TWI686926B - 電阻性隨機存取記憶體裝置及其形成方法 - Google Patents

電阻性隨機存取記憶體裝置及其形成方法 Download PDF

Info

Publication number
TWI686926B
TWI686926B TW107121915A TW107121915A TWI686926B TW I686926 B TWI686926 B TW I686926B TW 107121915 A TW107121915 A TW 107121915A TW 107121915 A TW107121915 A TW 107121915A TW I686926 B TWI686926 B TW I686926B
Authority
TW
Taiwan
Prior art keywords
layer
top electrode
oxygen barrier
data storage
dielectric
Prior art date
Application number
TW107121915A
Other languages
English (en)
Other versions
TW201906136A (zh
Inventor
朱文定
翁烔城
王英郎
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201906136A publication Critical patent/TW201906136A/zh
Application granted granted Critical
Publication of TWI686926B publication Critical patent/TWI686926B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明的實施例是有關於一種具有具氧障壁結構的電極 的電阻性隨機存取記憶體裝置及一種相關聯的形成方法。在一些實施例中,電阻性隨機存取記憶體裝置具有設置於被層間介電層環繞的下部內連層之上的底部電極。具有可變電阻的介電資料儲存層位於底部電極上方,且多層式頂部電極設置於介電資料儲存層之上。多層式頂部電極具有由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構被用來減少多層式頂部電極內的氧移動。藉由在頂部電極內包含氧障壁結構,由於氧保持靠近介電資料儲存層,電阻性隨機存取記憶體裝置的可靠性得以提高。

Description

電阻性隨機存取記憶體裝置及其形成方法
本發明的實施例是有關於一種電阻性隨機存取記憶體裝置及其形成方法。
諸多現代電子裝置均含有被用來儲存資料的電子記憶體。電子記憶體可為揮發性記憶體或非揮發性記憶體。揮發性記憶體在其被供電時儲存資料,而非揮發性記憶體能夠在電源被除去時儲存資料。電阻性隨機存取記憶體(resistive random access memory,RRAM)因其簡單結構及其與互補金屬氧化物半導體(complementary metal oxide semiconductor,CMOS)邏輯製作製程的相容性而成為下一代非揮發性記憶體技術的一種有希望的候選者。
本申請的一些實施例提供一種電阻性隨機存取記憶體裝置,包括:底部電極,設置於被下部層間介電層環繞的下部內連層之上;介電資料儲存層,具有可變電阻,配置於所述底部電極之上;以及多層式頂部電極,設置於所述介電資料儲存層之上, 其中所述多層式頂部電極包括由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構被用來減少所述多層式頂部電極內的氧移動。
此外,本申請的其他實施例提供一種電阻性隨機存取記憶體裝置,包括:底部電極,設置於被下部層間介電層環繞的下部內連層之上;介電資料儲存層,具有可變電阻,配置於所述底部電極之上;以及下部頂部電極層,配置於所述介電資料儲存層之上且包含金屬;氧障壁結構,配置於所述下部頂部電極層之上且包括金屬氧化物層及金屬氮氧化物層中的一或多者;以及上部頂部電極層,配置於所述氧障壁結構之上且包含金屬氮化物。
另外,本申請的其他實施例提供一種形成電阻性隨機存取記憶體裝置的方法,包括:在下部層間介電層內所包含的下部內連層之上形成一或多個底部電極膜;在所述一或多個底部電極膜上方形成具有可變電阻的介電資料儲存膜;在所述介電資料儲存膜之上形成包含金屬的下部頂部電極膜;在所述下部頂部電極膜之上形成一或多個氧障壁膜,其中所述一或多個氧障壁膜包括金屬氧化物膜及金屬氮氧化物膜中的一或多者;以及在所述一或多個氧障壁膜之上形成包含金屬氮化物的上部頂部電極膜。
100、200、400、500:積體晶片
101、201、401、520:電阻性隨機存取記憶體裝置
102:基底
104:層間介電結構
106、202:下部內連層
108:底部電極
110:介電資料儲存層
112:多層式頂部電極
114:下部頂部電極層/頂部電極層
116、404:氧障壁結構
118:上部頂部電極層
120、221:上部內連層
204:下部層間介電層
206:第一底部電極層
208:第二底部電極層
210、602:下部介電層
211:腔
212:介電資料儲存層/介電狀態儲存層
214、1104:遮蔽層
216:側壁間隔壁
218、1402:上部介電層
220、1404:上部層間介電層
222:上部金屬通孔
224:上部金屬導線
300、600、700、800、900、1000、1004、1100、1200、1300、1400、1500:剖視圖
302:導電細絲
304:氧離子
306:曲線圖
402:頂蓋層
404a:第一氧障壁層/氧障壁層
404b:第二氧障壁層/氧障壁層
404c:氧障壁層
502:半導體基底
503:電晶體
504:井區
505:通道區
506d:汲極區
506s:源極區
508:閘極結構
510:閘極介電層
512:閘電極
514:隔離區
516a:觸點
516b:金屬導線層
516c:金屬通孔層
518:第一層間介電結構
702:第一遮蔽層
704:蝕刻劑
706:開口
801:底部電極結構
802:第一底部電極膜
804:第二底部電極膜
902:介電資料儲存膜
1002:下部頂部電極膜
1006:氧障壁膜
1008:上部頂部電極膜
1102:第一蝕刻劑
1302:第二蝕刻劑
1600:方法
1602、1604、1606、1608、1610、1612、1614、1616、1618、1620、1622、1624、1626:動作
SL:源極線
t 1 :第一厚度
t 2 :第二厚度
WL:字元線
結合附圖閱讀以下詳細說明,會最佳地理解本發明的實施例的各態樣。應注意,根據本行業中的標準慣例,各種特徵並非按比例繪製。事實上,為使論述清晰起見,可任意增大或減小 各種特徵的尺寸。
圖1示出電阻性隨機存取記憶體(RRAM)裝置的一些實施例的剖視圖,所述電阻性隨機存取記憶體(RRAM)裝置具有被用來提高可靠性的氧障壁結構。
圖2示出電阻性隨機存取記憶體裝置的一些實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括氧障壁結構的多層式頂部電極。
圖3A至圖3B示出電阻性隨機存取記憶體裝置的一些實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括氧障壁結構的多層式頂部電極。
圖4示出電阻性隨機存取記憶體裝置的一些附加實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括氧障壁結構的多層式頂部電極。
圖5示出積體晶片的一些實施例的剖視圖,所述積體晶片具有包括氧障壁結構的多層式頂部電極。
圖6至圖15示出顯示形成電阻性隨機存取記憶體裝置的方法的剖視圖的一些實施例,所述電阻性隨機存取記憶體裝置具有包括氧障壁結構的多層式頂部電極。
圖16示出形成電阻性隨機存取記憶體裝置的方法的一些替代實施例的流程圖,所述電阻性隨機存取記憶體裝置具有包括氧障壁結構的多層式頂部電極。
以下揭露內容提供用於實作所提供標的物的不同特徵的諸多不同的實施例或實例。以下闡述組件及構造的具體實例以簡化本發明的實施例。當然,該些僅為實例且不旨在進行限制。例如,以下說明中將第一特徵形成於第二特徵之上或第二特徵上可包括其中第一特徵與第二特徵被形成為直接接觸的實施例,且亦可包括其中第一特徵與第二特徵之間可形成有附加特徵、進而使得所述第一特徵與所述第二特徵可能不直接接觸的實施例。另外,本發明的實施例可能在各種實例中重複使用參考編號及/或字母。此種重複使用是出於簡潔及清晰的目的,而不是自身表示所論述的各種實施例及/或配置之間的關係。
此外,為易於說明,本文中可能使用例如「在...下方(beneath)」、「在...下面(below)」、「下部的(lower)」、「上方(above)」、「上部的(upper)」等空間相對性用語來闡述圖中所示出的一個元件或特徵與另一(些)元件或特徵的關係。所述空間相對性用語旨在除圖中所繪示的取向外亦囊括裝置在使用或操作中的不同取向。設備可具有其他取向(旋轉90度或其他取向),且本文中所用的空間相對性描述語可同樣相應地進行解釋。
電阻性隨機存取記憶體裝置具有藉由介電資料儲存層(dielectric data storage layer)與上覆頂部電極分隔開的底部電極,所述介電資料儲存層具有可變電阻。電阻性隨機存取記憶體裝置被用來基於介電資料儲存層的電阻狀態來儲存資料。舉例而言,介電資料儲存層可具有與第一資料狀態(例如,「0」)相關聯 的高電阻狀態或與第二資料狀態(例如,「1」)相關聯的低電阻狀態。
在電阻性隨機存取記憶體裝置的操作期間,對底部電極及頂部電極施加偏壓電壓,以可逆地改變介電資料儲存層的電阻狀態。偏壓電壓藉由控制各電極與介電資料儲存層之間的氧移動以形成或破壞延伸穿過介電資料儲存層的導電細絲(conductive filament)來改變介電資料儲存層的電阻狀態。舉例而言,第一組偏壓電壓可誘使導電路徑/細絲(例如,氧空位鏈(chains of oxygen vacancies))跨越介電資料儲存層而形成以達成低電阻狀態,而第二組偏壓電壓可破壞介電資料儲存層內的導電路徑/細絲以達成高電阻狀態。
已知當形成導電細絲以達成低電阻狀態時,偏壓電壓可使氧自介電資料儲存層移動至頂部電極內及/或上覆層內的深處。然而,若氧遠離介電資料儲存層移動,則可能難以將氧拉回至介電資料儲存層進而破壞導電細絲。當電阻性隨機存取記憶體裝置運作多個循環後,移動至頂部電極及/或上覆層內深處的氧量增加,進而最終導致電阻性隨機存取記憶體故障。
本發明的實施例是有關於一種具有包括氧障壁結構的電極的電阻性隨機存取記憶體(RRAM)裝置及一種相關聯的形成方法,所述氧障壁結構被用來藉由將氧維持於介電資料儲存層的鄰近處來提高電阻性隨機存取記憶體可靠性。在一些實施例中,所述電阻性隨機存取記憶體裝置包括設置於被下部層間介電 (inter-level dielectric,ILD)層環繞的下部內連層之上的底部電極。具有可變電阻的介電資料儲存層位於所述底部電極上方,且多層式頂部電極設置於所述介電資料儲存層之上。所述多層式頂部電極包括由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構被用來減少所述多層式頂部電極內的氧移動。藉由減少所述多層式頂部電極內的氧移動,氧可保持靠近所述介電資料儲存層,且所述電阻性隨機存取記憶體裝置的可靠性可得以提高。
圖1示出包括電阻性隨機存取記憶體(RRAM)裝置的積體晶片100的一些實施例的剖視圖,所述電阻性隨機存取記憶體(RRAM)裝置具有被用來提高可靠性的氧障壁結構。
積體晶片100包括被配置於基底102之上的層間介電(ILD)結構104環繞的電阻性隨機存取記憶體裝置101。電阻性隨機存取記憶體裝置101包括底部電極108、介電資料儲存層110、及多層式頂部電極112。底部電極108藉由一或多個下部內連層106(例如,金屬通孔及/或金屬導線)與基底102分隔開。介電資料儲存層110配置於底部電極108之上,且多層式頂部電極112設置於介電資料儲存層110與上部內連層120(例如,金屬通孔及/或金屬導線)之間。
介電資料儲存層110被用來藉由在和第一資料狀態(例如,「0」)相關聯的高電阻狀態與和第二資料狀態(例如,「1」)相關聯的低電阻狀態之間經歷可逆改變而儲存資料狀態。舉例而言,為在介電資料儲存層110內達成低電阻狀態,可對底部電極 108及多層式頂部電極112施加第一組偏壓條件。所述第一組偏壓條件將氧自介電資料儲存層110驅動至多層式頂部電極112,藉此跨越介電資料儲存層110形成氧空位導電細絲。作為另一選擇,為在介電資料儲存層110內達成高電阻狀態,可對底部電極108及多層式頂部電極112施加第二組偏壓條件。所述第二組偏壓條件藉由將氧自多層式頂部電極112驅動至介電資料儲存層110而破壞導電細絲。
多層式頂部電極112包括藉由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構包括一或多個氧障壁層。所述氧障壁結構被用來藉由以下來提高電阻性隨機存取記憶體裝置101的可靠性:減少氧(例如,氧離子)的移動且藉此將大濃度的氧(例如,氧離子)維持於介電資料儲存層110的鄰近處。藉由將大濃度的氧維持於介電資料儲存層110的鄰近處,氧可輕易被拉回至介電資料儲存層110以達成高電阻狀態。
舉例而言,在一些實施例中,多層式頂部電極112可包括下部頂部電極層114、氧障壁結構116、及上部頂部電極層118。下部頂部電極層114藉由氧障壁結構116與上部頂部電極層118分隔開,氧障壁結構116被用來減少自下部頂部電極層114至上部頂部電極層118的氧移動。藉由使用氧障壁結構116來減少自下部頂部電極層114至上部頂部電極層118的氧移動,自介電資料儲存層110被驅動出(例如,當將低電阻狀態寫入至電阻性隨機存取記憶體裝置101時)的氧保持靠近介電資料儲存層110。此 使得氧能夠較輕易地被送回至介電資料儲存層110(例如,當將高電阻狀態寫入至電阻性隨機存取記憶體裝置101時),藉此提高在各資料狀態之間切換的可靠性。
圖2示出包括電阻性隨機存取記憶體裝置的積體晶片200的一些實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括被用來提高可靠性的氧障壁結構的頂部電極。
積體晶片200包括配置於下部內連層202之上的電阻性隨機存取記憶體裝置201。下部內連層202被下部層間介電(ILD)層204環繞。在一些實施例中,下部內連層202可包括設置於電阻性隨機存取記憶體裝置201與下伏基底102之間的多個內連層(例如,金屬導線、通孔等)中的一者。舉例而言,下部內連層202可包含導電金屬,例如銅、鋁、及/或鎢。下部介電層210位於下部內連層202的相對兩側之上。下部介電層210界定穿過下部介電層210延伸至下部內連層202的腔211。
電阻性隨機存取記憶體裝置201包括底部電極108、具有可變電阻的介電資料儲存層212、及多層式頂部電極112。底部電極108配置於腔211內及下部介電層210之上。在一些實施例中,底部電極108可包括第一底部電極層206及第二底部電極層208。第一底部電極層206包括具有突出部的非平面下部表面,所述突出部延伸穿過腔211以接觸下部內連層202。在一些實施例中,第一底部電極層206可包括擴散障壁層。第二底部電極層208配置於第一底部電極層206之上。在一些實施例中,第一底部電 極層206可包含氮化鉭(tantalum nitride,TaN),而第二底部電極層208可包含氮化鈦(titanium nitride,TiN)。
介電資料儲存層212位於底部電極108之上。在一些實施例中,介電資料儲存層212可直接接觸底部電極108。介電資料儲存層212包含具有可變電阻的高介電常數(high-k)介電材料。在各種實施例中,介電資料儲存層212可包括由以下形成的單一膜或複合膜:氧化鉿(hafnium oxide,HfOx)、氧化鎳(nickel oxide,NiOX)、氧化鉭(tantalum oxide,TayOX)、氧化鈦(titanium oxide,TiOX)、氧化鎢(tungsten oxide,WOX)、氧化鋯(zirconium oxide,ZrOX)、及/或其他類似材料。
多層式頂部電極112定位於介電資料儲存層212之上。多層式頂部電極112包括下部頂部電極層114、配置於下部頂部電極層114之上的氧障壁結構116、及配置於氧障壁結構116之上的上部頂部電極層118。氧障壁結構116被用來在電阻性隨機存取記憶體裝置201的操作期間減少穿過多層式頂部電極112的氧(例如,氧離子)移動。舉例而言,氧障壁結構116可使下部頂部電極層114具有比上部頂部電極層118大的氧濃度。在一些實施例中,氧障壁結構116可使得在多層式頂部電極112內形成自下部頂部電極層114的底部至頂部電極層114減少(例如,單調減少)的漸變氧濃度分佈(gradient oxygen concentration profile)。在一些實施例中,氧障壁結構116在下部表面與上部表面之間連續延伸,所述下部表面接觸下部頂部電極層114的上部表面,所述上 部表面接觸上部頂部電極層118的底部表面。
在一些實施例中,下部頂部電極層114可包含金屬,例如鈦(Ti)或鉭(Ta)。氧障壁結構116包括一或多個金屬氧化物及/或金屬氮氧化物層。在一些實施例中,金屬氧化物及/或金屬氮氧化物層可包含以下中的一或多者:氧化鈦(TiO)、氧化鉭(TaO)、氧化鋯(ZrO)、氧化鉿(HfO)、氮氧化鈦(titanium oxynitride,TiON)、氮氧化鉭(tantalum oxynitride,TaON)、及氧化銦錫(indium tin oxide,ITO)。上部頂部電極層118包含金屬氮化物,例如氮化鈦(TiN)或氮化鉭(TaN)。
在一些實施例中,下部頂部電極層114與氧障壁結構116可包含相同的金屬。舉例而言,在一些實施例中,下部頂部電極層114可包含鈦,且氧障壁結構116可包含氧化鈦或氮氧化鈦。在其他實施例中,下部頂部電極層114與氧障壁結構116可包含不同的金屬。舉例而言,在一些實施例中,下部頂部電極層114可包含鈦,且氧障壁結構116可包含氧化鉿。在各種實施例中,上部頂部電極層118可包含與下部頂部電極層114相同的金屬或與下部頂部電極層114不同的金屬。
遮蔽層214可設置於多層式頂部電極112之上。在一些實施例中,遮蔽層214可包括氮氧化矽(silicon oxy-nitride,SiON)硬遮罩層、二氧化矽(silicon dioxide,SiO2)硬遮罩層、或PE-SiN硬遮罩。在一些實施例中,側壁間隔壁216設置於多層式頂部電極112的及遮蔽層214的相對兩側上。上部層間介電層220設置 於遮蔽層214之上,其中遮蔽層214被上部內連層221圍繞並設置於多層式頂部電極112上。上部內連層221包括上部金屬通孔222,上部金屬通孔222自多層式頂部電極112穿過遮蔽層214延伸至上部金屬導線224。
在一些實施例中,上部介電層218設置於電阻性隨機存取記憶體裝置201之上。上部介電層218自與遮蔽層214的頂部表面鄰接的第一位置連續延伸至與下部介電層210的上部表面鄰接的第二位置。上部介電層218將電阻性隨機存取記憶體裝置201與上部層間介電層220分隔開。在一些實施例中,例如,上部介電層218可包含氮化矽或氧化矽。
圖3A至圖3B示出包括電阻性隨機存取記憶體裝置的積體晶片的一些實施例,所述電阻性隨機存取記憶體裝置具有包括被用來減少氧移動的氧障壁結構的頂部電極。
如圖3A的剖視圖300中所示,當電阻性隨機存取記憶體裝置201處於低電阻狀態時,導電細絲302延伸穿過介電狀態儲存層212,且下部頂部電極層中存在氧離子304(例如,O2-離子)。在下部頂部電極層114內,氧離子304可自由移動(例如,以自由電子的形式移動)。然而,由於氧障壁結構116是絕緣體,因此氧離子304不能夠在氧障壁結構116內自由移動。因此,在導電細絲302的形成期間,氧障壁結構116減少氧離子304遠離介電資料儲存層212的移動,以在下部頂部電極層114內維持比氧障壁結構116更高濃度的氧離子304。
圖3B示出顯示氧離子濃度(y軸線)隨著在多層式頂部電極之上的位置(x軸線)而變化的曲線圖306。如曲線圖306中所示,下部頂部電極層內的氧離子濃度大於上部頂部電極層118內的氧離子濃度。此乃因氧障壁結構116阻止氧離子(圖3A的304)移動至上部頂部電極層118中。
圖4示出包括電阻性隨機存取記憶體裝置的積體晶片400的一些附加實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括被用來減少氧移動的氧障壁結構的頂部電極。
積體晶片400包括具有多層式頂部電極112的電阻性隨機存取記憶體裝置401。多層式頂部電極112包括下部頂部電極層114、氧障壁結構404、及上部頂部電極層118。氧障壁結構404包括配置於下部頂部電極層114之上的多個氧障壁層404a至404c。所述多個氧障壁層404a至404c包含金屬氧化物及/或金屬氮氧化物。在一些實施例中,所述多個氧障壁層404a至404c可包含二或更多種不同的金屬氧化物及/或金屬氮氧化物。舉例而言,第一氧障壁層404a可包含氮化鈦,第二氧障壁層404b可包含氮氧化鉿等。在一些實施例中,第一氧障壁層404a可包括直接接觸下部頂部電極層114的原生氧化物層(例如,直接配置至包含鈦的下部頂部電極層114上的氧化鈦層)。
在一些實施例中,頂蓋層402可設置於介電資料儲存層212與氧障壁結構404之間。頂蓋層402被用來儲存氧,此可有利於介電資料儲存層212內的電阻改變。在一些實施例中,頂蓋層 402可包含金屬或氧濃度相對低的金屬氧化物。舉例而言,在一些實施例中,頂蓋層402可包含金屬,例如鈦(Ti)、鉿(Hf)、鉑(Pt)、及/或鋁(Al)。在其他實施例中,頂蓋層402可包含金屬氧化物,例如氧化鈦(TiO)、氧化鉿(HfO)、氧化鋯(ZrO)、氧化鍺(germanium oxide,GeO)、氧化銫(cesium oxide,CeO)。
圖5示出包括電阻性隨機存取記憶體裝置的積體晶片500的一些實施例的剖視圖,所述電阻性隨機存取記憶體裝置具有包括被用來阻止氧移動的氧障壁結構的頂部電極。
積體晶片500包括設置於半導體基底502內的井區504。電晶體503配置於井區504內。電晶體503包括源極區506s,源極區506s藉由通道區505與汲極區506d分隔開。閘極結構508配置於通道區505之上。閘極結構508包括藉由閘極介電層510與通道區505分隔開的閘電極512。在一些實施例中,電晶體503可配置於半導體基底502內的多個隔離區514(例如,淺溝渠隔離區)之間。
第一層間介電結構518配置於半導體基底502之上。在一些實施例中,第一層間介電結構518可包括由以下形成的一或多個層:氧化物、低介電常數電介質、或超低介電常數電介質。包括觸點516a、金屬導線層516b、及金屬通孔層516c在內的多個內連層被第一層間介電結構518環繞。在一些實施例中,所述多個觸點516a、金屬導線層516b、及金屬通孔層516c可包含銅、鎢、及/或鋁。金屬導線層516b包括源極線SL,源極線SL包括 電性耦合至源極區506s的第一內連導線。在一些實施例中,源極線SL可配置於第二金屬導線層中,所述第二金屬導線層經由觸點、第一金屬導線層、及第一金屬通孔層連接至源極區506s。金屬導線層516b更包括字元線WL,字元線WL包括電性耦合至閘電極512的第二內連導線。在一些實施例中,字元線WL可配置於第一金屬導線層中並藉由觸點連接至閘電極512。
電阻性隨機存取記憶體裝置520配置於第一層間介電結構518之上。電阻性隨機存取記憶體裝置520包括底部電極108,底部電極108藉由下部介電層210與第一層間介電結構518垂直分隔開。底部電極108藉由所述多個內連層直接連接至汲極區506d。電阻性隨機存取記憶體裝置520更包括位於底部電極108之上的介電資料儲存層212及設置於介電資料儲存層212之上的多層式頂部電極112。多層式頂部電極112包括下部頂部電極層114、氧障壁結構116、及上部頂部電極層118。在一些實施例中,遮蔽層214可配置至多層式頂部電極112上。上部介電層218自與遮蔽層214的頂部鄰接的位置連續延伸至與下部介電層210的上部表面鄰接的位置。上部介電層218將電阻性隨機存取記憶體裝置520與環繞上部金屬通孔222及上部金屬導線224的第二層間介電層220分隔開。
圖6至圖15示出顯示形成電阻性隨機存取記憶體裝置的方法的剖視圖的一些實施例,所述電阻性隨機存取記憶體裝置具有被用來減少氧移動的氧障壁結構。雖然圖6至圖15是關於方 法進行闡述,然而,應瞭解,在圖6至圖15中所揭露的結構並非僅限於此種方法,而是可獨立地作為與所述方法無關的結構。
如圖6的剖視圖600中所示,在基底102之上的下部層間介電(ILD)層204內形成下部內連層202。基底102可為任何類型的半導體本體(例如,矽、SiGe、絕緣體上矽(silicon on insulator,SOI)等),例如半導體晶圓及/或晶圓上的一或多個晶粒以及任何其他類型的半導體及/或與其相關聯的磊晶層。在一些實施例中,可藉由選擇性地蝕刻下部層間介電層204(例如,氧化物、低介電常數介電層、或超低介電常數介電層)以在下部層間介電層204內界定開口來形成下部內連層202。接著,沈積金屬(例如,銅、鋁等)以填充所述開口,並執行平坦化製程(例如,化學機械平坦化製程)以移除多餘的金屬。
將下部介電層602形成至下部內連層202及下部層間介電層204上。在一些實施例中,下部介電層602可包含氮化矽(silicon-nitride,SiN)、碳化矽(silicon-carbide,SiC)、或類似的複合介電膜。在一些實施例中,可藉由沈積技術(例如,物理氣相沈積(physical vapor deposition,PVD)、化學氣相沈積(chemical vapor deposition,CVD)、電漿增強化學氣相沈積(PE-CVD)、原子層沈積(atomic layer deposition,ALD)、濺鍍等)將下部介電層602形成介於約200埃與約300埃的範圍之間的厚度。
如圖7的剖視圖700中所示,在下部介電層(圖6的602) 之上形成第一遮蔽層702。接著,將下部介電層(圖6的602)在未被第一遮蔽層702覆蓋的區域中選擇性地暴露於蝕刻劑704(例如,乾蝕刻劑)。蝕刻劑704在下部介電層210中界定穿過下部介電層210延伸至下部內連層202的開口706。
如圖8的剖視圖800中所示,在下部內連層202及下部介電層210之上形成底部電極結構801。在一些實施例中,藉由形成第一底部電極膜802且隨後在第一底部電極膜802之上形成第二底部電極膜804來形成底部電極結構801。
第一底部電極膜802自開口706內延伸至上覆於下部介電層210上的位置。在一些實施例中,例如,第一底部電極膜802可包含氮化鉭(TaN)或氮化鈦(TiN)。隨後,可執行平坦化製程(例如,化學機械平坦化製程)。在一些實施例中,平坦化製程使得第一底部電極膜802在下部介電層210之上具有介於約100埃與約300埃的範圍之間的厚度。第二底部電極膜804形成於第一底部電極膜802之上。在一些實施例中,第二底部電極膜804可包含鉭(Ta)或鈦(Ti)。在一些實施例中,第二底部電極膜804的厚度可介於約100埃與約200埃的範圍之間。
如圖9的剖視圖900中所示,在底部電極結構801之上形成介電資料儲存膜902。在一些實施例中,介電資料儲存膜902可包含具有可變電阻的高介電常數介電材料。舉例而言,在一些實施例中,介電資料儲存膜902可包含氧化鉿(HfOX)、氧化鋯(ZrOX)、氧化鋁(AlOX)、氧化鎳(NiOX)、氧化鉭(TaOX)、或 氧化鈦(TiOX)。在一些實施例中,介電資料儲存膜902的厚度可介於約25埃與約75埃的範圍之間。
如圖10A的剖視圖1000中所示,在介電資料儲存膜902之上形成下部頂部電極膜1002。在一些實施例中,下部頂部電極膜1002可包含金屬,例如鈦(Ti)或鉭(Ta)。在一些實施例中,可藉由沈積技術(例如,物理氣相沈積、化學氣相沈積、電漿增強化學氣相沈積、濺鍍、原子層沈積等)來形成下部頂部電極膜1002。下部頂部電極膜1002具有第一厚度t 1 。在一些實施例中,第一厚度t 1 可介於約50埃與約150埃之間的範圍中。
如圖10B的剖視圖1004中所示,將一或多個氧障壁膜1006形成至下部頂部電極膜1002上。在各種實施例中,所述一或多個氧障壁膜1006可包括金屬氧化物及/或金屬氮氧化物膜。舉例而言,在各種實施例中,所述一或多個氧障壁膜1006可包含以下中的一或多者:氧化鈦(TiO)、氧化鉭(TaO)、氧化鋯(ZrO)、氧化鉿(HfO)、氮氧化鈦(TiON)、氮氧化鉭(TaON)、及氧化銦錫(ITO)。
在一些實施例中,所述一或多個氧障壁膜1006可包含與下部頂部電極膜1002相同的金屬。舉例而言,在一些實施例中,下部頂部電極膜1002可包含鈦,且所述一或多個氧障壁膜1006可包含氧化鈦及/或氮氧化鈦。在其他實施例中,所述一或多個氧障壁膜1006可包含與下部頂部電極膜1002不同的金屬。在一些實施例中,所述一或多個氧障壁膜1006可具有介於約5埃與約150 埃之間的範圍中的累加厚度。在其他實施例中,所述一或多個氧障壁膜1006可具有介於約50埃與約150埃之間的範圍中的累加厚度。具有大於5埃的累加厚度使得所述一或多個氧障壁膜1006能夠減少遠離介電資料儲存膜902的氧移動。此外,具有小於150埃的累加厚度使得能夠在記憶體裝置的操作期間將氧維持於介電資料儲存膜902的鄰近處。
在形成所述一或多個氧障壁膜1006之後,將上部頂部電極膜1008形成至所述一或多個氧障壁膜1006上。在各種實施例中,上部頂部電極膜1008可包含金屬氮化物(例如,氮化鈦(TiN)或氮化鉭(TaN))或金屬(例如,鈦(Ti)或鉭(Ta))。在一些實施例中,可藉由沈積技術(例如,物理氣相沈積、化學氣相沈積、電漿增強化學氣相沈積、濺鍍、原子層沈積等)沈積上部頂部電極膜1008使上部頂部電極膜1008的厚度大於較下部頂部電極膜1002的厚度。
在一些實施例中,可藉由沈積技術(例如,物理氣相沈積、化學氣相沈積、電漿增強化學氣相沈積、濺鍍、原子層沈積等)來形成所述一或多個氧障壁膜1006。在此類實施例中,所述一或多個氧障壁膜1006的形成並不實質上減小下部頂部電極膜1002的厚度(即,第二厚度t 2 是與第一厚度t 1 相差不超過5奈米(nm)或更小的厚度)。在一些實施例中,下部頂部電極膜1002及所述一或多個氧障壁膜1006可被原位(in-situ)(例如,在不打破處理腔室上真空的情況下)沈積。在此類實施例中,第一厚度 t 1 等於第二厚度t 2 。在其他實施例中,下部頂部電極膜1002及所述一或多個氧障壁膜1006可被非原位(ex-situ)形成。在一些此類實施例中,所述一或多個氧障壁膜1006中的最底部膜可包含形成至下部頂部電極膜1002上的原生氧化物及上覆於所述原生氧化物上的附加氧障壁膜。在各種實施例中,所述附加氧障壁膜可包含與原生氧化物相同或不同的金屬。
在其他實施例中,可藉由電漿氧化製程及/或電漿氮化製程來形成所述一或多個氧障壁膜1006。電漿氧化製程可用於藉由將下部頂部電極膜1002暴露於氧電漿來形成包含金屬氧化物的氧障壁膜,所述氧電漿是藉由自氧分子(例如,O2氣體)激發出電漿而形成。電漿氮化製程可用於藉由將下部頂部電極膜1002上的金屬氧化物膜暴露於氮電漿來形成包含金屬氮氧化物的氧障壁膜,所述氮電漿是藉由自氮分子(例如,N2氣體)激發出電漿而形成。在一些實施例中,可使用包括射頻(radio frequency,RF)電源供應器及射頻天線的電漿產生組件來形成氧電漿及/或氮電漿。射頻電源供應器被用來產生以所設定頻率(例如,13.56MHz)運作的射頻訊號,所述射頻訊號將能量自射頻電源供應器經由射頻天線傳遞至處理腔室內的氣體。當充足電力被傳送至氣體時,會激發出電漿。
藉由電漿氧化製程及/或電漿氮化製程來形成所述一或多個氧障壁膜1006會消耗下部頂部電極膜1002的一部分,藉此將下部頂部電極膜1002的厚度自第一厚度t 1 減小至小於第一厚度 t 1 的第二厚度t 2 。所得的一或多個氧障壁膜1006在沿著所述一或多個氧障壁膜1006中的最下部一者與下部頂部電極膜1002之間的介面中包含與下部頂部電極膜1002相同的金屬(例如,Ti或Ta)。
如圖11的剖視圖1100中所示,執行第一圖案化製程以界定多層式頂部電極112。在一些實施例中,第一圖案化製程包括在上部頂部電極膜(圖10A的1008)之上形成遮蔽層1104。在各種實施例中,遮蔽層1104可包含氧化矽(SiO2)、氮氧化矽(SiON)、氮化矽(SiN)、碳化矽(SiC)、或類似材料。接著,將基底暴露於第一蝕刻劑1102,第一蝕刻劑1102被用來藉由選擇性地移除上部頂部電極膜(圖10A的1008)的、所述一或多個氧障壁膜(圖10A的1006)的及下部頂部電極膜(圖10A的1002)的未遮蔽部分來界定多層式頂部電極112。在一些實施例中,第一蝕刻劑1102可包括乾蝕刻劑。
在一些實施例中,第一圖案化製程可減小遮蔽層1104的厚度。舉例而言,在一些實施例中,第一圖案化製程可將遮蔽層的厚度減小介於約70%與約85%之間的範圍(例如,自約550埃減小至約100埃)。
如圖12的剖視圖1200中所示,可在多層式頂部電極112的相對兩側上形成側壁間隔壁216。在一些實施例中,可藉由將間隔壁層沈積至介電資料儲存膜902、多層式頂部電極112及遮蔽層1104上來形成側壁間隔壁216。在一些實施例中,可藉由沈積技 術(例如,物理氣相沈積、化學氣相沈積、電漿增強化學氣相沈積、原子層沈積、濺鍍等)將間隔壁層沈積至的厚度介於約400埃與約600埃之間的範圍。隨後,蝕刻間隔壁層以自水平表面移除間隔壁層,進而沿著多層式頂部電極112的相對兩側留下間隔壁層來作為側壁間隔壁216。在各種實施例中,間隔壁層可包含氮化矽、二氧化矽(SiO2)、氮氧化矽(例如,SiON)、或類似材料。
如圖13的剖視圖1300中所示,執行第二圖案化製程以界定介電資料儲存層212及底部電極108。在一些實施例中,第二圖案化製程根據包括遮蔽層1104及側壁間隔壁216的遮罩將介電資料儲存膜(圖12的902)、第一底部電極膜(圖12的802)、及第二底部電極膜(圖12的804)選擇性地暴露於第二蝕刻劑1302。第二蝕刻劑1302被用來藉由移除介電資料儲存膜(圖12的902)的、第一底部電極膜(圖12的802)的及第二底部電極膜(圖12的804)的未遮蔽部分來界定底部電極108及介電資料儲存層212。在一些實施例中,第二蝕刻劑1302可包括乾蝕刻劑。
在一些實施例中,第二圖案化製程可減小下部介電層210的未遮蔽區的厚度。舉例而言,在一些實施例中,第二圖案化製程可將下部介電層210的未遮蔽區的厚度減小介於約20%與約35%之間的範圍(例如,自約270埃減小至約220埃)。減小下部介電層210的未遮蔽區的厚度使下部介電層210在底部電極108下面較在底部電極108之外具有更大的厚度。
如圖14的剖視圖1400中所示,在基底之上形成上部介 電層1402。隨後,在上部介電層1402之上形成上部層間介電(ILD)層1404。上部介電層1402具有與底部電極108、介電資料儲存層212、多層式頂部電極112及遮蔽層1104鄰接的第一側、以及與上部層間介電層1404鄰接的第二側。
如圖15的剖視圖1500中所示,在與多層式頂部電極112鄰接的位置處形成上部內連層221。在一些實施例中,上部內連層221包括上部金屬通孔222及上部金屬導線224。在一些實施例中,可藉由蝕刻上部層間介電層220以形成穿過上部介電層218及遮蔽層214延伸至多層式頂部電極112的開口來形成上部內連層221。接著,用金屬(例如,銅及/或鋁)填充所述開口以形成上部金屬通孔222,上部金屬通孔222自多層式頂部電極112的頂部表面延伸至上部金屬導線224。
圖16示出形成電阻性隨機存取記憶體裝置的方法1600的一些實施例的流程圖,所述電阻性隨機存取記憶體裝置具有被用來減少氧移動的氧障壁結構。
儘管方法1600被示出及闡述為一系列動作或事件,然而應瞭解,此類動作或事件的所示出次序不應被解釋為具有限制意義。舉例而言,除本文中所示出及/或所闡述者之外,一些動作可以不同次序發生及/或與其他動作或事件同時發生。另外,實作本文說明的一或多個態樣或實施例可能並非需要所有所示出的動作。此外,本文所示動作中的一或多者可在一或多個單獨的動作及/或階段中實施。
在1602處,在被下部層間介電(ILD)層環繞的下部內連層之上形成下部介電層,所述下部層間介電(ILD)層設置於半導體基底之上。圖6示出與動作1602對應的剖視圖600的一些實施例。
在1604處,選擇性地蝕刻下部介電層以界定延伸穿過下部介電層的開口,進而暴露出下部內連層。圖7示出與動作1604對應的剖視圖700的一些實施例。
在1606處,在下部內連層及下部介電層之上形成底部電極結構。圖8示出與動作1606對應的剖視圖800的一些實施例。
在1608處,在底部電極結構之上形成介電資料儲存膜。圖9示出與動作1608對應的剖視圖900的一些實施例。
在1610處,在介電資料儲存膜之上形成具有一或多個氧障壁膜的多層式頂部電極結構。所述一或多個氧障壁膜被用來減少氧(例如,氧離子)的移動。圖10A至圖10B示出與動作1610對應的剖視圖的一些實施例。
在一些實施例中,可根據動作1612至1616來形成多層式頂部電極結構。在1612處,在介電資料儲存膜之上形成下部頂部電極膜。在1614處,在下部頂部電極膜之上形成一或多個氧障壁膜。在1616處,在所述一或多個氧障壁膜之上形成上部頂部電極膜。
在1618處,使用第一圖案化製程選擇性地將多層式頂部電極結構圖案化,以界定多層式頂部電極。圖11示出與動作1618 對應的剖視圖1100的一些實施例。
在1620處,在介電資料儲存膜之上以及多層式頂部電極的相對兩側上形成側壁間隔壁。圖12示出與動作1620對應的剖視圖1200的一些實施例。
在1622處,使用第二圖案化製程選擇性地將介電資料儲存膜及底部電極結構圖案化,以界定介電資料儲存層及底部電極。圖13示出與動作1622對應的剖視圖1300的一些實施例。
在1624處,在下部層間介電層之上形成上部層間介電(ILD)層。圖14示出與動作1626對應的剖視圖1400的一些實施例。
在1626處,將上部內連層形成至多層式頂部電極上。圖15示出與動作1626對應的剖視圖1500的一些實施例。
因此,本發明的實施例是有關於一種具有包括氧障壁結構的電極的電阻性隨機存取記憶體(RRAM)裝置及一種相關聯的形成方法,所述氧障壁結構被用來藉由減少氧移動並藉此將氧維持於介電資料儲存層的鄰近處來提高電阻性隨機存取記憶體可靠性。
在一些實施例中,本發明的實施例是有關於一種電阻性隨機存取記憶體(RRAM)裝置。所述電阻性隨機存取記憶體裝置包括底部電極,所述底部電極設置於被下部層間介電(ILD)層環繞的下部內連層之上。具有可變電阻的介電資料儲存層配置於所述底部電極之上,且多層式頂部電極設置於所述介電資料儲存層 之上。所述多層式頂部電極包括由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構被用來減少所述多層式頂部電極內的氧移動。
在本發明的實施例中,其中所述氧障壁結構包括金屬氧化物層及金屬氮氧化物層中的一或多者。
在本發明的實施例中,其中所述多層式頂部電極包括:下部頂部電極層,配置於所述介電資料儲存層之上,其中所述下部頂部電極層將所述介電資料儲存層與所述氧障壁結構分隔開;以及上部頂部電極層,配置於所述下部頂部電極層之上,其中所述氧障壁結構具有接觸所述下部頂部電極層的底部表面及接觸所述上部頂部電極層的上部表面。
在本發明的實施例中,其中所述下部頂部電極層包含金屬,且所述上部頂部電極層包含金屬氮化物。
在本發明的實施例中,其中所述金屬與所述金屬氮化物包含相同的金屬。
在本發明的實施例中,其中所述金屬與所述金屬氮化物包含不同的金屬。
在本發明的實施例中,其中所述下部頂部電極層具有較所述上部頂部電極層小的厚度。
在本發明的實施例中,其中所述下部頂部電極層與所述氧障壁結構包含相同的金屬。
在本發明的實施例中,其中所述下部頂部電極層與所述 氧障壁結構包含不同的金屬。
在本發明的實施例中,其中所述下部頂部電極層包含鈦,所述氧障壁結構包含氧化鈦或氮氧化鈦,且所述上部頂部電極層包含氮化鈦。
在本發明的實施例中,其中所述氧障壁結構包括二或更多個不同的金屬氧化物層或金屬氮氧化物層。
在其他實施例中,本發明的實施例是有關於一種電阻性隨機存取記憶體(RRAM)裝置。所述電阻性隨機存取記憶體裝置包括底部電極,所述底部電極設置於被下部層間介電(ILD)層環繞的下部內連層之上。具有可變電阻的介電資料儲存層配置於所述底部電極之上。下部頂部電極層配置於所述介電資料儲存層之上且包含金屬。氧障壁結構配置於所述下部頂部電極層之上且包括金屬氧化物層及金屬氮氧化物層中的一或多者。上部頂部電極層配置於所述氧障壁結構之上且包含金屬氮化物。
在本發明的實施例中,其中所述氧障壁結構具有接觸所述下部頂部電極層的底部表面及接觸所述上部頂部電極層的上部表面。
在本發明的實施例中,其中所述氧障壁結構包括二或更多個不同的金屬氧化物層或金屬氮氧化物層。
在本發明的實施例中,其中所述金屬與所述金屬氮化物包含相同的金屬。
在本發明的實施例中,其中所述金屬與所述金屬氮化物 包含不同的金屬。
在本發明的實施例中,其中所述下部頂部電極層包含鉭,所述氧障壁結構包含氧化鉭或氮氧化鉭,且所述上部頂部電極層包含氮化鉭。
在又一些實施例中,本發明的實施例是有關於一種形成電阻性隨機存取記憶體(RRAM)裝置的方法。所述方法包括在下部層間介電(ILD)層內所包含的下部內連層之上形成一或多個底部電極膜。所述方法更包括在所述一或多個底部電極膜上方形成具有可變電阻的介電資料儲存膜。所述方法更包括在所述介電資料儲存膜之上形成包含金屬的下部頂部電極膜、在所述下部頂部電極膜之上形成一或多個氧障壁膜、以及在所述一或多個氧障壁膜之上形成包含金屬氮化物的上部頂部電極膜。所述一或多個氧障壁膜包括金屬氧化物膜及金屬氮氧化物膜中的一或多者。
在本發明的實施例中,其中所述一或多個氧障壁膜是藉由一或多個沈積製程而形成。
在本發明的實施例中,其中所述一或多個氧障壁膜是藉由電漿氧化製程或電漿氮化製程而形成。
以上內容概述了若干實施例的特徵以使熟習此項技術者可更好地理解本發明的實施例的各態樣。熟習此項技術者應瞭解,他們可易於使用本發明的實施例作為基礎來設計或修改其他製程及結構以施行本文所介紹實施例的相同目的及/或達成本文所介紹實施例的相同優點。舉例而言,雖然本發明的實施例將氧障 壁層闡述為位於多層式頂部電極內,然而應瞭解,氧障壁層並非僅限於頂部電極。而是,氧障壁層亦可或作為另一選擇可存在於多層式底部電極內。
熟習此項技術者亦應認識到,此種等效構造並不背離本發明的實施例的精神及範圍,且在不背離本發明的實施例的精神及範圍的條件下,他們可對本文作出各種改變、替代及變更。
100:積體晶片
101:電阻性隨機存取記憶體裝置
102:基底
104:層間介電結構
106:下部內連層
108:底部電極
110:介電資料儲存層
112:多層式頂部電極
114:下部頂部電極層/頂部電極層
116:氧障壁結構
118:上部頂部電極層
120:上部內連層

Claims (10)

  1. 一種電阻性隨機存取記憶體裝置,包括:底部電極,設置於被下部層間介電層環繞的下部內連層之上;介電資料儲存層,具有可變電阻,配置於所述底部電極之上;以及多層式頂部電極,設置於所述介電資料儲存層之上,其中所述多層式頂部電極包括由氧障壁結構分隔開的多個導電頂部電極層,所述氧障壁結構被用來減少所述多層式頂部電極內的氧移動。
  2. 一種電阻性隨機存取記憶體裝置,包括:底部電極,設置於被下部層間介電層環繞的下部內連層之上;介電資料儲存層,具有可變電阻,配置於所述底部電極之上;以及下部頂部電極層,配置於所述介電資料儲存層之上且包含金屬;氧障壁結構,配置於所述下部頂部電極層之上且包括金屬氧化物層及金屬氮氧化物層中的一或多者;以及上部頂部電極層,配置於所述氧障壁結構之上且包含金屬氮化物。
  3. 如申請專利範圍第1項所述的電阻性隨機存取記憶體裝置,其中所述多層式頂部電極包括:下部頂部電極層,配置於所述介電資料儲存層之上,其中所述下部頂部電極層將所述介電資料儲存層與所述氧障壁結構分隔 開;以及上部頂部電極層,配置於所述下部頂部電極層之上,其中所述氧障壁結構具有接觸所述下部頂部電極層的底部表面及接觸所述上部頂部電極層的上部表面。
  4. 如申請專利範圍第3項所述的電阻性隨機存取記憶體裝置,其中所述下部頂部電極層包含金屬,且所述上部頂部電極層包含金屬氮化物。
  5. 如申請專利範圍第2或第4項所述的電阻性隨機存取記憶體裝置,其中所述金屬與所述金屬氮化物包含相同的金屬。
  6. 如申請專利範圍第1或第2項所述的電阻性隨機存取記憶體裝置,其中所述氧障壁結構包括二或更多個不同的金屬氧化物層或金屬氮氧化物層。
  7. 如申請專利範圍第2項所述的電阻性隨機存取記憶體裝置,其中所述氧障壁結構具有接觸所述下部頂部電極層的底部表面及接觸所述上部頂部電極層的上部表面。
  8. 一種形成電阻性隨機存取記憶體裝置的方法,包括:在下部層間介電層內所包含的下部內連層之上形成一或多個底部電極膜;在所述一或多個底部電極膜上方形成具有可變電阻的介電資料儲存膜;在所述介電資料儲存膜之上形成包含金屬的下部頂部電極膜; 在所述下部頂部電極膜之上形成一或多個氧障壁膜,其中所述一或多個氧障壁膜包括金屬氧化物膜及金屬氮氧化物膜中的一或多者;以及在所述一或多個氧障壁膜之上形成包含金屬氮化物的上部頂部電極膜。
  9. 如申請專利範圍第8項所述的方法,其中所述一或多個氧障壁膜是藉由一或多個沈積製程而形成。
  10. 如申請專利範圍第8項所述的方法,其中所述一或多個氧障壁膜是藉由電漿氧化製程或電漿氮化製程而形成。
TW107121915A 2017-06-26 2018-06-26 電阻性隨機存取記憶體裝置及其形成方法 TWI686926B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762524720P 2017-06-26 2017-06-26
US62/524,720 2017-06-26
US15/939,832 2018-03-29
US15/939,832 US10516106B2 (en) 2017-06-26 2018-03-29 Electrode structure to improve RRAM performance

Publications (2)

Publication Number Publication Date
TW201906136A TW201906136A (zh) 2019-02-01
TWI686926B true TWI686926B (zh) 2020-03-01

Family

ID=64567739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121915A TWI686926B (zh) 2017-06-26 2018-06-26 電阻性隨機存取記憶體裝置及其形成方法

Country Status (5)

Country Link
US (3) US10516106B2 (zh)
KR (1) KR102136177B1 (zh)
CN (1) CN109119533B (zh)
DE (1) DE102018108798B4 (zh)
TW (1) TWI686926B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720580B2 (en) * 2018-10-22 2020-07-21 Globalfoundries Singapore Pte. Ltd. RRAM device and method of fabrication thereof
US11621395B2 (en) * 2019-04-26 2023-04-04 Intel Corporation Resistive random-access memory devices and methods of fabrication
US11038108B2 (en) * 2019-05-24 2021-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Step height mitigation in resistive random access memory structures
US10950784B2 (en) * 2019-06-07 2021-03-16 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM with a barrier layer
TWI696179B (zh) * 2019-07-09 2020-06-11 華邦電子股份有限公司 電阻式隨機存取記憶體及其重置方法
US20210013318A1 (en) * 2019-07-11 2021-01-14 Micron Technology, Inc. Electrode formation
US10944044B2 (en) * 2019-08-07 2021-03-09 International Business Machines Corporation MRAM structure with T-shaped bottom electrode to overcome galvanic effect
US11309491B2 (en) 2019-08-26 2022-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Data storage structure for improving memory cell reliability
US11527717B2 (en) * 2019-08-30 2022-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive memory cell having a low forming voltage
KR102638493B1 (ko) * 2019-09-03 2024-02-19 에스케이하이닉스 주식회사 비휘발성 메모리 소자 및 이의 제조 방법
TWI709166B (zh) * 2019-10-05 2020-11-01 華邦電子股份有限公司 電阻式隨機存取記憶體陣列及其製造方法
CN112786780B (zh) * 2019-11-08 2023-11-10 华邦电子股份有限公司 电阻式随机存取存储器阵列及其制造方法
US11121315B2 (en) * 2020-01-03 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure improving reliability of top electrode contact for resistance switching RAM having cells of varying height
US11527713B2 (en) * 2020-01-31 2022-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode via with low contact resistance
CN111312896A (zh) * 2020-02-29 2020-06-19 厦门半导体工业技术研发有限公司 一种半导体元件及其制备方法
US11723294B2 (en) * 2020-06-25 2023-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and method for fabricating the same
CN111900248B (zh) * 2020-07-06 2022-06-07 西安交通大学 一种基于电极堆栈的界面型多态阻变存储器及其制备方法
US11404638B2 (en) * 2020-07-28 2022-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-doped data storage structure configured to improve resistive memory cell performance
US20220223788A1 (en) * 2021-01-08 2022-07-14 Taiwan Semiconductor Manufacturing Company Limited Resistive memory cell using an interfacial transition metal compound layer and method of forming the same
CN115117236A (zh) * 2021-03-17 2022-09-27 华邦电子股份有限公司 电阻式随机存取存储器及其制造方法
US11825753B2 (en) * 2021-08-19 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell, integrated circuit, and manufacturing method of memory cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201539730A (zh) * 2014-03-04 2015-10-16 Taiwan Semiconductor Mfg Co Ltd 具有導電蝕刻停止層的電阻式隨機存取記憶體單元結構
TWI517468B (zh) * 2012-12-20 2016-01-11 台灣積體電路製造股份有限公司 電阻式隨機存取記憶胞及具有埋入型電阻式隨機存取記憶胞之邏輯裝置之製造方法
TW201614656A (en) * 2014-10-14 2016-04-16 Taiwan Semiconductor Mfg Co Ltd RRAM cell and method for manufacturing the same
US9466794B2 (en) * 2013-03-13 2016-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Low form voltage resistive random access memory (RRAM)
US20160365512A1 (en) * 2015-06-12 2016-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Rram devices and methods
US9577191B2 (en) * 2014-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell bottom electrode formation
US9595670B1 (en) * 2014-07-21 2017-03-14 Crossbar, Inc. Resistive random access memory (RRAM) cell and method for forming the RRAM cell
TWI575789B (zh) * 2012-12-14 2017-03-21 台灣積體電路製造股份有限公司 電阻式隨機存取記憶胞及其製造方法
US20170141305A1 (en) * 2015-11-13 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Bottom electrode for rram structure

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576369B1 (ko) * 2004-11-23 2006-05-03 삼성전자주식회사 전이 금속 산화막을 데이타 저장 물질막으로 채택하는비휘발성 기억소자의 프로그램 방법
US8343813B2 (en) * 2009-04-10 2013-01-01 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
US8362454B2 (en) * 2008-08-12 2013-01-29 Industrial Technology Research Institute Resistive random access memory having metal oxide layer with oxygen vacancies and method for fabricating the same
US20140001429A1 (en) * 2012-07-02 2014-01-02 4-Ds Pty, Ltd Heterojunction oxide memory device with barrier layer
KR20140068162A (ko) * 2012-09-05 2014-06-05 가부시키가이샤 아루박 저항 변화 소자 및 그 제조 방법
US20140091272A1 (en) * 2012-09-28 2014-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure and method of forming the same
US8742390B1 (en) * 2012-11-12 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Logic compatible RRAM structure and process
US8963114B2 (en) * 2013-03-06 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive (1T1R) random access memory (RRAM) structure with dual spacers
TWI508341B (zh) * 2014-04-02 2015-11-11 Winbond Electronics Corp 電阻式隨機存取記憶體及其製造方法
US9178144B1 (en) * 2014-04-14 2015-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US10193065B2 (en) * 2014-08-28 2019-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. High K scheme to improve retention performance of resistive random access memory (RRAM)
TWI548127B (zh) * 2014-09-19 2016-09-01 華邦電子股份有限公司 電阻式隨機存取記憶體
US9224947B1 (en) * 2014-09-22 2015-12-29 Winbond Electronics Corp. Resistive RAM and method of manufacturing the same
US9406883B1 (en) 2015-01-08 2016-08-02 Taiwan Semiconductor Manufacturing Co., Ltd Structure and formation method of memory device
US9647207B2 (en) * 2015-01-26 2017-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive random access memory (RRAM) structure
US20170117464A1 (en) * 2015-10-22 2017-04-27 Winbond Electronics Corp. Resistive random access memory device
CN106654004B (zh) * 2015-10-29 2019-03-19 华邦电子股份有限公司 电阻式存储器及其制造方法
US9972779B2 (en) * 2015-12-14 2018-05-15 Winbond Electronics Corp. Resistive random access memory
CN107154458B (zh) * 2016-03-04 2019-07-26 华邦电子股份有限公司 电阻式随机存取存储器结构及其制造方法
TWI610476B (zh) * 2017-03-16 2018-01-01 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其形成方法
WO2018182649A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Layered oxygen barrier electrodes for resistive random access memory (rram) devices and their methods of fabrication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575789B (zh) * 2012-12-14 2017-03-21 台灣積體電路製造股份有限公司 電阻式隨機存取記憶胞及其製造方法
TWI517468B (zh) * 2012-12-20 2016-01-11 台灣積體電路製造股份有限公司 電阻式隨機存取記憶胞及具有埋入型電阻式隨機存取記憶胞之邏輯裝置之製造方法
US9466794B2 (en) * 2013-03-13 2016-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Low form voltage resistive random access memory (RRAM)
TW201539730A (zh) * 2014-03-04 2015-10-16 Taiwan Semiconductor Mfg Co Ltd 具有導電蝕刻停止層的電阻式隨機存取記憶體單元結構
US9577191B2 (en) * 2014-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell bottom electrode formation
US9595670B1 (en) * 2014-07-21 2017-03-14 Crossbar, Inc. Resistive random access memory (RRAM) cell and method for forming the RRAM cell
TW201614656A (en) * 2014-10-14 2016-04-16 Taiwan Semiconductor Mfg Co Ltd RRAM cell and method for manufacturing the same
US20160365512A1 (en) * 2015-06-12 2016-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Rram devices and methods
US20170141305A1 (en) * 2015-11-13 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Bottom electrode for rram structure

Also Published As

Publication number Publication date
KR20190001555A (ko) 2019-01-04
US20200058858A1 (en) 2020-02-20
TW201906136A (zh) 2019-02-01
DE102018108798B4 (de) 2023-08-17
KR102136177B1 (ko) 2020-07-23
US11183631B2 (en) 2021-11-23
US11329221B2 (en) 2022-05-10
CN109119533B (zh) 2022-06-21
US20200091425A1 (en) 2020-03-19
US10516106B2 (en) 2019-12-24
US20180375024A1 (en) 2018-12-27
DE102018108798A1 (de) 2018-12-27
CN109119533A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
TWI686926B (zh) 電阻性隨機存取記憶體裝置及其形成方法
US10903274B2 (en) Interconnect landing method for RRAM technology
CN110957343B (zh) 集成芯片和形成集成芯片的方法
US10109793B2 (en) Bottom electrode for RRAM structure
CN109119532B (zh) 电阻式随机存取存储器装置
CN106252505B (zh) Rram器件和方法
US9431609B2 (en) Oxide film scheme for RRAM structure
TWI695498B (zh) 積體晶片及其形成方法
US9960349B2 (en) Resistive random-access memory structure and method for fabricating the same
TWI521576B (zh) 電阻式記憶體及其製造方法
CN104752606A (zh) 电阻式存储器的形成方法
TW202141699A (zh) 積體晶片及其形成方法