TWI685209B - 流水線類比數位轉換器 - Google Patents

流水線類比數位轉換器 Download PDF

Info

Publication number
TWI685209B
TWI685209B TW108109249A TW108109249A TWI685209B TW I685209 B TWI685209 B TW I685209B TW 108109249 A TW108109249 A TW 108109249A TW 108109249 A TW108109249 A TW 108109249A TW I685209 B TWI685209 B TW I685209B
Authority
TW
Taiwan
Prior art keywords
analog
digital converter
digital
sub
range
Prior art date
Application number
TW108109249A
Other languages
English (en)
Other versions
TW202005288A (zh
Inventor
吳子建
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW202005288A publication Critical patent/TW202005288A/zh
Application granted granted Critical
Publication of TWI685209B publication Critical patent/TWI685209B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0697Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy in time, e.g. using additional comparison cycles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • H03M1/167Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/40Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
    • H03M1/403Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本發明提供一種流水線類比數位轉換器,包括:乘法數位類比轉換器,用於對類比輸入進行採樣,並根據控制位對採樣的類比輸入進行乘法運算;第一子範圍類比數位轉換器,用於對類比輸入進行採樣,產生代表所述類比輸入的數位表示的第一部分,所述第一部分包括所述控制位以及預估位;和所述第二子範圍類比數位轉換器,用於轉換所述乘法數位類比轉換器的乘法信號輸出,產生代表所述類比輸入的數位表示的第二部分;其中,所述第二子範圍類比數位轉換器轉換所述乘法信號輸出時,跳過所述預估位的估計;其中,所述第一部分和所述第二部分形成代表所述類比輸入的所述數位表示。

Description

流水線類比數位轉換器
本公開一般涉及電子技術領域,並且更具體地,涉及流水線類比數位轉換器。
在電子學中,類比數位轉換器(Analog-To-Digital converter,ADC)轉換類比輸入以生成類比輸入的數位表示。為了實現高速轉換,提出了流水線(pipelined)ADC架構。
第1圖描繪了流水線ADC 100的示例,其包括乘法數位類比轉換器(Multiplying Digital-To-Analog Converter,MDAC)102,M位ADC 104和Z位ADC 106。其中,MDAC 102包括多個電容器Cf,Cs1,Cs2以及一個放大器電路,以及多個開關,其中所述多個開關控制所述多個電容Cf,Cs1,Cs2以及一個放大器電路在階段Φ1和階段Φ2的導通/關斷。在階段Φ1中,類比輸入V j由MDAC 102和M位ADC 104採樣。M位ADC 104將對V j採樣形成的數位信號D j輸出到MDAC 102作為控制信號(在第1圖中,M取值為1,且在將D j輸入MDAC時,將其轉換為溫度計碼為2個溫度計碼b0和b1),通常M位的二進制碼可轉換后形成2 M個溫度計碼。圖中,Vr表示參考電壓。在階段Φ2中,接收控制信號的MDAC 102基於控制信號(Vr×b1,Vr×b0)對採樣的類比輸入V j執行乘法(由Cf,Cs1,Cs2以及放大器電路實現),從而產生乘法信號(multiplied signal)V j + 1。Z位ADC 106耦合到MDAC 102,用於轉換乘法信號V j + 1為Z位數位信號。通過轉換乘法信號V j ​​ + 1,由Z位ADC 106估計類比輸入V j的數位表示(包括Z位,也即,Z-bit)。當Z位ADC 106執行轉換時,MDAC 102和M位ADC 104繼續處理類比輸入V j的下一個採樣。因此,建立了流水線架構。提供高速ADC。
然而,流水線ADC 100可能導致低分辨率。
第2圖描繪了流水線ADC 100的時序圖。在使用階段Φ1(可為Ts / 2)作為類比輸入V j的採樣階段之後,數位信號Dj由M位ADC 104產生並傳送到MDAC 102。在階段Φ2中,MDAC 102根據控制位(Vr×b1,Vr×b0)操作,對在階段Φ1中採樣的類比輸入V j執行乘法操作。考慮到MDAC 102輸出的乘法信號V j ​​ + 1所需的建立時間(settling time),Z位ADC 106將Ts / 2(階段Φ2)作為採樣階段。Z位ADC 106直到用於乘法信號V j​​ + 1的採樣階段(Φ2)完成才開始類比數位轉換。所有Z位的產生必須在Ts / 2中完成。流水線ADC 100的分辨率可能是有限的。
考慮到高分辨率要求,可以採用多級架構。由Z-ADC 106產生的Z位可以提供給另一個MDAC(在下一級),因此,下一級輸出低位以精確地表示類比輸入V j。但是,多級架構很複雜。
需要一種具有簡單設計的高速和高分辨率ADC。ADC設計需要權衡利弊。
為保證高速操作,影響閉環帶寬的MDAC 102的位數是有限的。此外,MDAC 102的採樣電路與M位ADC 104的採樣電路之間的不匹配引起系統冗餘誤差。因此,除了MDAC 102之外,其他組件必須滿足高分辨率要求,並且有效位冗餘校準更重要。這樣電路尺寸大,消耗更多功率。逐次逼近寄存器(Successive Approximation Register,SAR)ADC可以是用於提高功率效率的解決方案。但是,具有高分辨率的SAR ADC會降低整個ADC結構的轉換速度。
以下概述僅是說明性的,並不旨在以任何方式進行限制。也就是說,提供以下概述以介紹本文描述的新穎和非顯而易見的技術的概念,要點,益處和優點。下面在詳細描述中進一步描述選擇的實現。因此,以下發明內容並非旨在標識所要求保護的主題的必要特徵,也不旨在用於確定所要求保護的主題的範圍。
本發明提供一種流水線類比數位轉換器,包括:乘法數位類比轉換器,用於對類比輸入進行採樣,並根據控制位對採樣的類比輸入進行乘法運算;第一子範圍類比數位轉換器,用於對類比輸入進行採樣,產生代表所述類比輸入的數位表示的第一部分,所述第一部分包括用於所述乘法數位類比轉換器的所述控制位以及用於第二子範圍類比數位轉換器的預估位;和所述第二子範圍類比數位轉換器,耦合到所述乘法數位類比轉換器和所述第一子範圍類比數位轉換器,用於轉換所述乘法數位類比轉換器的乘法信號輸出,產生代表所述類比輸入的數位表示的第二部分;其中,所述第二子範圍類比數位轉換器轉換所述乘法數位類比轉換器的乘法信號輸出時,跳過所述預估位的估計;其中,所述第一部分和所述第二部分形成代表所述類比輸入的所述數位表示。
實施本發明實施例,在不降低轉換速度的情況下實現了高分辨率ADC。
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的“包含”及“包括”為一開放式的用語,故應解釋成“包含但不限定於”。“大體上”是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,基本達到所述技術效果。此外,“耦接”一詞在此包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表所述第一裝置可直接電性連接於所述第二裝置,或通過其它裝置或連接手段間接地電性連接至所述第二裝置。以下所述為實施本發明的較佳方式,目的在於說明本發明的精神而非用以限定本發明的保護範圍,本發明的保護範圍當視後附的申請專利範圍所界定者為准。
接下面的描述為本發明預期的最優實施例。這些描述用於闡述本發明的大致原則而不應用于限制本發明。本發明的保護範圍應在參考本發明的申請專利範圍的基礎上進行認定。
第3圖描繪了根據本公開的示例性實施例的流水線ADC 300,其使用子範圍SAR ADC並且還被稱為子範圍SAR ADC輔助流水線ADC。
SAR ADC(即,逐次逼近寄存器類比數位轉換器)可以通過電荷再分配技術來實現。電容資料採集轉換器(Capacitive Data Acquisition Converter, C-DAC)可以用在SAR ADC中。C-DAC包括加權電容器陣列,用於採樣類比輸入的逐次逼近(根據SAR控制邏輯)。在逐次逼近期間,C-DAC將殘餘信號饋送到比較器,並且比較結果被傳送到SAR邏輯以佈置C-DAC執行的逐次逼近。通過逐次逼近,從一系列比較結果中獲得由C-DAC採樣的類比輸入的數位表示。SAR ADC具有高功效,但可能非常耗時。流水線ADC 300使用子範圍SAR ADC作為解決方案。
如第3圖所示,流水線ADC 300包括MDAC(乘法數位類比轉換器)302,(M + Z1)位SAR ADC 304和Z位SAR ADC 306。其中,MDAC 302包括多個電容器Cs0,Cs1,……,Cs2 M和放大器電路,其中,放大器電路的放大增益G=2 M+1,雖然未圖示,MDAC 302包括多個開關用於控制所述多個電容以及放大器電路在不同階段(例如,第4圖中的階段Φ1和階段Φ2)的導通/關斷。在本發明中,流水線ADC 300的類比輸入V j的數位表示由(M + Z1)位SAR ADC 304的輸出D j+Z1位和Z位SAR ADC 306的輸出Z2位形成。兩個SAR ADC 304和306是子範圍SAR ADC。具體地,由(M + Z1)位SAR ADC 304估計的Z1位進一步傳送到Z位SAR ADC 306供其使用。由此,Z位SAR ADC 306僅需要估計剩餘的(Z-Z1)=Z2位。也即,在本發明中,(M + Z1)位SAR ADC 304提前為Z位SAR ADC 306預估了Z1位數位結果。由此,本發明不僅受益於SAR ADC的低功耗,預估的Z1位亦有效地加速了Z位SAR ADC 306的操作。需要說明的是,在第3圖中,雖然僅示出Z位SAR ADC 306的相關電路結構(也即,其包括DAC(Z1+Z2)308,SAR 控制邏輯310以及比較器312),而未示出M+Z1位SAR ADC 304的相關電路結構,在一些實施例中,M+Z1位SAR ADC 304具有與Z位SAR ADC 306相似的電路組成,其區別僅在於,DAC的位數不相同,例如,Z位 SAR ADC 306包括Z1+Z2位DAC,而M+Z1位SAR ADC 304包括M+Z1位DAC。當然,在其他實施例中,M+Z1位SAR ADC 304也可與Z位 SAR ADC 306不相同,例如後續第5圖的實施例所示,M+Z1位SAR ADC 304還可能包括閃存比較器用於快速產生M位數位信號。
第4圖描繪了流水線ADC 300的時序圖。接下來結合第3圖和第4圖描述流水線ADC 300的操作的細節。在階段Φ1,類比輸入V j由MDAC 302和(M + Z1)位SAR ADC 304分別採樣且(M + Z1)位SAR ADC 304將採樣形成的M位數位信號(也即,D j)作為控制位輸出到MDAC 302。在階段Φ2,基於所述控制位,MDAC 302對採樣的類比輸入V j執行乘法,從而產生乘法信號V j​​ + 1以傳送到Z位SAR ADC 306。在階段Φ2,當MDAC 302執行乘法以產生乘法信號V j + 1時,(M + Z1)位SAR ADC 304對類比輸入V j進行採樣完成Z1位數位信號的估計。(M + Z1)位SAR ADC 304估計的Z1位可以被視為預估位被傳送到Z位SAR ADC 306。在階段Φ2,在乘法信號V j​​ + 1建立期間由Z位SAR ADC 306對採樣V j​​ + 1。在下一個階段Φ1,Z位SAR ADC 306跳過Z1位的估計並直接開始估計剩餘的Z2位。在Z位SAR ADC 306中,僅需要用於獲得最低有效Z2位的逐次逼近。較高的Z1位由(M + Z1)位SAR ADC 304預先估計。在該下一個階段Φ1,當Z位SAR ADC 306產生最低有效Z2位時,MDAC 302和(M + Z1)位SAR ADC 304前進到類比輸入V j的下一個樣本。由此,建立了流水線架構。
由此可見,在本發明中,在MDAC 302執行乘法的階段以及Z位SAR ADC 306對乘法信號V j​​ + 1進行採樣的階段(例如,第4圖的階段Φ2),(M + Z1)位SAR ADC 304用於為Z位SAR ADC 306預估Z1位。預估的Z1位被饋送到Z位SAR ADC 306。因此,Z位SAR ADC 306跳過估計Z1位並且僅需要估計最低有效Z2位。因此,本發明在不降低轉換速度的情況下實現了高分辨率ADC。
為了進一步加速轉換,可以在(M + Z1)位SAR ADC 304中採用閃存比較器來估計最高有效M位。高速閃存比較器使MDAC 302及時獲得控制位(Dj)。然而,為了抑制閃存比較器的功耗,仍然通過逐次逼近來估計剩餘的Z1位。因為(M + Z1)位SAR ADC 304可以利用乘法信號V j​​ + 1的整個建立時間來估計預估的Z1位,所以Z1位的逐次逼近不會降低轉換速度。
第5圖描繪了根據本公開另一示例性實施例的流水線ADC 500。流水線ADC 500包括MDAC 502和兩個SAR ADC 504和506。在第5圖中,M取值為2,因此,2位二進制碼共產生b0-b3四個溫度計碼作為控制信號提供給MDAC 502,以及,MDAC 502包括四個電容器Cs1,Cs2,Cs3及Cs4用於接收該四個控制信號。具體的,在第5圖中,類比輸入V j被轉換為10位的數位表示。SAR ADC 504和506各自估計5位。如圖所示,SAR ADC 506的分辨率為8(= 3 + 5)位,大於5位。SAR ADC 504預先為SAR ADC 506估計最高有效3位。因此SAR ADC 504共需要估計5位。在本實施例中,SAR ADC 504提供閃存比較器508以快速估計2個最高有效位(Most Significant Bits,MSB)作為控制位傳送到MDAC 502。對於傳送到SAR ADC 506作為預估位的3位,SAR ADC 504基於閃存比較器508的比較結果通過逐次逼近來執行估計。在本實施例中,SAR ADC 504使用電容器陣列Csar結合比較器509及SAR控制邏輯511(表示為SAR logic)採樣類比輸入Vj的逐次逼近得到3位數位位。由於閃存比較器508的高速度,MDAC 502及時獲得所需的控制位。因為剩餘3個位的逐次逼近與MDAC 502的操作重疊,所以不需要額外的階段來預估SAR ADC 506(包括DAC(3+5位)514,SAR控制邏輯510(表示為SAR logic)及比較器512)的MSB。類似於前面實施例的描述,SAR ADC 504估計的3位數位位作為預估位傳遞給(3+5)位SAR ADC 506,由此,(3+5)位SAR ADC 306僅需要估計剩餘的(8-3)=5位。因此,提供高速10位ADC。
SAR ADC 504和506還可以包括校准設計。可以通過設計逐次逼近結構來校準由閃存比較器508,超範圍冗餘,數位位的預估以及逐次逼近的不完全建立引起的誤差。
第6圖描繪了根據本公開的示例性實施例的SAR ADC 504和506的電容資料採集架構,其中,電容器602,604,606的整體可對於第5圖的Csar。電容器602由閃存比較器508控制。提供電容器604用於校準由於閃存比較器508引起的誤差。在用於3位預估的電容器606內,提供電容器608用於校準超範圍冗餘引起的誤差。SAR ADC 504使用前端逐次逼近來估計控制電容器604的位,並使用後端逐次逼近來估計控制電容器606的位。此外,在其他實施例中,控制電容器602和604的值可直接使用閃存比較器508的產生結果,由此,本發明實施例,可省略/縮短SAR ADC 504的前級逐次逼近。在SAR ADC 506的電容器610的控制中採用預估的3位(也即,在第6圖中,電容器610中各電容器的狀態複製606中各電容器的狀態)。因此,可以跳過SAR ADC 506對vop的前端逐次逼近。SAR ADC 506僅需要執行後端逐次逼近以估計控制電容器612的位。在對應於ADC轉換的最低有效5位的估計的電容器612內,提供電容器614用於校準預估的3位引起的誤差,並且提供電容器616用於校準由於從MDAC傳輸的乘法信號V j + 1的不完全建立而引起的誤差。不完全建立校準也可以抑制冗餘誤差。可以降低關於冗餘校準的有效位。在一些示例性實施例中,提供一些電容器以形成電容器612,用於後端冗餘位逐次逼近,以校準逐次逼近的不完全建立。在第6圖中,Vrp,Vrn分別表示參考電壓的最高值和最低值,Vip表示類比輸入V j的正輸入端的值,Vin表示類比輸入V j的負輸入端的值,Vicm表示中間參考電壓,位於Vrp,Vrn之間,當然特殊情況時,Vicm可等於Vrp或Vrn。“Vop of MDAC”表示V j+1的正輸出端的值,“Von of MDAC”表示V j+1的負輸出端的值。
本公開的流水線ADC進一步減輕了來自SAR ADC的偏移誤差和MDAC與控制MDAC的SAR ADC之間的採樣時間偏差。通過SAR補償來補償誤差而不是數位定時校準。
在示例性實施例中,控制MDAC的SAR ADC內的採樣電路可以是MDAC內的採樣電路的複製品,其還有效地減少了由於信號採樣引起的時序偏移。
在第6圖中,由電容器610形成的電容網絡和由電容器606形成的電容網絡是類似的。不同之處在於電容器的尺寸。電容器610的尺寸是電容器606的32倍。
在其他示例性實施例中,在所公開的流水線ADC中採用的SAR ADC可以改變為其他類型的子範圍ADC。根據前述概念的使用子範圍ADC的流水線ADC應被視為在本公開的範圍內。
在一些實施例中,術語“大約”和“基本上”可以用於表示目標值的±10%以內,例如:目標值的±5%,±2%或 ±1%。術語“大約”和“基本上”可以包括目標值。
在申請專利範圍中使用諸如“第一”,“第二”,“第三”等的序數術語來修改申請專利範圍要素本身並不意味著一個申請專利範圍要素優先於另一個或者時間的任何優先權或順序,或執行方法的行為的順序,但僅用作標籤以將具有特定名稱的一個申請專利範圍元素與具有相同名稱的另一個元素(但是用於使用序數術語)區分,以區分申請專利範圍元素。
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何本領域技術人員,在不脫離本發明的精神和範圍內,當可做些許的更動與潤飾,因此本發明的保護範圍當視申請專利範圍所界定者為准。
100,300,500~類比數位轉換器; 102,302,502~MDAC; V j~類比輸入; V r~參考電壓; Φ1,Φ2~階段; b0,b1,b2,b3~溫度計碼; Cf,Cs1,Cs2,Cs0,Cs3,Cs2 M,Cs4,602,604,606,608,610,614,616,612~電容器; V j + 1~乘法信號; 104~ M位ADC; 106~ Z位ADC; D j~控制信號; 304,504~(M + Z1)位SAR ADC; 306,506~ Z位SAR ADC; 308~ DAC(Z1+Z2); 310,510,511~ SAR 控制邏輯; 312,509,512~比較器; Z1,D j+Z1,Z2~位; G~放大器電路的放大增益; Csar~電容器陣列; 508~閃存比較器; 514~ DAC(3+5); Vrp ~參考電壓的最高值; Vrn~參考電壓的最低值; Vip~類比輸入V j的正輸入端的值; Vin~類比輸入V j的負輸入端的值; Vicm~中間參考電壓; Vop of MDAC ~V j+1的正輸出端的值; Von of MDAC ~V j+1的負輸出端的值。
第1圖描繪了流水線ADC 100的示例。 第2圖描繪了流水線ADC 100的時序圖。 第3圖描繪了根據本公開的示例性實施例的流水線ADC 300。 第4圖描繪了流水線ADC 300的時序圖。 第5圖描繪了根據本公開另一示例性實施例的流水線ADC 500。 第6圖描繪了根據本公開的示例性實施例的SAR ADC 504和506的電容資料採集架構。
300~類比數位轉換器; 302~MDAC; V j~類比輸入; V r~參考電壓; Cs1,Cs2,Cs0,Cs3,Cs2 M~電容器; V j + 1~乘法信號; D j~控制信號; 304~(M + Z1)位SAR ADC; 306~ Z位SAR ADC; 308~ DAC(Z1+Z2); 310~ SAR 控制邏輯; 312~比較器; Z1,D j+Z1,Z2~位; G~放大器電路的放大增益    。

Claims (16)

  1. 一種流水線類比數位轉換器,包括: 乘法數位類比轉換器,用於對類比輸入進行採樣,並根據控制位對採樣的類比輸入進行乘法運算; 第一子範圍類比數位轉換器,用於對類比輸入進行採樣,產生代表所述類比輸入的數位表示的第一部分,所述第一部分包括用於所述乘法數位類比轉換器的所述控制位以及用於第二子範圍類比數位轉換器的預估位;和 所述第二子範圍類比數位轉換器,耦合到所述乘法數位類比轉換器和所述第一子範圍類比數位轉換器,用於轉換所述乘法數位類比轉換器的乘法信號輸出,產生代表所述類比輸入的數位表示的第二部分; 其中,所述第二子範圍類比數位轉換器轉換所述乘法數位類比轉換器的乘法信號輸出時,跳過所述預估位的估計; 其中,所述第一部分和所述第二部分形成代表所述類比輸入的所述數位表示。
  2. 如申請專利範圍第1項所述的流水線類比數位轉換器,其中: 所述第一部分是表示所述類比輸入的所述數位表示的最高有效位;和 所述第二部分是表示所述類比輸入的所述數位表示的最低有效位。
  3. 如申請專利範圍第1項所述的流水線類比數位轉換器,其中: 當所述乘法數位類比轉換器執行乘法時,所述第一子範圍類比數位轉換器產生所述預估位。
  4. 如申請專利範圍第3項所述的流水線類比數位轉換器,其中: 當所述第二子範圍類比數位轉換器產生代表所述類比輸入的數位表示的第二部分時,所述乘法數位類比轉換器和所述第一子範圍類比數位轉換器進入下一個類比輸入樣本。
  5. 如申請專利範圍第1項所述的流水線類比數位轉換器,其中: 所述第一子範圍類比數位轉換器和所述第二子範圍類比數位轉換器是逐次逼近寄存器類比數位轉換器。
  6. 如申請專利範圍第5項所述的流水線類比數位轉換器,其中: 所述第二子範圍類比數位轉換器從所述第一子範圍類比數位轉換器接收所述預估位,以跳過對所述乘法數位類比轉換器的乘法信號輸出執行前端逐次逼近獲得所述預估位。
  7. 如申請專利範圍第6項所述的流水線類比數位轉換器,其中: 所述第一子範圍類比數位轉換器使用後端逐次逼近來產生所述預估位。
  8. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 所述第一子範圍類比數位轉換器使用前端逐次逼近來產生所述控制位。
  9. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 所述第一子範圍類比數位轉換器包括閃存比較器;和 所述控制位由所述閃存比較器產生。
  10. 如申請專利範圍第9項所述的流水線類比數位轉換器,其中: 所述控制位還用在所述第一子範圍類比數位轉換器中,以縮短所述第一子範圍類比數位轉換器的前端逐次逼近。
  11. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 當所述乘法數位類比轉換器執行乘法時,執行所述第一子範圍類比數位轉換器的後端逐次逼近。
  12. 如申請專利範圍第11項所述的流水線類比數位轉換器,其中: 當所述第二子範圍類比數位轉換器執行後端逐次逼近以產生所述第二部分時,所述乘法數位類比轉換器和所述第一子範圍類比數位轉換器進入下一個類比輸入樣本。
  13. 如申請專利範圍第10項所述的流水線類比數位轉換器,其中: 在產生所述控制位之後,所述第一子範圍類比數位轉換器使用前端逐次逼近來校準由於所述閃存比較器引起的誤差。
  14. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 所述第一子範圍類比數位轉換器還使用後端逐次逼近來校準由於超範圍冗餘引起的誤差。
  15. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 所述第二子範圍類比數位轉換器還使用後端逐次逼近來校準由於預估位引起的誤差。
  16. 如申請專利範圍第7項所述的流水線類比數位轉換器,其中: 所述第二子範圍類比數位轉換器還使用後端冗餘位逐次逼近來校準逐次逼近的不完全建立。
TW108109249A 2018-04-03 2019-03-19 流水線類比數位轉換器 TWI685209B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862651795P 2018-04-03 2018-04-03
US62/651,795 2018-04-03
US16/285,537 2019-02-26
US16/285,537 US10541704B2 (en) 2018-04-03 2019-02-26 Pipelined analog-to-digital converter

Publications (2)

Publication Number Publication Date
TW202005288A TW202005288A (zh) 2020-01-16
TWI685209B true TWI685209B (zh) 2020-02-11

Family

ID=66049088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109249A TWI685209B (zh) 2018-04-03 2019-03-19 流水線類比數位轉換器

Country Status (4)

Country Link
US (1) US10541704B2 (zh)
EP (1) EP3550725B1 (zh)
CN (1) CN110350919B (zh)
TW (1) TWI685209B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782692B (zh) * 2020-10-21 2022-11-01 聯發科技股份有限公司 具有預採樣的乘法數位類比轉換器以及相關的流水線類比數位轉換器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11265008B2 (en) * 2018-05-30 2022-03-01 King Abdullah University Of Science And Technology Successive approximation register (SAR) analog to digital converter (ADC)
CN111585574B (zh) * 2020-05-29 2023-04-07 成都华微电子科技股份有限公司 一种流水线模数转换器
US11025262B1 (en) 2020-09-30 2021-06-01 Chengdu Huawei Electronic Technology Co., Ltd. Pipelined analog-to-digital converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI333335B (en) * 2006-12-18 2010-11-11 Ind Tech Res Inst Analog to digital converting system
TW201306493A (zh) * 2011-07-29 2013-02-01 Mediatek Singapore Pte Ltd 模數轉換器及模數轉換方法
US20130321184A1 (en) * 2012-06-05 2013-12-05 Himax Technologies Limited SAR Assisted Pipelined ADC and Method for Operating the Same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275392C (zh) * 2002-06-18 2006-09-13 模拟设备股份有限公司 开关电容级和流水线式模电转换器
KR100850749B1 (ko) * 2006-12-04 2008-08-06 한국전자통신연구원 동작 모드 변경이 가능한 멀티-비트 파이프라인아날로그-디지털 변환기
US8618975B2 (en) * 2011-10-26 2013-12-31 Semtech Corporation Multi-bit successive approximation ADC
US8659461B1 (en) * 2012-11-13 2014-02-25 University Of Macau Analog to digital converter circuit
KR101711542B1 (ko) * 2015-12-16 2017-03-02 국방과학연구소 레인지-스케일링 기반의 복합 파이프라인 아날로그-디지털 컨버터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI333335B (en) * 2006-12-18 2010-11-11 Ind Tech Res Inst Analog to digital converting system
TW201306493A (zh) * 2011-07-29 2013-02-01 Mediatek Singapore Pte Ltd 模數轉換器及模數轉換方法
US20130321184A1 (en) * 2012-06-05 2013-12-05 Himax Technologies Limited SAR Assisted Pipelined ADC and Method for Operating the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. C. Lee and M. P. Flynn, "A SAR-Assisted Two-Stage Pipeline ADC," in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859-869, April 2011. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782692B (zh) * 2020-10-21 2022-11-01 聯發科技股份有限公司 具有預採樣的乘法數位類比轉換器以及相關的流水線類比數位轉換器

Also Published As

Publication number Publication date
US20190305793A1 (en) 2019-10-03
EP3550725A1 (en) 2019-10-09
US10541704B2 (en) 2020-01-21
CN110350919A (zh) 2019-10-18
CN110350919B (zh) 2023-11-10
EP3550725B1 (en) 2022-01-05
TW202005288A (zh) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI685209B (zh) 流水線類比數位轉換器
US7999719B2 (en) Multi-stage successive approximation register analog-to-digital converter and analog-to-digital converting method using the same
US9059730B2 (en) Pipelined successive approximation analog-to-digital converter
TWI688220B (zh) 類比/數位轉換器及其方法
WO2017006297A2 (en) Hybrid charge-sharing charge-redistribution dac for successive approximation analog-to-digital converters
US8643529B2 (en) SAR assisted pipelined ADC and method for operating the same
US8508392B2 (en) Pipelined analog digital converter
US6963300B1 (en) Pipeline analog-to-digital converter
US20100085225A1 (en) Successive approximation adc with binary error tolerance mechanism
US11349492B2 (en) Analog-to-digital converter
CN104426549B (zh) 具有子adc校准的多步式adc
US11018684B1 (en) Hybrid pipeline analog-to-digital converter
US7821436B2 (en) System and method for reducing power dissipation in an analog to digital converter
US8451154B2 (en) Pipelined ADC calibration
KR101711542B1 (ko) 레인지-스케일링 기반의 복합 파이프라인 아날로그-디지털 컨버터
US10826511B1 (en) Pipeline analog-to-digital converter
US10911058B2 (en) Switched capacitor comparator
KR100320434B1 (ko) 아날로그 디지탈 컨버터
US6750799B1 (en) A/D conversion technique using digital averages
CN111147077B (zh) 用于模拟数字转换器残余放大器的增益校准装置及方法
You et al. A 3.3 V 14-bit 10 MSPS calibration-free CMOS pipelined A/D converter
CN117674852A (zh) 逐次逼近型模数转换器及控制方法
Kawahito Techniques for digitally assisted pipeline A/D converters
Draxelmayr et al. CONCEPTS AND IMPROVEMENTS IN PIPELINE AND SAR ADCS
JPH0683071B2 (ja) A/d変換器