30連接標準元件20的第一端200,第二參考模組12連接標準元件20的第二端202。接著,於校正第一測試模組30時,可以由第一測試模組30量測標準元件20的跨電壓,並且由第二參考模組12量測流經標準元件20的電流。本實施例將第一測試模組30量測出的電壓值表示為V m2,將第二參考模組12量測出的電流值表示為I m2,則又可以算出關於標準元件20的另一個阻抗值(第二阻抗值)Z m2可以表示為下列算式(7): Z m2= V m2/ I m2(7) Similarly, this embodiment will replace the aforementioned first reference module 10 with the first test module 30, that is, the first test module 30 is connected to the first end 200 of the standard component 20, and the second reference module 12 is connected to The second end 202 of the standard element 20. Then, when calibrating the first test module 30, the first test module 30 can measure the voltage across the standard element 20, and the second reference module 12 can measure the current flowing through the standard element 20. In this embodiment, the voltage value measured by the first test module 30 is expressed as V m2 , and the current value measured by the second reference module 12 is expressed as I m2 , and then another value about the standard component 20 can be calculated The impedance value (second impedance value) Z m2 can be expressed as the following formula (7): Z m2 = V m2 / I m2 (7)

進一步來說,由於電流值I m2和電流值I 12都是第二參考模組12量測出的,本實施例還可以由上述算式(1)和算式(7),繼續推導出關聯於第一測試模組30的第一電壓校正係數K Vm,如下列算式(8)、算式(9)和算式(10): V 12/ Z 12= I 12= I m2=V m2/ Z m2(8) V 12=V m2× K Vm(9) K Vm= Z 12/ Z m2(10) Furthermore, since the current value I m2 and the current value I 12 are measured by the second reference module 12, in this embodiment, the above formula (1) and formula (7) can be used to continue to derive the correlation with the first The first voltage correction coefficient K Vm of a test module 30, such as the following formula (8), formula (9) and formula (10): V 12 / Z 12 = I 12 = I m2 = V m2 / Z m2 (8 ) V 12 = V m2 × K Vm (9) K Vm = Z 12 / Z m2 (10)

其中第一電壓校正係數K Vm即為第一測試模組30和第一參考模組10在量測電壓時的誤差。或者說,如果將第一測試模組30量測出的電壓以第一電壓校正係數K Vm校正之後,應當會等於第一參考模組10量測出的電壓。並且如上述算式(10)可以看出,第一電壓校正係數K Vm可以由已經取得的參考阻抗值Z 12和第二阻抗值Z m2推算出來。 The first voltage correction coefficient K Vm is the error between the first test module 30 and the first reference module 10 when measuring the voltage. In other words, if the voltage measured by the first test module 30 is corrected by the first voltage correction coefficient K Vm , it should be equal to the voltage measured by the first reference module 10. And as can be seen from the above formula (10), the first voltage correction coefficient K Vm can be calculated from the reference impedance value Z 12 and the second impedance value Z m2 that have been obtained.

為了說明經過本發明的多通道校正方法後,所有的測試模組均可以正確量測未知阻抗值的待測元件。本實施例再示範校正一組測試模組,請一併參閱圖2A和圖2B,圖2B係為依據圖1的電路校正另一個測試模組的電路示意圖。如圖所示,首先會將前述的第二參考模組12替換為第二測試模組32,即第一參考模組10連接標準元件20的第一端200,第二測試模組32連接標準元件20的第二端202。第二測試模組32可以是排列在n個的測試模組。此時,前述校正第一測試模組30相同的是,本實施例也可以計算出第二電流校正係數K In。同樣地,第二電流校正係數K In表示,如果將第二測試模組32量測出的電流以第二電流校正係數K In校正之後,應當會等於第二參考模組12量測出的電流。 In order to explain that after the multi-channel calibration method of the present invention, all the test modules can correctly measure the component under test with unknown impedance value. This embodiment demonstrates the calibration of a group of test modules. Please refer to FIG. 2A and FIG. 2B together. FIG. 2B is a schematic circuit diagram of calibrating another test module according to the circuit of FIG. 1. As shown in the figure, the aforementioned second reference module 12 is first replaced with a second test module 32, that is, the first reference module 10 is connected to the first end 200 of the standard component 20, and the second test module 32 is connected to the standard The second end 202 of the element 20. The second test module 32 may be arranged in n test modules. At this time, the same thing as the aforementioned calibrating the first test module 30 is that the second current calibration coefficient K In can also be calculated in this embodiment. Similarly, the second current correction coefficient K In indicates that if the current measured by the second test module 32 is corrected with the second current correction coefficient K In , it should be equal to the current measured by the second reference module 12 .

接著,再將前述的第一參考模組10連替換為第二測試模組32,即第二測試模組32連接標準元件20的第一端200,第二參考模組12連接標準元件20的第二端202。接著,前述校正第一測試模組30相同的是,本實施例也可以計算出第二電壓校正係數K Vn。同樣地,第二電壓校正係數K Vn表示,如果將第二測試模組32量測出的電壓以第二電壓校正係數K Vn校正之後,應當會等於第一參考模組10量測出的電壓。並可表示為如下算式(11)和算式(12): I 12=I 1n× K In(11) V 12=V n2× K Vn(12) Then, replace the aforementioned first reference module 10 with the second test module 32, that is, the second test module 32 is connected to the first end 200 of the standard component 20, and the second reference module 12 is connected to the standard component 20. The second end 202. Next, the same as the aforementioned calibrating the first test module 30 is that the second voltage calibration coefficient K Vn can also be calculated in this embodiment. Similarly, the second voltage correction coefficient K Vn indicates that if the voltage measured by the second test module 32 is corrected by the second voltage correction coefficient K Vn , it should be equal to the voltage measured by the first reference module 10 . It can be expressed as the following formula (11) and formula (12): I 12 =I 1n × K In (11) V 12 =V n2 × K Vn (12)

算式(11)和算式(12)的推導過程如算式(5)和算式(9)的說明,本實施例在此不予贅述。值得一提的是,第一測試模組30可以儲存自己的第一電流校正係數K Im和第一電壓校正係數K Vm,第二測試模組32可以儲存自己的第二電流校正係數K In和第二電壓校正係數K Vn。此外,在校正完第一測試模組30和第二測試模組32之後,便可以用第一測試模組30和第二測試模組32量測未知阻抗值的待測元件。 The derivation process of equation (11) and equation (12) is as described in equation (5) and equation (9), and will not be repeated here in this embodiment. It is worth mentioning that the first test module 30 can store its own first current correction coefficient K Im and first voltage correction coefficient K Vm , and the second test module 32 can store its own second current correction coefficient K In and The second voltage correction coefficient K Vn . In addition, after calibrating the first test module 30 and the second test module 32, the first test module 30 and the second test module 32 can be used to measure the component under test of unknown impedance.

請參閱圖3,圖3係繪示依據本發明一實施例之使用兩個測試模組量測待測元件的電路示意圖。如圖3所示,第一測試模組30和第二測試模組32連接待測元件40的方式可能有兩種,其中一種是第一測試模組30連接待測元件40的第一端400,第二測試模組32連接待測元件40的第二端402。另一種是,第二測試模組32連接待測元件40的第一端400,第一測試模組30連接待測元件40的第二端402。本實施例先以第一測試模組30連接待測元件40的第一端400,第二測試模組32連接待測元件40的第二端402為例說明。Please refer to FIG. 3. FIG. 3 is a schematic diagram of a circuit for measuring the device under test using two test modules according to an embodiment of the present invention. As shown in FIG. 3, the first test module 30 and the second test module 32 may be connected to the component under test 40 in two ways, one of which is that the first test module 30 is connected to the first end 400 of the component under test 40. , The second test module 32 is connected to the second end 402 of the component under test 40. The other is that the second test module 32 is connected to the first end 400 of the component under test 40, and the first test module 30 is connected to the second end 402 of the component under test 40. In this embodiment, the first test module 30 is connected to the first end 400 of the device under test 40, and the second test module 32 is connected to the second end 402 of the device under test 40 as an example.

首先,第一測試模組30會量測待測元件40的跨電壓,並且由第二測試模組32量測流經待測元件40的電流。本實施例將第一測試模組30量測出的電壓值表示為V mn,將第二測試模組32量測出的電流值表示為I mn,則可以算出關於待測元件40的一個阻抗值(第一待測阻抗值)Z mn可以表示為下列算式(13): Z mn= V mn/ I mn(13) First, the first test module 30 measures the voltage across the device under test 40, and the second test module 32 measures the current flowing through the device under test 40. In this embodiment, the voltage value measured by the first test module 30 is expressed as V mn , and the current value measured by the second test module 32 is expressed as I mn , then an impedance of the component under test 40 can be calculated The value (the first impedance value to be measured) Z mn can be expressed as the following formula (13): Z mn = V mn / I mn (13)

由於第一待測阻抗值Z mn包含了第一測試模組30和第二測試模組32的誤差值,並不一定是待測元件40真正的阻抗值。據此,為了求得待測元件40真正的阻抗值,本實施例先將第一測試模組30量測出的電壓值V mn以第一電壓校正係數K Vm校正。接著,本實施例再將第二測試模組32量測出的電流值I mn以第二電壓校正係數K In校正。據此,假設待測元件40的真實阻抗值為Z dut,則真實阻抗值Z dut可以表示如下列算式(14): Z dut= (V mn× K Vm) / (I mn×K In) × K 12(14) Since the first impedance value Z mn under test includes the error value of the first test module 30 and the second test module 32, it is not necessarily the true impedance value of the component under test 40. Accordingly, in order to obtain the true impedance value of the component under test 40, the present embodiment first corrects the voltage value V mn measured by the first test module 30 with the first voltage correction coefficient K Vm . Next, in this embodiment, the current value I mn measured by the second test module 32 is corrected by the second voltage correction coefficient K In . Accordingly, assuming that the real impedance value of the component under test 40 is Z dut , the real impedance value Z dut can be expressed as the following formula (14): Z dut = (V mn × K Vm ) / (I mn × K In ) × K 12 (14)

上述電壓值V mn和第一電壓校正係數K Vm的乘積,意義上是以第一測試模組30量測待測元件40的電壓,轉換成第一參考模組10應當讀出的電壓值。上述電流值I mn和第二電壓校正係數K In的乘積,意義上是以第二測試模組32量測待測元件40的電流,轉換成第二參考模組12應當讀出的電流值。此外,上述算式(14)還有一項參考校正係數K 12,這是因為第一參考模組10和第二參考模組12的量測結果,和真實阻抗值Z dut仍有誤差。如同算式(2)的意義,第一參考模組10和第二參考模組12的量測阻抗值可以經由參考校正係數K 12的校正,消除第一參考模組10和第二參考模組12的量測誤差。 The product of the aforementioned voltage value V mn and the first voltage correction coefficient K Vm means that the first test module 30 measures the voltage of the device under test 40 and converts it into the voltage value that the first reference module 10 should read. The product of the above-mentioned current value I mn and the second voltage correction coefficient K In means that the second test module 32 measures the current of the device under test 40 and converts it into the current value that the second reference module 12 should read. In addition, the above formula (14) also has a reference correction coefficient K 12 , because the measurement results of the first reference module 10 and the second reference module 12 still have an error with the real impedance value Z dut. As in the meaning of equation (2), the measured impedance values of the first reference module 10 and the second reference module 12 can be corrected by the reference correction coefficient K 12 to eliminate the first reference module 10 and the second reference module 12 The measurement error.

類似地,第二測試模組32也可以連接待測元件40的第一端400,且第一測試模組30可以連接待測元件40的第二端402。在此例子中,第二測試模組32會量測待測元件40的跨電壓,並且由第一測試模組30量測流經待測元件40的電流。本實施例將第二測試模組32量測出的電壓值表示為V nm,將第一測試模組30量測出的電流值表示為I nm,則可以算出關於待測元件40的一個阻抗值(第二待測阻抗值)Z nm可以表示為下列算式(15): Z nm= V nm/ I nm(15) Similarly, the second test module 32 can also be connected to the first end 400 of the component under test 40, and the first test module 30 can be connected to the second end 402 of the component under test 40. In this example, the second test module 32 measures the voltage across the device under test 40, and the first test module 30 measures the current flowing through the device under test 40. In this embodiment, the voltage value measured by the second test module 32 is expressed as V nm , and the current value measured by the first test module 30 is expressed as I nm , then an impedance of the component under test 40 can be calculated The value (the second impedance value to be measured) Z nm can be expressed as the following formula (15): Z nm = V nm / I nm (15)

如前所是,由於第二待測阻抗值Z nm也包含了第一測試模組30和第二測試模組32的誤差值,並不一定是待測元件40真正的阻抗值。據此,為了求得待測元件40真正的阻抗值,本實施例同樣將第二測試模組32量測出的電壓值V nm以第二電壓校正係數K Vn校正。接著,本實施例再將第一測試模組30量測出的電流值I nm以第一電壓校正係數K Im校正。據此,假設待測元件40的真實阻抗值同樣為Z dut,則真實阻抗值Z dut可以表示如下列算式(16): Z dut= (V nm× K Vn) / (I nm×K Im) × K 12(16) As mentioned above, since the second impedance value Z nm under test also includes the error value of the first test module 30 and the second test module 32, it is not necessarily the true impedance value of the device under test 40. Accordingly, in order to obtain the real impedance value of the component under test 40, this embodiment also corrects the voltage value V nm measured by the second test module 32 with the second voltage correction coefficient K Vn . Next, in this embodiment, the current value I nm measured by the first test module 30 is corrected with the first voltage correction coefficient K Im . Accordingly, assuming that the true impedance value of the component under test 40 is also Z dut , the true impedance value Z dut can be expressed as the following formula (16): Z dut = (V nm × K Vn ) / (I nm × K Im ) × K 12 (16)

上述電壓值V nm和第二電壓校正係數K Vn的乘積,意義上是以第二測試模組32量測待測元件40的電壓,轉換成第一參考模組10應當讀出的電壓值。上述電流值I nm和第一電壓校正係數K Im的乘積,意義上是以第一測試模組30量測待測元件40的電流,轉換成第二參考模組12應當讀出的電流值。值得注意的是,這個例子縱使將第一測試模組30和第二測試模組32反接,但只要選擇不同的電壓校正係數和電壓校正係數,還是可以轉換成第一參考模組10應當讀出的電壓值,和第二參考模組12應當讀出的電流值。據此,上述算式(16)會再乘上相同的參考校正係數K 12,消除第一參考模組10和第二參考模組12本身的量測誤差。 The product of the aforementioned voltage value V nm and the second voltage correction coefficient K Vn means that the second test module 32 measures the voltage of the device under test 40 and converts it into the voltage value that the first reference module 10 should read. The product of the aforementioned current value I nm and the first voltage correction coefficient K Im means that the first test module 30 measures the current of the device under test 40 and converts it into the current value that the second reference module 12 should read. It is worth noting that even though the first test module 30 and the second test module 32 are reversely connected in this example, as long as different voltage correction coefficients and voltage correction coefficients are selected, they can still be converted into the first reference module 10 should read The voltage value and the current value that the second reference module 12 should read. Accordingly, the above formula (16) will be multiplied by the same reference correction coefficient K 12 to eliminate the measurement error of the first reference module 10 and the second reference module 12 itself.

以實際的例子來說,假設測試裝置有100個測試模組(測試通道),由於使用上可以任意選擇100個測試模組中的2個來量測待測元件,於所屬技術領域具有通常知識者可以理解所有的測試模組排列組合都需要被預先校正。在此,所有的測試模組排列組合會有 100P 2共9900種可能,即理論上要完成9900次校正,可知要校正完所有的測試模組排列組合會相當費時。相反地,本發明是先選擇兩個測試模組作為第一參考模組與第二參考模組,第一參考模組與第二參考模組僅需要量測一次標準元件,取得參考校正係數。接下來,本發明會逐一校正剩下的98個測試模組,由於每個測試模組需要替換一次第一參考模組與替換一次第二參考模組,則應會有196種組合。由上述可知,加上第一參考模組與第二參考模組量測標準元件的最初一次,本實施例僅需要完成197次校正即可,不用窮盡所有的排列組合。有別於傳統的多通道校正方法,本發明的多通道校正方法顯然更為省時與簡易。 Taking a practical example, suppose that the test device has 100 test modules (test channels). Since 2 of the 100 test modules can be arbitrarily selected to measure the component under test, they have common knowledge in the technical field. One can understand that all permutations and combinations of test modules need to be calibrated in advance. Here, all the test module permutations and combinations will have 100 P 2 and a total of 9900 possibilities, that is, 9900 calibrations have to be completed theoretically. It can be seen that it will be time-consuming to calibrate all the test module permutations and combinations. In contrast, the present invention first selects two test modules as the first reference module and the second reference module. The first reference module and the second reference module only need to measure the standard components once to obtain the reference correction coefficient. Next, the present invention will calibrate the remaining 98 test modules one by one. Since each test module needs to replace the first reference module once and the second reference module once, there should be 196 combinations. It can be seen from the above that, plus the first measurement of the standard component by the first reference module and the second reference module, this embodiment only needs to complete 197 calibrations without exhausting all permutations and combinations. Different from the traditional multi-channel calibration method, the multi-channel calibration method of the present invention is obviously more time-saving and simple.

為了說明本發明的多通道校正方法,請一併參閱圖1至圖4,圖4係繪示依據本發明一實施例多通道校正方法的步驟流程圖。如圖所示,於步驟S50中,本實施例分別連接第一參考模組10與第二參考模組12至標準元件20的兩端。於步驟S51中,由第一參考模組10量測標準元件20的跨電壓,並且由第二參考模組12量測流經標準元件20的電流,據以計算關聯於標準元件20的參考阻抗值Z 12。於步驟S52中,將第二參考模組12替換為第一測試模組30,由第一參考模組10量測標準元件20的跨電壓,並且由第一測試模組30量測流經標準元件20的電流,據以計算關聯於標準元件20的第一阻抗值Z 1m。於步驟S53中,依據參考阻抗值Z 12與第一阻抗值Z 1m,計算關聯於第一測試模組30的第一電流校正係數K Im,如前述算式(6)。於步驟S54中,將第一參考模組10替換為第一測試模組30,由第一測試模組30量測標準元件20的跨電壓,並且由第二參考模組12量測流經標準元件20的電流,據以計算關聯於標準元件20的第二阻抗值Z m2。依據參考阻抗值Z 12與第二阻抗值Z m2,計算關聯於第一測試模組30的第一電壓校正係數K Vm,如前述算式(10)。本實施例所述多通道校正方法的其餘細節,皆已於前一實施例說明過,故在此不予贅述。 In order to explain the multi-channel calibration method of the present invention, please refer to FIGS. 1 to 4 together. FIG. 4 is a flowchart of the steps of the multi-channel calibration method according to an embodiment of the present invention. As shown in the figure, in step S50, the present embodiment connects the first reference module 10 and the second reference module 12 to the two ends of the standard component 20 respectively. In step S51, the first reference module 10 measures the voltage across the standard element 20, and the second reference module 12 measures the current flowing through the standard element 20 to calculate the reference impedance associated with the standard element 20 The value Z 12 . In step S52, the second reference module 12 is replaced with the first test module 30, the first reference module 10 measures the voltage across the standard element 20, and the first test module 30 measures the flow through the standard Based on the current of the element 20, the first impedance value Z 1m associated with the standard element 20 is calculated. In step S53, the first current correction coefficient K Im associated with the first test module 30 is calculated according to the reference impedance value Z 12 and the first impedance value Z 1m , as shown in the aforementioned formula (6). In step S54, the first reference module 10 is replaced with the first test module 30, the first test module 30 measures the voltage across the standard element 20, and the second reference module 12 measures the flow through the standard According to the current of the element 20, the second impedance value Z m2 associated with the standard element 20 is calculated. According to the reference impedance value Z 12 and the second impedance value Z m2 , the first voltage correction coefficient K Vm associated with the first test module 30 is calculated, as described in the aforementioned formula (10). The rest of the details of the multi-channel calibration method described in this embodiment have been described in the previous embodiment, so it will not be repeated here.

綜上所述,本發明提供的多通道校正方法,可以用於校正多個測試模組。其中,本發明先以其中兩個測試模組做為參考模組,再量測其他測試模組相對於參考模組的誤差,從而可以減少任意針腳的量測架構下的測試模組校正時間。In summary, the multi-channel calibration method provided by the present invention can be used to calibrate multiple test modules. Among them, the present invention first uses two of the test modules as reference modules, and then measures the errors of other test modules relative to the reference module, thereby reducing the calibration time of the test modules under the measurement framework of any pin.

10:第一參考模組 100:電壓感測單元 102:電流感測單元 104:量測電路 106:電源 12:第二參考模組 120:電壓感測單元 122:電流感測單元 124:量測電路 126:電源 20:標準元件 200:第一端 202:第二端 30:第一測試模組 32:第二測試模組 40:待測元件 400:第一端 402:第二端 S51~S55:步驟流程10: The first reference module 100: Voltage sensing unit 102: current sensing unit 104: Measuring circuit 106: Power 12: The second reference module 120: Voltage sensing unit 122: current sensing unit 124: measurement circuit 126: Power 20: Standard components 200: first end 202: second end 30: The first test module 32: The second test module 40: component under test 400: first end 402: second end S51~S55: Step flow

圖1係繪示依據本發明一實施例之測試裝置的電路示意圖。FIG. 1 is a schematic circuit diagram of a testing device according to an embodiment of the present invention.

圖2A係為依據圖1的電路校正一個測試模組的電路示意圖。FIG. 2A is a schematic diagram of a circuit for calibrating a test module according to the circuit of FIG. 1.

圖2B係為依據圖1的電路校正另一個測試模組的電路示意圖。FIG. 2B is a schematic diagram of a circuit for calibrating another test module according to the circuit of FIG. 1.

圖3係繪示依據本發明一實施例之使用兩個測試模組量測待測元件的電路示意圖。FIG. 3 is a schematic diagram of a circuit for measuring the device under test using two test modules according to an embodiment of the present invention.

圖4係繪示依據本發明一實施例多通道校正方法的步驟流程圖。FIG. 4 is a flowchart of the steps of a multi-channel calibration method according to an embodiment of the present invention.

none

S50~S55:步驟流程 S50~S55: Step flow

Claims (7)

一種多通道校正方法,包含: 分別連接一第一參考模組與一第二參考模組至一標準元件的兩端; 由一第一參考模組量測該標準元件的跨電壓,並且由一第二參考模組量測流經該標準元件的電流,據以計算關聯於該標準元件的一參考阻抗值; 將該第二參考模組替換為一第一測試模組,由該第一參考模組量測該標準元件的跨電壓,並且由該第一測試模組量測流經該標準元件的電流,據以計算關聯於該標準元件的一第一阻抗值; 依據該參考阻抗值與該第一阻抗值,計算關聯於該第一測試模組的一第一電流校正係數; 將該第一參考模組替換為該第一測試模組,由該第一測試模組量測該標準元件的跨電壓,並且由該第二參考模組量測流經該標準元件的電流,據以計算關聯於該標準元件的一第二阻抗值;以及 依據該參考阻抗值與該第二阻抗值,計算關聯於該第一測試模組的一第一電壓校正係數。 A multi-channel calibration method, including: Respectively connect a first reference module and a second reference module to both ends of a standard component; A first reference module measures the voltage across the standard element, and a second reference module measures the current flowing through the standard element, so as to calculate a reference impedance value associated with the standard element; Replacing the second reference module with a first test module, the first reference module measures the voltage across the standard component, and the first test module measures the current flowing through the standard component, According to which a first impedance value associated with the standard component is calculated; Calculating a first current correction coefficient associated with the first test module according to the reference impedance value and the first impedance value; Replacing the first reference module with the first test module, the first test module measures the voltage across the standard component, and the second reference module measures the current flowing through the standard component, According to which a second impedance value associated with the standard component is calculated; and According to the reference impedance value and the second impedance value, a first voltage correction coefficient associated with the first test module is calculated. 如請求項1所述之多通道校正方法,其中該第一電壓校正係數與該第一電流校正係數儲存於該第一測試模組。The multi-channel calibration method according to claim 1, wherein the first voltage calibration coefficient and the first current calibration coefficient are stored in the first test module. 如請求項2所述之多通道校正方法,更包含: 依據該參考阻抗值與關聯於該標準元件的一標準阻抗值,計算一參考校正係數。 The multi-channel calibration method described in claim 2 further includes: According to the reference impedance value and a standard impedance value associated with the standard component, a reference correction coefficient is calculated. 如請求項3所述之多通道校正方法,更包含: 分別連接該第一測試模組與一第二測試模組至一待測元件的兩端; 由該第一測試模組量測該待測元件的跨電壓,並且由該第二測試模組量測流經該待測元件的電流,據以計算關聯於該待測元件的一第一待測阻抗值;以及 依據該第一待測阻抗值、該第一電壓校正係數、一第二電流校正係數與該參考校正係數,計算關聯於該待測元件的一真實阻抗值。 The multi-channel calibration method described in claim 3 further includes: Respectively connect the first test module and a second test module to two ends of a component under test; The first test module measures the voltage across the device under test, and the second test module measures the current flowing through the device under test to calculate a first test module associated with the device under test. Measure the impedance value; and According to the first impedance value to be measured, the first voltage correction coefficient, a second current correction coefficient, and the reference correction coefficient, a true impedance value associated with the device under test is calculated. 如請求項4所述之多通道校正方法,更包含: 分別連接該第二測試模組與該第二參考模組至該標準元件的兩端; 由該第二測試模組量測該標準元件的跨電壓,並且由該第二參考模組量測流經該標準元件的電流,據以計算關聯於該標準元件的一第三阻抗值; 依據該參考阻抗值與該第三阻抗值,計算關聯於該第二測試模組的該第二電流校正係數。 The multi-channel calibration method described in claim 4 further includes: Respectively connect the second test module and the second reference module to both ends of the standard component; The second test module measures the voltage across the standard element, and the second reference module measures the current flowing through the standard element, so as to calculate a third impedance value associated with the standard element; According to the reference impedance value and the third impedance value, the second current correction coefficient associated with the second test module is calculated. 如請求項3所述之多通道校正方法,更包含: 分別連接該第一測試模組與一第二測試模組至一待測元件的兩端; 由該第二測試模組量測該待測元件的跨電壓,並且由該第一測試模組量測流經該待測元件的電流,據以計算關聯於該待測元件的一第二待測阻抗值;以及 依據該第二待測阻抗值、該第一電流校正係數、一第二電壓校正係數與該參考校正係數,計算關聯於該待測元件的一真實阻抗值。 The multi-channel calibration method described in claim 3 further includes: Respectively connect the first test module and a second test module to two ends of a component under test; The second test module measures the voltage across the device under test, and the first test module measures the current flowing through the device under test to calculate a second test module associated with the device under test. Measure the impedance value; and According to the second impedance value to be measured, the first current correction coefficient, a second voltage correction coefficient, and the reference correction coefficient, a true impedance value associated with the device under test is calculated. 如請求項6所述之多通道校正方法,更包含: 分別連接該第二參考模組與該第二測試模組至該標準元件的兩端; 由該第二參考模組量測該標準元件的跨電壓,並且由該第二測試模組量測流經該標準元件的電流,據以計算關聯於該標準元件的一第四阻抗值; 依據該參考阻抗值與該第四阻抗值,計算關聯於該第二測試模組的該第二電壓校正係數。 The multi-channel calibration method described in claim 6, further including: Respectively connect the second reference module and the second test module to both ends of the standard component; The second reference module measures the voltage across the standard element, and the second test module measures the current flowing through the standard element, so as to calculate a fourth impedance value associated with the standard element; According to the reference impedance value and the fourth impedance value, the second voltage correction coefficient associated with the second test module is calculated.
TW109146996A 2020-12-31 2020-12-31 Multi-channel calibration method TWI749978B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109146996A TWI749978B (en) 2020-12-31 2020-12-31 Multi-channel calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146996A TWI749978B (en) 2020-12-31 2020-12-31 Multi-channel calibration method

Publications (2)

Publication Number Publication Date
TWI749978B true TWI749978B (en) 2021-12-11
TW202227831A TW202227831A (en) 2022-07-16

Family

ID=80681328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146996A TWI749978B (en) 2020-12-31 2020-12-31 Multi-channel calibration method

Country Status (1)

Country Link
TW (1) TWI749978B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572204A1 (en) * 1992-05-27 1993-12-01 Kaye Instruments, Inc. Method and apparatus for automated sensor diagnosis
TW200817709A (en) * 2006-10-11 2008-04-16 Hon Hai Prec Ind Co Ltd System and method for measuring digital multimeters automatically
CN102253353A (en) * 2011-04-19 2011-11-23 河北省电力研究院 Method and device for automatically calibrating micro-ammeters
CN202994875U (en) * 2012-12-07 2013-06-12 陕西千山航空电子有限责任公司 A multi-channel calibrating device
TW201835581A (en) * 2017-03-20 2018-10-01 上海騏宏電驅動科技有限公司 Resistance measuring system and resistance measuring device includes a current detector, a standard resistor, a probe assembly and a signal processing unit
US20190277936A1 (en) * 2018-03-07 2019-09-12 Delta Electronics, Inc. Multi-channel detecting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572204A1 (en) * 1992-05-27 1993-12-01 Kaye Instruments, Inc. Method and apparatus for automated sensor diagnosis
TW200817709A (en) * 2006-10-11 2008-04-16 Hon Hai Prec Ind Co Ltd System and method for measuring digital multimeters automatically
CN102253353A (en) * 2011-04-19 2011-11-23 河北省电力研究院 Method and device for automatically calibrating micro-ammeters
CN202994875U (en) * 2012-12-07 2013-06-12 陕西千山航空电子有限责任公司 A multi-channel calibrating device
TW201835581A (en) * 2017-03-20 2018-10-01 上海騏宏電驅動科技有限公司 Resistance measuring system and resistance measuring device includes a current detector, a standard resistor, a probe assembly and a signal processing unit
US20190277936A1 (en) * 2018-03-07 2019-09-12 Delta Electronics, Inc. Multi-channel detecting system

Also Published As

Publication number Publication date
TW202227831A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
TW394849B (en) Automated microwave test system with improved accuracy
JPH11326413A (en) Measurement error correcting method in network analyzer
JP2004317506A (en) Property clarification of balancing device including test system calibration
TWI248516B (en) Method and apparatus for calibration and validation of high performance DUT power supplies
CN113094230B (en) Power consumption monitoring method and power consumption monitoring main board
TWI631357B (en) Zeitbereichsmessverfahren mit kalibrierung im frequenbereich
WO2012105127A1 (en) Measurement error correction method and electronic component characteristic measurement device
TWI580194B (en) Chip having self-calibration mechanism and calibration method thereof
US20150212186A1 (en) Method of calibrating and operating testing system
TWI749978B (en) Multi-channel calibration method
WO2019014341A1 (en) Systems and methods for current estimation
CN104777360A (en) De-embedding test method
US20080010034A1 (en) Method for network analyzer calibration and network analyzer
CN114690104A (en) Multi-channel correction method
TWI729631B (en) Method for measuring impedance
US7054780B2 (en) Network analyzer applying loss compensation using port extensions and method of operation
CN113009223B (en) Impedance measuring method
CN112014643B (en) Method for accurately testing small resistance of integrated circuit
US9581676B2 (en) Method of calibrating and debugging testing system
JP4775575B2 (en) Measuring error correction method and electronic component characteristic measuring apparatus
JP5458817B2 (en) Method of correcting electrical characteristic measurement error of electronic component and electronic component characteristic measuring apparatus
US20230039158A1 (en) System for calibration management and method of managing calibration
JP6389354B2 (en) Total network characteristic measuring method and apparatus
JP2002350476A (en) Voltage detecting circuit
CN114236446B (en) Integrated circuit voltage parameter standard reproduction device and method based on analog voltage source