TWI719807B - Chamber pressure control method and device, and semiconductor equipment - Google Patents

Chamber pressure control method and device, and semiconductor equipment Download PDF

Info

Publication number
TWI719807B
TWI719807B TW109101972A TW109101972A TWI719807B TW I719807 B TWI719807 B TW I719807B TW 109101972 A TW109101972 A TW 109101972A TW 109101972 A TW109101972 A TW 109101972A TW I719807 B TWI719807 B TW I719807B
Authority
TW
Taiwan
Prior art keywords
pressure
chamber
value
execution unit
position parameter
Prior art date
Application number
TW109101972A
Other languages
Chinese (zh)
Other versions
TW202040302A (en
Inventor
鄭文寧
趙迪
陳正堂
Original Assignee
大陸商北京七星華創流量計有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京七星華創流量計有限公司 filed Critical 大陸商北京七星華創流量計有限公司
Publication of TW202040302A publication Critical patent/TW202040302A/en
Application granted granted Critical
Publication of TWI719807B publication Critical patent/TWI719807B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Abstract

本發明提供一種腔室壓力控制方法及裝置、半導體設備,該方法包括以下步驟:S1,檢測腔室內部的實際壓力值;S2,計算實際壓力值與預設的目標壓力值的差值;判斷差值是否超出預設範圍,若超出,則進行步驟S3;若未超出,則流程結束;S3,獲取控制係數,該控制係數為曲率與預設的PID係數的乘積,該曲率為與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與執行單元的目前的位置參數值相對應的曲率;S4,基於差值和控制係數計算獲得執行單元的位置參數調整量,向該執行單元輸出,返回步驟S2。本發明提供的腔室壓力控制方法及裝置、半導體設備的技術方案,可以精確快速的控制腔室內壓力,使之穩定在預設範圍內,從而可以提高製程品質和成品率。The present invention provides a chamber pressure control method and device, and semiconductor equipment. The method includes the following steps: S1, detecting the actual pressure value inside the chamber; S2, calculating the difference between the actual pressure value and the preset target pressure value; judging Whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, the process ends; S3, obtain the control coefficient, which is the product of the curvature and the preset PID coefficient, and the curvature is the same as the current In the curve about pressure and position parameter corresponding to the gas flow value, the curvature corresponding to the current position parameter value of the execution unit; S4, calculate the position parameter adjustment amount of the execution unit based on the difference and the control coefficient, and send it to the execution unit Output and return to step S2. The chamber pressure control method and device provided by the present invention, and the technical solution of the semiconductor equipment, can accurately and quickly control the chamber pressure to stabilize it within a preset range, thereby improving the quality of the manufacturing process and the yield rate.

Description

腔室壓力控制方法及裝置、半導體設備Chamber pressure control method and device, semiconductor equipment

本發明涉及半導體製造技術領域,特別涉及一種腔室壓力控制方法及裝置、半導體設備。The present invention relates to the technical field of semiconductor manufacturing, in particular to a chamber pressure control method and device, and semiconductor equipment.

在半導體製造、光伏等領域,氧化爐等的反應腔室是半導體製程中最重要的設備。在進行鍍膜等製程的過程中,通入反應腔室內的反應氣體包括H2 、HCl、大量的O2 、少量的C2 H2 Cl2 以及N2 等,這些反應氣體需要在恆定的壓力條件下進行化學反應,以確保製程結果諸如鍍層的厚度等滿足要求,而且應保持反應腔室內的壓力穩定在設定壓力,如若製程實際壓力大於或小於設定壓力均會影響鍍層的厚度。目前,亟需一種能夠精確快速的控制反應腔室內壓力的方法和裝置。In the semiconductor manufacturing, photovoltaic and other fields, the reaction chamber such as the oxidation furnace is the most important equipment in the semiconductor manufacturing process. In the process of coating and other processes, the reaction gas introduced into the reaction chamber includes H 2 , HCl, a large amount of O 2 , a small amount of C 2 H 2 Cl 2 and N 2, etc. These reaction gases need to be under constant pressure conditions. To ensure that the process results such as the thickness of the coating meet the requirements, the pressure in the reaction chamber should be kept stable at the set pressure. If the actual process pressure is greater than or less than the set pressure, the thickness of the coating will be affected. Currently, there is an urgent need for a method and device that can accurately and quickly control the pressure in the reaction chamber.

本發明旨在至少解決先前技術中存在的技術問題之一,提出了一種腔室壓力控制方法及裝置、半導體設備,其可以精確快速的控制腔室內壓力,使之穩定在預設範圍內,從而可以提高製程品質和成品率。The present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a chamber pressure control method and device, and semiconductor equipment, which can accurately and quickly control the pressure in the chamber to stabilize it within a preset range, thereby Can improve process quality and yield.

為實現上述目的,本發明提供了一種腔室壓力控制方法,包括以下步驟: S1,檢測腔室內部的實際壓力值; S2,計算該實際壓力值與預設的目標壓力值的差值;並判斷該差值是否超出預設範圍,若超出,則進行步驟S3;若未超出,則流程結束; S3,獲取控制係數,該控制係數為曲率與預設的PID係數的乘積,其中,該曲率為:與目前的氣體流量值對應的關於壓力和執行單元的位置參數的曲線中,與該執行單元的目前的位置參數值相對應的曲率; S4,基於該差值和該控制係數計算獲得該執行單元的位置參數調整量,且向該執行單元輸出,並返回該步驟S2。To achieve the above objective, the present invention provides a chamber pressure control method, which includes the following steps: S1, the actual pressure value inside the detection chamber; S2: Calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, then the process ends; S3. Obtain a control coefficient. The control coefficient is the product of the curvature and the preset PID coefficient, where the curvature is: in the curve about the pressure and the position parameter of the execution unit corresponding to the current gas flow value, and the execution unit The curvature corresponding to the current position parameter value; S4: Calculate and obtain the position parameter adjustment amount of the execution unit based on the difference and the control coefficient, and output it to the execution unit, and return to step S2.

可選的,在該步驟S1之前,還包括: S0,預先儲存樣本資料範本; 其中,該樣本資料範本包括不同的該氣體流量值與該曲線的對應關係,以及每條該曲線中不同的該位置參數值與曲率的對應關係; 該步驟S3,進一步包括: S31,根據目前的該氣體流量值和該執行單元的目前的位置參數值,從該樣本資料範本中獲取該曲率; S32,計算從該樣本資料範本中獲取的該曲率與該PID係數的乘積。Optionally, before this step S1, it further includes: S0, pre-store the sample data template; Wherein, the sample data template includes different correspondences between the gas flow value and the curve, and different correspondences between the position parameter value and the curvature in each curve; This step S3 further includes: S31: Acquire the curvature from the sample data template according to the current gas flow value and the current position parameter value of the execution unit; S32: Calculate the product of the curvature obtained from the sample data template and the PID coefficient.

可選的,該執行單元包括壓力調節閥,該執行單元的位置參數為該壓力調節閥的與其開度對應的閥門位置。Optionally, the execution unit includes a pressure regulating valve, and the position parameter of the execution unit is a valve position of the pressure regulating valve corresponding to its opening.

可選的,該執行單元的位置參數的初始值設定在與該壓力調節閥的開度取值範圍對應的範圍內;該開度取值範圍在30°-50°。Optionally, the initial value of the position parameter of the execution unit is set within a range corresponding to the opening range of the pressure regulating valve; the opening range is 30°-50°.

可選的,該氣體流量值的取值範圍在3-50L/min。Optionally, the range of the gas flow value is 3-50L/min.

可選的,在該步驟S1中,檢測該腔室在排氣口處的壓力作為該實際壓力值; 或者,檢測該腔室的內部壓力與該腔室外部的大氣壓的差值作為該實際壓力值。Optionally, in this step S1, the pressure of the chamber at the exhaust port is detected as the actual pressure value; Alternatively, the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber is detected as the actual pressure value.

作為另一個技術方案,本發明還提供一種腔室壓力控制裝置,包括檢測單元、控制單元和執行單元,其中, 該檢測單元用於檢測腔室內部的實際壓力值,並將其發送至該控制單元; 該控制單元用於計算該實際壓力值與預設的目標壓力值的差值;並判斷該差值是否超出預設範圍,若超出,則獲取控制係數,並基於該差值和該控制係數計算獲得執行單元的位置參數調整量,且向該執行單元輸出;該控制係數為曲率與預設的PID係數的乘積,其中,該曲率為:與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與該執行單元的目前的位置參數值相對應的曲率; 該執行單元用於根據該位置參數調整量調節自身位置參數。As another technical solution, the present invention also provides a chamber pressure control device, including a detection unit, a control unit, and an execution unit, wherein: The detection unit is used to detect the actual pressure value inside the chamber and send it to the control unit; The control unit is used to calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, obtain the control coefficient, and calculate based on the difference and the control coefficient Obtain the position parameter adjustment value of the execution unit and output it to the execution unit; the control coefficient is the product of the curvature and the preset PID coefficient, where the curvature is: the pressure and position parameters corresponding to the current gas flow value In the curve, the curvature corresponding to the current position parameter value of the execution unit; The execution unit is used to adjust its own position parameter according to the position parameter adjustment amount.

可選的,該控制單元包括儲存模組、獲取模組、計算模組和控制模組,其中, 該儲存模組用於儲存樣本資料範本;該樣本資料範本包括不同的該氣體流量值與該曲線的對應關係,以及每條該曲線中不同的該位置參數值與曲率的對應關係; 該獲取模組用於根據目前的該氣體流量值和該執行單元的目前的位置參數值,從該儲存模組中儲存的該樣本資料範本中獲取該曲率,併發送至該計算模組; 該計算模組用於計算從該樣本資料範本中獲取的該曲率與該PID係數的乘積,並將其作為該控制係數發送至該控制模組; 該控制模組用於基於該差值和該控制係數計算獲得執行單元的位置參數調整量,且向該執行單元輸出。Optionally, the control unit includes a storage module, an acquisition module, a calculation module, and a control module, where: The storage module is used to store a sample data template; the sample data template includes different correspondences between the gas flow value and the curve, and different correspondences between the position parameter value and the curvature in each curve; The acquisition module is used to acquire the curvature from the sample data template stored in the storage module according to the current gas flow value and the current position parameter value of the execution unit, and send it to the calculation module; The calculation module is used to calculate the product of the curvature obtained from the sample data template and the PID coefficient, and send it to the control module as the control coefficient; The control module is used to calculate and obtain the position parameter adjustment amount of the execution unit based on the difference value and the control coefficient, and output to the execution unit.

可選的,該執行單元包括用於調節該腔室的排氣流量的壓力調節閥,及用於抽取該腔室的內部氣體的真空裝置;其中, 該位置參數為該壓力調節閥的與其開度對應的閥門位置。Optionally, the execution unit includes a pressure regulating valve for adjusting the exhaust flow rate of the chamber, and a vacuum device for extracting the internal gas of the chamber; wherein, The position parameter is the valve position of the pressure regulating valve corresponding to its opening.

可選的,該壓力調節閥包括蝶閥、針閥或球閥。Optionally, the pressure regulating valve includes a butterfly valve, a needle valve or a ball valve.

可選的,該腔室壓力控制裝置還包括輸入單元,用於接收使用者輸入的該目標壓力值,並將其發送至該控制單元。Optionally, the chamber pressure control device further includes an input unit for receiving the target pressure value input by the user and sending it to the control unit.

可選的,該檢測單元用於檢測該腔室在排氣口處的壓力作為該實際壓力值; 或者,該檢測單元用於檢測該腔室的內部壓力與該腔室外部的大氣壓的差值作為該實際壓力值。Optionally, the detection unit is used to detect the pressure of the chamber at the exhaust port as the actual pressure value; Alternatively, the detection unit is used to detect the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber as the actual pressure value.

作為另一個技術方案,本發明還提供一種半導體設備,包括反應腔室,其特徵在於,還包括用於控制該反應腔室的壓力的腔室壓力控制裝置,該腔室壓力控制裝置採用本發明提供的上述腔室壓力控制裝置,其中, 該檢測單元用於檢測該反應腔室內部的實際壓力值,並將其發送至該控制單元;該執行單元設置在該反應腔室的排氣口處,用於根據該位置參數調整量調節自身位置參數。As another technical solution, the present invention also provides a semiconductor device, including a reaction chamber, characterized in that it also includes a chamber pressure control device for controlling the pressure of the reaction chamber, and the chamber pressure control device adopts the present invention The above-mentioned chamber pressure control device is provided, wherein: The detection unit is used to detect the actual pressure value inside the reaction chamber and send it to the control unit; the execution unit is arranged at the exhaust port of the reaction chamber and is used to adjust itself according to the position parameter adjustment amount Location parameters.

本發明的有益效果: 本發明所提供的腔室壓力控制方法及裝置、半導體設備的技術方案中,在藉由步驟S1、步驟S2和步驟S4來實現對腔室壓力的閉環控制的同時,藉由步驟S3獲取控制係數,該控制係數為與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與執行單元的目前的位置參數值相對應的曲率與預設的PID(Proportion- Integral- Derivative)係數的乘積,即,可以根據氣體流量、壓力和執行單元的位置參數之間的對應關係,在不同的氣體流量條件下,對PID係數進行分段式精細調節,從而可以實現快速穩定對腔室壓力進行控制,使之穩定在預設範圍內,進而可以提高製程品質和成品率。The beneficial effects of the present invention: In the chamber pressure control method and device provided by the present invention, and the technical solution of the semiconductor device, while the closed-loop control of the chamber pressure is achieved by step S1, step S2, and step S4, the control coefficient is obtained by step S3 , The control coefficient is the product of the curvature corresponding to the current position parameter value of the actuator and the preset PID (Proportion-Integral- Derivative) coefficient in the curve on the pressure and position parameters corresponding to the current gas flow value That is, according to the corresponding relationship between the gas flow, pressure and the position parameters of the actuator, the PID coefficients can be finely adjusted in sections under different gas flow conditions, so as to achieve rapid and stable control of the chamber pressure , Make it stable within the preset range, and then can improve the process quality and yield.

為使本領域的技術人員更好地理解本發明的技術方案,下面結合附圖對本發明提供的腔室壓力控制方法及裝置、半導體設備進行詳細描述。 請參閱圖1,本發明第一實施例提供的腔室壓力控制方法,其包括以下步驟:In order to enable those skilled in the art to better understand the technical solutions of the present invention, the chamber pressure control method and device and semiconductor equipment provided by the present invention will be described in detail below with reference to the accompanying drawings. Please refer to FIG. 1, the chamber pressure control method provided by the first embodiment of the present invention includes the following steps:

S1,檢測腔室內部的實際壓力值。S1, the actual pressure value inside the detection chamber.

在步驟S1中,可選的,可以檢測腔室在排氣口處的壓力作為實際壓力值;或者,也可以檢測腔室的內部壓力與腔室外部大氣壓的差值作為實際壓力值。也就是說,本實施例提供的腔室壓力控制方法可以適用於絕對式控壓方法或者相對式控壓方法。In step S1, optionally, the pressure of the chamber at the exhaust port may be detected as the actual pressure value; or, the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber may also be detected as the actual pressure value. In other words, the chamber pressure control method provided in this embodiment can be applied to an absolute pressure control method or a relative pressure control method.

S2,計算實際壓力值與預設的目標壓力值的差值;並判斷該差值是否超出預設範圍,若超出,則進行步驟S3;若未超出,則流程結束。S2: Calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, then the process ends.

S3,獲取控制係數,該控制係數為與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與執行單元的目前的位置參數值相對應的曲率與預設的PID係數的乘積。S3: Obtain a control coefficient, which is the product of the curvature corresponding to the current position parameter value of the execution unit and the preset PID coefficient in the curve about the pressure and the position parameter corresponding to the current gas flow value.

在步驟S3中,每一種氣體在一個流量值下(通入腔室內的氣體流量值)對應一條關於壓力和執行單元的位置參數的曲線,即,不同的氣體流量值對應不同關於壓力和執行單元的位置參數的曲線。如圖2所示,每條曲線的橫坐標為執行單元的位置參數值(L1,L2,...,Ln);縱坐標為與各個位置參數值(L1,L2,...,Ln)一一對應的腔室壓力值(P1,P2,...,Pn)。與各個位置參數值(L1,L2,...,Ln)一一對應的曲線的曲率即為表示壓力變化與閥門開度的轉換係數(K1,K2,...,Kn)。In step S3, each gas at a flow value (the gas flow value into the chamber) corresponds to a curve about the pressure and the position parameter of the actuator, that is, different gas flow values correspond to different pressures and actuators. The curve of the position parameter. As shown in Figure 2, the abscissa of each curve is the position parameter value of the execution unit (L1, L2,..., Ln); the ordinate is the position parameter value (L1, L2,..., Ln) One-to-one corresponding chamber pressure value (P1, P2,..., Pn). The curvature of the curve corresponding to each position parameter value (L1, L2,..., Ln) is the conversion coefficient (K1, K2,..., Kn) that represents the pressure change and the valve opening.

上述控制係數為與執行單元的目前的位置參數值相對應的轉換係數與預設的PID(Proportion- Integral- Derivative)係數的乘積。所謂PID係數,是指用於實現PID控制的比例係數(Proportion)、積分係數(Integral)和微分係數(Derivative),而PID控制藉由下述步驟S4來實現。PID控制應用於閉環控制中,用於根據系統的誤差,基於比例係數、積分係數和微分係數以及實際值與期望值的差值,計算獲得控制量(例如,執行單元的調整量),並基於該控制量對執行單元進行控制。The above-mentioned control coefficient is the product of the conversion coefficient corresponding to the current position parameter value of the execution unit and the preset PID (Proportion-Integral-Derivative) coefficient. The so-called PID coefficient refers to the proportional coefficient (Proportion), integral coefficient (Integral) and differential coefficient (Derivative) used to realize PID control, and PID control is realized by the following step S4. PID control is used in closed-loop control to calculate the control value (for example, the adjustment value of the execution unit) based on the system error, based on the proportional coefficient, integral coefficient, and differential coefficient, and the difference between the actual value and the expected value, and based on this The control quantity controls the execution unit.

S4,基於上述差值和控制係數計算獲得執行單元的位置參數調整量,且向該執行單元輸出,並返回步驟S2。S4: Calculate and obtain the position parameter adjustment amount of the execution unit based on the above difference and the control coefficient, and output to the execution unit, and return to step S2.

上述執行單元用於調節腔室壓力,例如,執行單元為設置在腔室的排氣管路上的壓力調節閥。在真空裝置抽取腔室內的氣體的過程中,壓力調節閥藉由調節閥門開度,來調節排氣流量,從而可以調節腔室壓力。這裏,壓力調節閥的位置參數值即為與其開度對應的閥門位置。The above-mentioned execution unit is used to adjust the pressure of the chamber. For example, the execution unit is a pressure regulating valve provided on the exhaust pipe of the chamber. In the process of the vacuum device extracting the gas in the chamber, the pressure regulating valve adjusts the exhaust flow by adjusting the valve opening, so that the chamber pressure can be adjusted. Here, the position parameter value of the pressure regulating valve is the valve position corresponding to its opening.

藉由上述步驟S1、步驟S2和步驟S4,可以實現對腔室壓力的閉環控制。同時,藉由步驟S3獲取控制係數,該控制係數為與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與執行單元的目前的位置參數值相對應的曲率與預設的PID係數的乘積,即,可以根據氣體流量、壓力和位置參數之間的對應關係,在不同的氣體流量條件下,對PID係數進行分段式精細調節,即,不同的氣體流量值,不同的位置參數值對應的曲線曲率不同,曲率與PID係數的乘積(即,控制係數)也不同,從而可以實現快速穩定對腔室壓力進行控制,使之穩定在預設範圍內,進而可以提高製程品質和成品率。Through the above steps S1, S2, and S4, a closed-loop control of the chamber pressure can be realized. At the same time, the control coefficient is obtained by step S3, and the control coefficient is the curvature corresponding to the current position parameter value of the actuator and the preset PID coefficient in the curve about the pressure and the position parameter corresponding to the current gas flow value. The product of, that is, according to the corresponding relationship between gas flow, pressure and position parameters, under different gas flow conditions, the PID coefficients can be finely adjusted in sections, that is, different gas flow values, different position parameters The curvature of the curve corresponding to the value is different, and the product of the curvature and the PID coefficient (ie, the control coefficient) is also different, so that the chamber pressure can be quickly and stably controlled to stabilize within the preset range, thereby improving the quality of the process and the finished product rate.

藉由實驗發現,本發明實施例提供的腔室壓力控制方法,其對腔室壓力的控制精度可以達到0.02%F.S.。It is found through experiments that the chamber pressure control method provided by the embodiment of the present invention can control the chamber pressure with an accuracy of 0.02% F.S.

可選的,本實施例提供的腔室壓力控制方法是基於PTL(Pressure to Location)策略選取執行單元的位置參數範圍,以達到最大限度地減小壓力波動幅度的目的,從而可以提高製程穩定性和重複性。Optionally, the chamber pressure control method provided in this embodiment selects the position parameter range of the execution unit based on the PTL (Pressure to Location) strategy to achieve the purpose of minimizing pressure fluctuations, thereby improving process stability And repeatability.

例如,當執行單元為壓力調節閥時,基於閥快開特性,即,開度較小時,壓力調節閥控制壓力產生變化的靈敏度較高,當閥門位置在接近全關狀態(開度為0°)時,改變閥門位置,壓力的波動較為明顯;當閥門位置位於與開度的取值範圍為30°-50°對應的範圍內時,改變閥門位置,壓力的波動較小,壓力較為穩定,對製程影響的程度較小;當閥門位置位於與開度的取值範圍大於60°對應的範圍內時,改變閥門位置,對壓力的調節基本不起作用。For example, when the actuator is a pressure regulating valve, based on the valve's quick opening characteristic, that is, when the opening is small, the pressure regulating valve has a higher sensitivity to control pressure changes. When the valve position is close to the fully closed state (opening is 0) °), change the valve position, the pressure fluctuation is more obvious; when the valve position is within the range corresponding to the opening range of 30°-50°, change the valve position, the pressure fluctuation is smaller, and the pressure is more stable , The impact on the manufacturing process is relatively small; when the valve position is within the range corresponding to the opening value range greater than 60°, changing the valve position will basically have no effect on the pressure adjustment.

基於PTL(Pressure to Location)策略,可以將執行單元的位置參數的初始值設定在與壓力調節閥的開度取值範圍對應的範圍內;該開度取值範圍在30°-50°。這樣,可以在壓力波動較小的穩定區域內對執行單元的位置參數進行調節,從而可以減少壓力波動對製程的影響。Based on the PTL (Pressure to Location) strategy, the initial value of the position parameter of the execution unit can be set within the range corresponding to the opening range of the pressure regulating valve; the opening range is 30°-50°. In this way, the position parameters of the execution unit can be adjusted in a stable area with small pressure fluctuations, thereby reducing the impact of pressure fluctuations on the manufacturing process.

圖3為本發明第二實施例提供的腔室壓力控制方法的流程框圖。請參閱圖3,本發明第二實施例提供的腔室壓力控制方法是在上述第一實施例的基礎上所做的進一步改進,具體地, 在上述步驟S1之前,還包括: S0,預先儲存樣本資料範本; 其中,樣本資料範本包括不同的氣體流量值與曲線的對應關係,以及每條曲線中不同的位置參數值與曲率的對應關係。Fig. 3 is a flowchart of a method for controlling chamber pressure according to a second embodiment of the present invention. Referring to FIG. 3, the chamber pressure control method provided by the second embodiment of the present invention is a further improvement made on the basis of the above-mentioned first embodiment. Specifically, Before the above step S1, it also includes: S0, pre-store the sample data template; Among them, the sample data template includes the correspondence between different gas flow values and curves, and the correspondence between different position parameter values and curvatures in each curve.

在整個製程中,可以在不同的製程時間段階躍設置不同的氣體流量值(通入腔室內的氣體流量值),例如,將整個製程時間劃分為四個製程時間段,四個製程時間段分別對應四個氣體流量值,分別為28L/min、24L/min、20L/min和16L/min,其中,不同的氣體流量值對應的製程時間段可以相同,或者也可以不同,該預定時長例如為110s。可選的,根據製程需要,氣體流量值的取值範圍在3-50L/min。In the entire process, different gas flow values (the gas flow value into the chamber) can be stepped in different process time periods. For example, the entire process time is divided into four process time periods, and the four process time periods are respectively Corresponding to four gas flow values, 28L/min, 24L/min, 20L/min, and 16L/min. The process time period corresponding to different gas flow values can be the same or different. The predetermined time period is, for example Is 110s. Optionally, the gas flow rate value ranges from 3-50L/min according to the requirements of the manufacturing process.

根據上述氣體流量值的變化,可以採集獲得多組關於壓力和位置參數的資料,並根據該資料擬合獲得關於壓力和位置參數的曲線及其曲率,並據此構建反映流量、壓力和位置參數的對應關係的樣本資料範本,並在製程前儲存。According to the changes of the gas flow value mentioned above, multiple sets of data about pressure and position parameters can be collected, and the curves and curvatures about pressure and position parameters can be fitted according to the data, and the parameters reflecting flow, pressure and position can be constructed accordingly. The sample data template of the corresponding relationship and save it before the manufacturing process.

在此基礎上,上述步驟S3進一步包括: S31,根據目前的氣體流量值和執行單元的目前的位置參數值,從樣本資料範本中獲取對應的曲率; S32,計算從樣本資料範本中獲取的曲率與PID係數的乘積。On this basis, the above step S3 further includes: S31: Acquire the corresponding curvature from the sample data template according to the current gas flow value and the current position parameter value of the execution unit; S32: Calculate the product of the curvature obtained from the sample data template and the PID coefficient.

由上可知,在進行製程的過程中,在已知目前的氣體流量和目前的位置參數值的情況下,可以從樣本資料範本中直接獲取與之對應的曲率,並計算獲得曲率與PID係數的乘積。這樣,不僅控制精度高,而且回應速度快。It can be seen from the above that in the process of manufacturing, when the current gas flow rate and current position parameter values are known, the corresponding curvature can be directly obtained from the sample data template, and the curvature and PID coefficients can be calculated. product. In this way, not only the control accuracy is high, but also the response speed is fast.

作為另一個技術方案,請一併參閱圖4至圖6,本發明第三實施例提供的腔室壓力控制裝置,其包括檢測單元2、控制單元5和執行單元3,其中,檢測單元2用於檢測腔室內部的實際壓力值,並將其發送至控制單元5。檢測單元2例如為測壓計。As another technical solution, please refer to FIGS. 4 to 6 together. The chamber pressure control device provided by the third embodiment of the present invention includes a detection unit 2, a control unit 5, and an execution unit 3, wherein the detection unit 2 uses It detects the actual pressure value inside the chamber and sends it to the control unit 5. The detection unit 2 is, for example, a pressure gauge.

可選的,檢測單元2用於檢測腔室1在排氣口處的壓力作為實際壓力值;或者,檢測單元2用於檢測腔室1的內部壓力與腔室外部的大氣壓的差值作為實際壓力值。也就是說,本實施例提供的腔室壓力控制裝置可以適用於絕對式控壓系統或者相對式控壓系統。Optionally, the detection unit 2 is used to detect the pressure of the chamber 1 at the exhaust port as the actual pressure value; or the detection unit 2 is used to detect the difference between the internal pressure of the chamber 1 and the atmospheric pressure outside the chamber as the actual pressure value. Pressure value. In other words, the chamber pressure control device provided in this embodiment can be applied to an absolute pressure control system or a relative pressure control system.

控制單元5用於計算實際壓力值與預設的目標壓力值的差值;並判斷該差值是否超出預設範圍,若超出,則獲取控制係數,並基於差值和控制係數計算獲得執行單元3的位置參數調整量,且向該執行單元3輸出;控制係數為曲率與預設的PID係數的乘積。該曲率為與目前的氣體流量值對應的關於壓力和位置參數的曲線中,與執行單元3的目前的位置參數值相對應的曲率。可選的,控制單元5為微處理器。The control unit 5 is used to calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, obtain the control coefficient, and calculate the execution unit based on the difference and the control coefficient The position parameter adjustment value of 3 is output to the execution unit 3; the control coefficient is the product of the curvature and the preset PID coefficient. The curvature is the curvature corresponding to the current position parameter value of the execution unit 3 in the curve about the pressure and the position parameter corresponding to the current gas flow value. Optionally, the control unit 5 is a microprocessor.

執行單元3用於根據來自控制單元5的位置參數調整量調節自身位置參數。The execution unit 3 is used to adjust its own position parameter according to the position parameter adjustment amount from the control unit 5.

在本實施例中,如圖6所示,執行單元3包括用於調節腔室1的排氣流量的壓力調節閥31,及用於抽取腔室1的內部氣體的真空裝置32;其中,壓力調節閥31設置在排氣管路7上,其藉由調節自身的閥門位置,來調節閥門開度,從而對排氣管路7中的氣體流量進行調節,進而實現腔室內的壓力調節。由此,上述執行單元3的位置參數即為壓力調節閥31的與其開度對應的閥門位置,而不同的閥門位置,對應不同的閥門開度。真空裝置32用於藉由抽氣來使腔室1內的氣體排入排氣管路7中。真空裝置32例如為真空發生器。In this embodiment, as shown in FIG. 6, the execution unit 3 includes a pressure regulating valve 31 for regulating the exhaust flow rate of the chamber 1, and a vacuum device 32 for extracting the internal gas of the chamber 1; wherein, the pressure The regulating valve 31 is arranged on the exhaust pipe 7, and adjusts the valve opening by adjusting its valve position, thereby adjusting the gas flow in the exhaust pipe 7, thereby realizing the pressure adjustment in the chamber. Therefore, the position parameter of the above-mentioned execution unit 3 is the valve position of the pressure regulating valve 31 corresponding to its opening, and different valve positions correspond to different valve openings. The vacuum device 32 is used for exhausting the gas in the chamber 1 into the exhaust pipe 7 by pumping air. The vacuum device 32 is, for example, a vacuum generator.

可選的,壓力調節閥31包括蝶閥、針閥或球閥等等。具體地,具有自動控制功能的壓力調節閥通常設置有用於驅動閥門(蝶閥、針閥或球閥等)移動的電機,控制單元5藉由向該電機發送控制信號來實現對閥門位置的調節。Optionally, the pressure regulating valve 31 includes a butterfly valve, a needle valve, a ball valve, or the like. Specifically, a pressure regulating valve with an automatic control function is usually provided with a motor for driving the valve (butterfly valve, needle valve, ball valve, etc.) to move, and the control unit 5 realizes the adjustment of the valve position by sending a control signal to the motor.

較佳的,如圖5所示,控制單元5包括儲存模組51、獲取模組52、計算模組53和控制模組54,其中,儲存模組51用於儲存樣本資料範本,該樣本資料範本包括不同的氣體流量值與該曲線的對應關係,以及每條曲線中不同的位置參數值與曲率的對應關係。獲取模組52用於根據目前的氣體流量值和執行單元的目前的位置參數值,從儲存模組51中儲存的樣本資料範本中獲取對應的曲率,併發送至計算模組53。計算模組53用於計算從樣本資料範本中獲取的曲率與PID係數的乘積,並將其作為控制係數發送至控制模組54;控制模組54用於基於差值和控制係數計算獲得執行單元3的位置參數調整量,且向執行單元3輸出。Preferably, as shown in FIG. 5, the control unit 5 includes a storage module 51, an acquisition module 52, a calculation module 53, and a control module 54. The storage module 51 is used to store a sample data template. The template includes the correspondence between different gas flow values and the curve, and the correspondence between different position parameter values and curvatures in each curve. The obtaining module 52 is configured to obtain the corresponding curvature from the sample data template stored in the storage module 51 according to the current gas flow value and the current position parameter value of the execution unit, and send it to the calculation module 53. The calculation module 53 is used to calculate the product of the curvature obtained from the sample data template and the PID coefficient, and send it as a control coefficient to the control module 54; the control module 54 is used to calculate the execution unit based on the difference and the control coefficient The position parameter adjustment value of 3 is output to the execution unit 3.

在進行製程的過程中,藉由在儲存模組51中預先儲存上述樣本資料模,在已知目前的氣體流量和目前的位置參數值的情況下,獲取模組52可以從樣本資料範本中直接獲取與之對應的曲率,並利用計算模組53計算獲得曲率與PID係數的乘積。這樣,不僅控制精度高,而且回應速度快。In the process of manufacturing, by pre-storing the above-mentioned sample data model in the storage module 51, the acquisition module 52 can directly obtain the sample data template from the sample data template when the current gas flow rate and current position parameter values are known. Obtain the corresponding curvature, and use the calculation module 53 to calculate the product of the curvature and the PID coefficient. In this way, not only the control accuracy is high, but also the response speed is fast.

可選的,腔室壓力控制裝置還包括輸入單元,用於接收使用者輸入的目標壓力值,並將其發送至控制單元5。這樣,使用者可以根據需要自由輸入壓力的期望值。Optionally, the chamber pressure control device further includes an input unit for receiving the target pressure value input by the user and sending it to the control unit 5. In this way, the user can freely input the desired value of the pressure as needed.

綜上所述,本實施例提供的腔室壓力控制裝置,可以實現快速穩定對腔室壓力進行控制,使之穩定在預設範圍內,從而可以提高製程品質和成品率。In summary, the chamber pressure control device provided in this embodiment can achieve rapid and stable control of the chamber pressure to stabilize it within a preset range, thereby improving process quality and yield.

作為另一個技術方案,本發明實施例還提供一種半導體設備,其包括反應腔室及用於控制該反應腔室的壓力的腔室壓力控制裝置,該腔室壓力控制裝置採用本發明實施例提供的上述腔室壓力控制裝置。在該半導體設備中,檢測單元用於檢測反應腔室內部的實際壓力值,並將其發送至控制單元;執行單元設置在反應腔室的排氣口處,用於根據位置參數調整量調節自身位置參數。如圖6所示,該半導體設備包括反應腔室1以及用於向反應腔室內輸入製程氣體的各製程氣路(O2 氣路、H2 氣路以及N2 氣路等)。在該半導體設備中,檢測單元可藉由三通接頭的一端與反應腔室的排氣口連通,執行單元可藉由三通接頭中三端介面中的一端與反應腔室的排氣口連通。As another technical solution, an embodiment of the present invention also provides a semiconductor device, which includes a reaction chamber and a chamber pressure control device for controlling the pressure of the reaction chamber. The chamber pressure control device is provided by the embodiment of the present invention. The above-mentioned chamber pressure control device. In the semiconductor device, the detection unit is used to detect the actual pressure value inside the reaction chamber and send it to the control unit; the execution unit is set at the exhaust port of the reaction chamber and is used to adjust itself according to the position parameter adjustment amount Location parameters. As shown in FIG. 6, the semiconductor device includes a reaction chamber 1 and various process gas paths (O 2 gas path, H 2 gas path, N 2 gas path, etc.) for inputting process gas into the reaction chamber. In this semiconductor device, the detection unit can be connected to the exhaust port of the reaction chamber through one end of the three-way connector, and the execution unit can be connected to the exhaust port of the reaction chamber through one end of the three-way interface in the three-way connector .

本實施例提供的半導體設備,其藉由採用本發明實施例提供的腔室壓力控制裝置,可以實現快速穩定對腔室壓力進行控制,使之穩定在預設範圍內,從而可以提高製程品質和成品率。The semiconductor device provided in this embodiment, by adopting the chamber pressure control device provided in the embodiment of the present invention, can achieve rapid and stable control of the chamber pressure to stabilize it within a preset range, thereby improving process quality and Yield.

可以理解的是,以上實施方式僅僅是為了說明本發明的原理而採用的示例性實施方式,然而本發明並不侷限於此。對於本領域內的普通技術人員而言,在不脫離本發明的精神和實質的情況下,可以做出各種變型和改進,這些變型和改進也視為本發明的保護範圍。It can be understood that the above implementations are merely exemplary implementations used to illustrate the principle of the present invention, but the present invention is not limited thereto. For those of ordinary skill in the art, various modifications and improvements can be made without departing from the spirit and essence of the present invention, and these modifications and improvements are also deemed to be within the protection scope of the present invention.

1:腔室 2:檢測單元 3:執行單元 5:控制單元 7:排氣管路 31:壓力調節閥 32:真空裝置 51:儲存模組 52:獲取模組 53:計算模組 54:控制模組 K1、K2、Kn:轉換係數 L1、L2、Ln:位置參數值 P1、P2、Pn:腔室壓力值 S0、S1、S2、S3、S4、S31、S32:步驟1: chamber 2: Detection unit 3: Execution unit 5: Control unit 7: Exhaust pipe 31: Pressure regulating valve 32: Vacuum device 51: storage module 52: Obtain modules 53: calculation module 54: control module K1, K2, Kn: conversion coefficient L1, L2, Ln: position parameter value P1, P2, Pn: chamber pressure value S0, S1, S2, S3, S4, S31, S32: steps

圖1為本發明第一實施例提供的腔室壓力控制方法的流程框圖; 圖2為某一氣體特定流量下,關於壓力和位置參數的曲線圖; 圖3為本發明第二實施例提供的腔室壓力控制方法的流程框圖; 圖4為本發明第三實施例提供的腔室壓力控制裝置的原理框圖; 圖5為本發明第三實施例採用的控制單元的原理框圖; 圖6為本發明第三實施例提供的腔室壓力控制裝置的結構圖。FIG. 1 is a flowchart of a method for controlling chamber pressure according to a first embodiment of the present invention; Figure 2 is a graph of pressure and position parameters under a certain gas flow rate; 3 is a flow chart of a method for controlling chamber pressure according to a second embodiment of the present invention; 4 is a schematic block diagram of a chamber pressure control device provided by a third embodiment of the present invention; Fig. 5 is a functional block diagram of a control unit adopted in the third embodiment of the present invention; Fig. 6 is a structural diagram of a chamber pressure control device provided by a third embodiment of the present invention.

S1、S2、S3、S4:步驟 S1, S2, S3, S4: steps

Claims (11)

一種腔室壓力控制方法,其特徵在於,包括以下步驟:S1,檢測一腔室內部的一實際壓力值;S2,計算該實際壓力值與預設的一目標壓力值的一差值;並判斷該差值是否超出預設範圍,若超出,則進行步驟S3;若未超出,則流程結束;S3,獲取一控制係數,該控制係數為一曲率與預設的一PID係數的乘積,其中,該曲率為:與目前的一氣體流量值對應的關於壓力和一執行單元的位置參數的一曲線中,與該執行單元的目前的一位置參數值相對應的曲率;S4,基於該差值和該控制係數計算獲得該執行單元的位置參數調整量,且向該執行單元輸出,並返回該步驟S2;其中,在該步驟S1之前,還包括:S0,預先儲存一樣本資料範本;其中,該樣本資料範本包括不同的該氣體流量值與該曲線的對應關係,以及每條該曲線中不同的該位置參數值與曲率的對應關係;該步驟S3,進一步包括:S31,根據目前的該氣體流量值和該執行單元的目前的位置參數值,從該樣本資料範本中獲取該曲率;S32,計算從該樣本資料範本中獲取的該曲率與該PID係數的乘積。 A chamber pressure control method, characterized by comprising the following steps: S1, detecting an actual pressure value inside a chamber; S2, calculating a difference between the actual pressure value and a preset target pressure value; and judging Whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, then the process ends; S3, obtain a control coefficient, the control coefficient is the product of a curvature and a preset PID coefficient, where, The curvature is: the curvature corresponding to the current position parameter value of the execution unit in a curve about the pressure and the position parameter of an execution unit corresponding to a current gas flow value; S4, based on the difference and The control coefficient is calculated to obtain the position parameter adjustment value of the execution unit, and output to the execution unit, and return to step S2; wherein, before step S1, it also includes: S0, pre-stored a sample data template; wherein, the The sample data template includes different correspondences between the gas flow value and the curve, and different correspondences between the position parameter value and the curvature in each curve; this step S3 further includes: S31, according to the current gas flow And the current position parameter value of the execution unit, obtain the curvature from the sample data template; S32, calculate the product of the curvature obtained from the sample data template and the PID coefficient. 如請求項1所述的腔室壓力控制方法,其中,該執行單元包括一壓力調節閥,該執行單元的位置參數為該壓力調節閥的與其開度對應的閥門位置。 The chamber pressure control method according to claim 1, wherein the execution unit includes a pressure regulating valve, and the position parameter of the execution unit is a valve position of the pressure regulating valve corresponding to its opening. 如請求項2所述的腔室壓力控制方法,其中,該執行單元的位置參數的初始值設定在與該壓力調節閥的一開度取值範圍對應的範圍內;該開度取值範圍在30°-50°。 The chamber pressure control method according to claim 2, wherein the initial value of the position parameter of the execution unit is set within a range corresponding to an opening range of the pressure regulating valve; the opening range is 30°-50°. 如請求項1所述的腔室壓力控制方法,其中,該氣體流量值的取值範圍在3-50L/min。 The chamber pressure control method according to claim 1, wherein the gas flow value has a value range of 3-50 L/min. 如請求項1所述的腔室壓力控制方法,其中,在該步驟S1中,檢測該腔室在排氣口處的壓力作為該實際壓力值;或者,檢測該腔室的內部壓力與該腔室外部的大氣壓的差值作為該實際壓力值。 The chamber pressure control method according to claim 1, wherein, in the step S1, the pressure of the chamber at the exhaust port is detected as the actual pressure value; or, the internal pressure of the chamber and the chamber pressure are detected as the actual pressure value. The difference in the atmospheric pressure outside the room is taken as the actual pressure value. 一種腔室壓力控制裝置,其特徵在於,包括一檢測單元、一控制單元和一執行單元,其中,該檢測單元用於檢測一腔室內部的一實際壓力值,並將其發送至該控制單元;該控制單元用於計算該實際壓力值與預設的一目標壓力值的一差值;並判斷該差值是否超出預設範圍,若超出,則獲取一控制係數,並基於該差值和該控制係數計算獲得執行單元的一位置參數調整量,且向該執行單元輸出;該控制係數為一曲率與預設的一PID係數的乘積,其中,該曲率為:與目前的一氣體流量值對應的關於壓力和位置參數的一曲線中,與該執行單元的目前的一位置參數值相對應的曲率;該執行單元用於根據該位置參數調整量調節自身位置參數;其中,該控制單元包括一儲存模組、一獲取模組、一計算模組和一控制模組,其中, 該儲存模組用於儲存一樣本資料範本;該樣本資料範本包括不同的該氣體流量值與該曲線的對應關係,以及每條該曲線中不同的該位置參數值與曲率的對應關係;該獲取模組用於根據目前的該氣體流量值和該執行單元的目前的位置參數值,從該儲存模組中儲存的該樣本資料範本中獲取該曲率,併發送至該計算模組;該計算模組用於計算從該樣本資料範本中獲取的該曲率與該PID係數的乘積,並將其作為該控制係數發送至該控制模組;該控制模組用於基於該差值和該控制係數計算獲得執行單元的位置參數調整量,且向該執行單元輸出。 A chamber pressure control device, which is characterized by comprising a detection unit, a control unit and an execution unit, wherein the detection unit is used to detect an actual pressure value inside a chamber and send it to the control unit ; The control unit is used to calculate a difference between the actual pressure value and a preset target pressure value; and determine whether the difference exceeds the preset range, and if it exceeds, obtain a control coefficient, and based on the difference and The control coefficient is calculated to obtain a position parameter adjustment value of the execution unit, and output to the execution unit; the control coefficient is the product of a curvature and a preset PID coefficient, wherein the curvature is: and a current gas flow value The curvature corresponding to the current position parameter value of the execution unit in a curve corresponding to pressure and position parameters; the execution unit is used to adjust its own position parameter according to the position parameter adjustment amount; wherein, the control unit includes A storage module, an acquisition module, a calculation module and a control module, among which, The storage module is used to store a sample data template; the sample data template includes different correspondences between the gas flow value and the curve, and different correspondences between the position parameter value and the curvature in each curve; the acquisition The module is used to obtain the curvature from the sample data template stored in the storage module according to the current gas flow value and the current position parameter value of the execution unit, and send it to the calculation module; the calculation module The group is used to calculate the product of the curvature obtained from the sample data template and the PID coefficient, and send it as the control coefficient to the control module; the control module is used to calculate based on the difference and the control coefficient The position parameter adjustment amount of the execution unit is obtained and output to the execution unit. 如請求項6所述的腔室壓力控制裝置,其中,該執行單元包括用於調節該腔室的排氣流量的一壓力調節閥,及用於抽取該腔室的內部氣體的真空裝置;其中,該位置參數為該壓力調節閥的與其開度對應的閥門位置。 The chamber pressure control device according to claim 6, wherein the execution unit includes a pressure adjusting valve for adjusting the exhaust flow rate of the chamber, and a vacuum device for extracting the internal gas of the chamber; wherein , The position parameter is the valve position of the pressure regulating valve corresponding to its opening. 如請求項7所述的腔室壓力控制裝置,其中,該壓力調節閥包括蝶閥、針閥或球閥。 The chamber pressure control device according to claim 7, wherein the pressure regulating valve includes a butterfly valve, a needle valve or a ball valve. 如請求項6所述的腔室壓力控制裝置,其中,該腔室壓力控制裝置還包括一輸入單元,用於接收使用者輸入的該目標壓力值,並將其發送至該控制單元。 The chamber pressure control device according to claim 6, wherein the chamber pressure control device further includes an input unit for receiving the target pressure value input by the user and sending it to the control unit. 如請求項6所述的腔室壓力控制裝置,其中,該檢測單元用於檢測該腔室在排氣口處的壓力作為該實際壓力值; 或者,該檢測單元用於檢測該腔室的內部壓力與該腔室外部的大氣壓的差值作為該實際壓力值。 The chamber pressure control device according to claim 6, wherein the detection unit is used to detect the pressure of the chamber at the exhaust port as the actual pressure value; Alternatively, the detection unit is used to detect the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber as the actual pressure value. 一種半導體設備,包括一反應腔室,其特徵在於,還包括用於控制該反應腔室的壓力的一腔室壓力控制裝置,該腔室壓力控制裝置採用請求項6至10中任一項所述的腔室壓力控制裝置,其中,該檢測單元用於檢測該反應腔室內部的實際壓力值,並將其發送至該控制單元;該執行單元設置在該反應腔室的排氣口處,用於根據該位置參數調整量調節自身位置參數。 A semiconductor device, including a reaction chamber, is characterized in that it further includes a chamber pressure control device for controlling the pressure of the reaction chamber, and the chamber pressure control device adopts any one of claims 6 to 10 In the chamber pressure control device, the detection unit is used to detect the actual pressure value inside the reaction chamber and send it to the control unit; the execution unit is arranged at the exhaust port of the reaction chamber, It is used to adjust its own position parameter according to the position parameter adjustment amount.
TW109101972A 2019-04-18 2020-01-20 Chamber pressure control method and device, and semiconductor equipment TWI719807B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910314577.2A CN111831022B (en) 2019-04-18 2019-04-18 Chamber pressure control method and device and semiconductor equipment
CN201910314577.2 2019-04-18

Publications (2)

Publication Number Publication Date
TW202040302A TW202040302A (en) 2020-11-01
TWI719807B true TWI719807B (en) 2021-02-21

Family

ID=72837720

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101972A TWI719807B (en) 2019-04-18 2020-01-20 Chamber pressure control method and device, and semiconductor equipment

Country Status (4)

Country Link
JP (1) JP7041697B2 (en)
CN (1) CN111831022B (en)
TW (1) TWI719807B (en)
WO (1) WO2020211440A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695297B (en) * 2020-11-24 2022-12-09 北京北方华创微电子装备有限公司 Method for controlling chamber pressure in semiconductor process
CN114964349A (en) * 2021-02-19 2022-08-30 中国科学院微电子研究所 Chamber pressure measuring device, measuring method and semiconductor manufacturing equipment
CN113097108A (en) * 2021-03-31 2021-07-09 北京北方华创微电子装备有限公司 Control method of semiconductor process and semiconductor process equipment
CN113406881B (en) * 2021-04-12 2023-09-08 北京北方华创微电子装备有限公司 Semiconductor heat treatment equipment and control method for oxygen content in loading and unloading chamber thereof
CN113515095A (en) * 2021-04-16 2021-10-19 北京北方华创微电子装备有限公司 Method for controlling pressure of multiple process chambers and semiconductor process equipment
CN113192866A (en) * 2021-04-16 2021-07-30 北京北方华创微电子装备有限公司 Method for matching technological parameter values in semiconductor process formula and semiconductor process equipment
CN113110632B (en) * 2021-05-10 2023-09-05 北京七星华创流量计有限公司 Pressure control method, pressure control device and semiconductor process equipment
CN113805619A (en) * 2021-09-24 2021-12-17 北京北方华创微电子装备有限公司 Pressure control system and control method
CN113900457B (en) * 2021-09-29 2024-03-19 西安北方华创微电子装备有限公司 Pressure zeroing method and semiconductor process equipment
CN113900455B (en) * 2021-11-09 2023-11-07 北京七星华创流量计有限公司 Semiconductor process equipment, mass flow controller thereof and fluid flow control method
CN114277617B (en) * 2021-12-31 2024-01-30 珠海格力智能装备有限公司 Cold pressing control method of forming die
CN115145319A (en) * 2022-05-30 2022-10-04 北京七星华创流量计有限公司 Pressure control method and device and semiconductor process equipment
CN117251002B (en) * 2023-11-20 2024-01-30 常州铭赛机器人科技股份有限公司 Pressure real-time control method in heat radiation cover mounting process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131007A (en) * 2009-08-19 2011-09-16 Tokyo Electron Ltd Pressure control apparatus, pressure control method and substrate processing apparatus
TW201139728A (en) * 2010-01-15 2011-11-16 Ckd Corp Vacuum control system and vacuum control method
US20110301822A1 (en) * 2009-02-16 2011-12-08 Snecma Method and system for controlling a gas turbine and a gas turbine including such a system
CN103309369A (en) * 2012-03-09 2013-09-18 上海微电子装备有限公司 Optical system internal chamber precision gas control method and device thereof
CN106197902A (en) * 2016-07-22 2016-12-07 华中科技大学 A kind of air tightness detection apparatus and method of servo-controlling thereof
CN107452587A (en) * 2016-06-01 2017-12-08 北京北方华创微电子装备有限公司 The compress control method and control system of a kind of transmission chamber
US20180082871A1 (en) * 2016-09-22 2018-03-22 Globalfoundries Inc. Gas flow process control system and method using crystal microbalance(s)
CN107881306A (en) * 2017-11-24 2018-04-06 北京七星华创磁电科技有限公司 A kind of control pressurer system and control method
JP2019011884A (en) * 2017-06-29 2019-01-24 ダイダン株式会社 Room Pressure Control System

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060107898A1 (en) * 2004-11-19 2006-05-25 Blomberg Tom E Method and apparatus for measuring consumption of reactants
KR101485887B1 (en) 2007-12-05 2015-01-26 히다치 조센 가부시키가이샤 Method and device for controlling pressure of vacuum container
JP5082989B2 (en) * 2008-03-31 2012-11-28 日立金属株式会社 Flow control device, verification method thereof, and flow control method
JP4778549B2 (en) 2008-12-26 2011-09-21 シーケーディ株式会社 Vacuum pressure control system and vacuum pressure control program
FI124621B (en) * 2011-12-23 2014-11-14 Aalto Korkeakoulusäätiö Method for Detecting Faults in an Industrial Process or Part thereof or for Controlling and / or Optimizing an Industrial Process or Part thereof
CN102646619B (en) * 2012-04-28 2014-12-03 中微半导体设备(上海)有限公司 Cavity pressure control method
CN102854902B (en) * 2012-08-13 2015-03-04 中国人民解放军海军医学研究所 Chamber pressure adjusting method
SG10201901906YA (en) * 2014-09-05 2019-04-29 Applied Materials Inc Atmospheric epitaxial deposition chamber
CN104991581B (en) * 2015-06-08 2019-08-23 北京北方华创微电子装备有限公司 A kind of compress control method and device of processing chamber
CN107068587B (en) * 2016-10-28 2019-10-25 北京北方华创微电子装备有限公司 The control pressurer system and compress control method of reaction chamber
JP6828446B2 (en) * 2017-01-12 2021-02-10 株式会社島津製作所 Valve controller
DE102017207586A1 (en) * 2017-05-05 2018-11-08 Arburg Gmbh + Co Kg CONTROL AND REGULATING THE PRESSURE OF A CYCLICALLY WORKING INJECTION MOLDING MACHINE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301822A1 (en) * 2009-02-16 2011-12-08 Snecma Method and system for controlling a gas turbine and a gas turbine including such a system
TW201131007A (en) * 2009-08-19 2011-09-16 Tokyo Electron Ltd Pressure control apparatus, pressure control method and substrate processing apparatus
TW201139728A (en) * 2010-01-15 2011-11-16 Ckd Corp Vacuum control system and vacuum control method
TW201333260A (en) * 2010-01-15 2013-08-16 Ckd Corp Vacuum control system and vacuum control valve
CN103309369A (en) * 2012-03-09 2013-09-18 上海微电子装备有限公司 Optical system internal chamber precision gas control method and device thereof
CN107452587A (en) * 2016-06-01 2017-12-08 北京北方华创微电子装备有限公司 The compress control method and control system of a kind of transmission chamber
CN106197902A (en) * 2016-07-22 2016-12-07 华中科技大学 A kind of air tightness detection apparatus and method of servo-controlling thereof
US20180082871A1 (en) * 2016-09-22 2018-03-22 Globalfoundries Inc. Gas flow process control system and method using crystal microbalance(s)
JP2019011884A (en) * 2017-06-29 2019-01-24 ダイダン株式会社 Room Pressure Control System
CN107881306A (en) * 2017-11-24 2018-04-06 北京七星华创磁电科技有限公司 A kind of control pressurer system and control method

Also Published As

Publication number Publication date
TW202040302A (en) 2020-11-01
JP2021524068A (en) 2021-09-09
WO2020211440A1 (en) 2020-10-22
CN111831022B (en) 2022-03-18
CN111831022A (en) 2020-10-27
JP7041697B2 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
TWI719807B (en) Chamber pressure control method and device, and semiconductor equipment
JP6330835B2 (en) Fuel cell system and control method thereof
JP2014036216A5 (en)
JP2011089520A5 (en)
WO2009016911A1 (en) Semiconductor single crystal manufacturing apparatus
CN109506028B (en) Quick follow-up control method of pressure regulating valve
CN113324605B (en) Gas mass flow controller and gas mass flow control method
CN113110632B (en) Pressure control method, pressure control device and semiconductor process equipment
TW202310055A (en) Semiconductor heat treatment equipment and control method of process chamber pressure thereof
CN111665877B (en) Pressure control method and device and photovoltaic equipment
CN111599718B (en) Back pressure gas circuit device, reaction chamber base back pressure control method and reaction chamber
JP2018132236A (en) Room Pressure Control System and Method
WO2023231914A1 (en) Pressure control method and apparatus, and semiconductor process device
US8056579B2 (en) Mass flow controller
KR20070061871A (en) Method and system for wafer temperature control
CN114706431A (en) Pressure control method and device of reaction chamber and semiconductor process equipment
JP2010002080A (en) Air conditioning system
CN110867399A (en) Pressure control system suitable for negative pressure diffusion furnace
TWI733266B (en) Combustion control method
JP3935924B2 (en) Vacuum pressure control system in process chamber
CN108302707B (en) VAV control method and system for exhaust cabinet
KR101338914B1 (en) Pressure control method of substrate processing system
CN116520902B (en) Control method and equipment for pressure of semiconductor chamber with magnetic suspension device
JP7181830B2 (en) air supply system
CN115183508B (en) Novel transcritical carbon dioxide exhaust pressure control method and control system thereof