TWI701347B - 用於鎢膜之低阻抗物理氣相沉積的系統及方法 - Google Patents

用於鎢膜之低阻抗物理氣相沉積的系統及方法 Download PDF

Info

Publication number
TWI701347B
TWI701347B TW105133990A TW105133990A TWI701347B TW I701347 B TWI701347 B TW I701347B TW 105133990 A TW105133990 A TW 105133990A TW 105133990 A TW105133990 A TW 105133990A TW I701347 B TWI701347 B TW I701347B
Authority
TW
Taiwan
Prior art keywords
substrate
tungsten
target
chamber
sputtering
Prior art date
Application number
TW105133990A
Other languages
English (en)
Other versions
TW201728767A (zh
Inventor
喬瑟林簡 拉瑪林簡
善X 尼古言
王智勇
雷建新
先敏 唐
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201728767A publication Critical patent/TW201728767A/zh
Application granted granted Critical
Publication of TWI701347B publication Critical patent/TWI701347B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

於此揭露用於將耐火金屬層濺射到設置在基板上的阻擋層上的系統和方法。在一或多個實施例中,在積體電路中濺射沉積鎢結構的方法包括以下步驟:將基板移動到電漿處理腔室中,且移動到與濺射靶材組件相對的基板支撐件上,濺射靶材組件包含具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在之鎢靶材;將氪氣流入電漿處理腔室;及將氪氣激發成電漿,以藉由濺射而在由基板支撐件所支撐的基板之材料層上沉積鎢膜層。在一些實施例中,靶材組件進一步包括鈦背板和設置在鈦背板和鎢靶材之間的鋁接合層。

Description

用於鎢膜之低阻抗物理氣相沉積的系統及方法
本揭露書的實施例一般關於基板處理系統。
現代積體電路的導電互連層通常具有非常精細的間距和高的密度。最終形成積體電路的金屬互連層之前驅物金屬膜中的單個小缺陷可能被定位成嚴重損害積體電路的操作完整性。
積體電路的金屬膜通常藉由物理氣相沉積(PVD)或化學氣相沉積(CVD)而形成。一種PVD方法使用DC磁控管設備,例如,如可從加州的應用材料公司所取得的Endura®系統。在上述類型的DC磁控管設備中,金屬或金屬合金靶材的離子轟擊使靶材材料的原子或分子被濺射到基板上。
雖然PVD系統可產生具有相對低缺陷密度的高品質金屬膜,但是本發明人於此已經觀察到可藉由這樣的系統實現的位元線小型化的程度在很大程度上由金屬膜的電阻所決定。
於此揭露用於將耐火金屬層濺射到設置在基板上的阻擋層上之系統和方法。在一或多個實施例中,在 積體電路中濺射沉積鎢結構的方法包括以下步驟:將基板移動到電漿處理腔室中,且移動到與濺射靶材組件相對的基板支撐件上,濺射靶材組件包含具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在之鎢靶材;將氪氣流入電漿處理腔室;及將氪氣激發成電漿,以藉由濺射而在由基板支撐件所支撐的基板之材料層上沉積鎢膜層。在一些實施例中,靶材組件進一步包括鈦背板和設置在鈦背板和鎢靶材之間的鋁接合層。
在一些實施例中,根據與本揭露書一致的一或多個實施例之用於在電漿處理腔室中使用的靶材包括:濺射靶材組件,包含具有不超過5ppm的碳和不超過10ppm的氧作為雜質存在之鎢靶材。
根據與本揭露書一致的一或多個實施例而構造的電漿處理腔室包含:濺射靶材組件,包含具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在之鎢靶材,鎢靶材具有與處理區域接觸的第一表面和與第一表面相對的第二表面。電漿處理腔室進一步包括:基板支撐件,具有設置在鎢靶材之下方的基板接收表面;DC功率供應器,耦接到鎢靶材;RF功率供應器,耦接到基板支撐件;及磁控管,設置鄰近於鎢靶材的第二表面,磁控管包括:外磁極,包含複數個磁體;及內磁極,包含複數個磁體,其中外磁極和內磁極形成封閉迴路磁控管組件,且其中外磁極和內磁極各自產生磁場。在一實施例中,靶材 組件進一步包括鈦背板和設置在鈦背板和鎢靶材之間的鋁接合層。
額外的實施例和特徵部分地在隨後的實施方式中闡述,且部分地將對於本領域技術人員在審查說明書時將變得顯而易見,或可藉由實施所揭露的實施例而習得。所揭露的實施例之特徵和優點可藉由在說明書中所描述的手段、組合和方法來實現和獲得。
與本揭露書一致的實施例通常提供包括一或多個低電阻率特徵的結構,一或多個低電阻率特徵由薄膜耐火金屬所形成,諸如(例如)鎢,如可在閘極堆疊或在位元線結構中所實現的,且包括其形成的方法和設備。藉由例子,根據本揭露書的實施例所形成的閘極堆疊結構可為記憶體型半導體裝置,諸如DRAM型積體電路。
現轉到第1A圖,顯示有諸如可在DRAM記憶體中使用的一個電晶體單元的電路圖。適於根據本揭露書的修改之電晶體記憶體單元的另一例子描述於Cao等人於2014年2月13日公開,且轉讓給加州聖克拉拉市之應用材料公司之美國申請案公開號第2014/00420151號中。第1A圖中所示的電晶體記憶體單元包含儲存電容10和選擇電晶體20。選擇電晶體20形成為場效應電晶體,且具有第一源/汲極21和第二源/汲極23,在第一源/汲極21和第二源/汲極23之間佈置有主動區域22。在主動區域22之上方是閘極絕緣層或介電層24和閘極25,它們一起作用如板電容,且可影響在主動區域22中的電荷密度,以形成或阻擋在第一源/汲極21和第二源/汲極23之間的電流傳導通道。
選擇電晶體20的第二源/汲極23經由連接線14而連接到儲存電容10的第一電極11。儲存電容10的第二電極12接著連接到電容板15,電容板15可共用於DRAM記憶體單元佈置的儲存電容。選擇電晶體20的第一源/汲極21還連接到位元線16,以可寫入和讀出以電荷形式儲存在儲存電容10中的資訊。寫入或讀出操作經由連接到選擇電晶體20的閘極25之字元線17而控制。寫入或讀出操作藉由施加電壓以在主動區域22中產生電流傳導溝道在第一源/汲極21和第二源/汲極23之間而發生。
不同類型的電容可用作諸如溝槽電容、堆疊電容和平面電容之DRAM型記憶體單元中的儲存電容10。隨著DRAM型記憶體單元不斷增加的小型化和溝槽電容不斷降低的剖面,電路(如,DRAM型記憶體單元的MOS裝置)的RC時間常數的減少變得有益。 RC時間常數是與通過電阻對電容充電至完全充電的百分比,或將電容放電至初始電壓的一小段相關聯的時間。RC時間常數等於電路電阻和電路電容的乘積。閘極是電路電阻的一個貢獻者。因此,減小DRAM型記憶體單元中之MOS裝置的RC時間常數的一種方式可為降低閘極的電阻。
第1B圖說明可用於DRAM型記憶體單元(諸如第1A圖中之選擇電晶體20)中的MOS裝置20B的閘極堆疊25B的實施例。諸如MOS裝置20B的半導體裝置形成在基板30上。基板可由諸如矽、鍺等的任何類型的半導體材料所形成。MOS裝置20B包括在基板30上的源極區域和汲極區域21B和23B。源極區域和汲極區域21B和23B可藉由使用傳統的摻雜技術摻雜基板30而形成。閘極堆疊25B之下方的區域可為基板30的輕度摻雜區域22B,其中摻雜劑具有與用以形成源極區域和汲極區域21B、23B的摻雜劑不同的導電性。另外,淺溝槽隔離區域32也可形成在基板30上。
閘極堆疊25B形成在源極區域21B和汲極區域23B之間。閘極介電層24B可形成在基板的位於輕度摻雜區域22B之上方的區域上。閘極介電層可由各種介電材料所製成(包括高介電常數的介電材料),以使閘極與基板30絕緣。
導電膜層26B形成在閘極介電層24B上並且形成閘極堆疊25B的部分。導電膜層26B可為使用於閘極堆疊的多晶矽或其它類型的導電膜。在一實施例中,閘極堆疊25B進一步包括在導電膜層26B上的耐火金屬氮化物膜層27B。耐火金屬氮化物膜可包括氮化鈦(TiN)、氮化鎢(WN)以及其它耐火金屬(諸如鋯、鉿、鉭、釩、鉻等)的氮化物。耐火金屬膜層可具有從約50埃(Å)至約150Å的厚度。在一個實施例中,耐火金屬薄膜層的厚度約為100Å。
在一個實施例中,含矽膜層28B形成在耐火金屬氮化物膜層27B上。含矽膜可為使用各種技術(諸如PVD、CVD和ALD技術)所沉積的矽薄膜。含矽膜層可包括摻雜劑,諸如硼。在一個實施例中,含矽膜層可為矽化鎢膜。含矽膜層可具有約10Å至30Å的厚度,諸如20Å。在其它實施例中,省略了在第1B圖中所示的含矽膜層28B。
閘極堆疊25B還包括在含矽膜層28B上或者在省略的耐火金屬氮化物膜層27B上的鎢膜層29B。鎢可為α或β相。在一個實施例中,鎢膜層29B可以α相而形成,這有助於降低鎢的電阻。鎢膜層可具有約200Å至約500Å的厚度。在一些實施例中,鎢膜層具有約200Å至約300Å的厚度。在一個實施例中,鎢膜層在厚度為200Å時具有小於10μohms-cm的電阻率,在厚度為250Å時具有小於9μohms-cm的電阻率和在厚度為300Å時具有約8.5μohms-cm的電阻率。
在沉積的期間或之後,由多晶矽上的WN或WSiN所形成的閘極堆疊可能與多晶矽反應,以在金屬層和多晶矽之間形成絕緣層。絕緣層可能特別容易在隨後的高溫處理期間形成。另外,在WN沉積期間,所使用的反應性氮電漿可與多晶矽或多晶矽上的自然氧化物反應並形成氮化矽(SiN),一種類型的絕緣層。此外,在多晶矽閘極堆疊上的W/AN/Ti的情況下,Ti是非常反應性的,且在多晶矽上吸收氧化物,在隨後的熱處理期間形成TiSiN或TiOx Ny 。在鎢膜層29B和耐火金屬氮化物膜層27B之間插入含矽膜層28B可有助於克服其它類型的閘極堆疊的這些缺點。
第2圖描繪如於此的實施例中所述之用於形成閘極堆疊的製程200的流程圖。製程200在開始方塊202處開始。製程200可包括提供電漿處理腔室,電漿處理腔室包括濺射靶材組件,濺射靶材組件具有鎢靶材,鎢靶材具有小於百萬分之十(ppm)的碳(C)和小於10ppm的氧(O2 )作為雜質,如方塊204中所示。藉由最小化鎢靶材作為電漿處理腔室內的O2 和C污染物之來源的貢獻,發明人推理出雜質散射的有害影響(取決於藉由濺射靶材材料所衍生的鎢膜之電阻率)可顯著地減少。
在實施例中,鎢靶材的密度在約19至約19.30g/cm3之間,鎢靶材的厚度大於約500Å,且鎢靶材的電阻率在從約8.75至約9.0μohms-cm之間。在實施例中,鎢靶材的相對密度(亦即,與純鎢的理想密度相比)在從約99.15和99.85%之間,且在一實施例中,鎢靶材的相對密度為約99.70至約99.80%。
製程200還可包括將基板定位在處理腔室內,其中基板包括源極區域和汲極區域,在源極區域和汲極區域之間的閘極介電層及在閘極介電層上的導電膜層,如在方塊206處。可在導電膜層上形成耐火金屬氮化物膜層或耐火金屬矽化物,如在方塊206處。在一些實施例中,基板包括耐火金屬氮化物膜層,在其上形成含矽膜層。製程200進一步包括,如在方塊208處,將氪氣(Kr)流入電漿處理腔室,如在方塊208處;激發Kr以產生電漿,如在方塊210處;及藉由濺射沉積鎢靶材材料而沉積具有厚度在300Å以下的鎢薄膜,如在方塊212處。
在製程200的實施例中,Kr流入電漿處理腔室中,電漿處理腔室以約十幾個標準立方厘米/分鐘(sccm)的速率保持在大約幾毫托(mTorr)的壓力;施加DC功率到靶材;及施加RF偏壓功率到基板,以在約22.30秒之後實現具有約150-500Å之厚度的鎢層。
在一些實施例中,(多個)耐火金屬氮化物及/或耐火金屬矽化物膜層、(多個)含矽膜層和鎢膜層的形成是(諸如在處理系統300中)原位形成的,如第3圖中所示且如下所述。在另一個實施例中,膜在單獨的處理系統中形成,其中真空破壞發生在一些膜層的形成之間。換句話說,各種膜層的形成可為異位地形成。例如,含矽膜可在與鎢膜層不同的處理系統中形成。因此,含矽膜可暴露於氧,以在含矽層上形成天然氧化物層,諸如SiO2 。在一個實施例中,在形成鎢膜層之前去除自然氧化膜並清潔含矽層。
利用根據與本揭露書一致的實施例之薄、低電阻率的鎢膜之電路結構的形成(諸如(例如)作為第1B圖中所示的閘極堆疊)可在處理系統(諸如第3圖中所示的群集工具300)中執行。群集工具300可為雙緩衝腔室、多製程腔室半導體處理工具或雙緩衝腔室群集工具。群集工具300可為具有可由位於加州聖克拉拉市的應用材料公司所取得的各種附接腔室之Endura® 平台。附接到群集工具300者可為具有一或多個FOUP 332的工廠界面(FI)330,用於處理和將基板從半導體工廠的一個區域傳送到另一個區域。FI 330從FOUP 332移除基板358,以開始處理序列。群集工具300具有第一緩衝腔室346和第二緩衝腔室350,及設置在多邊形結構344內的第一基板傳送位置314和第二基板傳送位置316。第一緩衝腔室346可為低品質的真空緩衝且第二緩衝腔室350可為高品質的真空緩衝。基板傳送位置可為腔室。
第一負載鎖定腔室326和第二負載鎖定腔室328可設置在多邊形結構344的一側上。第一除氣腔室318和第二除氣腔室320可設置在多邊形結構的大致相對的側面上,且鄰近第一負載鎖定腔室326和第二負載鎖定腔室328。第一對製程腔室302和304可設置在多邊形結構344的大致相對的側面上,且鄰近如第一除氣腔室318、第二除氣腔室320和第一緩衝腔室346的腔室。第一對製程腔室302、304可為用於在基板上形成鎢膜的VersaTM W PVD腔室,可從位於加州聖克拉拉市的應用材料公司取得。第二對製程腔室306和308可設置在多邊形結構344的大致相對的側面上,且相鄰於緩衝腔室350。第二對製程腔室可為ExtensaTM TTN PVD腔室,也可從位於加州聖克拉拉市的應用材料公司取得。第三對製程腔室310和312可設置在多邊形結構344的大致相對的側面上,且鄰近第二對製程腔室306、308和第二緩衝腔室350。第三對製程腔室可為用於沉積含矽層的腔室,諸如WSix,也可從位於加州聖克拉拉市的應用材料公司取得。
製程和負載鎖定腔室可藉由複數個狹縫閥(未顯示)選擇性地與第一緩衝腔室346和第二緩衝腔室350隔離,分別產生第一環境和第二環境374和376。多邊形結構344具有分隔第一緩衝腔室346和第二緩衝腔室350的中心壁342。中心壁342分隔第一緩衝腔室346和第二緩衝腔室350。基板傳送位置314和316提供通過中心壁342到第一緩衝腔室346和第二緩衝腔室350的單獨通道。基板傳送位置314和316藉由複數個狹縫閥(未顯示)選擇性地與鄰接的第一緩衝腔室346和第二緩衝腔室350隔離。例如,可在第一緩衝腔室346和第一基板傳送位置314之間設置一個狹縫閥,可在第一傳送位置314和第二緩衝腔室350之間設置一個附加狹縫閥,一個狹縫閥可設置在第一緩衝腔室346和第二基板傳送位置316之間,且一個狹縫閥可設置在第二緩衝腔室350和第二基板傳送位置316之間。狹縫閥的使用允許在每一腔室中的壓力被單獨地控制。第一基板傳送位置314和第二基板傳送位置316中的每一者還可分別具有用於在每一位置處支撐相應基板的基板基座(未顯示)。
第一緩衝腔室346由第一負載鎖定腔室326、第二負載鎖定腔室328、第一除氣腔室318、第二除氣腔室320、第一製程腔室302、第二製程腔室304、第一基板傳送位置314和第二基板傳送位置316所圍繞。第一和第二製程腔室302、304、第一和第二除氣腔室318、320及負載鎖定腔室326、328之每一者藉由狹縫閥(未顯示)與第一緩衝腔室346選擇性地隔離。位於第一緩衝腔室346內的是第一機器人基板傳送機構348,如多葉片機器人。其他類型的傳送機構可替換。所示的第一機器人基板傳送機構348可具有支撐一或多個基板358的基板傳送葉片360。基板傳送葉片360藉由第一機器人基板傳送機構348而使用,用於將基板358單獨地運送進出到包圍第一緩衝腔室346的腔室。
第二緩衝腔室350由製程腔室306、308、310和312以及第一和第二基板傳送位置314和316圍繞。位於第二緩衝腔室350內的是第二機器人基板傳送機構352,如,多葉片機器人。其他類型的傳送機構可替換。所示的第二機器人基板傳送機構352可具有支撐一或多個基板358的基板傳送葉片360。基板傳送葉片360藉由第二機器人基板傳送機構352而使用於將基板單獨地運送進出到包圍第二緩衝腔室350的腔室。
緩衝腔室346、350可具有連接到泵送機構(未顯示)(諸如渦輪分子泵)的真空埠,真空埠能夠抽空第一和第二緩衝腔室346和350的環境。真空埠的配置和位置可取決於用於個別系統的設計標準而變化。
例如,基板處理可開始於藉由泵送機構而將第一緩衝腔室346和第二緩衝腔室350抽空至真空條件。第一機器人基板傳送機構348從負載鎖定腔室(如326)之一者取回基板358,且將基板運送到第一處理站,例如,第一除氣腔室318,第一除氣腔室318可用以對包括形成於其上的結構之基板358除氣,為後續處理做準備。例如,包括閘極堆疊25B的導電膜層26B的基板30可在形成閘極的剩餘層之前被除氣。
在下一個處理站中,基板可被運送到製程腔室306、308之任一者,以製造根據由方塊206所示例的製程而定位之基板的一或多層。一旦第一機器人基板傳送機構348不再運送基板,第一機器人基板傳送機構348可使基板在圍繞緩衝腔室346的其它腔室中。一旦基板被處理且PVD站將材料沉積在基板上,基板可接著移動到第二處理站等等。例如,可接著將基板移動到製程腔室310、312之任一者,以執行如上所述的製程206。
如果處理腔室位於第二緩衝腔室350附近,基板可被傳送到基板傳送位置(如,第一基板傳送位置314)之一者。分離緩衝腔室346和第一基板傳送位置314的狹縫閥打開。第一機器人基板傳送機構348將基板傳送到第一基板傳送位置314中。連接到第一機器人基板傳送機構348的基板傳送葉片360從第一基板傳送位置314移出,將基板留在基座上。在分離第一緩衝腔室346和第一基板傳送位置314的狹縫閥關閉之後,分離第二緩衝腔室350和第一基板傳送位置314的第二狹縫閥打開,允許連接到第二機器人基板傳送機構352的基板傳送葉片360插入第一基板傳送位置314,以取出基板。一旦基板在第二緩衝腔室350內側,第二狹縫閥關閉,且第二機器人基板傳送機構352自由地將基板移動到由第二緩衝腔室350及第二機器人基板傳送機構352所服務之合適的處理腔室或腔室序列。
在基板處理終止之後,將基板裝載到FI 330上的FOUP 332之一者中,將基板通過基板傳送位置適當地移動回去。
在如上所述的方塊212所示例的製程期間,可使用各種方法形成鎢膜。參考第4A-7圖可用以顯示該製程。在一個實施例中,用於形成鎢膜的方法包括使用耦合到靶材組件132的直流(DC)功率供應器182在電漿處理腔室(如,腔室100)的處理區域110中形成電漿,靶材組件132包括在腔室100中之鎢靶材(靶材132A)、鋁接合層132B及鈦背板132C。鎢靶材132A具有與腔室100的處理區域110接觸的第一表面133,及與第一表面133相對的第二表面135。將能量從DC功率供應器182輸送到在腔室的處理區域110中所形成的電漿,到達靶材132A。DC功率可在從約500W到約3.0kW(諸如約1.5kW或2.0kW)的範圍內的功率水平施加到鎢靶材。在一些實施例中,形成具有低電阻率的薄鎢膜的製程可僅使用耦合到鎢靶材(靶材132A)的DC功率源及耦合到基板支撐件的RF偏壓。然而,儘管第4A圖僅顯示耦合到靶材的DC功率源,在一些實施例中,腔室可具有耦合到鎢靶材的RF和DC功率源兩者。
在實施例中,磁控管系統189可繞靶材132A的中心點而旋轉,其中磁控管系統189鄰近靶材132A的第二表面135而設置。磁控管系統189可包括外磁極424和內磁極425,外磁極424包括複數個磁體423,內磁極425包括複數個磁體423。外磁極和內磁極424、425可形成封閉迴路磁控管組件。磁控管系統和產生的磁場在沉積製程中影響氪(Kr)離子的轟擊,且能夠控制薄膜性質,諸如晶粒尺寸和膜密度。在一個實施例中,腔室100是短程投影腔室,其中在靶材和基板之間的間距在55mm和75mm(例如73mm或65mm)之間的範圍內。在實施例中,用Kr點燃電漿。在一個實施例中,電漿可由具有在從約10至約15sccm範圍內的流速的Kr氣體所產生。
製程還可包括加熱在腔室中的基板支撐件126。基板支撐件126或設置在其上的基板可被加熱到從約100℃到約400℃的範圍內之溫度。在一個實施例中,可將基板或支撐件加熱到從約150℃到約400℃的範圍內之溫度。例如,可將基板或基板支撐件加熱到200℃、250℃、300℃,或甚至400℃。
發明人於此已觀察到僅DC功率物理氣相沉積製程產生低能量的鎢物種,且用低能量的物種所生長的鎢膜傾向為充分多孔的,以允許高能量的粒子穿透鎢膜。為了利用孔隙率現象,在方塊210處所示例的製程之實施例經由RF功率供應器將RF偏壓施加到基板支撐件(和基板)。RF偏壓可具有在從約100W到約1200W的範圍內的功率水平。在一個實施例中,RF偏壓可具有在從約200W到約400W的範圍內的功率水平,且以13.5MHz RF的頻率施加。
施加RF偏壓功率增加離子能量,使高能量的粒子能夠穿透鎢膜,保留膜表面之下的幾個原子平面,並使膜緻密化。這種穿透可將膜應力從拉伸調節成壓縮,且可填充在膜中的空位以降低膜電阻率,儘管後一種效應可藉由間隙點缺陷的產生而抵消。RF偏壓還有助於控制在基板上的離子轟擊,有利地影響薄膜性質,諸如晶粒尺寸、膜密度和其它性質。RF偏壓為轟擊離子提供額外的動能,這可促進大的晶粒生長。
藉由使用以上所述的各種變量,鎢膜可沉積在位於腔室100中的基板支撐件126上的基板105上。此外,藉由控制沉積壓力和溫度,DC功率和RF偏壓及藉由使用包括藉由鋁中間層而接合到鈦背板之非常低雜質和高密度的鎢靶材之靶材組件,可形成具有約8.5μohms-cm的電阻之300Å之等級厚的鎢膜,同時可形成具有約9μohms-cm或甚至更小(如,低至約8.95μohms-cm)的電阻之約250Å之等級厚的鎢膜。
此外,根據與本揭露書一致的實施例之離子轟擊也可使用具有在一定範圍內的不平衡比之磁控管組件來改善,且特別是當不平衡比在內部磁迴路上具有相較於外部磁迴路更大的磁場強度時。此外,藉由調整磁控管之不平衡比而改善厚度均勻性。改進的離子轟擊也可提供較少的Kr、O2 等的捕獲或摻入到薄膜中,這也降低了薄鎢膜的電阻率。
第4A圖顯示具有上製程組件108、製程套組150和基座組件120的示例性電漿處理腔室(腔室100),示例性電漿處理腔室可經配置以處理設置在處理區域110中的基板105。腔室100可為鎢PVD沉積室,諸如第3圖中所示之在群集工具300上的製程腔室302或304。製程套組150包括一件式接地屏蔽件160、下製程套組165和隔離環組件180。在所示的版本中,腔室100包含濺射腔室,也稱為物理氣相沉積或PVD腔室,能夠將單一材料從靶材132A沉積到基板105上。腔室100也可用以沉積鎢。發明人於此考慮到包括來自其他製造商的那些的其他製程腔室可適以受益於本揭露書之一或多個實施例。
腔室100包括腔室本體101,腔室本體101具有圍繞處理區域110或電漿區域的側壁104、底壁106和上製程組件108。腔室本體101通常由不銹鋼的焊接板或鋁的整體塊所製成。在一個實施例中,側壁包含鋁,且底壁包含不銹鋼板。側壁104通常含有狹縫閥(未顯示),以提供基板105從腔室100的進入和離開。腔室100的上製程組件108中的部件與接地屏蔽件160、基座組件120和蓋環170合作,限制形成在處理區域110中的電漿於基板105之上方的區域。
基座組件120自腔室100的底壁106而支撐。基座組件120在處理期間支撐沉積環502及基板105。基座組件120藉由舉升機構122而耦接到腔室100的底壁106,舉升機構122經配置以在上處理位置和下傳送位置之間移動基架組件120。另外,在下傳送位置中,舉升銷123移動通過基座組件120,以將基板定位在距基座組件120一定距離處,以促進基板與設置在腔室100外部的基板傳送機構(諸如單葉片機器人(未顯示))的交換。波紋管124通常設置在基座組件120和底壁106之間,以將處理區域110與基座組件120的內部和腔室的外部隔離。
基座組件120通常包括密封地耦接到平台外殼128的基板支撐件126。平台外殼128通常由諸如不銹鋼或鋁的金屬材料所製成。冷卻板(未顯示)通常設置在平台外殼128內,以熱調節基板支撐件126。
基板支撐件126可由鋁或陶瓷所構成。基板支撐件126具有在處理期間接收並支撐基板105的基板接收表面127,基板接收表面127實質地平行於靶材組件132之靶材132A的濺射表面(如第一表面133)。基板支撐件126還具有在基板105的懸伸邊緣105A之前終止的周邊邊緣129。基板支撐件126可為靜電夾盤、陶瓷本體、加熱器或其組合。在一個實施例中,基板支撐件126為靜電夾盤,包括具有嵌入其中的電極(如,導電層125)之介電本體。介電本體通常由高熱導率的介電材料(諸如,熱解氮化硼、氮化鋁、氮化矽、氧化鋁或等效材料)所製成。下面進一步描述基座組件120和基板支撐件126的其他態樣。在一個實施例中,導電層125經配置以使得當藉由靜電夾盤的功率供應器143向導電層127施加DC電壓時,設置在基板接收表面126A上的基板105將被靜電夾持到其上,以改善在基板105和基板支撐件126之間的熱傳遞。在另一個實施例中,RF偏壓控制器141也耦接到導電層127,使得在處理期間可在基板上保持電壓,以影響電漿與基板105的表面之交互作用。
腔室100藉由系統控制器190而控制,系統控制器190通常經設計以促進腔室100的控制和自動化,且通常包括中央處理單元(CPU)(未顯示)、記憶體(未顯示)和支持電路(或I/O)(未顯示)。CPU可為在工業設置中所使用的任何形式的計算機處理器,用於控制各種系統功能、基板移動、腔室製程和支撐硬體(如,感測器、機器人、馬達等),並監控製程(如,基板支撐件的溫度、功率供應器的變數、腔室處理時間、I/O信號等)。記憶體連接到CPU,且可為本地或遠端之易於取得的記憶體(諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM))、軟碟、硬碟或任何其它形式的數位儲存器)之一或多者。軟體指令和資料可被編碼並儲存在記憶體內用於指示CPU。支持電路也連接到CPU,用於以傳統方式支持處理器。支持電路可包括快取、功率供應器、時脈電路、輸入/輸出電路、子系統及類似者。可由系統控制器190讀取的程式(或計算機指令)確定哪些任務可在基板上執行。在實施例中,程式是系統控制器190可讀的軟體,包括用於執行與在腔室100中所執行的運動和各種製程配方任務和配方製程的監控、執行和控制相關的任務的代碼。例如,系統控制器190可包含程式代碼,包括基板定位指令集,用以操作基座組件120;氣流控制指令集,用以操作氣流控制閥,以設定濺射氣體到腔室100的流動;氣體壓力控制指令集,用以操作節流閥或閘閥,以維持腔室100中的壓力;溫度控制指令集,用以控制在基座組件120或側壁104中的溫度控制系統(未顯示),以分別地設定基板或側壁104的溫度;及製程監控指令集,用以監控在腔室100中的製程。
腔室100還含有製程套組150,製程套組150包含可容易地從腔室100移除的各種部件,例如,用以清潔在部件表面上的濺射沉積物、更換或修復侵蝕的部件或用以適配腔室100用於其他製程。在一個實施例中,製程套組150包含隔離環組件180、接地屏蔽件160和環組件168,用於圍繞基板支撐件126的周邊邊緣129而放置,在基板105的懸伸邊緣之前終止。
第4B圖是耦接到群集工具300的處理位置之腔室100的等距視圖。群集工具300還可含有諸如第3圖中所示的適於在執行在腔室100中的沉積製程之前或之後在基板上執行一或多個處理操作之其它處理腔室。示例性群集工具300可包括可從加州聖克拉拉市的應用材料公司取得的Centura®或Endura®系統。在一個例子中,群集工具300可具有處理腔室,其經配置以執行許多基板處理操作,諸如循環層沉積、化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、蝕刻、預清潔、除氣、退火、取向和其它基板製程。傳送工具(例如,設置在第一緩衝腔室346中的第一機器人基板傳送機構348)可用以將基板傳送進出於附接到群集工具300的一或多個腔室。
上製程組件108還可包含RF功率供應器181、DC功率供應器182、適配器102、馬達193和蓋組件130。蓋組件130通常包含靶材組件132、磁控管系統189和蓋殼體191,靶材組件132具有藉由鋁擴散接合中間層(鋁接合層132B)而接合到鈦背板132C的鎢靶材(靶材132A)。上製程組件108在當處於關閉位置時由側壁104所支撐,如第4A和4B圖中所示。陶瓷靶材隔離器136設置在隔離環組件180、靶材組件132和蓋組件130的適配器102之間,以防止它們之間的真空洩漏。適配器102可密封地耦接到側壁104,且經配置以幫助移除上製程組件108和隔離環組件180。
當在處理位置中時,靶材132A鄰近適配器102而設置,且暴露於腔室100的處理區域110。在PVD(或濺射)製程期間沉積來自所形成靶材132A的鎢在基板105上。隔離環組件180設置在靶材132A與屏蔽件160和腔室本體101之間,以將靶材132A與屏蔽件160和腔室本體101電隔離。
在處理期間,藉由設置在DC功率供應器182中的功率源,靶材132A相對於處理腔室(如,腔室本體101和適配器102)的接地區域而偏壓。在一個實施例中,在DC功率供應器182中之DC功率源182A能夠輸送在約0和約9.0kW之間的DC功率。
在處理期間,高原子量、非反應性的氣體經由導管144而從氣體源142供應到處理區域110。氣體源142可包含非反應性氣體,諸如氪或氙,其能夠能量地衝擊和濺射來自靶材132A的材料。氣體源142還可包括反應氣體,諸如含氮氣體,其能夠與濺射材料反應,以在基板上形成層。用過的製程氣體和副產物通過排氣埠146而從腔室100排出,排氣埠146接收用過的製程氣體,並將用過的製程氣體引導到具有可調節的位置閘閥147的排氣導管148,以控制在腔室100中的處理區域110中的壓力。排氣導管148連接到一或多個排氣泵149,諸如低溫泵。通常,在處理期間,在腔室100中的濺射氣體的壓力設定為低於大氣壓的水平,諸如真空環境,例如,約1.0mTorr至約10.0mTorr的壓力。在一個實施例中,處理壓力設定為約2.5mTorr至約6.5mTorr。在基板105和靶材132A之間從氣體形成電漿。在電漿內的離子朝靶材132A加速,且使材料從靶材132A逐出。逐出的靶材材料沉積在基板上。
蓋殼體191一般包含導電壁185、中心饋電184和屏蔽186(第4A和4B圖)。在所示的配置中,導電壁185、中心饋電184、靶材132A和馬達193的一部分包圍並形成後部區域134。後部區域134是設置在靶材 132A的背側上的密封區域,且在處理期間通常用流動的液體填充,以去除在處理期間在靶材132A處所產生的熱。在一個實施例中,導電壁185和中心饋電184經配置以支持馬達193和磁控管系統189,使得馬達193可在處理期間旋轉磁控管系統189。在一個實施例中,馬達193藉由使用諸如Delrin、G10或Ardel之介電層而與從DC功率供應器所傳遞的DC功率電隔離。
屏蔽186可包含一或多個介電材料,經定位以封閉和防止傳遞到靶材132A的能量干擾和影響設置在群集工具300(第4B圖)中的其它處理腔室。在一種配置中,屏蔽186可包含Delrin、G10、Ardel或其它類似材料及/或薄、接地的片狀金屬RF屏蔽。
在腔室100的一個實施例中,RF偏壓控制器141(第4A圖)耦接在電極和RF接地之間,以在處理期間調節在基板上的偏壓,以控制在基板表面上的轟擊程度。在一個實施例中,電極鄰近基板支撐件126的基板接收表面126A而設置,且包含電極(如,導電層127)。在PVD反應器中,藉由控制電極對地的阻抗來調節基板表面的轟擊將影響沉積膜的性質,諸如晶粒尺寸、膜應力、晶體取向、膜密度、粗糙度和膜組成。因此,RF偏壓控制器141可用以改變在基板表面處的膜性質。在一實施例中,RF偏壓控制器141具有RF功率源(未顯示)和RF匹配(未顯示)。RF偏壓功率設定點可取決於要在基板上實現的可應用的處理結果。
第5圖描繪根據本揭露書的一或多個實施例之用於在藉由沉積低電阻率的鎢薄膜而在基板上形成特徵中使用的磁控管之第一實施例的一部分之頂視圖。根據參考第4A和5圖而理解的本揭露書的一個實施例,磁控管系統189包括源磁控管組件420,源磁控管組件420包含旋轉板413、外磁極424和內磁極425。旋轉板413通常允許在源磁控管組件420中的磁場產生部件的位置相對於腔室100的中心軸線194而移動。
旋轉板413通常適以支撐並磁性耦接在垂直方向上的第一磁極性的外磁極424和具有與第一磁極性相反的第二磁極性的內磁極425。外磁極424藉由間隙427與內磁極425分離,且每一磁極通常包含一或多個磁體和磁極片(外磁極片421、內磁極片422)。在外磁極424和內磁極425之間延伸的磁場產生與靶材132A的濺射面之第一部分相鄰的電漿區域。電漿區域形成大致遵循間隙427的形狀之高密度電漿區域。
在第5圖中所示的示例性實施例中,磁控管系統189是封閉迴路設計。通常,形成「封閉迴路」磁控管配置,使得磁控管的外磁極包圍磁控管的內磁極,在磁極之間形成連續迴路的間隙。在封閉迴路配置中,通過靶材表面出現和再進入的磁場形成「封閉迴路」圖案,其可用於以封閉圖案將電子限制在靶材的表面附近,這通常稱為「跑道」類型圖案。封閉迴路(與開放迴路相反)的磁控管 配置能夠限制電子,且在靶材132A的第一表面133附近產生高密度電漿,以增加濺射產量。
在磁控管系統189的一個實施例中,由馬達193所驅動的旋轉軸193A沿著中心軸線194延伸並支撐旋轉板413和源磁控管組件420。在處理期間,濺射顯著地加熱靶材132A。因此,後部區域134密封到靶材132A的背面,且填充有由冷卻器(未顯示)所冷卻的冷卻水之液體和再循環冷卻水(未顯示)的水管。旋轉軸193A通過旋轉密封件(未顯示)而穿過腔室100。磁控管系統189浸沒在設置在後部區域134中的液體中。
在一些實施例中,源磁控管組件420是不平衡的磁控管。通常,不平衡被定義為在外磁極424之上總和的總磁場強度或磁通量除以在內磁極425之上總和的總磁場強度或磁通量的比率。發明人於此已觀察到藉由保持外磁場對內磁場的強度不平衡在約1.56和約0.57之間,可改善鎢膜的沉積製程,以增加轟擊和晶粒尺寸。在一個實施例中,外磁場對內磁場的強度不平衡是在約1.15和約0.93之間的比率。磁不平衡使得從內磁極425發出的磁場的一部分朝向基板105突出並將離子化的濺射粒子引導到基板105。然而,源磁控管組件420將產生導致相當大部分的濺射粒子被離子化的電漿。離子化的粒子藉由不平衡的磁場至少部分地朝向基板105而引導,從而改善膜厚度均勻性。
在第5圖的示例性實施例中,描繪了磁控管系統189的實施例,其中外磁極424和內磁極425形成繞靶材132A的中心「M」而置中的封閉迴路環形磁控管。第6圖顯示根據本揭露書的一或多個實施例之用於在藉由沉積低電阻率的鎢薄膜在基板上形成特徵中使用的替代磁控管的一部分的頂視圖。在第6圖的實施例中,內磁極425A包括雙同心磁體陣列,而外磁極424A包括僅具有單一磁體陣列的一些區域和包含雙陣列的其他區域。
在第5和6圖的每一示例性實施例中,電漿密度通常在與第二軸492(第5圖)或492A(第6圖)之上方的磁控管系統189的區域相鄰的處理區域中,或具有最高磁體密度的區域(與具有最低磁體密度的區域相比,或在一些實施例中不具有磁體相比)較高。第一軸線491(第5圖)或491A(第6圖)分別與第二軸線492或492A正交。磁控管在目標和腔室之上方的大致中心軸線上旋轉,且因此在一個實施例中,磁控管經配置以在處理期間藉由馬達193繞幾何中心「M」而旋轉。
第7圖是描繪根據與本揭露書一致的實施例之藉由濺射而獲得的示例性薄膜鎢層的在電阻率和厚度之間的關係的圖形表示。第7圖中所描述的結果是說明性的,且不被解釋為限制本揭露書的範圍。
雖然前面部分關於本揭露書的實施例,與本揭露書一致的其他和進一步的實施例可經設計而不背離本揭露書的基本範圍。
10:儲存電容
11:第一電極
12:第二電極
14:連接線
15:電容板
16:位元線
17:字元線
20:選擇電晶體
20B:MOS裝置
21:第一源/汲極
21B:源極區域
22:主動區域
22B:摻雜區域
23:第二源/汲極
23B:汲極區域
24:介電層
24B:閘極介電層
25:閘極
25B:閘極堆疊
26B:導電膜層
27B:耐火金屬氮化物膜層
28B:含矽膜層
29B:鎢膜層
30:基板
32:淺溝槽隔離區域
100:腔室
101:腔室本體
102:適配器
104:側壁
105:基板
106:底壁
108:上製程組件
110:處理區域
120:基座組件
122:舉升機構
123:舉升銷
124:波紋管
126:基板支撐件
126A:基板接收表面
127:導電層
128:平台外殼
129:周邊邊緣
130:蓋組件
132:靶材組件
132A:靶材
132B:鋁接合層
132C:鈦背板
133:第一表面
134:後部區域
135:表面
136:陶瓷靶材隔離器
141:RF偏壓控制器
142:氣體源
143:靜電夾盤功率源
144:導管
146:排氣埠
147:可調節的位置閘閥
148:排氣導管
149:排氣泵
150:製程套組
160:屏蔽件
165:下製程套組
170:蓋環
180:隔離環組件
181:RF功率源
182:DC功率供應器
182A:DC功率源
184:中心饋電
185:導電壁
186:屏蔽
189:磁控管系統
190:系統控制器
191:蓋殼體
193:馬達
193A:旋轉軸
194:中心軸線
200:製程
202:方塊
204:方塊
206:方塊
208:方塊
210:方塊
212:方塊
214:方塊
300:處理系統/群集工具
302:製程腔室
304:製程腔室
306:製程腔室
308:製程腔室
310:製程腔室
312:製程腔室
314:第一基板傳送位置
316:第二基板傳送位置
318:第一除氣腔室
320:第二除氣腔室
326:負載鎖定腔室
328:負載鎖定腔室
330:工廠界面
332:FOUPS
342:中心壁
344:多邊形結構
346:第一緩衝腔室/緩衝腔室
348:第一機器人基板傳送機構
350:第二緩衝腔室
352:第二機器人基板傳送機構
358:基板
360:基板傳送葉片
374:第一環境
376:第二環境
413:旋轉板
420:源磁控管組件
421:外磁極片
422:內磁極片
423:磁體
424:外磁極
424A:外磁極
425:內磁極
425A:內磁極
427:間隙
491:第一軸線
491A:第一軸線
492:第二軸線
492A:第二軸線
502:沉積環
可藉由參考說明書的剩餘部分和圖式來實現對所揭露的實施例之本質和優點的進一步理解。附隨的圖式僅顯示與所附隨的揭露書一致的示例性實施例,且不應被認為是限制性的,因為本揭露書可允許其他等效的實施例。
第1A圖顯示根據本揭露書的一或多個實施例之具有改進的性質的DRAM記憶體中之動態記憶體單元的電路圖。
第1B圖顯示根據本揭露書的一或多個實施例之可應用於第1A圖的DRAM單元的閘電極堆疊,閘極堆疊包括藉由沉積低電阻率之鎢薄膜而形成的特徵。
第2圖顯示根據本揭露書的一或多個實施例之藉由沉積低電阻率之鎢薄膜在基板上形成特徵的方法的製程圖。
第3圖顯示根據本揭露書的一或多個實施例之具有用於形成電路結構的多個腔室之平台系統,電路結構包括藉由在基板上薄膜沉積鎢而形成的特徵。
第4A圖顯示根據本揭露書的實施例之的電漿處理腔室的剖面圖。
第4B圖描繪根據本揭露書的實施例之腔室的等距視圖。
第5圖描繪根據本揭露書的一或多個實施例之用於在藉由沉積低電阻率的鎢薄膜而在基板上形成特徵中使用的磁控管之一部分的頂視圖。
第6圖描繪根據本揭露書的一或多個實施例之用於在藉由沉積低電阻率的鎢薄膜而在基板上形成特徵中使用的替代磁控管的一部分的頂視圖。
第7圖是描繪根據與本揭露書一致的實施例之藉由濺射而獲得的薄膜鎢層的電阻率和厚度之間的關係之圖形表示。
為促進理解,盡可能使用相同的元件符號來表示圖式中共同的相同元件。圖式是未按比例而繪製的,且為了清楚起見可被簡化。此外,一個實施例的元件和特徵可有利地併入在與本揭露書一致的其它實施例中,而無需進一步詳述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無
100:腔室
101:腔室本體
102:適配器
104:側壁
105:基板
106:底壁
108:上製程組件
110:處理區域
120:基座組件
122:舉升機構
123:舉升銷
124:波紋管
126:基板支撐件
126A:基板接收表面
127:導電層
128:平台外殼
129:周邊邊緣
130:蓋組件
132‧‧‧靶材組件
132A‧‧‧靶材
132B‧‧‧鋁接合層
132C‧‧‧鈦背板
133‧‧‧第一表面
134‧‧‧後部區域
135‧‧‧表面
136‧‧‧陶瓷靶材隔離器
141‧‧‧RF偏壓控制器
142‧‧‧氣體源
143‧‧‧靜電夾盤功率源
144‧‧‧導管
146‧‧‧排氣埠
147‧‧‧可調節的位置閘閥
148‧‧‧排氣導管
149‧‧‧排氣泵
150‧‧‧製程套組
160‧‧‧屏蔽件
165‧‧‧下製程套組
170‧‧‧蓋環
180‧‧‧隔離環組件
182‧‧‧DC功率供應器
182A‧‧‧DC功率源
184‧‧‧中心饋電
185‧‧‧導電壁
186‧‧‧屏蔽
189‧‧‧磁控管系統
190‧‧‧系統控制器
191‧‧‧蓋殼體
193‧‧‧馬達
193A‧‧‧旋轉軸
194‧‧‧中心軸線
413‧‧‧旋轉板
420‧‧‧源磁控管組件
421‧‧‧外極片
422‧‧‧內極片
423‧‧‧磁體
502‧‧‧沉積環

Claims (11)

  1. 一種在一積體電路中濺射沉積一鎢結構的方法,包含以下步驟:將一基板移動到一電漿處理腔室中,且移動到與一濺射靶材組件相對的一基板支撐件上,該濺射靶材組件包含具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在之一鎢靶材;將氪氣流入該電漿處理腔室中;及將該氪氣激發成一電漿,以藉由濺射而在由該基板支撐件所支撐的一基板之一材料層上沉積一鎢膜層,其中該鎢膜層在從約250至約300埃(Å)的一厚度下具有小於約9.0μohm-cm的一電阻率。
  2. 如請求項1所述之方法,其中該濺射靶材組件進一步包括一背板,耦接至該鎢靶材。
  3. 如請求項2所述之方法,其中該背板為一鈦背板。
  4. 如請求項3所述之方法,其中該濺射靶材組件進一步包括一鋁接合層,設置在該鈦背板和該鎢靶材之間。
  5. 如請求項1所述之方法,其中該鎢靶材具有至少500埃(Å)的一厚度。
  6. 如請求項1所述之方法,其中該鎢膜層具有 約250埃(Å)的一厚度。
  7. 如請求項1所述之方法,其中該激發步驟包含以下步驟:將偏壓RF功率從一RF功率供應器傳遞到該基板,且將DC功率從一DC功率源傳遞到該鎢靶材。
  8. 如請求項1所述之方法,其中該材料層包含氮化鎢或矽化鎢。
  9. 一種在一積體電路中濺射沉積一鎢結構的方法,包含以下步驟:將一基板移動到一電漿處理腔室中,且移動到與一濺射靶材組件相對的一基板支撐件上,該濺射靶材組件包含一鎢靶材及耦接至該鎢靶材的一背板,該鎢靶材具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在,其中該鎢靶材具有約8.75至約9.0μohm-cm的一電阻率;將氪氣流入該電漿處理腔室中;及將該氪氣激發成一電漿,以藉由濺射而在由該基板支撐件所支撐的一基板之一材料層上沉積一鎢膜層。
  10. 一種在一積體電路中濺射沉積一鎢結構的方法,包含以下步驟:將一基板移動到一電漿處理腔室中,且移動到與一濺射靶材組件相對的一基板支撐件上,該濺射靶材組 件包含具有不超過10ppm的碳和不超過10ppm的氧作為雜質存在之一鎢靶材,其中該鎢靶材具有從約19至約19.35g/cm3的一密度和約8.75至約9.0μohm-cm的一電阻率;將氪氣流入該電漿處理腔室中;及將該氪氣激發成一電漿,以藉由濺射而在由該基板支撐件所支撐的一基板之一材料層上沉積一鎢膜層。
  11. 如請求項10所述之方法,其中該鎢靶材具有至少500埃(Å)的一厚度。
TW105133990A 2015-10-22 2016-10-21 用於鎢膜之低阻抗物理氣相沉積的系統及方法 TWI701347B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562245050P 2015-10-22 2015-10-22
US62/245,050 2015-10-22
US14/981,190 2015-12-28
US14/981,190 US10043670B2 (en) 2015-10-22 2015-12-28 Systems and methods for low resistivity physical vapor deposition of a tungsten film

Publications (2)

Publication Number Publication Date
TW201728767A TW201728767A (zh) 2017-08-16
TWI701347B true TWI701347B (zh) 2020-08-11

Family

ID=58557873

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109122961A TWI738410B (zh) 2015-10-22 2016-10-21 在電漿處理腔室中使用的靶材及電漿處理腔室
TW105133990A TWI701347B (zh) 2015-10-22 2016-10-21 用於鎢膜之低阻抗物理氣相沉積的系統及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109122961A TWI738410B (zh) 2015-10-22 2016-10-21 在電漿處理腔室中使用的靶材及電漿處理腔室

Country Status (6)

Country Link
US (2) US10043670B2 (zh)
JP (1) JP6857652B2 (zh)
KR (1) KR20180061386A (zh)
CN (1) CN108140560B (zh)
TW (2) TWI738410B (zh)
WO (1) WO2017070479A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136852B (zh) * 2018-10-10 2020-10-09 中国原子能科学研究院 一种在金属基衬上镀制钨膜的方法
US10529602B1 (en) * 2018-11-13 2020-01-07 Applied Materials, Inc. Method and apparatus for substrate fabrication
US11631680B2 (en) 2018-10-18 2023-04-18 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal
US10903112B2 (en) * 2018-10-18 2021-01-26 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal
US10700072B2 (en) 2018-10-18 2020-06-30 Applied Materials, Inc. Cap layer for bit line resistance reduction
US11329052B2 (en) * 2019-08-02 2022-05-10 Applied Materials, Inc. Method of processing DRAM
CN114730735A (zh) * 2019-11-21 2022-07-08 应用材料公司 平滑化动态随机存取存储器位线金属的方法与设备
KR20230005882A (ko) 2020-04-30 2023-01-10 도쿄엘렉트론가부시키가이샤 Pvd 장치
US11447857B2 (en) * 2020-09-15 2022-09-20 Applied Materials, Inc. Methods and apparatus for reducing tungsten resistivity
US11798845B2 (en) 2020-10-28 2023-10-24 Applied Materials, Inc. Methods and apparatus for low resistivity and stress tungsten gap fill
CN115011928B (zh) * 2021-03-05 2024-03-05 台湾积体电路制造股份有限公司 再生靶材的方法及形成材料薄膜的方法
US11723293B2 (en) 2021-03-26 2023-08-08 International Business Machines Corporation Reactivation of a deposited metal liner
CN115679272A (zh) * 2021-07-26 2023-02-03 北京北方华创微电子装备有限公司 一种物理气相沉积制备金属薄膜的方法
DE102022000936A1 (de) * 2022-03-17 2023-09-21 Singulus Technologies Aktiengesellschaft Beschichtungsmodul mit verbesserter Kathodenanordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693203A (en) * 1992-09-29 1997-12-02 Japan Energy Corporation Sputtering target assembly having solid-phase bonded interface
TW200926300A (en) * 2007-08-20 2009-06-16 Applied Materials Inc Krypton sputtering of thin tungsten layer for integrated circuits
TW201005113A (en) * 2008-06-02 2010-02-01 Nippon Mining Co Tungsten sintered material sputtering target

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529257A (ja) * 1991-07-24 1993-02-05 Tokyo Electron Ltd スパツタリング方法
JPH0776771A (ja) * 1993-09-08 1995-03-20 Japan Energy Corp タングステンスパッタリングターゲット
US5879524A (en) * 1996-02-29 1999-03-09 Sony Corporation Composite backing plate for a sputtering target
US10047430B2 (en) * 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US6274484B1 (en) 2000-03-17 2001-08-14 Taiwan Semiconductor Manufacturing Company Fabrication process for low resistivity tungsten layer with good adhesion to insulator layers
TWI229138B (en) 2001-06-12 2005-03-11 Unaxis Balzers Ag Magnetron-sputtering source
JP4659278B2 (ja) 2001-06-18 2011-03-30 株式会社アライドマテリアル タングステン焼結体およびその製造方法並びにタングステン板材およびその製造方法
US6896773B2 (en) * 2002-11-14 2005-05-24 Zond, Inc. High deposition rate sputtering
US7186319B2 (en) * 2005-01-05 2007-03-06 Applied Materials, Inc. Multi-track magnetron exhibiting more uniform deposition and reduced rotational asymmetry
TWI517390B (zh) 2010-06-10 2016-01-11 應用材料股份有限公司 具增強的遊離及rf功率耦合的低電阻率鎢pvd
US8846451B2 (en) * 2010-07-30 2014-09-30 Applied Materials, Inc. Methods for depositing metal in high aspect ratio features
US8894827B2 (en) 2011-01-18 2014-11-25 Applied Materials, Inc. Electrochromic tungsten oxide film deposition
US9399812B2 (en) * 2011-10-11 2016-07-26 Applied Materials, Inc. Methods of preventing plasma induced damage during substrate processing
US9499901B2 (en) * 2012-01-27 2016-11-22 Applied Materials, Inc. High density TiN RF/DC PVD deposition with stress tuning
JP5944482B2 (ja) * 2012-03-02 2016-07-05 Jx金属株式会社 タングステン焼結体スパッタリングターゲット及び該ターゲットを用いて成膜したタングステン膜
JP6288620B2 (ja) * 2012-07-04 2018-03-07 Jx金属株式会社 450mmウエハ用スパッタリングターゲット−バッキングプレート接合体及びスパッタリングターゲット−バッキングプレート接合体の製造方法
CN105102670B (zh) * 2013-03-22 2017-06-23 吉坤日矿日石金属株式会社 钨烧结体溅射靶及其制造方法
KR20150012584A (ko) 2013-07-25 2015-02-04 삼성디스플레이 주식회사 스퍼터링 타겟 제조 방법, 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693203A (en) * 1992-09-29 1997-12-02 Japan Energy Corporation Sputtering target assembly having solid-phase bonded interface
TW200926300A (en) * 2007-08-20 2009-06-16 Applied Materials Inc Krypton sputtering of thin tungsten layer for integrated circuits
TW201005113A (en) * 2008-06-02 2010-02-01 Nippon Mining Co Tungsten sintered material sputtering target

Also Published As

Publication number Publication date
CN108140560A (zh) 2018-06-08
WO2017070479A1 (en) 2017-04-27
TWI738410B (zh) 2021-09-01
US10734235B2 (en) 2020-08-04
US20180337052A1 (en) 2018-11-22
KR20180061386A (ko) 2018-06-07
US10043670B2 (en) 2018-08-07
JP2018537849A (ja) 2018-12-20
TW202039878A (zh) 2020-11-01
TW201728767A (zh) 2017-08-16
CN108140560B (zh) 2023-04-11
US20170117153A1 (en) 2017-04-27
JP6857652B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
TWI701347B (zh) 用於鎢膜之低阻抗物理氣相沉積的系統及方法
TWI572043B (zh) 具增強的游離及rf功率耦合的低電阻率鎢pvd
JP2018537849A5 (zh)
US9583349B2 (en) Lowering tungsten resistivity by replacing titanium nitride with titanium silicon nitride
US10388532B2 (en) Methods and devices using PVD ruthenium
US11913107B2 (en) Methods and apparatus for processing a substrate
TW202421813A (zh) 用於物理氣相沉積金屬襯墊應用中的介電保護之緩衝層