TWI684390B - Apparatus and method for calibrating machining position - Google Patents

Apparatus and method for calibrating machining position Download PDF

Info

Publication number
TWI684390B
TWI684390B TW106120183A TW106120183A TWI684390B TW I684390 B TWI684390 B TW I684390B TW 106120183 A TW106120183 A TW 106120183A TW 106120183 A TW106120183 A TW 106120183A TW I684390 B TWI684390 B TW I684390B
Authority
TW
Taiwan
Prior art keywords
processing
virtual
alignment mark
printed circuit
circuit board
Prior art date
Application number
TW106120183A
Other languages
Chinese (zh)
Other versions
TW201801603A (en
Inventor
許俊圭
李京俊
金度勳
Original Assignee
南韓商Ap系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Ap系統股份有限公司 filed Critical 南韓商Ap系統股份有限公司
Publication of TW201801603A publication Critical patent/TW201801603A/en
Application granted granted Critical
Publication of TWI684390B publication Critical patent/TWI684390B/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/166Alignment or registration; Control of registration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/167Using mechanical means for positioning, alignment or registration, e.g. using rod-in-hole alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

本發明關於當進行印刷電路板材料的孔加工時,測定材料變形程度,基於此,計算誤差校正式來使設計上的加工孔位置和實際加工孔位置之間的誤差發生偏差最小化,以此加工精密度提高的加工位置校正裝置及其方法,加工位置校正方法包括:接收用於印刷電路板材料加工的設計圖,從上述接收的設計圖提取對準標記設計資訊的步驟;利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊的步驟;以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值的步驟:以及通過在上述計算的位置補償值對加工孔位置座標進行校正的步驟,以此體現用於印刷電路板材料的孔加工的加工位置校正方法。 The present invention relates to measuring the degree of material deformation when performing hole processing of printed circuit board materials. Based on this, an error correction formula is calculated to minimize the deviation between the designed processing hole position and the actual processing hole position, thereby Processing position correction device and method for improved processing precision. The processing position correction method includes: receiving design drawings for processing printed circuit board materials, extracting alignment mark design information from the received design drawings; The step of extracting the actual coordinate position information of the alignment mark of the printed circuit board material; the step of calculating the position compensation value for compensating the position of the machining hole based on the material deformation based on the alignment mark design information and the actual coordinate position information : And the step of correcting the coordinates of the machining hole position by the position compensation value calculated above, in order to embody the machining position correction method for the machining of holes for printed circuit board materials.

Description

加工位置校正裝置及其方法 Processing position correction device and method

本發明關於加工位置校正裝置及其方法,尤其,關於當加工印刷電路板材料的孔時,測定材料變形程度,基於此,計算誤差校正式來使設計上的加工孔位置和實際加工孔位置之間的誤差發生偏差最小化,以此使加工精密度提高的加工位置校正裝置及其方法。 The present invention relates to a processing position correction device and a method thereof, in particular, to measure the degree of material deformation when processing a hole of a printed circuit board material, based on which, an error correction formula is calculated to make the designed processing hole position and the actual processing hole position The error deviation between the errors is minimized, so as to improve the processing precision of the processing position correction device and method.

最近,隨著智慧手機、筆記型電腦、平板電腦等電子裝置的輕量化小型化,需要印刷電路板(PCB,Printed Circuit Board)及柔性印刷電路板(FPCB,Flexible Printed Circuit Board)的高畫素及精密化。 Recently, with the weight reduction of electronic devices such as smartphones, notebook computers, and tablet PCs, high-resolution of printed circuit boards (PCB, Printed Circuit Board) and flexible printed circuit boards (FPCB, Flexible Printed Circuit Board) are required And precision.

以往,為了加工對應多層印刷電路基板的層間連接通路的小孔及特殊通孔(via hole)而主要使用機械鑽孔機(Mechanical Drill),最近,因這種高畫素及精密化的要求,主要使用雷射光技工裝置。雷射光加工裝置為為了在多層基板的電子設備連接各個層而利用雷射光束來對小孔及特殊通孔進行穿孔的裝置。 In the past, mechanical drills were mainly used to process small holes and special via holes corresponding to the interlayer connection paths of multilayer printed circuit boards. Recently, due to such high-resolution and precision requirements, The laser light mechanic device is mainly used. The laser processing device is a device that uses laser beams to perforate small holes and special through holes in order to connect layers to electronic devices on a multilayer substrate.

使用機械鑽孔機或雷射光鑽孔裝置來在印刷電路板加工孔,利用在加工面設計馬達進行移動的路徑的印刷電路 板設計圖。 Use a mechanical drilling machine or laser drilling device to process holes on the printed circuit board, and use a printed circuit that designs a path for the motor to move on the processing surface Board design drawing.

通常,當印刷電路板材料孔的加工時,加工孔位置通過材料外圍的4點或其以上的對準標記識別來讀取座標,以對準標記座標為基準,通過印刷電路板設計加工孔座標的資料校正來生成得到校正的加工孔座標,基於此,執行印刷電路板孔加工。 In general, when processing holes in printed circuit boards, the positions of the holes are read by the alignment marks of 4 points or more on the periphery of the material to read the coordinates. Based on the coordinates of the alignment marks, the hole coordinates are designed and processed by the printed circuit board. The data is corrected to generate the corrected processing hole coordinates, and based on this, the printed circuit board hole processing is performed.

用於在印刷電路基板加工孔的先前技術為以下的(專利文獻1)至(專利文獻4)。 The prior art for processing holes on a printed circuit board is the following (Patent Document 1) to (Patent Document 4).

(專利文獻1)中公開的先前技術包括:影像成像部,使包括孔的影像成像;孔資訊判斷部,從鑽孔機的位置和安裝於鑽孔機的位元(bit)的直徑求出通過鑽孔機形成於印刷電路板的孔(hole)的大小及位置;以及位置控制部,比較影像成像部成像的孔的位置及帶下和孔資訊判斷部求出的孔的位置及大小來調節鑽孔機的位置,以使通過鑽孔機形成的孔的中心與上述孔的中心一致,將上述調節的位置確定為鑽孔機的基準位置,確定印刷電路板加工用鑽孔機的位置和印刷電路板設計值。 The prior art disclosed in (Patent Document 1) includes: an image imaging section to image an image including a hole; a hole information judgment section to obtain from the position of the drilling machine and the diameter of a bit installed on the drilling machine The size and position of the hole formed in the printed circuit board by the drilling machine; and the position control unit compares the position of the hole imaged by the image imaging unit and the position and size of the hole obtained by the tape and hole information judgment unit Adjust the position of the drilling machine so that the center of the hole formed by the drilling machine coincides with the center of the hole, determine the adjusted position as the reference position of the drilling machine, and determine the position of the drilling machine for printed circuit board processing And printed circuit board design values.

通過這種結構,謀求因節約工作時間的生產性提高,並可減少部件數量,從而可節儉生產成本。 With this structure, productivity can be improved by saving working time, and the number of components can be reduced, so that production costs can be saved.

並且,(專利文獻2)中公開的先前技術包括:識別形成於作為雷射光加工對象的板狀的基板邊緣的對準標記來計算絕對座標的步驟;將計算的上述絕對座標儲存為基準位置資訊;沿著形成於上述板狀的基板的橫向或縱向的圖案來移動複數個光學拾取單元的步驟;將通過上述複數個光 學拾取單元檢測的上述圖案的座標儲存為誤差位置資訊的步驟;以及比較上述基準位置資訊和誤差位置資訊來修改實際加工位置資訊的步驟,利用光學拾取器的加工誤差校正方法。 In addition, the prior art disclosed in (Patent Document 2) includes the steps of recognizing an alignment mark formed on the edge of a plate-shaped substrate as a laser processing target and calculating absolute coordinates; and storing the calculated absolute coordinates as reference position information The step of moving the plurality of optical pickup units along the horizontal or vertical pattern formed on the plate-shaped substrate; will pass the plurality of light The steps of storing the coordinates of the pattern detected by the pickup unit as error position information; and the step of comparing the reference position information and the error position information to modify the actual processing position information, using the processing error correction method of the optical pickup.

通過這種結構,可很大程度提高利用雷射光等的基板加工速度。 With this structure, the processing speed of the substrate using laser light or the like can be greatly increased.

並且,(專利文獻3)中公開的先前技術中,通孔加工步驟中,為了去除印刷電路板的絕緣體,當需要的適當雷射光照射數為N,光束尺寸為B,能量為P,脈衝寬度為W時,與雷射光照射數N的減少量成反比,增加上述雷射光的照射的基準能量P,與雷射光照射數N的減少量成反比,減少雷射光照射的光束尺寸B,來減少用於通孔加工的雷射光照射數N。 Moreover, in the prior art disclosed in (Patent Document 3), in the through-hole processing step, in order to remove the insulation of the printed circuit board, when the required number of appropriate laser light irradiations is N, the beam size is B, the energy is P, and the pulse width When it is W, it is inversely proportional to the decrease in the number N of laser light irradiation, increasing the reference energy P of the above-mentioned laser light irradiation, and inversely proportional to the decrease in the number N of laser light irradiation, reducing the beam size B of the laser light irradiation to reduce The number N of laser light irradiation for through-hole processing.

通過這種結構,用於通孔加工的雷射光穿孔加工步驟中,可通過減少雷射光照射數來提高生產性。 With this structure, in the laser perforation processing step for through-hole processing, it is possible to improve productivity by reducing the number of laser light irradiations.

並且,(專利文獻4)中公開的先前技術包括:加工範圍設定步驟,設定通過向反射鏡入射並發射的雷射光的到達區域形成的加工範圍;加載步驟,加載形成有具有與形成於上述被加工基材的複數個孔的位置對應的位置的參考位置的位置資訊;基準為止設定步驟,在上述位置資訊中,上述加工範圍內的上述參考位置的密度去除最高區域內的參考位置之後,將加工範圍的中心點設定為基準位置;移動路徑設定步驟,從上述基準位置生成上述被測定基材的移動路徑;以及加工步驟,沿著上述移動路徑,移動上述 被加工基材並執行雷射光加工。 Also, the prior art disclosed in (Patent Document 4) includes: a processing range setting step to set a processing range formed by an arrival area of laser light incident on and reflecting from a mirror; and a loading step to load the The position information of the reference position of the position corresponding to the position of the plurality of holes of the processing substrate; the setting step until the reference, in the position information, after the density of the reference position in the processing range is removed from the reference position in the highest area, the The center point of the processing range is set as the reference position; the moving path setting step generates the moving path of the substrate to be measured from the reference position; and the processing step moves the above along the moving path The substrate is processed and laser processing is performed.

上述構成的先前技術中,當雷射光加工時,通過可進行旋轉的反射鏡來設定加工範圍之後,對加工範圍內的複數個孔進行加工之後,移動被加工基材,並使被加工基材的移動路徑最小化,由此減少在被加工基材形成複數個孔所需要的時間。 In the prior art of the above configuration, when laser processing, the processing range is set by a rotatable mirror, after processing a plurality of holes in the processing range, the substrate to be processed is moved, and the substrate to be processed is moved The path of movement is minimized, thereby reducing the time required to form a plurality of holes in the substrate to be processed.

[先前技術文獻] [Prior Technical Literature]

[專利文獻] [Patent Literature]

(專利文獻1)韓國授權專利10-0607822號(2006年07月26日授權)(確定印刷電路板加工用鑽孔機的位置和印刷電路板設計值的裝置)。 (Patent Document 1) Korean Patent No. 10-0607822 (issued on July 26, 2006) (device for determining the position of the drilling machine for printed circuit board processing and the design value of the printed circuit board).

(專利文獻2)韓國公開專利10-2011-0138879號(2011年12月28日公開)(利用光學拾取器的加工誤差校正方法)。 (Patent Document 2) Korean Laid-open Patent No. 10-2011-0138879 (published on December 28, 2011) (a method for correcting processing errors using an optical pickup).

(專利文獻3)韓國公開專利10-2014-0142403號(2014年12月12日公開)(用於加工通孔的雷射光鑽孔機驅動方法)。 (Patent Document 3) Korean Published Patent No. 10-2014-0142403 (published on December 12, 2014) (Laser drilling machine driving method for processing through holes).

(專利文獻4)韓國授權專利10-1542018號(2015年07月29日授權)(具有最優化的移動路徑的雷射光加工方法)。 (Patent Document 4) Korean Patent Grant No. 10-1542018 (issued on July 29, 2015) (laser processing method with optimized moving path).

但是,上述一般印刷電路板材料的孔加工方法通過印刷電路板材料生產步驟(熱量、壓力)而導致材料的大幅度變形,不考慮上述問題,以材料外圍的對準標記(Alignment Mark)座標為基準來僅執行資料線性校正來對孔進行加工,因此,根據材料變形現象,會發生被校正的加工孔位置和實際加工孔位置之間的座標誤差,從而降低加工精密度。 However, the above-mentioned general printed circuit board material hole processing method causes a large deformation of the material through the printed circuit board material production steps (heat, pressure). Without considering the above problems, the alignment mark (Alignment) on the periphery of the material Mark) is used as a reference to perform linear correction of the data to process the hole. Therefore, according to the material deformation phenomenon, the coordinate error between the corrected processing hole position and the actual processing hole position will occur, thereby reducing the processing precision.

並且,一般印刷電路板材料的孔加工方法以印刷電路板材料外圍的對準標記座標為基準來線性校正設計加工座標,因此,在材料發生很大程度的非線性變形的情況下,實際加工孔位置和校正的加工孔位置之間的座標誤差很大。 In addition, the general hole processing method of printed circuit board materials uses the alignment mark coordinates on the periphery of the printed circuit board material as a reference to linearly correct the design and processing coordinates. Therefore, in the case of a large degree of nonlinear deformation of the material, the actual hole processing The coordinate error between the position and the corrected machining hole position is large.

並且,所提及的先前技術並非為用於提供加工精密度的方法,而是謀求工作時間節約等來提高生產性的技術,不進行印刷電路板生產步驟中發生的材料的變形的誤差校正。因此,先前技術存在如下問題,因無法進行在生產步驟中發生的材料大小的變形校正,因此會降低加工精密度。 In addition, the aforementioned prior art is not a method for providing processing precision, but a technology for improving productivity by saving working time, etc., and does not perform error correction of material deformation that occurs in the printed circuit board production step. Therefore, the prior art has a problem that since it is impossible to correct the deformation of the material size that occurs in the production step, the processing precision is reduced.

因此,本發明為了解決在如上所述的先前技術中發生的所有問題而提出,本發明之一目的在於,提供當加工印刷電路板材料的孔時,測定材料變形程度,基於此,計算誤差校正式來使設計上加工孔位置和實際加工孔位置之間的誤差發生偏差,以此謀求加工精密度提高的加工位置校正裝置及其方法。 Therefore, the present invention is proposed to solve all the problems that have occurred in the prior art as described above. One of the objects of the present invention is to provide a method for measuring the degree of material deformation when processing holes in a printed circuit board material, and based on this, calculate the error correction Formally, a deviation and an error between the designed machining hole position and the actual machining hole position are generated to seek a machining position correction device and method for improving machining precision.

本發明的另一目的在於,提供當印刷電路板材料的孔加工時,減少在材料生產步驟中發生的材料變形所引起的加工孔位置和校正的加工孔位置之間誤差發生偏差來提高加工精密度的加工位置校正裝置及其方法。 Another object of the present invention is to provide a reduction in the deviation between the error of the machining hole position and the corrected machining hole position caused by the material deformation in the material production step when the hole of the printed circuit board material is processed to improve the machining precision Degree machining position correction device and method.

為了解決上述問題,本發明的加工位置校正裝置的特徵在於,包括:對準標記設計資訊提取部,從用於印刷電路板材料加工的設計圖提取對準標記設計資訊;對準標記座標提取部,利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;位置補償值計算單元,以上述對準標記設計資訊和實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的補償值;加工孔座標校正部,通過在上述位置補償值計算單元計算的位置補償值校正加工孔位置座標, 其中,本發明的特徵在於,拍攝裝置使用拍攝用於孔加工的印刷電路板材料來獲取印刷電路板材料影像的視覺攝像頭。 In order to solve the above-mentioned problems, the processing position correction device of the present invention is characterized by including: an alignment mark design information extraction section, which extracts alignment mark design information from a design drawing for printed circuit board material processing; and an alignment mark coordinate extraction section , Use the shooting device to extract the actual coordinate position information of the alignment mark of the printed circuit board material; the position compensation value calculation unit, based on the above alignment mark design information and the actual coordinate position information, calculate the processing for compensating the material-based deformation The compensation value of the hole position; the machining hole coordinate correction part corrects the coordinates of the machining hole position by the position compensation value calculated in the position compensation value calculation unit, Among them, the present invention is characterized in that the photographing device uses a visual camera that photographs printed circuit board material for hole processing to acquire images of the printed circuit board material.

其中,本發明的特徵在於,上述位置補償值計算單元包括:虛擬材料變化曲線計算部,以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式;以及加工區域分割部,利用在上述虛擬材料變化曲線計算部計算的虛擬材料變化曲線式來分割整體加工孔區域。 Among them, the present invention is characterized in that the position compensation value calculation unit includes: a virtual material change curve calculation unit that calculates a virtual material change for estimating the change of the material based on the alignment mark design information and the actual coordinate position information Curvilinear formula; and a processing area dividing section, which divides the entire processed hole area using the virtual material change curve formula calculated in the virtual material change curve calculating section.

其中,本發明的特徵在於,上述虛擬材料變化曲線計算部在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線計算。 Among them, the present invention is characterized in that the virtual material change curve calculation unit adds arbitrary alignment marks to the alignment mark design information of the actual printed circuit board material to calculate the virtual line calculation through the alignment mark coordinates by the virtual material change curve formula .

其中,本發明的特徵在於,上述虛擬材料變化曲線式 基於上述對準標記設計資訊和上述實際座標位置資訊來通過2次曲線式推定來計算,或者通過分段樣條插值計算。 Among them, the present invention is characterized by the above virtual material change curve Based on the above-mentioned alignment mark design information and the above-mentioned actual coordinate position information, it is calculated by quadratic curve estimation, or calculated by piecewise spline interpolation.

其中,本發明的特徵在於,上述加工區域分割部基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that the processing area dividing unit divides the entire processing hole area in a nearly linear shape based on a virtual material change curve type.

其中,本發明的特徵在於,上述加工區域分割部基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that the processing area dividing unit divides the entire processing hole area in a quadrilateral form based on a virtual material change curve type.

其中,本發明的特徵在於,上述加工孔座標校正部在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值(Biliner Interpolation)對加工孔座標進行校正。 Among them, the present invention is characterized in that the machining hole coordinate correction unit obtains the reference point of the virtual divided area in each divided area, and uses bilinear interpolation (Biliner Interpolation) by using the virtual divided area coordinates corresponding to the obtained reference point Correct the coordinates of the machining hole.

並且,本發明的加工位置校正方法的特徵在於,包括:步驟(a),接收用於印刷電路板材料加工的設計圖,從所接收的上述設計圖提取對準標記設計資訊;步驟(b),利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;步驟(c),以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值:以及步驟(d),通過在上述步驟(c)中計算的位置補償值對加工孔位置座標進行校正。 Moreover, the processing position correction method of the present invention is characterized by comprising: step (a), receiving a design drawing for processing printed circuit board materials, extracting alignment mark design information from the received design drawing; step (b) , Use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material; step (c), based on the above alignment mark design information and the actual coordinate position information to calculate the compensation for processing based on material deformation Position compensation value of the hole position: and step (d), the position coordinate of the machined hole is corrected by the position compensation value calculated in the above step (c).

其中,本發明的特徵在於,上述步驟(c)包括:步驟(c1),以上述對準標記設計資訊和上述實際座標位置資訊為基礎,計算用於推定材料的變化的虛擬材料變化曲線式;以及步驟(c2),利用在上述步驟(c)中計算的虛擬材料 變化曲線式來分割整體加工孔區域。 Among them, the present invention is characterized in that the step (c) includes the step (c1), based on the alignment mark design information and the actual coordinate position information, to calculate a virtual material change curve for estimating the change of the material; And step (c2), using the virtual material calculated in step (c) above Change the curve type to divide the whole processing hole area.

其中,本發明的特徵在於,在上述步驟(c1)中,在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線。 Among them, the present invention is characterized in that in the above step (c1), an arbitrary alignment mark is added to the alignment mark design information of the actual printed circuit board material to calculate the virtual line passing through the alignment mark coordinates by a virtual material change curve .

其中,本發明的特徵在於,在上述步驟(c1)中,基於上述對準標記設計資訊和上述實際座標位置資訊來推定2次曲線來計算虛擬材料變化曲線式,或者通過分段樣條插值來計算虛擬材料變化曲線式。 Among them, the present invention is characterized in that in the above step (c1), a quadratic curve is estimated based on the alignment mark design information and the actual coordinate position information to calculate a virtual material change curve type, or by piecewise spline interpolation Calculate the virtual material change curve.

其中,本發明的特徵在於,在上述步驟(c2)中,基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that in the above step (c2), based on the virtual material change curve type, the entire processed hole area is divided into regions that are nearly linear.

其中,本發明的特徵在於,在上述步驟(c2)中,基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that, in the above step (c2), based on the virtual material change curve type, the entire processed hole area is divided into a quadrilateral form.

其中,本發明的特徵在於,在上述步驟(d)中,在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值對加工孔座標進行校正。 Among them, the present invention is characterized in that in the above step (d), the reference points of the virtual divided area are obtained from each divided area, and the processing of the virtual divided area coordinates corresponding to the obtained reference points is used to perform processing by bilinear interpolation Correct the hole coordinates.

根據本發明,本發明具有如下優點,在發生基於印刷電路板材料生產步驟的材料變形的情況下,將材料的非線性變形分割在接近矩形的區域,來對各個虛擬分割區域進行線性校正,由此可減少加工座標誤差發生偏差並提高加 工精密度。 According to the present invention, the present invention has the advantage that, in the case of material deformation based on the printed circuit board material production step, the nonlinear deformation of the material is divided into a nearly rectangular area to linearly correct each virtual divided area by This can reduce the deviation of the processing coordinate error and improve the Work precision.

10‧‧‧對準標記設計資訊提取部 10‧‧‧ Alignment Mark Design Information Extraction Department

20‧‧‧拍攝裝置 20‧‧‧ shooting device

30‧‧‧對準標記座標提取部 30‧‧‧ Alignment Mark Coordinate Extraction Department

40‧‧‧位置補償值計算單元 40‧‧‧ Position compensation value calculation unit

41‧‧‧虛擬材料變化曲線計算部 41‧‧‧ Virtual Material Change Curve Calculation Department

42‧‧‧加工區域分割部 42‧‧‧Processing area division

60‧‧‧加工孔座標校正部 60‧‧‧Correcting Department of Machining Hole

70‧‧‧印刷電路板孔加工部 70‧‧‧Printed Circuit Board Hole Processing Department

圖1為本發明的加工位置校正裝置的框圖。 FIG. 1 is a block diagram of a processing position correction device of the present invention.

圖2為示出本發明的加工位置校正方法的流程圖。 FIG. 2 is a flowchart showing the processing position correction method of the present invention.

圖3為在本發明中用於校正加工位置的加工區域分割例示圖。 Fig. 3 is a diagram showing an example of division of a processing area for correcting a processing position in the present invention.

圖4為在本發明中通過虛擬基準點追加的加工區域分割例示圖。 FIG. 4 is a diagram showing an example of division of a processing area added by a virtual reference point in the present invention.

圖5為在本發明中虛擬材料變化曲線計算例示圖。 FIG. 5 is a diagram showing an example of calculating a virtual material change curve in the present invention.

圖6為在本發明中虛擬分割對準位置及追加對準標記例示圖。 FIG. 6 is an illustration of an example of virtual division alignment positions and additional alignment marks in the present invention.

圖7為適用本發明的加工誤差校正方法的情況下的結果圖。 FIG. 7 is a result diagram when the machining error correction method of the present invention is applied.

以下,參照圖式,詳細說明本發明較佳實施例的加工位置校正裝置及其方法。 Hereinafter, referring to the drawings, the processing position correction device and method of the preferred embodiment of the present invention will be described in detail.

圖1為本發明較佳實施例的加工位置校正裝置的框圖,包括對準標記設計資訊提取部10、拍攝裝置20、對準標記座標提取部30、位置補償值計算單元40、加工孔座標校正部60及印刷電路板孔加工部70。 1 is a block diagram of a processing position correction device according to a preferred embodiment of the present invention, including an alignment mark design information extraction section 10, a photographing device 20, an alignment mark coordinate extraction section 30, a position compensation value calculation unit 40, and a processing hole coordinate The correction unit 60 and the printed circuit board hole processing unit 70.

上述對準標記設計資訊提取部10從用於印刷電路板材料加工的設計圖提取對準標記設計資訊。 The above-mentioned alignment mark design information extraction unit 10 extracts alignment mark design information from a design drawing for printed circuit board material processing.

上述拍攝裝置20通過用於使實際孔加工的印刷電路板材料成像來獲取影像,可利用多種影像拍攝裝置,但是 在本發明中,作為實施例,較佳地,利用視覺攝像頭。 The above-mentioned imaging device 20 acquires an image by imaging the printed circuit board material for actual hole processing, and various image-capturing devices can be used, but In the present invention, as an embodiment, a visual camera is preferably used.

上述對準標記座標提取部30利用上述拍攝裝置20來提取印刷電路板的對準標記的實際座標位置資訊。 The alignment mark coordinate extraction unit 30 uses the imaging device 20 to extract the actual coordinate position information of the alignment mark of the printed circuit board.

上述位置補償值計算單元40以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值。 The position compensation value calculation unit 40 calculates the position compensation value for compensating the position of the machining hole based on the material deformation based on the alignment mark design information and the actual coordinate position information.

這種位置補償值計算單元40可包括:虛擬材料變化曲線計算部41,以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式;以及加工區域分割部42,利用在上述虛擬材料變化曲線計算部計算的虛擬材料變化曲線式來分割整體加工孔區域。 Such a position compensation value calculation unit 40 may include: a virtual material change curve calculation section 41 that calculates a virtual material change curve formula for estimating a change in material based on the alignment mark design information and the actual coordinate position information; and The machining area dividing unit 42 divides the entire machining hole area using the virtual material change curve formula calculated by the virtual material change curve calculation unit.

其中,虛擬材料變化曲線計算部41在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來將經過對準標記座標的虛擬線計算為虛擬材料變化曲線式。此時,虛擬材料變化曲線式基於上述對準標記設計資訊和上述實際座標位置資訊來推定2次曲線式來計算,或者通過分段樣條插值計算。其中,2次曲線式可包括N(N

Figure 106120183-A0202-12-0010-14
3)次多項式。 Among them, the virtual material change curve calculation unit 41 adds an arbitrary alignment mark to the alignment mark design information of the actual printed circuit board material to calculate the virtual line passing through the alignment mark coordinates as a virtual material change curve type. At this time, the virtual material change curve formula is calculated based on the above-mentioned alignment mark design information and the above-mentioned actual coordinate position information to estimate a quadratic curve formula, or calculated by piecewise spline interpolation. Among them, the quadratic curve can include N(N
Figure 106120183-A0202-12-0010-14
3) Degree polynomial.

本發明較佳實施例中,為了計算上述虛擬材料變化曲線式,僅對2次多項式及分段插值方式進行了說明,但是,本發明並不局限於此,本發明所屬技術領域的普通技術人員知道可使用為了計算虛擬材料變化曲線式而公開的多種工法。 In the preferred embodiment of the present invention, in order to calculate the above-mentioned virtual material change curve formula, only the second degree polynomial and the piecewise interpolation method have been described. However, the present invention is not limited to this, and ordinary technicians in the technical field to which the present invention belongs It is known that various construction methods disclosed for calculating the virtual material change curve can be used.

並且,上述加工區域分割部42基於虛擬材料變化曲線 式,以接近線形的形態對整體加工孔區域進行區域分割。更佳地,上述加工區域分割部42基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 In addition, the processing area dividing unit 42 is based on a virtual material change curve In the formula, the entire processed hole area is divided into regions close to a linear shape. More preferably, the processing area dividing unit 42 divides the entire processing hole area in a quadrilateral form based on a virtual material change curve type.

上述加工孔座標校正部60通過在上述位置補償值計算單元40計算的位置補償值來校正加工孔位置座標。 The machining hole coordinate correction unit 60 corrects the machining hole position coordinates by the position compensation value calculated by the position compensation value calculation unit 40.

這種加工孔座標校正部60在分割的各個區域獲取虛擬分割區域的基準點,利用與獲取的基準點相應的虛擬分割區域座標來通過雙線性插值校正加工孔座標。 The machining hole coordinate correction unit 60 obtains the reference point of the virtual division area in each divided area, and corrects the machining hole coordinate by bilinear interpolation using the virtual division area coordinates corresponding to the acquired reference point.

圖2為本發明的加工位置校正方法,包括:步驟(a),接收用於印刷電路板材料加工的設計圖,從所接收上述的設計圖提取對準標記設計資訊(步驟S10、步驟S20);步驟(b),利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊(步驟S30);步驟(c),以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值(步驟S40、步驟S50):以及步驟(d),通過在上述步驟(c)中計算的位置補償值對加工孔位置座標進行校正(步驟S60),基於上述校正的加工孔位置資訊來加工印刷電路板材料的孔(步驟S70)。 2 is a method for correcting a processing position of the present invention, including: step (a), receiving a design drawing for printed circuit board material processing, and extracting alignment mark design information from the received design drawing (step S10, step S20) ; Step (b), use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material (step S30); step (c), based on the alignment mark design information and the actual coordinate position information Calculate the position compensation value used to compensate the position of the machining hole based on material deformation (step S40, step S50): and step (d), correct the coordinates of the machining hole position by the position compensation value calculated in the above step (c) ( Step S60), processing the holes of the printed circuit board material based on the corrected processing hole position information (step S70).

具體說明上述構成的本發明的加工位置校正裝置及其方法的動作。 The operation of the processing position correction device and method of the present invention configured as described above will be specifically described.

首先,本發明中,當進行印刷電路板材料的孔加工時,在材料生產步驟中,減少因熱量或壓力等發生的材料變形所引起的實際加工孔位置和校正的加工孔位置之間誤差發生偏差來提高加工精密度。 First, in the present invention, when the hole processing of the printed circuit board material is performed, in the material production step, errors between the actual processing hole position and the corrected processing hole position caused by material deformation caused by heat or pressure are reduced. Deviation to improve processing precision.

為此,如圖4所示,印刷電路板材料外圍4點的對準標記(P0-P3)之外,至少附加1個以上對準標記(A1、A2)來求出經過對準標記座標的虛擬線,基於此,將整體加工區域分割為複數個虛擬區域(虛擬區域#1至虛擬區域#4),通過矯正加工座標的方式對分割的各個區域中的加工位置進行校正。 Therefore, as shown in FIG. 4, in addition to the four-point alignment marks (P0-P3) on the periphery of the printed circuit board material, at least one more alignment mark (A1, A2) is added to obtain the coordinate of the alignment mark. The virtual line divides the entire processing area into a plurality of virtual areas (virtual area #1 to virtual area #4) based on this, and corrects the processing position in each divided area by correcting the processing coordinates.

例如,對準標記設計資訊提取部10中,從用於印刷電路板材料加工的設計資訊提取對準標記(步驟S10、步驟S20),印刷電路板設計資訊為印刷電路板材料設計資訊,如圖4所示,設計資訊的外圍的4個點P0、P1、P2、P3被提取呈對準標記設計資訊。其中,設計資訊包含加工孔座標。上述提取的對準標記設計資訊向位置補償值計算單元40傳遞。 For example, in the alignment mark design information extraction section 10, the alignment mark is extracted from the design information used for printed circuit board material processing (step S10, step S20). The printed circuit board design information is printed circuit board material design information, as shown in FIG. As shown in FIG. 4, the four points P0, P1, P2, P3 on the periphery of the design information are extracted as alignment mark design information. Among them, the design information includes machining hole coordinates. The extracted alignment mark design information is transferred to the position compensation value calculation unit 40.

同時,拍攝裝置20利用如視覺攝像頭的拍攝裝置來使用於孔加工的實際印刷電路板材料,向對準標記座標提取部30傳遞上述成像的印刷電路板材料影像圖像。圖4的右側上方的現象為實際通過拍攝裝置20拍攝的印刷電路板材料的形狀。實際拍攝的印刷電路板材料在材料生產步驟中因熱量或壓力等而發生材料變形。 At the same time, the imaging device 20 uses an imaging device such as a visual camera to use the actual printed circuit board material used for hole processing, and transmits the imaged printed circuit board material image image to the alignment mark coordinate extraction unit 30. The phenomenon on the upper right side of FIG. 4 is the shape of the printed circuit board material actually photographed by the imaging device 20. The actual printed circuit board material deforms due to heat or pressure during the material production step.

上述對準標記座標提取部30提取成像的印刷電路板材料的對準標記座標來向上述位置補償值計算單元40傳遞(步驟S30)。其中,拍攝的印刷電路板材料的對準標記座標為實際移動座標位置。此時,除外圍4點的對準標記之外,獲取2個以上的追加對準標記移動座標。而且,將獲 取的移動座標設定為對準標記實際位置及基準位置。 The alignment mark coordinate extraction unit 30 extracts the alignment mark coordinate of the imaged printed circuit board material and transmits it to the position compensation value calculation unit 40 (step S30). Among them, the coordinates of the alignment marks of the printed printed circuit board material are the actual moving coordinate positions. At this time, in addition to the four-point peripheral alignment marks, two or more additional alignment mark movement coordinates are acquired. Moreover, you will get The moving coordinates are set to the actual position and reference position of the alignment mark.

上述位置補償值計算單元40以從上述對準標記設計資訊提取部10中傳遞的對準標記設計資訊和從上述對準標記座標提取部30傳遞的實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的補償值。 The position compensation value calculation unit 40 calculates the compensation based on the alignment mark design information transmitted from the alignment mark design information extraction unit 10 and the actual coordinate position information transmitted from the alignment mark coordinate extraction unit 30. The compensation value of the machining hole position where the material is deformed.

例如,位置補償值計算單元40的虛擬材料變化曲線計算部41以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式(步驟S40)。如圖5所示,用於推定材料變化的虛擬材料變化曲線式基於經過3點以上(例如,P0→A0→P1)的對準標記的移動座標來計算。其中,虛擬材料變化曲線式以上述實際座標位置信息來通過推定2次曲線式(ax2+bx+c=y)的方式計算,或者通過分段樣條插值計算。除上述2中方法之外,均可適用計算虛擬材料變化曲線式的多種方式。 For example, the virtual material change curve calculation unit 41 of the position compensation value calculation unit 40 calculates a virtual material change curve formula for estimating the change of the material based on the alignment mark design information and the actual coordinate position information (step S40). As shown in FIG. 5, the virtual material change curve formula for estimating the material change is calculated based on the moving coordinates of the alignment mark passing through 3 or more points (for example, P0→A0→P1). Among them, the virtual material change curve formula is calculated by estimating the quadratic curve formula (ax 2 +bx+c=y) based on the above actual coordinate position information, or calculated by piecewise spline interpolation. In addition to the above two methods, various methods for calculating the virtual material change curve can be applied.

其中,具體說明分段插值如下。 Among them, the detailed description of segment interpolation is as follows.

圖3中,若①點為(x0,f0)、②點為(x1,f1)、③點為(x2,f2),使用以下的數學式1和數學式2並代入各個點的值來計算式的係數。 In Fig. 3, if point ① is (x0, f0), point ② is (x1, f1), point ③ is (x2, f2), use the following mathematical formula 1 and mathematical formula 2 and substitute the value of each point to calculate Coefficient.

Figure 106120183-A0202-12-0013-4
Figure 106120183-A0202-12-0013-4

Figure 106120183-A0202-12-0013-5
Figure 106120183-A0202-12-0013-5

若代入各個點,則可求出如下4個數學式。 If you substitute each point, you can find the following four mathematical formulas.

數學式3 F 0=A 1×x 0 2+B 1×x 0+C 1 Mathematical formula 3 F 0 = A 1 × x 0 2 + B 1 × x 0 + C 1

數學式4 F 1=A 1×x 1 2+B 1×x 1+C 1 Mathematical formula 4 F 1 = A 1 × x 1 2 + B 1 × x 1 + C 1

數學式5 F 1=A 2×x 1 2+B 2×x 1+C 2 Mathematical formula 5 F 1 = A 2 × x 1 2 + B 2 × x 1 + C 2

數學式6 F 2=A 2×x 2 2+B 2×x 2+C 2 Mathematical formula 6 F 2 = A 2 × x 2 2 + B 2 × x 2 + C 2

而且,通過連續條件,虛擬曲線式可求出如F1'(x)=F2'(x)的以下的數學式7。 In addition, through the continuous condition, the virtual curve formula can find the following mathematical formula 7 as F1'(x)=F2'(x).

Figure 106120183-A0202-12-0014-2
Figure 106120183-A0202-12-0014-2

通過初期值,通過選擇直線或曲線的條件,以①和②點的連接求出以下的數學式8或數學式9。 From the initial value, the following equation 8 or equation 9 is obtained by connecting the points ① and ② by selecting the condition of the straight line or curve.

Figure 106120183-A0202-12-0014-17
Figure 106120183-A0202-12-0014-17

Figure 106120183-A0202-12-0014-3
Figure 106120183-A0202-12-0014-3

若計算上述已知的數學式3至數學式7和數學式8或數學式9,可求出作為虛擬曲線式的上述數學式1及數學式2的係數。 If the above-mentioned known mathematical formulas 3 to 7 and mathematical formula 8 or mathematical formula 9 are calculated, the coefficients of the above mathematical formula 1 and mathematical formula 2 can be obtained as virtual curve formulas.

與上述對稱的虛擬曲線通過與上述相同的方法計算。 The virtual curve symmetrical to the above is calculated by the same method as above.

接著,說明通過2次式求出虛擬曲線式的方法如下。 Next, the method of obtaining the virtual curve formula by the quadratic formula will be described as follows.

圖3中,若①點為(x0,f0)、②點為(x1,f1)、③點為 (x2,f2),則使用以下的數學式10來代入各個點的值並求出式的係數。 In Figure 3, if point ① is (x0, f0), point ② is (x1, f1), point ③ is (x2, f2), then use the following mathematical formula 10 to substitute the value of each point and find the coefficient of the formula.

Figure 106120183-A0202-12-0015-1
Figure 106120183-A0202-12-0015-1

若代入各個點,則可求出如以下數學式11至數學式13的3個式。 By substituting each point, three formulas such as the following mathematical formula 11 to mathematical formula 13 can be obtained.

數學式11 F 1=A 1×x 0 2+B 1×x 0+C 1 Mathematical formula 11 F 1 = A 1 × x 0 2 + B 1 × x 0 + C 1

數學式12 F 1=A 1×x 1 2+B 1×x 1+C 1 Mathematical formula 12 F 1 = A 1 × x 1 2 + B 1 × x 1 + C 1

數學式13 F 1=A 1×x 2 2+B 1×x 2+C 1 Mathematical formula 13 F 1 = A 1 × x 2 2 + B 1 × x 2 + C 1

若計算已知的數學式11至數學式13,則可求出作為上述虛擬曲線式的數學式10的係數。 If the known mathematical expressions 11 to 13 are calculated, the coefficient of the mathematical expression 10 which is the above virtual curve expression can be obtained.

與上述對稱的點的虛擬曲線通過與上述相同的方法計算。 The virtual curve of the point symmetrical to the above is calculated by the same method as above.

如上所述,在計算虛擬材料變化曲線式之後,利用在加工區域分割部42計算的虛擬材料變化曲線式來將整體加工孔區域分為複數個(步驟S50)。 As described above, after the virtual material change curve formula is calculated, the entire processed hole area is divided into a plurality of pieces by using the virtual material change curve formula calculated at the processing area dividing unit 42 (step S50).

例如,在圖3所示的①點和②點之間追加對準標記1個(A),在②和③之間追加對準標記1個(B),在相向的虛擬曲線追加A'和B'。通過這種方式,將整體加工區域分為複數個虛擬區域(虛擬區域#1-虛擬區域#4)。其中,曲線1為在虛擬區域#1中連接點①和點A的曲線,曲線2為在虛 擬區域#1中連接點①'和點A'的曲線。 For example, add 1 alignment mark (A) between points ① and ② shown in FIG. 3, add 1 alignment mark (B) between ② and ③, and add A'and B'. In this way, the entire processing area is divided into a plurality of virtual areas (virtual area #1-virtual area #4). Among them, curve 1 is the curve connecting point ① and point A in virtual area #1, curve 2 is the virtual curve The curve connecting point ①'and point A'in quasi-region #1.

此時,在整體加工孔區域中,以接近線形的形態對基於材料變形的非線性變化進行區域分割。更佳地,基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。在虛擬區域分割之後,對各個虛擬區域獲取虛擬分割區域基準點。圖4中,點V0至V3為以虛擬材料變化曲線式為基礎分割的虛擬區域的虛擬區域分割基準點。圖6例示追加如V0、V3的1個以上的虛擬分割基準點來對分割區域進行接近直線的分割。 At this time, in the overall machining hole area, the nonlinear change based on the material deformation is divided into regions that are close to linear. More preferably, based on the virtual material change curve type, the entire machining hole area is divided in a quadrangular shape. After the virtual area is divided, the virtual divided area reference point is acquired for each virtual area. In FIG. 4, points V0 to V3 are virtual area division reference points of the virtual area divided based on the virtual material change curve type. FIG. 6 exemplifies the addition of one or more virtual division reference points such as V0 and V3 to divide the divided region close to a straight line.

此外,加工孔座標校正部60利用上述獲取的虛擬分割區域座標來通過雙線性插值對虛擬分割區域內的加工孔座標進行校正(步驟S60)。例如,分別通過雙線性插值對分割區域進行校正。 In addition, the machined hole coordinate correction unit 60 corrects the machined hole coordinates in the virtual divided area by bilinear interpolation using the virtual divided area coordinates acquired as described above (step S60). For example, the divided regions are corrected by bilinear interpolation.

上述雙線性插值如以下的數學式14。 The above bilinear interpolation is as shown in the following mathematical formula 14.

數學式14 F=A 0+A 1×U+A 2×V+A 3×U×V Mathematical formula 14 F = A 0 + A 1 × U + A 2 × V + A 3 × U × V

圖7為適用本發明的加工誤差校正方法的情況下的結果圖,當進行對於座標位置的誤差校正時,對應以材料外圍為基準的情況,基於虛擬分割區域的加工座標誤差發生偏差可降低。 FIG. 7 is a result diagram when the machining error correction method of the present invention is applied. When the error correction for the coordinate position is performed, the deviation of the machining coordinate error based on the virtual division area can be reduced corresponding to the case based on the material periphery.

在完成加工孔座標校正之後,印刷電路板加工孔資訊向印刷電路板孔加工部70傳遞,印刷電路板孔加工部70以校正的加工孔資訊為基礎來執行印刷電路板孔加工(步驟S70)。 After the processing hole coordinate correction is completed, the printed circuit board processing hole information is transmitted to the printed circuit board hole processing portion 70, and the printed circuit board hole processing portion 70 performs printed circuit board hole processing based on the corrected processing hole information (step S70) .

這種本發明中,在發生基於印刷電路板材料生產步驟的材料變形的情況下,將材料的非線性變形分割在接近矩形的區域來對各個虛擬分割領域進行線性校正,由此可減少加工座標誤差發生偏差,並可調加工精密度。 In the present invention, when the material deformation based on the printed circuit board material production step occurs, the non-linear deformation of the material is divided into a nearly rectangular area to linearly correct each virtual division area, thereby reducing the processing coordinates The deviation occurs and the processing precision can be adjusted.

以上,根據的上述實施例具體說明了本發明人員的發明,但是,本發明並不局限於此,在不超出本發明的主旨的範圍內,可進行多種變更。 The above-described embodiments have specifically described the invention of the present inventors, but the present invention is not limited to this, and various modifications can be made within the scope not exceeding the gist of the present invention.

10‧‧‧對準標記設計資訊提取部 10‧‧‧ Alignment Mark Design Information Extraction Department

20‧‧‧拍攝裝置 20‧‧‧ shooting device

30‧‧‧對準標記座標提取部 30‧‧‧ Alignment Mark Coordinate Extraction Department

40‧‧‧位置補償值計算單元 40‧‧‧ Position compensation value calculation unit

41‧‧‧虛擬材料變化曲線計算部 41‧‧‧ Virtual Material Change Curve Calculation Department

42‧‧‧加工區域分割部 42‧‧‧Processing area division

60‧‧‧加工孔座標校正部 60‧‧‧Correcting Department of Machining Hole

70‧‧‧印刷電路板孔加工部 70‧‧‧Printed Circuit Board Hole Processing Department

Claims (12)

一種加工位置校正裝置,用於加工印刷電路板材料的孔,包括:對準標記設計資訊提取部,從用於印刷電路板材料加工的設計圖提取對準標記設計資訊;對準標記座標提取部,利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;位置補償值計算單元,以前述對準標記設計資訊及前述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的補償值;以及加工孔座標校正部,通過在前述位置補償值計算單元計算的位置補償值校正加工孔位置座標;前述位置補償值計算單元包括:虛擬材料變化曲線計算部,以前述對準標記設計資訊和前述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式;以及加工區域分割部,利用在前述虛擬材料變化曲線計算部計算的虛擬材料變化曲線式來分割整體加工孔區域;其中前述加工孔座標校正部在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值對加工孔座標進行校正。 A processing position correction device for processing holes of printed circuit board materials, including: an alignment mark design information extraction part, extracting alignment mark design information from a design drawing for printed circuit board material processing; an alignment mark coordinate extraction part , Use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material; the position compensation value calculation unit calculates the compensation for the material-based deformation based on the alignment mark design information and the actual coordinate position information The compensation value of the machining hole position; and the machining hole coordinate correction unit, which corrects the machining hole position coordinate by the position compensation value calculated by the aforementioned position compensation value calculation unit; the aforementioned position compensation value calculation unit includes: a virtual material change curve calculation unit Calculate the virtual material change curve for estimating the material change based on the alignment mark design information and the aforementioned actual coordinate position information; and the processing area division part, using the virtual material change curve calculated in the virtual material change curve calculation part To divide the entire machining hole area; wherein the aforementioned machining hole coordinate correction unit obtains the reference point of the virtual division area in each divided area, and uses the virtual division area coordinates corresponding to the obtained reference point to coordinate the machining hole through bilinear interpolation Perform calibration. 如請求項1所記載之加工位置校正裝置,其中前述拍 攝裝置使用拍攝用於孔加工的印刷電路板材料來獲取印刷電路板材料影像的視覺攝像頭。 The processing position correction device described in claim 1, wherein the aforementioned The camera uses a visual camera that shoots printed circuit board material for hole processing to obtain printed circuit board material images. 如請求項1所記載之加工位置校正裝置,其中前述虛擬材料變化曲線計算部在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線。 The processing position correction device according to claim 1, wherein the virtual material change curve calculation unit adds arbitrary alignment marks to the alignment mark design information of the actual printed circuit board material to calculate the alignment mark by the virtual material change curve type The virtual line of coordinates. 如請求項3所記載之加工位置校正裝置,其中前述虛擬材料變化曲線式基於前述對準標記設計資訊和前述實際座標位置資訊來通過2次曲線式推定來計算,或者通過分段樣條插值計算。 The processing position correction device according to claim 3, wherein the virtual material change curve type is calculated by quadratic curve estimation based on the alignment mark design information and the actual coordinate position information, or calculated by piecewise spline interpolation . 如請求項3所記載之加工位置校正裝置,其中前述虛擬材料變化曲線式基於前述對準標記設計資訊和前述實際座標位置資訊來通過N次多項式推定來計算,其中N
Figure 106120183-A0305-02-0021-1
3。
The processing position correction device according to claim 3, wherein the virtual material change curve formula is calculated by N-degree polynomial estimation based on the alignment mark design information and the actual coordinate position information, where N
Figure 106120183-A0305-02-0021-1
3.
如請求項1所記載之加工位置校正裝置,其中前述加工區域分割部基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 The processing position correction device according to claim 1, wherein the processing area dividing unit divides the entire processing hole area in a nearly linear shape based on a virtual material change curve type. 如請求項1所記載之加工位置校正裝置,其中前述加工區域分割部基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 The processing position correction device according to claim 1, wherein the processing area dividing unit divides the entire processing hole area in a quadrilateral form based on a virtual material change curve type. 一種加工位置校正方法,用於印刷電路板材料的孔加工,包括以下步驟:步驟(a),接收用於印刷電路板材料加工的設計圖,從所接收的前述設計圖提取對準標記設計資訊; 步驟(b),利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;步驟(c),以前述對準標記設計資訊和前述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值:以及步驟(d),通過在前述步驟(c)中計算的位置補償值對加工孔位置座標進行校正;前述步驟(c)包括:步驟(c1),以前述對準標記設計資訊和前述實際座標位置資訊為基礎,計算用於推定材料的變化的虛擬材料變化曲線式;以及步驟(c2),利用在前述步驟(c)中計算的虛擬材料變化曲線式來分割整體加工孔區域;其中在前述步驟(d)中,在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值對加工孔座標進行校正。 A processing position correction method for hole processing of printed circuit board materials includes the following steps: step (a), receiving a design drawing for processing of printed circuit board materials, extracting alignment mark design information from the received design drawing ; Step (b), use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material; Step (c), based on the aforementioned alignment mark design information and the aforementioned actual coordinate position information, calculate for compensation based on The position compensation value of the processing hole position of the material deformation: and step (d), the position coordinate of the processing hole is corrected by the position compensation value calculated in the foregoing step (c); the foregoing step (c) includes: step (c1), Based on the aforementioned alignment mark design information and the aforementioned actual coordinate position information, calculate a virtual material change curve formula for estimating the material change; and step (c2), using the virtual material change curve calculated in the aforementioned step (c) Use the formula to divide the whole machining hole area; in the previous step (d), obtain the reference point of the virtual divided area in each divided area, and use the coordinates of the virtual divided area corresponding to the obtained reference point to pass the bilinear interpolation pair Machine hole coordinates for correction. 如請求項8所記載之加工位置校正方法,其中在前述步驟(c1)中,在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線。 The processing position correction method described in claim 8, wherein in the aforementioned step (c1), any alignment mark is added to the alignment mark design information of the actual printed circuit board material to calculate the alignment through the virtual material change curve A virtual line marking the coordinates. 如請求項8所記載之加工位置校正方法,其中在前述步驟(c1)中,基於前述對準標記設計資訊和前述實際座標位置資訊來推定2次曲線來計算虛擬材料變化曲 線式,或者通過分段樣條插值來計算虛擬材料變化曲線式。 The processing position correction method as described in claim 8, wherein in the aforementioned step (c1), a quadratic curve is estimated based on the aforementioned alignment mark design information and the aforementioned actual coordinate position information to calculate the virtual material change curve Linear, or calculate virtual material change curve by piecewise spline interpolation. 如請求項8所記載之加工位置校正方法,其中在前述步驟(c2)中,基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 The processing position correction method according to claim 8, wherein in the aforementioned step (c2), the entire processing hole area is divided into regions that are nearly linear based on the virtual material change curve. 如請求項8所記載之加工位置校正方法,其中在前述步驟(c2)中,基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 The machining position correction method according to claim 8, wherein in the aforementioned step (c2), the entire machining hole area is divided into quadrilateral shapes based on a virtual material change curve type.
TW106120183A 2016-06-16 2017-06-16 Apparatus and method for calibrating machining position TWI684390B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??10-2016-0075321 2016-06-16
KR10-2016-0075321 2016-06-16
KR1020160075321A KR101720004B1 (en) 2016-06-16 2016-06-16 Machining position correction apparatus and method thereof

Publications (2)

Publication Number Publication Date
TW201801603A TW201801603A (en) 2018-01-01
TWI684390B true TWI684390B (en) 2020-02-01

Family

ID=58496652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120183A TWI684390B (en) 2016-06-16 2017-06-16 Apparatus and method for calibrating machining position

Country Status (3)

Country Link
KR (1) KR101720004B1 (en)
CN (1) CN107529278B (en)
TW (1) TWI684390B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191567B (en) * 2018-02-22 2022-10-11 奥特斯奥地利科技与系统技术有限公司 Alignment using physical alignment marks and virtual alignment marks
CN108362712B (en) 2018-03-14 2022-09-30 京东方科技集团股份有限公司 Substrate mother board and detection method thereof
CN108747041B (en) * 2018-04-19 2021-10-26 广州广汽荻原模具冲压有限公司 Reference correction method for three-dimensional laser cutting plate
JP7117903B2 (en) * 2018-06-11 2022-08-15 住友重機械工業株式会社 Processing method and processing equipment
EP3786844A4 (en) * 2018-07-06 2021-05-05 Rakuten, Inc. Image processing system, image processing method, and program
CN111123238A (en) * 2018-10-31 2020-05-08 三赢科技(深圳)有限公司 Lens module and electronic equipment using same
CN111299842B (en) * 2018-12-11 2022-04-05 深圳市百柔新材料技术有限公司 Method for high-precision laser engraving of solder mask
CN110125551A (en) * 2019-05-22 2019-08-16 武汉华工激光工程有限责任公司 The 3D laser mark printing device and method of wall circular mark in a kind of big radian depth
CN112087887B (en) * 2019-06-12 2023-06-09 奥特斯科技(重庆)有限公司 Alignment of component carrier structures by combining evaluation pad and hole type alignment marks
CN110351951B (en) * 2019-07-05 2021-02-05 信泰电子(西安)有限公司 System and method for selecting positioning hole during PCB contour machining
CN111026030A (en) * 2019-12-13 2020-04-17 西安飞机工业(集团)有限责任公司 Hole position double correction method for numerical control machine tool
TWI724705B (en) 2019-12-20 2021-04-11 財團法人工業技術研究院 Method for compensating design image of workpiece and system for processing design image of workpiece
CN111659766B (en) * 2020-06-11 2022-03-22 西安中科微精光子制造科技有限公司 Correction method and correction device applied to workpiece hole making position
CN112388185B (en) * 2020-11-23 2022-09-30 西安中科微精光子科技股份有限公司 Laser cutting compensation method and device for nonlinear deformation and storage medium
CN113059605B (en) * 2021-03-29 2022-07-12 杭州爱科科技股份有限公司 Cutting method, device and system of printing packaging material and readable storage medium
CN113115518B (en) * 2021-04-13 2022-07-12 生益电子股份有限公司 Collapsible translation method
CN113379688B (en) * 2021-05-28 2023-12-08 慕贝尔汽车部件(太仓)有限公司 Stabilizer bar hole deviation detection method and system based on image recognition
TWI772188B (en) * 2021-09-24 2022-07-21 健鼎科技股份有限公司 Perforation forming method of a multilayer circuit board, manufacturing method of a multilayer circuit board, multilayer circuit board and multilayer circuit board manufacturing system
CN114245576A (en) * 2021-11-17 2022-03-25 南京晟通信息技术有限公司 Mark point pair-based track correction method for PCB splitting program
CN114364167B (en) * 2021-12-23 2023-11-07 江苏普诺威电子股份有限公司 Double-layer packaging substrate alignment method suitable for laser through holes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200811604A (en) * 2006-05-10 2008-03-01 Mejiro Prec Inc Projection exposure device and projection exposure method
US20120083916A1 (en) * 2010-09-30 2012-04-05 Ryo Yamada Displacement calculation method, drawing data correction method, substrate manufacturing method, and drawing apparatus
JP2012208237A (en) * 2011-03-29 2012-10-25 Ibiden Co Ltd Inspection device for drawing apparatus, drawing apparatus, program, inspection method for drawing apparatus, and manufacturing method for printed circuit board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239877A (en) * 2001-02-14 2002-08-28 Matsushita Electric Ind Co Ltd Boring position correcting method, boring position correcting device and laser processing device
KR100607822B1 (en) 2005-02-23 2006-08-07 삼성전기주식회사 Apparatus for determining the position of pcb processing drill and determining design parameter of the pcb
JP5388676B2 (en) * 2008-12-24 2014-01-15 イビデン株式会社 Electronic component built-in wiring board
KR20110138879A (en) 2010-06-22 2011-12-28 삼성전기주식회사 Machining error corrector method using optical pick up
KR101175871B1 (en) * 2010-09-28 2012-08-21 삼성전기주식회사 Method for revision of printing error in pcb
KR20140142403A (en) 2013-06-03 2014-12-12 주식회사 디에이피 Method for driving laser drill in via hole processing
KR101542018B1 (en) 2014-11-17 2015-08-05 성균관대학교산학협력단 Method for laser machining with optimized moving route

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200811604A (en) * 2006-05-10 2008-03-01 Mejiro Prec Inc Projection exposure device and projection exposure method
US20120083916A1 (en) * 2010-09-30 2012-04-05 Ryo Yamada Displacement calculation method, drawing data correction method, substrate manufacturing method, and drawing apparatus
JP2012208237A (en) * 2011-03-29 2012-10-25 Ibiden Co Ltd Inspection device for drawing apparatus, drawing apparatus, program, inspection method for drawing apparatus, and manufacturing method for printed circuit board

Also Published As

Publication number Publication date
CN107529278B (en) 2019-09-24
CN107529278A (en) 2017-12-29
TW201801603A (en) 2018-01-01
KR101720004B1 (en) 2017-03-27

Similar Documents

Publication Publication Date Title
TWI684390B (en) Apparatus and method for calibrating machining position
JP5089827B1 (en) Laser processing method and laser processing apparatus
TWI633279B (en) Substrate measuring device and laser processing system
CN106537269B (en) Method, device and system for improving precision of XY motion platform system
US9423242B2 (en) Board-warping measuring apparatus and board-warping measuring method thereof
JP4490468B2 (en) Solder printing inspection device
JP4543935B2 (en) Electronic component mounting apparatus and mounting method
JP5673719B2 (en) Electronic component manufacturing apparatus and manufacturing method thereof
TWI547973B (en) Drawing method and apparatus
JP2013250259A (en) Substrate inspection device and position correction method thereof
JP2006308500A (en) Three dimensional workpiece measuring method
KR20200002916A (en) Laser processing equipment
JPS6374530A (en) Automatic mounting method for component
JP4649125B2 (en) Reference hole drilling machine and error correction method thereof
TWI620999B (en) Printing device, exposure printing device, printing method and storage medium
JP2004327922A (en) Working position correction method
JP2005229111A (en) Method of presuming at least one part arrangement position on substrate, and equipment executing the method
JP2007315818A (en) Minute height measuring method by image processing
WO2023032962A1 (en) Direct-drawing device and method for controlling the same
US7623941B2 (en) Method for adjusting the relative position of device of laser engraver
JP7106761B2 (en) tolerance setting system, circuit board inspection machine, tolerance setting method, circuit board inspection method
KR20140123786A (en) Alignment mark select device and board process system of the same
JP2021004741A (en) Tolerance setting system, substrate inspection machine, tolerance setting method, and substrate inspection method
JP2010109217A (en) Method of generating teaching data for substrate recognition mark
JP2005186134A (en) Method for initial setting of laser trimming apparatus