TWI725402B - 具有背閘極偏壓電晶體之dc迴路的寬頻低雜訊放大器 - Google Patents

具有背閘極偏壓電晶體之dc迴路的寬頻低雜訊放大器 Download PDF

Info

Publication number
TWI725402B
TWI725402B TW108110068A TW108110068A TWI725402B TW I725402 B TWI725402 B TW I725402B TW 108110068 A TW108110068 A TW 108110068A TW 108110068 A TW108110068 A TW 108110068A TW I725402 B TWI725402 B TW I725402B
Authority
TW
Taiwan
Prior art keywords
amplifier device
transistor
amplifier
complementary
circuit structure
Prior art date
Application number
TW108110068A
Other languages
English (en)
Other versions
TW202011689A (zh
Inventor
孔斯丹提諾斯 馬尼塔奇斯
湯馬士G 麥克
Original Assignee
美商格芯(美國)集成電路科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商格芯(美國)集成電路科技有限公司 filed Critical 美商格芯(美國)集成電路科技有限公司
Publication of TW202011689A publication Critical patent/TW202011689A/zh
Application granted granted Critical
Publication of TWI725402B publication Critical patent/TWI725402B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • H03F3/347DC amplifiers in which all stages are DC-coupled with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45269Complementary non-cross coupled types
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45356Indexing scheme relating to differential amplifiers the AAC comprising one or more op-amps, e.g. IC-blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45498Indexing scheme relating to differential amplifiers the CSC comprising only resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本發明揭示數種方法形成包括第一至第三放大器裝置的放大器裝置結構。該第一放大器裝置產生中間訊號。該第二放大器裝置連接至該第一放大器裝置的輸入且產生放大反相輸出訊號。該第三放大器裝置反相該中間訊號以產生與該放大反相輸出訊號互補的放大非反相輸出訊號。一電阻器反饋迴路連接至該第一放大器裝置的輸入及輸出。該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比。再者,DC迴路電路連接至該第一至第三放大器裝置,該等DC迴路電路中之各者使放大器裝置輸出連接至放大器裝置輸入。

Description

具有背閘極偏壓電晶體之DC迴路的寬頻低雜訊放大器
本揭示內容係有關於積體電路裝置,例如放大器,且更具體言之,有關於具有背閘極偏壓電晶體之直流(DC)迴路的寬頻低雜訊放大器。
放大器有利於以較高功率重現低功率訊號。交流電(AC)耦合電容器通常在放大器中是用來連接兩個電路。在使用AC耦合電容器的情形下,只有來自第一電路的AC訊號可傳給第二電路,同時阻擋直流(DC),而且這是在隔離耦合電路的DC偏壓設定值時發生。
不過,AC耦合電容器需要數量顯著的晶片面積。再者,AC耦合電容器會損害寬頻低雜訊放大器(LNA)的效能,因為對於越來越低的頻率,AC耦合電容器的電阻性似乎越來越大。寬頻LNA以500MHz至3GHz運作,且在放大較低的頻率時,AC耦合增加電阻,因此會降低效能。
本揭示內容呈現各種放大器裝置電路結構及其製造方法。有些示範放大器裝置結構包括第一、第二及第三放大器裝置(例如,反相器)。該第一放大器裝置反相及放大輸入訊號以產生中間訊號。該第二放大器裝置連接至該第一放大器裝置的輸入且反相及放大該輸入訊號以產生放大反相輸出訊號。該第三放大器裝置反相該中間訊號以產生與該放大反相輸出訊號互補的放大非反相輸出訊號。此類結構進一步包括反饋迴路,其連接至該第一放大器裝置的輸入及輸出。
該反饋迴路包括一電阻器。該電阻器使該第一放大器裝置的閘極維持在中供應電壓,且該第一放大器裝置使該第二放大器裝置及該第三放大器裝置的閘極維持在該中供應電壓。該等各種裝置的尺寸經製作成:該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比。藉由將該等裝置的尺寸調整成讓此等比率互相匹配而抵消該第一放大器裝置所產生的雜訊及失真。
再者,只有直流(DC)迴路電路被包括在該第一至第三放大器裝置中,且該等DC迴路電路中之各者包括偏壓電晶體。更詳細言之,該第一至第三放大器裝置包括連接至接地以設定該第一至第三放大器裝置之偏壓電流的第一至第三(例如,n型)電晶體。該第一至第三放大器裝置另外包括連接至電壓源的第一至第三互補(例如,p型)電晶體。
再者,該第一至第三電晶體連接至偏壓電流。更具體言之,該偏壓電流連接至該第一至第三電晶體的背閘極。在有些結構中,針對各個不同電晶體,供應至該第一至第三電晶體的偏壓電流可不同。更具 體言之,一或多個參考裝置連接至該第一至第三電晶體,且該(等)參考裝置在位於該電壓源與接地之間的中供應電壓產生該偏壓電流。
數種放大器裝置在此用各種方法形成,其包括:形成第一放大器裝置,其經連接成可反相及放大輸入訊號且產生中間訊號;形成第二放大器裝置,其連接至該第一放大器裝置的輸入,以反相及放大該輸入訊號,且產生放大反相輸出訊號;形成連接至該第一放大器裝置之輸出的第三放大器裝置,以反相該中間訊號,且產生與該放大反相輸出訊號互補的放大非反相輸出訊號;以及形成反饋迴路,其連接至該第一放大器裝置的輸出以及該第一放大器裝置的輸入。形成包括電阻器的該反饋迴路。
該第二放大器裝置、該第三放大器裝置及該電阻器經形成為該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比。
形成該第一至第三放大器裝置的方法包括:形成連接至接地以設定該第一至第三放大器裝置之該偏壓電流的第一至第三電晶體。再者,形成連接至偏壓電流的該第一至第三電晶體。形成該第一至第三放大器裝置以進一步包括連接至極性與該第一至第三電晶體相反之電壓源的第一至第三互補電晶體。
此類處理另外形成連接至該第一至第三電晶體的至少一參考裝置。該參考裝置經形成為在位於電壓源電壓與接地之間的中供應電壓可產生該偏壓電流。再者,在此類方法中,形成數個連接致使該偏壓電流連接至該第一至第三電晶體的背閘極。另外,此類連接經形成為針對各個不同電晶體而供應至該第一至第三電晶體的該偏壓電流可不同。
100‧‧‧低雜訊放大器(LNA)
102‧‧‧反饋迴路
104‧‧‧第一放大器裝置、反相器、放大器裝置
106‧‧‧第二放大器裝置、反相器
108‧‧‧第三放大器裝置、放大器裝置
110‧‧‧參考裝置
200‧‧‧步驟
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
208‧‧‧步驟
gm0‧‧‧裝置、雜訊
gm1‧‧‧跨導、增益
gm2‧‧‧增益
io1‧‧‧互補輸出電流
io2‧‧‧輸出電流
in‧‧‧輸入訊號
Ibias‧‧‧電流
Nb、N0至N2‧‧‧n型電晶體
OA0至OA2、OAB‧‧‧運算放大器
P0、P1、P2‧‧‧p型電晶體
R0、R1、R2‧‧‧電阻器
RS‧‧‧在“in”的源極電阻
Vdd‧‧‧工作電壓
Vbgn0、Vbgn1、Vbgn2‧‧‧偏壓電流
Vbgn‧‧‧偏壓訊號/偏壓電流
由以下參考未必按比例繪製之附圖的詳細說明可更加明白本文具體實施例,且其中:第1圖示意圖示根據本文具體實施例的放大器裝置;第2圖示意圖示根據本文具體實施例的參考裝置;第3圖更詳細地示意圖示第1圖的放大器裝置;第4圖示意圖示第2圖的參考裝置與第3圖之放大器裝置的一部分;以及第5圖為圖解說明本文具體實施例的流程圖。
如上述,習知的AC耦合電容器會消耗寶貴的晶片面積且明顯損害寬頻LNA的效能。本發明的系統及方法係藉由消除AC耦合電容器,以及利用在DC迴路中之全空乏絕緣體上覆矽(FDSOI)電晶體的背閘極性能,來解決這些問題。因此,如本文所述的寬頻LNA提供互補輸出電流,其中的電流減去(current subtraction)是由下一級的混頻器(mixer)與轉阻放大器(TIA)提供。再者,使用寬頻、無電感器的布局(低核心面積,較少干擾),本文所述的寬頻LNA在DC耦合互補LNA級中提供可預測且穩定的偏壓。此外,此類雜訊及失真抵消布局消除輸入阻抗設定主動電路的雜訊及失真。
如本文所述,這些寬頻LNA使用基於3個DC耦合反相器的(互補)放大級(迴路)以提供互補輸出電流。偏壓電路供給偏壓至DC迴路中之電晶體的背閘極端子,而在DC耦合放大級中之各者中提供可預測的偏壓電流。此雜訊及失真抵消布局消除輸入阻抗設定主動電路的雜訊及失真。再者,該等互補結構節省用於給定跨導的電流。極小的LNA核心可用來消除多路徑接收器的傳輸(RX)開關(在此,一次運作一個路徑)。
因此,用本文的方法及裝置,有電阻反饋的第一反相器提供電壓增益,而只有各自DC耦合至第一反相器之輸入及輸出的第二及第三反相器提供互補輸出電流以及第一反相器裝置之雜訊及失真的抵消。該偏壓電路提供偏壓電流,同時為了最大線性而將輸入/輸出維持在中供應(mid-supply)。另外,使用互補級會最大化用於給定偏壓電流的跨導。
更具體言之,第1圖圖示例示的低雜訊放大器(LNA)100,其包括第一放大器裝置(104)、第二放大器裝置(106)及第三(108)放大器裝置(例如,運算放大器、反相器等等)。第一放大器裝置104連接至一輸入節點且將一輸入訊號(in)予以反相並放大以在一中間節點產生一中間訊號。第二放大器裝置106連接至第一放大器裝置104的一輸入且將該輸入訊號予以反相並放大以在一輸出節點產生一放大反相輸出訊號(i01)。第三放大器裝置108將該中間訊號予以反相以產生在一互補輸出節點處與放大反相輸出訊號(i01)互補的一放大非反相輸出訊號(i02)。
此類結構進一步包括連接至第一放大器裝置104之輸入及輸出的反饋迴路102。該反饋迴路包括一電阻器R0。電阻器R0使第一放大器 裝置104的閘極維持在中供應電壓,且第一放大器裝置104使第二放大器裝置106及第三放大器裝置108的閘極維持在中供應電壓。
在圖示於第1圖的結構中,互補級(反相器104)將通到中間節點的輸入訊號予以放大。相對較小的反相器108提供具有(1-gm0.R0)
Figure 108110068-A0202-12-0006-1
gm2之跨導增益(ro為在中間節點的輸出阻抗)的輸出電流io2,在此ro為gm0的輸出阻抗。相對較大的反相器106(相對大於反相器108)提供具有跨導gm1的互補輸出電流io1。就本文的目的而言,跨導通常為裝置的增益參數(gm為使用於跨導的增益度量)。如果觀察到以下比率
Figure 108110068-A0202-12-0006-2
Figure 108110068-A0202-12-0006-3
,則注入中間節點的任何雜訊電流會被抵消(假如RS為在“in”的源極電阻)。因此,裝置gm0所產生的雜訊被抵消。在雜訊抵消條件下的雜訊指數係給定為
Figure 108110068-A0202-12-0006-4
(應注意,上述方程式沒有gm0項,因為前者抵消雜訊gm0)。
換言之,第三放大器裝置108之增益gm2與第二放大器裝置106之增益gm1的增益比(gm2/gm1)匹配(例如,大約等效於)輸入訊號之源極電阻RS與電阻器之電阻R0加源極電阻之電阻的電阻比(RS/R0+RS)。“匹配”或“大約等於”意指兩個數值在彼此的10%內(或甚至彼此更接近,例如5%、2%、或完全相等)。因此,有匹配該等比率(gm2/gm1=RS/(R0+RS))之第二及第三放大器裝置106、108的裝置抵消第一放大器裝置104所產生的雜訊。
另外,在如
Figure 108110068-A0202-12-0006-5
所示的相同條件下,也抵消gm0對於差動電流之三階失真的貢獻。在最小二階失真項的假設下,下式給出差動輸出電流(g03、g13及g23項模型化反相器中的三階失真):
Figure 108110068-A0202-12-0006-7
Figure 108110068-A0202-12-0007-6
。應注意,在前面方程式中,增益沒有g03項,因為前者抵消gm0的失真。微小訊號三階失真的進一步優化係藉由運作在g13及g23被最小化之中等反相區中的裝置。
第2圖圖示產生Vbgn的參考裝置110,Vbgn界定在各反相器之中的偏壓電流。偏壓電流Vbgn大體在位於電壓源與接地之間的中供應電壓。更具體言之,該參考裝置包括運算放大器OAB,其接收全工作電壓Vdd與中點電壓(例如,Vdd的40%-60%)之輸入。運算放大器OAB輸出偏壓訊號Vbgn至n型電晶體Nb的背閘極。如圖示,電晶體Nb具有連接至工作電壓Vdd及接地的源極/汲極,且前閘極另外連接至工作電壓Vdd。
第3圖更詳細地圖示低雜訊放大器100且圖中所有的反相器只有DC耦合式,這避免使用AC耦合電容器(結構中沒有AC耦合電容器);圖中各個n型裝置的背閘極連接用來實現穩定的偏壓電流;且圖中環繞各個p型裝置的DC迴路將閘極/汲極電壓設定為中供應。
更具體言之,第3圖圖示直流(DC)迴路電路被包括在第一至第三放大器裝置104至108中。該等DC迴路電路包括用由參考裝置110產生之偏壓訊號Vbgn偏壓的的偏壓n型電晶體N0、N1及N2。因此,第一至第三放大器裝置104至108包括第一至第三電晶體N0-N2(其具有被偏壓訊號Vbgn偏壓的背閘極),彼等連接至接地且設定第一至第三放大器裝置104至108的偏壓電流。
第一至第三放大器裝置104至108另外包括連接至工作電壓源Vdd的第一至第三互補p型電晶體P0、P1及P2。換言之,第一至第三互補電晶體P0至P2是屬於第一至第三電晶體N0-N2(例如,n型電晶體)的相反極性(例如,p型電晶體)。互補電晶體P0至P2的汲極連接至n型電晶體N0-N2的汲極而形成反相器結構。
此外,第一至第三放大器裝置104至108各自包括設定各個反相器之閘極/汲極電壓的DC迴路。更具體言之,該等DC迴路環繞運算放大器(OA0至OA2)且將p型電晶體(P0-P2)包括在放大器裝置104至108中之各者內。因此,各DC迴路包括運算放大器OA0、OA1或OA2,用以接收中點電壓(例如,Vdd/2)與互補電晶體(P0、P1或P2)之其中一者之汲極側之輸入。各運算放大器的OA0至OA2輸出偏壓對應p型電晶體P0-P2的背閘極,從而藉此設定各反相器的閘極/汲極電壓。
在有些結構中,針對各個不同電晶體,供應至第一至第三電晶體N0-N2的偏壓電流可有所不同。關於這些類型的裝置,多個參考裝置110連接至第一至第三電晶體N0-N2,其中各個電晶體可能有專屬參考裝置,且該等參考裝置110產生不同的偏壓電流(Vbgn0、Vbgn1、Vbgn2)。
第4圖圖示連接至該等放大器裝置中之一者的參考裝置110。在第4圖的實施例中,圖示參考裝置110連接至第二放大器裝置106,但是使用相同的連接來連接其他的放大器裝置。更具體言之,環繞參考裝置110中之運算放大器OAB的DC迴路會設定電晶體Nb的背閘極,使得Nb的閘極及汲極在中供應(例如Vdd/2(使用電阻器R1至R2))的情況下被偏壓在電流Ibias。所得到的背閘極電壓將第二放大器裝置106中之電晶體N1的偏壓電流設定為Ibias的一倍數。用環繞運算放大器OA1相應地設定P1之背閘極的DC迴路將N1/P1的共汲極設定為中供應。P1/N1的閘極用前一個放大器裝置104保持在中供應。藉助於反饋電阻器R0,在鏈環(gm0)中的第一放大器裝置104使它的閘極保持在中供應。
第5圖為圖示本文形成上述裝置之處理的流程圖。應注意,在第5圖中,該等步驟中之一或多個係同時執行,或者以不同於流程圖的順序執行。
如步驟200所示,本文在此所述之裝置係藉由下列敘述製造或建立:形成一第一放大器裝置,其經連接成可反相及放大一輸入訊號且可產生一中間訊號。在步驟202中,這些方法形成一第二放大器裝置,其連接至該第一放大器裝置的一輸入以反相及放大該輸入訊號且產生一放大反相輸出訊號。在步驟204中,這些方法形成連接至該第一放大器裝置之一輸入的一第三放大器裝置,以反相該中間訊號且產生與該放大反相輸出訊號互補的一放大非反相輸出訊號。在步驟206中,這些方法形成一反饋迴路,其連接至該第一放大器裝置的一輸出且連接至該第一放大器裝置的一輸入。在步驟206中,形成包括一電阻器的該反饋迴路。
在步驟202-206中,該第二放大器裝置、該第三放大器裝置及該電阻器的尺寸經製作成該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之該源極電阻與該電阻器加上該源極電阻之電阻的電阻比。
形成第一至第三放大器裝置200至204的方法包括形成連接至接地以設定通到該第一至第三放大器裝置之偏壓電流的第一至第三電晶體。再者,在步驟200至204形成連接至一偏壓電流的該第一至第三電晶 體。在步驟200至204形成該第一至第三放大器裝置以進一步包括連接至一電壓源且極性與該第一至第三電晶體相反的第一至第三互補電晶體。
此類處理另外在步驟208形成連接至該第一至第三電晶體的至少一參考裝置。在步驟208形成該參考裝置以在位於電壓源電壓與接地之間的一中供應電壓產生偏壓電流。再者,在步驟208,形成連接致使該偏壓電流連接至該第一至第三電晶體的背閘極。另外,在項目208形成該等連接使得針對各個不同電晶體而供應至該第一至第三電晶體的偏壓電流可有所不同。
有各種類型的電晶體,它們在使用於電路時會稍有不同。例如,雙極電晶體有標示為基極、集極及射極的端子。在基極端子的微小電流(亦即,在基極、射極之間流動)可控制或切換在集極與射極端子之間的較大電流。另一實施例是場效電晶體,它有標示為閘極、源極及汲極的端子。閘極的電壓可控制源極與汲極之間的電流。在此類電晶體內,半導體(通道區)位在導電源極區與同樣導電的汲極(或導電源極/射極區)之間,且在半導體處於導電狀態時,半導體允許電流在源極與汲極之間或在集極與射極之間流動。閘極為用“閘極氧化物”(其係絕緣體)與半導體電氣分離的導電元件;以及閘極內的電流/電壓變化使通道區導電,而允許電流在源極與汲極之間流動。同樣,在基極、射極之間流動的電流使半導體導電,而允許電流在集極與射極之間流動。
正型電晶體“P型電晶體”在本質半導體基板內使用諸如硼、鋁或鎵之類的雜質(以造成價電子不足)作為半導體區。同樣,“N型電晶體”為負型電晶體,其在本質半導體基板內使用諸如銻、砷或磷之類的雜 質(以造成價電子過剩)作為半導體區。一般而言,電晶體結構的形成係藉由沉積或植入雜質於基板中以形成以在基板頂面(上表面)下的淺溝槽隔離區為界的至少一半導體通道區。
附圖中的流程圖及方塊圖根據各種具體實施例圖示裝置及方法之可能實作的架構、機能及操作。在這點上,流程圖或方塊圖的各個區塊可為指令的模組、區段(segment)或部分,其包括一或更多可執行指令用於實施特定的邏輯功能(或數個邏輯功能)。在一些替代實施中,備註於區塊的功能可不按備註於附圖的順序。例如,圖中依次顯示的兩個區塊事實上可實質同時地執行,或取決於涉及的機能,該等區塊有時可以相反的順序執行。也應注意,方塊圖及/或流程圖的各個區塊,以及方塊圖及/或流程圖的區塊組合可用根據硬體的專用系統實施,其執行特定功能或動作或貫徹特殊用途硬體與電腦指令的組合。
使用於此的術語是只為了要描述特定實施例而非旨在限制上述事項。如本文所使用的,英文單數形式“a”、“an”和“the”旨在也包括複數形式,除非上下文中另有明確指示。本文具體實施例可使用於各種電子應用,包括但不限於:先進感測器、記憶體/資料儲存所、半導體、微處理器及其他應用。所產生之裝置及結構,例如積體電路(IC)晶片,可由製造者以原始晶圓形式(raw wafer form)(也就是具有多個未封裝晶片的單一晶圓)、作為裸晶粒(bare die)或已封裝的形式來銷售。在後一情形下,晶片裝在單晶片封裝體中(例如,塑膠載體(plastic carrier),具有固定至主機板或其他更高層載體的引腳(lead)),或多晶片封裝體中(例如,具有表面互連件(surface interconnection)或內嵌互連件(buried interconnection)中之任一或兩者兼具的陶瓷載體)。然後,在任一情形下,晶片與其他晶片、離散電路元件及/或其他信號處理裝置整合成為(a)中間產品(例如,主機板),或(b)最終產品中之任一者的一部分。該最終產品可為包括積體電路晶片的任何產品,從玩具及其他低端應用到有顯示器、鍵盤或其他輸入裝置及中央處理器的先進電腦產品不等。
儘管以上已詳述數目有限的具體實施例,然而應可輕易明白,本文具體實施例不受限於揭示內容。反而,可修改本文元件以併入在此之前未加以描述但是與本文精神及範疇相稱的任意多個變體、變更、替代或等效配置。另外,儘管已描述各種具體實施例,然而應瞭解,本文方面可能只被所述具體實施例中之一些包括。因此,以下申請專利範圍不應視為受限於以上說明。以單數指稱一元件並非意指“一個且只有一個”,而是“一或多個”,除非另外特別說明。本技藝一般技術人員習知或隨後可知描述於本揭示內容的不同具體實施例之元件的所有結構及功能等效物在此明確併入本文作為參考數據且希望被本揭示內容所涵蓋。因此,應瞭解可改變所揭示的特定具體實施例,這些都在如隨附申請專利範圍所述的範疇內。
100‧‧‧低雜訊放大器(LNA)
102‧‧‧反饋迴路
104‧‧‧第一放大器裝置、反相器、放大器裝置
106‧‧‧第二放大器裝置、反相器
108‧‧‧第三放大器裝置、放大器裝置
gm0‧‧‧裝置、雜訊
gm1‧‧‧跨導、增益
gm2‧‧‧增益
io1‧‧‧互補輸出電流
io2‧‧‧輸出電流
in‧‧‧輸入訊號
N0至N2‧‧‧n型電晶體
OA0至OA2‧‧‧運算放大器
P0、P1、P2‧‧‧p型電晶體
R0‧‧‧電阻器
Vdd‧‧‧工作電壓
Vbgn‧‧‧偏壓訊號/偏壓電流

Claims (20)

  1. 一種放大器裝置電路結構,包含:第一放大器裝置,其中,該第一放大器裝置反相及放大輸入訊號以產生中間訊號;第二放大器裝置,其中,該第二放大器裝置連接至該第一放大器裝置的輸入且反相及放大該輸入訊號以產生放大反相輸出訊號;第三放大器裝置,連接至該第一放大器裝置之輸出,其中,該第三放大器裝置反相該中間訊號以產生與該放大反相輸出訊號互補的放大非反相輸出訊號;以及反饋迴路,連接至該第一放大器裝置的輸出以及連接至該第一放大器裝置的該輸入,且其中,該反饋迴路包括電阻器,其中,該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比,其中,該第一放大器裝置、該第二放大器裝置及該第三放大器裝置各自包括分別包含第一電晶體、第二電晶體及第三電晶體的直流(DC)迴路電路,該第一電晶體、該第二電晶體及該第三電晶體係連接至一或多個偏壓電流,且其中,該第一電晶體、該第二電晶體及該第三電晶體各自具有連接至產生該一或多個偏壓電流的至少一參考裝置的背閘極。
  2. 如申請專利範圍第1項所述之放大器裝置電路結構,其中,該第一電晶體係連接至接地以設定通到該第一放大器裝置的該一或多個偏壓電流, 其中,該第二電晶體係連接至接地以設定通到該第二放大器裝置的該一或多個偏壓電流,且其中,該第三電晶體係連接至接地以設定通到該第三放大器裝置的該一或多個偏壓電流。
  3. 如申請專利範圍第2項所述之放大器裝置電路結構,其中,該一或多個偏壓電流係連接至該第一電晶體、該第二電晶體及該第三電晶體的該背閘極。
  4. 如申請專利範圍第2項所述之放大器裝置電路結構,其中,針對各個不同電晶體,供應至該第一電晶體、該第二電晶體及該第三電晶體的該一或多個偏壓電流不同。
  5. 如申請專利範圍第2項所述之放大器裝置電路結構,其中,該第一放大器裝置進一步包含連接至電壓源的第一互補電晶體,其中,該第一互補電晶體與該第一電晶體有相反的極性,其中,該第二放大器裝置進一步包含連接至該電壓源的第二互補電晶體,其中,該第二互補電晶體與該第二電晶體有相反的極性,其中,該第三放大器裝置進一步包含連接至該電壓源的第三互補電晶體,且其中,該第三互補電晶體與該第三電晶體有相反的極性。
  6. 如申請專利範圍第5項所述之放大器裝置電路結構,其中,該至少一參考裝置在位於電壓源與接地之間的中供應電壓產生該一或多個偏壓電流。
  7. 如申請專利範圍第6項所述之放大器裝置電路結構,其中,該電阻器使該第一放大器裝置的閘極維持在該中供應電壓,且該第一放大器裝置使該第二放大器裝置及該第三放大器裝置的閘極維持在該中供應電壓。
  8. 一種放大器裝置電路結構,包含:第一放大器裝置,其中,該第一放大器裝置反相及放大輸入訊號以產生中間訊號;第二放大器裝置,其中,該第二放大器裝置連接至該第一放大器裝置的輸入且反相及放大該輸入訊號以產生放大反相輸出訊號;第三放大器裝置,連接至該第一放大器裝置之輸入,其中,該第三放大器裝置反相該中間訊號以產生與該放大反相輸出訊號互補的放大非反相輸出訊號;以及反饋迴路,連接至該第一放大器裝置的該輸出以及連接至該第一放大器裝置的該輸入,且其中,該反饋迴路包括電阻器,其中,該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比,其中,該第一放大器裝置、該第二放大器裝置及該第三放大器裝置各自包括分別包含第一電晶體、第二電晶體及第三電晶體的直流(DC)迴路電路,其中,該第一電晶體、該第二電晶體及該第三電晶體各自具有連接至產生一或多個偏壓電流的至少一參考裝置。
  9. 如申請專利範圍第8項所述之放大器裝置電路結構,其中,該第一電晶體係連接至接地以設定通到該第一放大器裝置的該一或多個偏壓電流,其中,該第二電晶體係連接至接地以設定通到該第二放大器裝置的該一或多個偏壓電流,且其中,該第三電晶體係連接至接地以設定通到該第三放大器裝置的該一或多個偏壓電流。
  10. 如申請專利範圍第9項所述之放大器裝置電路結構,其中,該一或多個偏壓電流連接至該第一電晶體、該第二電晶體及該第三電晶體的該背閘極。
  11. 如申請專利範圍第9項所述之放大器裝置電路結構,其中,針對各個不同電晶體,供應至該第一電晶體、該第二電晶體及該第三電晶體的該一或多個偏壓電流不同。
  12. 如申請專利範圍第9項所述之放大器裝置電路結構,其中,該第一放大器裝置進一步包含連接至電壓源的第一互補電晶體,其中,該第一互補電晶體與該第一電晶體有相反的極性,其中,該第二放大器裝置進一步包含連接至該電壓源的第二互補電晶體,其中,該第二互補電晶體與該第二電晶體有相反的極性,其中,該第三放大器裝置進一步包含連接至該電壓源的第三互補電晶體,且其中,該第三互補電晶體與該第三電晶體有相反的極性。
  13. 如申請專利範圍第12項所述之放大器裝置電路結構,其中,該至少一參考裝置在位於電壓源與接地之間的中供應電壓產生該一或多個偏壓電流。
  14. 如申請專利範圍第13項所述之放大器裝置電路結構,其中,該電阻器使該第一放大器裝置的閘極維持在該中供應電壓,且該第一放大器裝置使該第二放大器裝置及該第三放大器裝置的閘極維持在該中供應電壓。
  15. 一種形成放大器裝置電路結構的方法,包含:形成第一放大器裝置,該第一放大器裝置經連接成反相及放大輸入訊號並且產生中間訊號;形成第二放大器裝置,該第二放大器裝置連接至該第一放大器裝置的輸入且反相及放大該輸入訊號以及產生放大反相輸出訊號;形成連接至該第一放大器裝置之輸出的第三放大器裝置,以反相該中間訊號且產生與該放大反相輸出訊號互補的放大非反相輸出訊號;以及形成反饋迴路,連接至該第一放大器裝置的該輸出且連接至該第一放大器裝置的該輸入,其中,該反饋迴路包括電阻器,其中,該第二放大器裝置、該第三放大器裝置及該電阻器經形成為,該第三放大器裝置之增益與該第二放大器裝置之增益的增益比匹配該輸入訊號之源極電阻與該電阻器加上該源極電阻之電阻的電阻比,其中,該第一放大器裝置、該第二放大器裝置及該第三放大器裝置係經形成以包括分別包含第一電晶體、第二電晶體及第三電晶體的直流 (DC)迴路電路,且其中,該第一電晶體、該第二電晶體及該第三電晶體各自經形成以具有連接至產生一或多個偏壓電流的至少一參考裝置。
  16. 如申請專利範圍第15項所述之形成該放大器裝置電路結構的方法,其中,該第一電晶體係經形成以連接至接地以設定通到該第一放大器裝置的該一或多個偏壓電流,其中,該第二電晶體係經形成以連接至接地以設定通到該第二放大器裝置的該一或多個偏壓電流,且其中,該第三電晶體係經形成以連接至接地以設定通到該第三放大器裝置的該一或多個偏壓電流。
  17. 如申請專利範圍第16項所述之形成該放大器裝置電路結構的方法,其中,形成數個連接致使該一或多個偏壓電流連接至該第一電晶體、該第二電晶體及該第三電晶體的該背閘極。
  18. 如申請專利範圍第16項所述之形成該放大器裝置電路結構的方法,其中,形成數個連接致使針對各個不同電晶體而供應至該第一電晶體、該第二電晶體及該第三電晶體的該一或多個偏壓電流不同。
  19. 如申請專利範圍第16項所述之形成該放大器裝置電路結構的方法,其中,形成該第一放大器裝置以進一步包含連接至電壓源的第一互補電晶體,其中,形成該第一互補電晶體以包含與該第一電晶體相反的極性,其中,形成該第二放大器裝置以進一步包含連接至該電壓源的第二互 補電晶體,其中,形成該第二互補電晶體以包含與該第二電晶體相反的極性,其中,形成該第三放大器裝置以進一步包含連接至該電壓源的第三互補電晶體,且其中,形成極性與該第三電晶體相反的該第三互補電晶體。
  20. 如申請專利範圍第19項所述之形成該放大器裝置電路結構的方法,進一步包含形成連接至該第一電晶體、該第二電晶體及該第三電晶體的至少一參考裝置,其中,形成該至少一參考裝置以在位於電壓源與接地之間的中供應電壓產生該一或多個偏壓電流。
TW108110068A 2018-04-23 2019-03-22 具有背閘極偏壓電晶體之dc迴路的寬頻低雜訊放大器 TWI725402B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/959,514 2018-04-23
US15/959,514 US10700653B2 (en) 2018-04-23 2018-04-23 Wideband low noise amplifier having DC loops with back gate biased transistors

Publications (2)

Publication Number Publication Date
TW202011689A TW202011689A (zh) 2020-03-16
TWI725402B true TWI725402B (zh) 2021-04-21

Family

ID=68105501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110068A TWI725402B (zh) 2018-04-23 2019-03-22 具有背閘極偏壓電晶體之dc迴路的寬頻低雜訊放大器

Country Status (3)

Country Link
US (1) US10700653B2 (zh)
DE (1) DE102019203993A1 (zh)
TW (1) TWI725402B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957981B (zh) * 2019-11-28 2024-03-15 上海磐启微电子有限公司 一种增益与阻抗匹配分离的无电感低噪声放大器
CN112234944A (zh) * 2020-09-14 2021-01-15 成都振芯科技股份有限公司 一种无电感宽带低噪声放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181120B1 (en) * 1999-09-01 2001-01-30 Intersil Corporation Current mode dc/dc converter with controlled output impedance
US6259322B1 (en) * 1999-10-28 2001-07-10 Texas Instruments Incorporated Current efficient, ultra low noise differential gain amplifier architecture
US20080143408A1 (en) * 2006-12-19 2008-06-19 Fabrice Paillet Pulse width modulator
US8274335B1 (en) * 2011-03-29 2012-09-25 Sony Corporation System and method for effectively implementing a front end core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573550A (en) 1995-04-28 1996-11-12 Pacesetter, Inc. Implantable stimulation device having a low noise, low power, precision amplifier for amplifying cardiac signals
US5939938A (en) 1995-10-13 1999-08-17 National Semiconductor Corporation Amplifier circuit with reduced DC power related turn-on and turn-off transients
US5880631A (en) 1996-02-28 1999-03-09 Qualcomm Incorporated High dynamic range variable gain amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181120B1 (en) * 1999-09-01 2001-01-30 Intersil Corporation Current mode dc/dc converter with controlled output impedance
US6259322B1 (en) * 1999-10-28 2001-07-10 Texas Instruments Incorporated Current efficient, ultra low noise differential gain amplifier architecture
US20080143408A1 (en) * 2006-12-19 2008-06-19 Fabrice Paillet Pulse width modulator
US8274335B1 (en) * 2011-03-29 2012-09-25 Sony Corporation System and method for effectively implementing a front end core

Also Published As

Publication number Publication date
TW202011689A (zh) 2020-03-16
DE102019203993A1 (de) 2019-10-24
US10700653B2 (en) 2020-06-30
US20190326866A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP2641408B2 (ja) 低電圧高速動作のcmos演算増幅器
JPH1022750A (ja) 低電圧演算増幅器の入力段および方法
JPH1051246A (ja) 低電圧演算増幅器とその方法
JP4578703B2 (ja) 演算増幅器
TWI725402B (zh) 具有背閘極偏壓電晶體之dc迴路的寬頻低雜訊放大器
CN110086437A (zh) 运算放大器和芯片
JP2000101403A (ja) 比較増幅検出回路
JP2000183668A (ja) 演算増幅回路
US6236269B1 (en) Complementary CMOS differential amplifier circuit
US6545502B1 (en) High frequency MOS fixed and variable gain amplifiers
CN113765487A (zh) 用以提高低噪声放大器的线性度的可调电容器
US20190288648A1 (en) Amplifier Using Parallel High-Speed And Low-Speed Transistors
US8179196B2 (en) High voltage amplification using low breakdown voltage devices
WO2023221210A1 (zh) 带隙基准电路与芯片
US7876153B1 (en) Transconductor circuit
US7956690B2 (en) Operational amplification circuit
US4638259A (en) CMOS differential amplifier stage with bulk isolation
US8816770B2 (en) Low-voltage constant-gm rail-to-rail CMOS input stage with improved gain
US9871492B2 (en) Analog amplifier for recovering abnormal operation of common mode feedback
US6710660B1 (en) Class B power buffer with rail to rail output swing and small deadband
JP2007042711A (ja) 静電気保護部を備えるオペアンプ回路
US7005921B2 (en) Common-mode feedback circuit
KR0158625B1 (ko) 자유 컬렉터단자를 구비한 바이폴라 트랜지스터 회로
US12028065B2 (en) Push-pull buffer circuit
US8766725B2 (en) Apparatus and methods for frequency compensation of an amplifier