TWI684390B - Apparatus and method for calibrating machining position - Google Patents
Apparatus and method for calibrating machining position Download PDFInfo
- Publication number
- TWI684390B TWI684390B TW106120183A TW106120183A TWI684390B TW I684390 B TWI684390 B TW I684390B TW 106120183 A TW106120183 A TW 106120183A TW 106120183 A TW106120183 A TW 106120183A TW I684390 B TWI684390 B TW I684390B
- Authority
- TW
- Taiwan
- Prior art keywords
- processing
- virtual
- alignment mark
- printed circuit
- circuit board
- Prior art date
Links
- 238000003754 machining Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012545 processing Methods 0.000 claims abstract description 132
- 239000000463 material Substances 0.000 claims abstract description 83
- 238000013461 design Methods 0.000 claims abstract description 63
- 238000012937 correction Methods 0.000 claims abstract description 45
- 230000008859 change Effects 0.000 claims description 64
- 238000004364 calculation method Methods 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 17
- 230000000007 visual effect Effects 0.000 claims description 4
- 238000005553 drilling Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 101001045744 Sus scrofa Hepatocyte nuclear factor 1-beta Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0008—Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0266—Marks, test patterns or identification means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
- H05K3/0047—Drilling of holes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/16—Inspection; Monitoring; Aligning
- H05K2203/166—Alignment or registration; Control of registration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/16—Inspection; Monitoring; Aligning
- H05K2203/167—Using mechanical means for positioning, alignment or registration, e.g. using rod-in-hole alignment
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Laser Beam Processing (AREA)
- Numerical Control (AREA)
Abstract
本發明關於當進行印刷電路板材料的孔加工時,測定材料變形程度,基於此,計算誤差校正式來使設計上的加工孔位置和實際加工孔位置之間的誤差發生偏差最小化,以此加工精密度提高的加工位置校正裝置及其方法,加工位置校正方法包括:接收用於印刷電路板材料加工的設計圖,從上述接收的設計圖提取對準標記設計資訊的步驟;利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊的步驟;以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值的步驟:以及通過在上述計算的位置補償值對加工孔位置座標進行校正的步驟,以此體現用於印刷電路板材料的孔加工的加工位置校正方法。 The present invention relates to measuring the degree of material deformation when performing hole processing of printed circuit board materials. Based on this, an error correction formula is calculated to minimize the deviation between the designed processing hole position and the actual processing hole position, thereby Processing position correction device and method for improved processing precision. The processing position correction method includes: receiving design drawings for processing printed circuit board materials, extracting alignment mark design information from the received design drawings; The step of extracting the actual coordinate position information of the alignment mark of the printed circuit board material; the step of calculating the position compensation value for compensating the position of the machining hole based on the material deformation based on the alignment mark design information and the actual coordinate position information : And the step of correcting the coordinates of the machining hole position by the position compensation value calculated above, in order to embody the machining position correction method for the machining of holes for printed circuit board materials.
Description
本發明關於加工位置校正裝置及其方法,尤其,關於當加工印刷電路板材料的孔時,測定材料變形程度,基於此,計算誤差校正式來使設計上的加工孔位置和實際加工孔位置之間的誤差發生偏差最小化,以此使加工精密度提高的加工位置校正裝置及其方法。 The present invention relates to a processing position correction device and a method thereof, in particular, to measure the degree of material deformation when processing a hole of a printed circuit board material, based on which, an error correction formula is calculated to make the designed processing hole position and the actual processing hole position The error deviation between the errors is minimized, so as to improve the processing precision of the processing position correction device and method.
最近,隨著智慧手機、筆記型電腦、平板電腦等電子裝置的輕量化小型化,需要印刷電路板(PCB,Printed Circuit Board)及柔性印刷電路板(FPCB,Flexible Printed Circuit Board)的高畫素及精密化。 Recently, with the weight reduction of electronic devices such as smartphones, notebook computers, and tablet PCs, high-resolution of printed circuit boards (PCB, Printed Circuit Board) and flexible printed circuit boards (FPCB, Flexible Printed Circuit Board) are required And precision.
以往,為了加工對應多層印刷電路基板的層間連接通路的小孔及特殊通孔(via hole)而主要使用機械鑽孔機(Mechanical Drill),最近,因這種高畫素及精密化的要求,主要使用雷射光技工裝置。雷射光加工裝置為為了在多層基板的電子設備連接各個層而利用雷射光束來對小孔及特殊通孔進行穿孔的裝置。 In the past, mechanical drills were mainly used to process small holes and special via holes corresponding to the interlayer connection paths of multilayer printed circuit boards. Recently, due to such high-resolution and precision requirements, The laser light mechanic device is mainly used. The laser processing device is a device that uses laser beams to perforate small holes and special through holes in order to connect layers to electronic devices on a multilayer substrate.
使用機械鑽孔機或雷射光鑽孔裝置來在印刷電路板加工孔,利用在加工面設計馬達進行移動的路徑的印刷電路 板設計圖。 Use a mechanical drilling machine or laser drilling device to process holes on the printed circuit board, and use a printed circuit that designs a path for the motor to move on the processing surface Board design drawing.
通常,當印刷電路板材料孔的加工時,加工孔位置通過材料外圍的4點或其以上的對準標記識別來讀取座標,以對準標記座標為基準,通過印刷電路板設計加工孔座標的資料校正來生成得到校正的加工孔座標,基於此,執行印刷電路板孔加工。 In general, when processing holes in printed circuit boards, the positions of the holes are read by the alignment marks of 4 points or more on the periphery of the material to read the coordinates. Based on the coordinates of the alignment marks, the hole coordinates are designed and processed by the printed circuit board. The data is corrected to generate the corrected processing hole coordinates, and based on this, the printed circuit board hole processing is performed.
用於在印刷電路基板加工孔的先前技術為以下的(專利文獻1)至(專利文獻4)。 The prior art for processing holes on a printed circuit board is the following (Patent Document 1) to (Patent Document 4).
(專利文獻1)中公開的先前技術包括:影像成像部,使包括孔的影像成像;孔資訊判斷部,從鑽孔機的位置和安裝於鑽孔機的位元(bit)的直徑求出通過鑽孔機形成於印刷電路板的孔(hole)的大小及位置;以及位置控制部,比較影像成像部成像的孔的位置及帶下和孔資訊判斷部求出的孔的位置及大小來調節鑽孔機的位置,以使通過鑽孔機形成的孔的中心與上述孔的中心一致,將上述調節的位置確定為鑽孔機的基準位置,確定印刷電路板加工用鑽孔機的位置和印刷電路板設計值。 The prior art disclosed in (Patent Document 1) includes: an image imaging section to image an image including a hole; a hole information judgment section to obtain from the position of the drilling machine and the diameter of a bit installed on the drilling machine The size and position of the hole formed in the printed circuit board by the drilling machine; and the position control unit compares the position of the hole imaged by the image imaging unit and the position and size of the hole obtained by the tape and hole information judgment unit Adjust the position of the drilling machine so that the center of the hole formed by the drilling machine coincides with the center of the hole, determine the adjusted position as the reference position of the drilling machine, and determine the position of the drilling machine for printed circuit board processing And printed circuit board design values.
通過這種結構,謀求因節約工作時間的生產性提高,並可減少部件數量,從而可節儉生產成本。 With this structure, productivity can be improved by saving working time, and the number of components can be reduced, so that production costs can be saved.
並且,(專利文獻2)中公開的先前技術包括:識別形成於作為雷射光加工對象的板狀的基板邊緣的對準標記來計算絕對座標的步驟;將計算的上述絕對座標儲存為基準位置資訊;沿著形成於上述板狀的基板的橫向或縱向的圖案來移動複數個光學拾取單元的步驟;將通過上述複數個光 學拾取單元檢測的上述圖案的座標儲存為誤差位置資訊的步驟;以及比較上述基準位置資訊和誤差位置資訊來修改實際加工位置資訊的步驟,利用光學拾取器的加工誤差校正方法。 In addition, the prior art disclosed in (Patent Document 2) includes the steps of recognizing an alignment mark formed on the edge of a plate-shaped substrate as a laser processing target and calculating absolute coordinates; and storing the calculated absolute coordinates as reference position information The step of moving the plurality of optical pickup units along the horizontal or vertical pattern formed on the plate-shaped substrate; will pass the plurality of light The steps of storing the coordinates of the pattern detected by the pickup unit as error position information; and the step of comparing the reference position information and the error position information to modify the actual processing position information, using the processing error correction method of the optical pickup.
通過這種結構,可很大程度提高利用雷射光等的基板加工速度。 With this structure, the processing speed of the substrate using laser light or the like can be greatly increased.
並且,(專利文獻3)中公開的先前技術中,通孔加工步驟中,為了去除印刷電路板的絕緣體,當需要的適當雷射光照射數為N,光束尺寸為B,能量為P,脈衝寬度為W時,與雷射光照射數N的減少量成反比,增加上述雷射光的照射的基準能量P,與雷射光照射數N的減少量成反比,減少雷射光照射的光束尺寸B,來減少用於通孔加工的雷射光照射數N。 Moreover, in the prior art disclosed in (Patent Document 3), in the through-hole processing step, in order to remove the insulation of the printed circuit board, when the required number of appropriate laser light irradiations is N, the beam size is B, the energy is P, and the pulse width When it is W, it is inversely proportional to the decrease in the number N of laser light irradiation, increasing the reference energy P of the above-mentioned laser light irradiation, and inversely proportional to the decrease in the number N of laser light irradiation, reducing the beam size B of the laser light irradiation to reduce The number N of laser light irradiation for through-hole processing.
通過這種結構,用於通孔加工的雷射光穿孔加工步驟中,可通過減少雷射光照射數來提高生產性。 With this structure, in the laser perforation processing step for through-hole processing, it is possible to improve productivity by reducing the number of laser light irradiations.
並且,(專利文獻4)中公開的先前技術包括:加工範圍設定步驟,設定通過向反射鏡入射並發射的雷射光的到達區域形成的加工範圍;加載步驟,加載形成有具有與形成於上述被加工基材的複數個孔的位置對應的位置的參考位置的位置資訊;基準為止設定步驟,在上述位置資訊中,上述加工範圍內的上述參考位置的密度去除最高區域內的參考位置之後,將加工範圍的中心點設定為基準位置;移動路徑設定步驟,從上述基準位置生成上述被測定基材的移動路徑;以及加工步驟,沿著上述移動路徑,移動上述 被加工基材並執行雷射光加工。 Also, the prior art disclosed in (Patent Document 4) includes: a processing range setting step to set a processing range formed by an arrival area of laser light incident on and reflecting from a mirror; and a loading step to load the The position information of the reference position of the position corresponding to the position of the plurality of holes of the processing substrate; the setting step until the reference, in the position information, after the density of the reference position in the processing range is removed from the reference position in the highest area, the The center point of the processing range is set as the reference position; the moving path setting step generates the moving path of the substrate to be measured from the reference position; and the processing step moves the above along the moving path The substrate is processed and laser processing is performed.
上述構成的先前技術中,當雷射光加工時,通過可進行旋轉的反射鏡來設定加工範圍之後,對加工範圍內的複數個孔進行加工之後,移動被加工基材,並使被加工基材的移動路徑最小化,由此減少在被加工基材形成複數個孔所需要的時間。 In the prior art of the above configuration, when laser processing, the processing range is set by a rotatable mirror, after processing a plurality of holes in the processing range, the substrate to be processed is moved, and the substrate to be processed is moved The path of movement is minimized, thereby reducing the time required to form a plurality of holes in the substrate to be processed.
[先前技術文獻] [Prior Technical Literature]
[專利文獻] [Patent Literature]
(專利文獻1)韓國授權專利10-0607822號(2006年07月26日授權)(確定印刷電路板加工用鑽孔機的位置和印刷電路板設計值的裝置)。 (Patent Document 1) Korean Patent No. 10-0607822 (issued on July 26, 2006) (device for determining the position of the drilling machine for printed circuit board processing and the design value of the printed circuit board).
(專利文獻2)韓國公開專利10-2011-0138879號(2011年12月28日公開)(利用光學拾取器的加工誤差校正方法)。 (Patent Document 2) Korean Laid-open Patent No. 10-2011-0138879 (published on December 28, 2011) (a method for correcting processing errors using an optical pickup).
(專利文獻3)韓國公開專利10-2014-0142403號(2014年12月12日公開)(用於加工通孔的雷射光鑽孔機驅動方法)。 (Patent Document 3) Korean Published Patent No. 10-2014-0142403 (published on December 12, 2014) (Laser drilling machine driving method for processing through holes).
(專利文獻4)韓國授權專利10-1542018號(2015年07月29日授權)(具有最優化的移動路徑的雷射光加工方法)。 (Patent Document 4) Korean Patent Grant No. 10-1542018 (issued on July 29, 2015) (laser processing method with optimized moving path).
但是,上述一般印刷電路板材料的孔加工方法通過印刷電路板材料生產步驟(熱量、壓力)而導致材料的大幅度變形,不考慮上述問題,以材料外圍的對準標記(Alignment Mark)座標為基準來僅執行資料線性校正來對孔進行加工,因此,根據材料變形現象,會發生被校正的加工孔位置和實際加工孔位置之間的座標誤差,從而降低加工精密度。 However, the above-mentioned general printed circuit board material hole processing method causes a large deformation of the material through the printed circuit board material production steps (heat, pressure). Without considering the above problems, the alignment mark (Alignment) on the periphery of the material Mark) is used as a reference to perform linear correction of the data to process the hole. Therefore, according to the material deformation phenomenon, the coordinate error between the corrected processing hole position and the actual processing hole position will occur, thereby reducing the processing precision.
並且,一般印刷電路板材料的孔加工方法以印刷電路板材料外圍的對準標記座標為基準來線性校正設計加工座標,因此,在材料發生很大程度的非線性變形的情況下,實際加工孔位置和校正的加工孔位置之間的座標誤差很大。 In addition, the general hole processing method of printed circuit board materials uses the alignment mark coordinates on the periphery of the printed circuit board material as a reference to linearly correct the design and processing coordinates. Therefore, in the case of a large degree of nonlinear deformation of the material, the actual hole processing The coordinate error between the position and the corrected machining hole position is large.
並且,所提及的先前技術並非為用於提供加工精密度的方法,而是謀求工作時間節約等來提高生產性的技術,不進行印刷電路板生產步驟中發生的材料的變形的誤差校正。因此,先前技術存在如下問題,因無法進行在生產步驟中發生的材料大小的變形校正,因此會降低加工精密度。 In addition, the aforementioned prior art is not a method for providing processing precision, but a technology for improving productivity by saving working time, etc., and does not perform error correction of material deformation that occurs in the printed circuit board production step. Therefore, the prior art has a problem that since it is impossible to correct the deformation of the material size that occurs in the production step, the processing precision is reduced.
因此,本發明為了解決在如上所述的先前技術中發生的所有問題而提出,本發明之一目的在於,提供當加工印刷電路板材料的孔時,測定材料變形程度,基於此,計算誤差校正式來使設計上加工孔位置和實際加工孔位置之間的誤差發生偏差,以此謀求加工精密度提高的加工位置校正裝置及其方法。 Therefore, the present invention is proposed to solve all the problems that have occurred in the prior art as described above. One of the objects of the present invention is to provide a method for measuring the degree of material deformation when processing holes in a printed circuit board material, and based on this, calculate the error correction Formally, a deviation and an error between the designed machining hole position and the actual machining hole position are generated to seek a machining position correction device and method for improving machining precision.
本發明的另一目的在於,提供當印刷電路板材料的孔加工時,減少在材料生產步驟中發生的材料變形所引起的加工孔位置和校正的加工孔位置之間誤差發生偏差來提高加工精密度的加工位置校正裝置及其方法。 Another object of the present invention is to provide a reduction in the deviation between the error of the machining hole position and the corrected machining hole position caused by the material deformation in the material production step when the hole of the printed circuit board material is processed to improve the machining precision Degree machining position correction device and method.
為了解決上述問題,本發明的加工位置校正裝置的特徵在於,包括:對準標記設計資訊提取部,從用於印刷電路板材料加工的設計圖提取對準標記設計資訊;對準標記座標提取部,利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;位置補償值計算單元,以上述對準標記設計資訊和實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的補償值;加工孔座標校正部,通過在上述位置補償值計算單元計算的位置補償值校正加工孔位置座標, 其中,本發明的特徵在於,拍攝裝置使用拍攝用於孔加工的印刷電路板材料來獲取印刷電路板材料影像的視覺攝像頭。 In order to solve the above-mentioned problems, the processing position correction device of the present invention is characterized by including: an alignment mark design information extraction section, which extracts alignment mark design information from a design drawing for printed circuit board material processing; and an alignment mark coordinate extraction section , Use the shooting device to extract the actual coordinate position information of the alignment mark of the printed circuit board material; the position compensation value calculation unit, based on the above alignment mark design information and the actual coordinate position information, calculate the processing for compensating the material-based deformation The compensation value of the hole position; the machining hole coordinate correction part corrects the coordinates of the machining hole position by the position compensation value calculated in the position compensation value calculation unit, Among them, the present invention is characterized in that the photographing device uses a visual camera that photographs printed circuit board material for hole processing to acquire images of the printed circuit board material.
其中,本發明的特徵在於,上述位置補償值計算單元包括:虛擬材料變化曲線計算部,以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式;以及加工區域分割部,利用在上述虛擬材料變化曲線計算部計算的虛擬材料變化曲線式來分割整體加工孔區域。 Among them, the present invention is characterized in that the position compensation value calculation unit includes: a virtual material change curve calculation unit that calculates a virtual material change for estimating the change of the material based on the alignment mark design information and the actual coordinate position information Curvilinear formula; and a processing area dividing section, which divides the entire processed hole area using the virtual material change curve formula calculated in the virtual material change curve calculating section.
其中,本發明的特徵在於,上述虛擬材料變化曲線計算部在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線計算。 Among them, the present invention is characterized in that the virtual material change curve calculation unit adds arbitrary alignment marks to the alignment mark design information of the actual printed circuit board material to calculate the virtual line calculation through the alignment mark coordinates by the virtual material change curve formula .
其中,本發明的特徵在於,上述虛擬材料變化曲線式 基於上述對準標記設計資訊和上述實際座標位置資訊來通過2次曲線式推定來計算,或者通過分段樣條插值計算。 Among them, the present invention is characterized by the above virtual material change curve Based on the above-mentioned alignment mark design information and the above-mentioned actual coordinate position information, it is calculated by quadratic curve estimation, or calculated by piecewise spline interpolation.
其中,本發明的特徵在於,上述加工區域分割部基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that the processing area dividing unit divides the entire processing hole area in a nearly linear shape based on a virtual material change curve type.
其中,本發明的特徵在於,上述加工區域分割部基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that the processing area dividing unit divides the entire processing hole area in a quadrilateral form based on a virtual material change curve type.
其中,本發明的特徵在於,上述加工孔座標校正部在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值(Biliner Interpolation)對加工孔座標進行校正。 Among them, the present invention is characterized in that the machining hole coordinate correction unit obtains the reference point of the virtual divided area in each divided area, and uses bilinear interpolation (Biliner Interpolation) by using the virtual divided area coordinates corresponding to the obtained reference point Correct the coordinates of the machining hole.
並且,本發明的加工位置校正方法的特徵在於,包括:步驟(a),接收用於印刷電路板材料加工的設計圖,從所接收的上述設計圖提取對準標記設計資訊;步驟(b),利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊;步驟(c),以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值:以及步驟(d),通過在上述步驟(c)中計算的位置補償值對加工孔位置座標進行校正。 Moreover, the processing position correction method of the present invention is characterized by comprising: step (a), receiving a design drawing for processing printed circuit board materials, extracting alignment mark design information from the received design drawing; step (b) , Use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material; step (c), based on the above alignment mark design information and the actual coordinate position information to calculate the compensation for processing based on material deformation Position compensation value of the hole position: and step (d), the position coordinate of the machined hole is corrected by the position compensation value calculated in the above step (c).
其中,本發明的特徵在於,上述步驟(c)包括:步驟(c1),以上述對準標記設計資訊和上述實際座標位置資訊為基礎,計算用於推定材料的變化的虛擬材料變化曲線式;以及步驟(c2),利用在上述步驟(c)中計算的虛擬材料 變化曲線式來分割整體加工孔區域。 Among them, the present invention is characterized in that the step (c) includes the step (c1), based on the alignment mark design information and the actual coordinate position information, to calculate a virtual material change curve for estimating the change of the material; And step (c2), using the virtual material calculated in step (c) above Change the curve type to divide the whole processing hole area.
其中,本發明的特徵在於,在上述步驟(c1)中,在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來通過虛擬材料變化曲線式計算經過對準標記座標的虛擬線。 Among them, the present invention is characterized in that in the above step (c1), an arbitrary alignment mark is added to the alignment mark design information of the actual printed circuit board material to calculate the virtual line passing through the alignment mark coordinates by a virtual material change curve .
其中,本發明的特徵在於,在上述步驟(c1)中,基於上述對準標記設計資訊和上述實際座標位置資訊來推定2次曲線來計算虛擬材料變化曲線式,或者通過分段樣條插值來計算虛擬材料變化曲線式。 Among them, the present invention is characterized in that in the above step (c1), a quadratic curve is estimated based on the alignment mark design information and the actual coordinate position information to calculate a virtual material change curve type, or by piecewise spline interpolation Calculate the virtual material change curve.
其中,本發明的特徵在於,在上述步驟(c2)中,基於虛擬材料變化曲線式,以接近線形的形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that in the above step (c2), based on the virtual material change curve type, the entire processed hole area is divided into regions that are nearly linear.
其中,本發明的特徵在於,在上述步驟(c2)中,基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。 Among them, the present invention is characterized in that, in the above step (c2), based on the virtual material change curve type, the entire processed hole area is divided into a quadrilateral form.
其中,本發明的特徵在於,在上述步驟(d)中,在分割的各個區域獲取虛擬分割區域的基準點,利用與所獲取的基準點相應的虛擬分割區域座標來通過雙線性插值對加工孔座標進行校正。 Among them, the present invention is characterized in that in the above step (d), the reference points of the virtual divided area are obtained from each divided area, and the processing of the virtual divided area coordinates corresponding to the obtained reference points is used to perform processing by bilinear interpolation Correct the hole coordinates.
根據本發明,本發明具有如下優點,在發生基於印刷電路板材料生產步驟的材料變形的情況下,將材料的非線性變形分割在接近矩形的區域,來對各個虛擬分割區域進行線性校正,由此可減少加工座標誤差發生偏差並提高加 工精密度。 According to the present invention, the present invention has the advantage that, in the case of material deformation based on the printed circuit board material production step, the nonlinear deformation of the material is divided into a nearly rectangular area to linearly correct each virtual divided area by This can reduce the deviation of the processing coordinate error and improve the Work precision.
10‧‧‧對準標記設計資訊提取部 10‧‧‧ Alignment Mark Design Information Extraction Department
20‧‧‧拍攝裝置 20‧‧‧ shooting device
30‧‧‧對準標記座標提取部 30‧‧‧ Alignment Mark Coordinate Extraction Department
40‧‧‧位置補償值計算單元 40‧‧‧ Position compensation value calculation unit
41‧‧‧虛擬材料變化曲線計算部 41‧‧‧ Virtual Material Change Curve Calculation Department
42‧‧‧加工區域分割部 42‧‧‧Processing area division
60‧‧‧加工孔座標校正部 60‧‧‧Correcting Department of Machining Hole
70‧‧‧印刷電路板孔加工部 70‧‧‧Printed Circuit Board Hole Processing Department
圖1為本發明的加工位置校正裝置的框圖。 FIG. 1 is a block diagram of a processing position correction device of the present invention.
圖2為示出本發明的加工位置校正方法的流程圖。 FIG. 2 is a flowchart showing the processing position correction method of the present invention.
圖3為在本發明中用於校正加工位置的加工區域分割例示圖。 Fig. 3 is a diagram showing an example of division of a processing area for correcting a processing position in the present invention.
圖4為在本發明中通過虛擬基準點追加的加工區域分割例示圖。 FIG. 4 is a diagram showing an example of division of a processing area added by a virtual reference point in the present invention.
圖5為在本發明中虛擬材料變化曲線計算例示圖。 FIG. 5 is a diagram showing an example of calculating a virtual material change curve in the present invention.
圖6為在本發明中虛擬分割對準位置及追加對準標記例示圖。 FIG. 6 is an illustration of an example of virtual division alignment positions and additional alignment marks in the present invention.
圖7為適用本發明的加工誤差校正方法的情況下的結果圖。 FIG. 7 is a result diagram when the machining error correction method of the present invention is applied.
以下,參照圖式,詳細說明本發明較佳實施例的加工位置校正裝置及其方法。 Hereinafter, referring to the drawings, the processing position correction device and method of the preferred embodiment of the present invention will be described in detail.
圖1為本發明較佳實施例的加工位置校正裝置的框圖,包括對準標記設計資訊提取部10、拍攝裝置20、對準標記座標提取部30、位置補償值計算單元40、加工孔座標校正部60及印刷電路板孔加工部70。
1 is a block diagram of a processing position correction device according to a preferred embodiment of the present invention, including an alignment mark design
上述對準標記設計資訊提取部10從用於印刷電路板材料加工的設計圖提取對準標記設計資訊。
The above-mentioned alignment mark design
上述拍攝裝置20通過用於使實際孔加工的印刷電路板材料成像來獲取影像,可利用多種影像拍攝裝置,但是
在本發明中,作為實施例,較佳地,利用視覺攝像頭。
The above-mentioned
上述對準標記座標提取部30利用上述拍攝裝置20來提取印刷電路板的對準標記的實際座標位置資訊。
The alignment mark coordinate
上述位置補償值計算單元40以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值。
The position compensation
這種位置補償值計算單元40可包括:虛擬材料變化曲線計算部41,以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式;以及加工區域分割部42,利用在上述虛擬材料變化曲線計算部計算的虛擬材料變化曲線式來分割整體加工孔區域。
Such a position compensation
其中,虛擬材料變化曲線計算部41在實際印刷電路板材料的對準標記設計資訊追加任意的對準標記來將經過對準標記座標的虛擬線計算為虛擬材料變化曲線式。此時,虛擬材料變化曲線式基於上述對準標記設計資訊和上述實際座標位置資訊來推定2次曲線式來計算,或者通過分段樣條插值計算。其中,2次曲線式可包括N(N3)次多項式。
Among them, the virtual material change
本發明較佳實施例中,為了計算上述虛擬材料變化曲線式,僅對2次多項式及分段插值方式進行了說明,但是,本發明並不局限於此,本發明所屬技術領域的普通技術人員知道可使用為了計算虛擬材料變化曲線式而公開的多種工法。 In the preferred embodiment of the present invention, in order to calculate the above-mentioned virtual material change curve formula, only the second degree polynomial and the piecewise interpolation method have been described. However, the present invention is not limited to this, and ordinary technicians in the technical field to which the present invention belongs It is known that various construction methods disclosed for calculating the virtual material change curve can be used.
並且,上述加工區域分割部42基於虛擬材料變化曲線
式,以接近線形的形態對整體加工孔區域進行區域分割。更佳地,上述加工區域分割部42基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。
In addition, the processing
上述加工孔座標校正部60通過在上述位置補償值計算單元40計算的位置補償值來校正加工孔位置座標。
The machining hole coordinate
這種加工孔座標校正部60在分割的各個區域獲取虛擬分割區域的基準點,利用與獲取的基準點相應的虛擬分割區域座標來通過雙線性插值校正加工孔座標。
The machining hole coordinate
圖2為本發明的加工位置校正方法,包括:步驟(a),接收用於印刷電路板材料加工的設計圖,從所接收上述的設計圖提取對準標記設計資訊(步驟S10、步驟S20);步驟(b),利用拍攝裝置來提取印刷電路板材料的對準標記的實際座標位置資訊(步驟S30);步驟(c),以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的位置補償值(步驟S40、步驟S50):以及步驟(d),通過在上述步驟(c)中計算的位置補償值對加工孔位置座標進行校正(步驟S60),基於上述校正的加工孔位置資訊來加工印刷電路板材料的孔(步驟S70)。 2 is a method for correcting a processing position of the present invention, including: step (a), receiving a design drawing for printed circuit board material processing, and extracting alignment mark design information from the received design drawing (step S10, step S20) ; Step (b), use the shooting device to extract the actual coordinate position information of the alignment marks of the printed circuit board material (step S30); step (c), based on the alignment mark design information and the actual coordinate position information Calculate the position compensation value used to compensate the position of the machining hole based on material deformation (step S40, step S50): and step (d), correct the coordinates of the machining hole position by the position compensation value calculated in the above step (c) ( Step S60), processing the holes of the printed circuit board material based on the corrected processing hole position information (step S70).
具體說明上述構成的本發明的加工位置校正裝置及其方法的動作。 The operation of the processing position correction device and method of the present invention configured as described above will be specifically described.
首先,本發明中,當進行印刷電路板材料的孔加工時,在材料生產步驟中,減少因熱量或壓力等發生的材料變形所引起的實際加工孔位置和校正的加工孔位置之間誤差發生偏差來提高加工精密度。 First, in the present invention, when the hole processing of the printed circuit board material is performed, in the material production step, errors between the actual processing hole position and the corrected processing hole position caused by material deformation caused by heat or pressure are reduced. Deviation to improve processing precision.
為此,如圖4所示,印刷電路板材料外圍4點的對準標記(P0-P3)之外,至少附加1個以上對準標記(A1、A2)來求出經過對準標記座標的虛擬線,基於此,將整體加工區域分割為複數個虛擬區域(虛擬區域#1至虛擬區域#4),通過矯正加工座標的方式對分割的各個區域中的加工位置進行校正。
Therefore, as shown in FIG. 4, in addition to the four-point alignment marks (P0-P3) on the periphery of the printed circuit board material, at least one more alignment mark (A1, A2) is added to obtain the coordinate of the alignment mark. The virtual line divides the entire processing area into a plurality of virtual areas (
例如,對準標記設計資訊提取部10中,從用於印刷電路板材料加工的設計資訊提取對準標記(步驟S10、步驟S20),印刷電路板設計資訊為印刷電路板材料設計資訊,如圖4所示,設計資訊的外圍的4個點P0、P1、P2、P3被提取呈對準標記設計資訊。其中,設計資訊包含加工孔座標。上述提取的對準標記設計資訊向位置補償值計算單元40傳遞。
For example, in the alignment mark design
同時,拍攝裝置20利用如視覺攝像頭的拍攝裝置來使用於孔加工的實際印刷電路板材料,向對準標記座標提取部30傳遞上述成像的印刷電路板材料影像圖像。圖4的右側上方的現象為實際通過拍攝裝置20拍攝的印刷電路板材料的形狀。實際拍攝的印刷電路板材料在材料生產步驟中因熱量或壓力等而發生材料變形。
At the same time, the
上述對準標記座標提取部30提取成像的印刷電路板材料的對準標記座標來向上述位置補償值計算單元40傳遞(步驟S30)。其中,拍攝的印刷電路板材料的對準標記座標為實際移動座標位置。此時,除外圍4點的對準標記之外,獲取2個以上的追加對準標記移動座標。而且,將獲
取的移動座標設定為對準標記實際位置及基準位置。
The alignment mark coordinate
上述位置補償值計算單元40以從上述對準標記設計資訊提取部10中傳遞的對準標記設計資訊和從上述對準標記座標提取部30傳遞的實際座標位置資訊為基礎來計算用於補償基於材料變形的加工孔位置的補償值。
The position compensation
例如,位置補償值計算單元40的虛擬材料變化曲線計算部41以上述對準標記設計資訊和上述實際座標位置資訊為基礎來計算用於推定材料的變化的虛擬材料變化曲線式(步驟S40)。如圖5所示,用於推定材料變化的虛擬材料變化曲線式基於經過3點以上(例如,P0→A0→P1)的對準標記的移動座標來計算。其中,虛擬材料變化曲線式以上述實際座標位置信息來通過推定2次曲線式(ax2+bx+c=y)的方式計算,或者通過分段樣條插值計算。除上述2中方法之外,均可適用計算虛擬材料變化曲線式的多種方式。
For example, the virtual material change
其中,具體說明分段插值如下。 Among them, the detailed description of segment interpolation is as follows.
圖3中,若①點為(x0,f0)、②點為(x1,f1)、③點為(x2,f2),使用以下的數學式1和數學式2並代入各個點的值來計算式的係數。
In Fig. 3, if
若代入各個點,則可求出如下4個數學式。 If you substitute each point, you can find the following four mathematical formulas.
數學式3 F 0=A 1×x 0 2+B 1×x 0+C 1 Mathematical formula 3 F 0 = A 1 × x 0 2 + B 1 × x 0 + C 1
數學式4 F 1=A 1×x 1 2+B 1×x 1+C 1 Mathematical formula 4 F 1 = A 1 × x 1 2 + B 1 × x 1 + C 1
數學式5 F 1=A 2×x 1 2+B 2×x 1+C 2 Mathematical formula 5 F 1 = A 2 × x 1 2 + B 2 × x 1 + C 2
數學式6 F 2=A 2×x 2 2+B 2×x 2+C 2 Mathematical formula 6 F 2 = A 2 × x 2 2 + B 2 × x 2 + C 2
而且,通過連續條件,虛擬曲線式可求出如F1'(x)=F2'(x)的以下的數學式7。 In addition, through the continuous condition, the virtual curve formula can find the following mathematical formula 7 as F1'(x)=F2'(x).
通過初期值,通過選擇直線或曲線的條件,以①和②點的連接求出以下的數學式8或數學式9。
From the initial value, the following equation 8 or equation 9 is obtained by connecting the
若計算上述已知的數學式3至數學式7和數學式8或數學式9,可求出作為虛擬曲線式的上述數學式1及數學式2的係數。
If the above-mentioned known
與上述對稱的虛擬曲線通過與上述相同的方法計算。 The virtual curve symmetrical to the above is calculated by the same method as above.
接著,說明通過2次式求出虛擬曲線式的方法如下。 Next, the method of obtaining the virtual curve formula by the quadratic formula will be described as follows.
圖3中,若①點為(x0,f0)、②點為(x1,f1)、③點為
(x2,f2),則使用以下的數學式10來代入各個點的值並求出式的係數。
In Figure 3, if
若代入各個點,則可求出如以下數學式11至數學式13的3個式。
By substituting each point, three formulas such as the following
數學式11 F 1=A 1×x 0 2+B 1×x 0+C 1 Mathematical formula 11 F 1 = A 1 × x 0 2 + B 1 × x 0 + C 1
數學式12 F 1=A 1×x 1 2+B 1×x 1+C 1 Mathematical formula 12 F 1 = A 1 × x 1 2 + B 1 × x 1 + C 1
數學式13 F 1=A 1×x 2 2+B 1×x 2+C 1 Mathematical formula 13 F 1 = A 1 × x 2 2 + B 1 × x 2 + C 1
若計算已知的數學式11至數學式13,則可求出作為上述虛擬曲線式的數學式10的係數。
If the known
與上述對稱的點的虛擬曲線通過與上述相同的方法計算。 The virtual curve of the point symmetrical to the above is calculated by the same method as above.
如上所述,在計算虛擬材料變化曲線式之後,利用在加工區域分割部42計算的虛擬材料變化曲線式來將整體加工孔區域分為複數個(步驟S50)。 As described above, after the virtual material change curve formula is calculated, the entire processed hole area is divided into a plurality of pieces by using the virtual material change curve formula calculated at the processing area dividing unit 42 (step S50).
例如,在圖3所示的①點和②點之間追加對準標記1個(A),在②和③之間追加對準標記1個(B),在相向的虛擬曲線追加A'和B'。通過這種方式,將整體加工區域分為複數個虛擬區域(虛擬區域#1-虛擬區域#4)。其中,曲線1為在虛擬區域#1中連接點①和點A的曲線,曲線2為在虛
擬區域#1中連接點①'和點A'的曲線。
For example, add 1 alignment mark (A) between
此時,在整體加工孔區域中,以接近線形的形態對基於材料變形的非線性變化進行區域分割。更佳地,基於虛擬材料變化曲線式,以四邊形形態對整體加工孔區域進行區域分割。在虛擬區域分割之後,對各個虛擬區域獲取虛擬分割區域基準點。圖4中,點V0至V3為以虛擬材料變化曲線式為基礎分割的虛擬區域的虛擬區域分割基準點。圖6例示追加如V0、V3的1個以上的虛擬分割基準點來對分割區域進行接近直線的分割。 At this time, in the overall machining hole area, the nonlinear change based on the material deformation is divided into regions that are close to linear. More preferably, based on the virtual material change curve type, the entire machining hole area is divided in a quadrangular shape. After the virtual area is divided, the virtual divided area reference point is acquired for each virtual area. In FIG. 4, points V0 to V3 are virtual area division reference points of the virtual area divided based on the virtual material change curve type. FIG. 6 exemplifies the addition of one or more virtual division reference points such as V0 and V3 to divide the divided region close to a straight line.
此外,加工孔座標校正部60利用上述獲取的虛擬分割區域座標來通過雙線性插值對虛擬分割區域內的加工孔座標進行校正(步驟S60)。例如,分別通過雙線性插值對分割區域進行校正。
In addition, the machined hole coordinate
上述雙線性插值如以下的數學式14。 The above bilinear interpolation is as shown in the following mathematical formula 14.
數學式14 F=A 0+A 1×U+A 2×V+A 3×U×V Mathematical formula 14 F = A 0 + A 1 × U + A 2 × V + A 3 × U × V
圖7為適用本發明的加工誤差校正方法的情況下的結果圖,當進行對於座標位置的誤差校正時,對應以材料外圍為基準的情況,基於虛擬分割區域的加工座標誤差發生偏差可降低。 FIG. 7 is a result diagram when the machining error correction method of the present invention is applied. When the error correction for the coordinate position is performed, the deviation of the machining coordinate error based on the virtual division area can be reduced corresponding to the case based on the material periphery.
在完成加工孔座標校正之後,印刷電路板加工孔資訊向印刷電路板孔加工部70傳遞,印刷電路板孔加工部70以校正的加工孔資訊為基礎來執行印刷電路板孔加工(步驟S70)。
After the processing hole coordinate correction is completed, the printed circuit board processing hole information is transmitted to the printed circuit board
這種本發明中,在發生基於印刷電路板材料生產步驟的材料變形的情況下,將材料的非線性變形分割在接近矩形的區域來對各個虛擬分割領域進行線性校正,由此可減少加工座標誤差發生偏差,並可調加工精密度。 In the present invention, when the material deformation based on the printed circuit board material production step occurs, the non-linear deformation of the material is divided into a nearly rectangular area to linearly correct each virtual division area, thereby reducing the processing coordinates The deviation occurs and the processing precision can be adjusted.
以上,根據的上述實施例具體說明了本發明人員的發明,但是,本發明並不局限於此,在不超出本發明的主旨的範圍內,可進行多種變更。 The above-described embodiments have specifically described the invention of the present inventors, but the present invention is not limited to this, and various modifications can be made within the scope not exceeding the gist of the present invention.
10‧‧‧對準標記設計資訊提取部 10‧‧‧ Alignment Mark Design Information Extraction Department
20‧‧‧拍攝裝置 20‧‧‧ shooting device
30‧‧‧對準標記座標提取部 30‧‧‧ Alignment Mark Coordinate Extraction Department
40‧‧‧位置補償值計算單元 40‧‧‧ Position compensation value calculation unit
41‧‧‧虛擬材料變化曲線計算部 41‧‧‧ Virtual Material Change Curve Calculation Department
42‧‧‧加工區域分割部 42‧‧‧Processing area division
60‧‧‧加工孔座標校正部 60‧‧‧Correcting Department of Machining Hole
70‧‧‧印刷電路板孔加工部 70‧‧‧Printed Circuit Board Hole Processing Department
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??10-2016-0075321 | 2016-06-16 | ||
KR1020160075321A KR101720004B1 (en) | 2016-06-16 | 2016-06-16 | Machining position correction apparatus and method thereof |
KR10-2016-0075321 | 2016-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201801603A TW201801603A (en) | 2018-01-01 |
TWI684390B true TWI684390B (en) | 2020-02-01 |
Family
ID=58496652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106120183A TWI684390B (en) | 2016-06-16 | 2017-06-16 | Apparatus and method for calibrating machining position |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101720004B1 (en) |
CN (1) | CN107529278B (en) |
TW (1) | TWI684390B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110191567B (en) * | 2018-02-22 | 2022-10-11 | 奥特斯奥地利科技与系统技术有限公司 | Alignment using physical alignment marks and virtual alignment marks |
CN108362712B (en) * | 2018-03-14 | 2022-09-30 | 京东方科技集团股份有限公司 | Substrate mother board and detection method thereof |
CN108747041B (en) * | 2018-04-19 | 2021-10-26 | 广州广汽荻原模具冲压有限公司 | Reference correction method for three-dimensional laser cutting plate |
JP7117903B2 (en) * | 2018-06-11 | 2022-08-15 | 住友重機械工業株式会社 | Processing method and processing equipment |
EP3786844A4 (en) * | 2018-07-06 | 2021-05-05 | Rakuten, Inc. | IMAGE PROCESSING SYSTEM, IMAGE PROCESSING METHOD AND PROGRAM |
CN111123238A (en) * | 2018-10-31 | 2020-05-08 | 三赢科技(深圳)有限公司 | Lens module and electronic equipment using same |
CN111299842B (en) * | 2018-12-11 | 2022-04-05 | 深圳市百柔新材料技术有限公司 | Method for high-precision laser engraving of solder mask |
CN110125551B (en) * | 2019-05-22 | 2024-06-18 | 武汉华工激光工程有限责任公司 | 3D laser marking device and method for large-radian deep inner wall annular marking |
CN112087887B (en) * | 2019-06-12 | 2023-06-09 | 奥特斯科技(重庆)有限公司 | Alignment of component carrier structures by combining evaluation pad and hole type alignment marks |
CN110351951B (en) * | 2019-07-05 | 2021-02-05 | 信泰电子(西安)有限公司 | System and method for selecting positioning hole during PCB contour machining |
CN111026030A (en) * | 2019-12-13 | 2020-04-17 | 西安飞机工业(集团)有限责任公司 | Hole position double correction method for numerical control machine tool |
TWI724705B (en) | 2019-12-20 | 2021-04-11 | 財團法人工業技術研究院 | Method for compensating design image of workpiece and system for processing design image of workpiece |
CN111659766B (en) * | 2020-06-11 | 2022-03-22 | 西安中科微精光子制造科技有限公司 | Correction method and correction device applied to workpiece hole making position |
CN112388185B (en) * | 2020-11-23 | 2022-09-30 | 西安中科微精光子科技股份有限公司 | Laser cutting compensation method and device for nonlinear deformation and storage medium |
CN113059605B (en) * | 2021-03-29 | 2022-07-12 | 杭州爱科科技股份有限公司 | Cutting method, device and system of printing packaging material and readable storage medium |
CN113115518B (en) * | 2021-04-13 | 2022-07-12 | 生益电子股份有限公司 | Collapsible translation method |
CN113379688B (en) * | 2021-05-28 | 2023-12-08 | 慕贝尔汽车部件(太仓)有限公司 | Stabilizer bar hole deviation detection method and system based on image recognition |
TWI772188B (en) * | 2021-09-24 | 2022-07-21 | 健鼎科技股份有限公司 | Perforation forming method of a multilayer circuit board, manufacturing method of a multilayer circuit board, multilayer circuit board and multilayer circuit board manufacturing system |
CN114245576A (en) * | 2021-11-17 | 2022-03-25 | 南京晟通信息技术有限公司 | A Track Correction Method Based on Mark Point-to-PCB Splitting Program |
CN114096065B (en) * | 2021-11-24 | 2024-12-24 | 胜宏科技(惠州)股份有限公司 | A method for generating high-precision drilling files for PCB boards and a drilling method |
CN114364167B (en) * | 2021-12-23 | 2023-11-07 | 江苏普诺威电子股份有限公司 | Double-layer packaging substrate alignment method suitable for laser through holes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200811604A (en) * | 2006-05-10 | 2008-03-01 | Mejiro Prec Inc | Projection exposure device and projection exposure method |
US20120083916A1 (en) * | 2010-09-30 | 2012-04-05 | Ryo Yamada | Displacement calculation method, drawing data correction method, substrate manufacturing method, and drawing apparatus |
JP2012208237A (en) * | 2011-03-29 | 2012-10-25 | Ibiden Co Ltd | Inspection device for drawing apparatus, drawing apparatus, program, inspection method for drawing apparatus, and manufacturing method for printed circuit board |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239877A (en) * | 2001-02-14 | 2002-08-28 | Matsushita Electric Ind Co Ltd | Boring position correcting method, boring position correcting device and laser processing device |
KR100607822B1 (en) | 2005-02-23 | 2006-08-07 | 삼성전기주식회사 | Device to determine the position of the PCC drill |
JP5388676B2 (en) * | 2008-12-24 | 2014-01-15 | イビデン株式会社 | Electronic component built-in wiring board |
KR20110138879A (en) | 2010-06-22 | 2011-12-28 | 삼성전기주식회사 | Processing error correction method using optical pickup |
KR101175871B1 (en) * | 2010-09-28 | 2012-08-21 | 삼성전기주식회사 | Method for revision of printing error in pcb |
KR20140142403A (en) | 2013-06-03 | 2014-12-12 | 주식회사 디에이피 | Method for driving laser drill in via hole processing |
KR101542018B1 (en) | 2014-11-17 | 2015-08-05 | 성균관대학교산학협력단 | Method for laser machining with optimized moving route |
-
2016
- 2016-06-16 KR KR1020160075321A patent/KR101720004B1/en active IP Right Grant
-
2017
- 2017-06-16 TW TW106120183A patent/TWI684390B/en not_active IP Right Cessation
- 2017-06-16 CN CN201710462645.0A patent/CN107529278B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200811604A (en) * | 2006-05-10 | 2008-03-01 | Mejiro Prec Inc | Projection exposure device and projection exposure method |
US20120083916A1 (en) * | 2010-09-30 | 2012-04-05 | Ryo Yamada | Displacement calculation method, drawing data correction method, substrate manufacturing method, and drawing apparatus |
JP2012208237A (en) * | 2011-03-29 | 2012-10-25 | Ibiden Co Ltd | Inspection device for drawing apparatus, drawing apparatus, program, inspection method for drawing apparatus, and manufacturing method for printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
CN107529278B (en) | 2019-09-24 |
KR101720004B1 (en) | 2017-03-27 |
TW201801603A (en) | 2018-01-01 |
CN107529278A (en) | 2017-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI684390B (en) | Apparatus and method for calibrating machining position | |
JP5089827B1 (en) | Laser processing method and laser processing apparatus | |
TWI633279B (en) | Substrate measuring device and laser processing system | |
CN113240674B (en) | Coplanarity detection method based on three-dimensional point cloud and two-dimensional image fusion | |
CN106537269B (en) | A method, device and system for improving the precision of an XY motion platform system | |
JP4490468B2 (en) | Solder printing inspection device | |
US9423242B2 (en) | Board-warping measuring apparatus and board-warping measuring method thereof | |
KR101974432B1 (en) | Cutting method of printed circuit board using laser router vision system | |
CN101502917A (en) | Positioning and deformation-correcting method for ultraviolet laser cutting of flexible printed circuit board | |
JP5673719B2 (en) | Electronic component manufacturing apparatus and manufacturing method thereof | |
TWI547973B (en) | Drawing method and apparatus | |
KR20200002916A (en) | Laser processing equipment | |
JP2013250259A (en) | Substrate inspection device and position correction method thereof | |
JP4543935B2 (en) | Electronic component mounting apparatus and mounting method | |
CN108230400A (en) | A kind of adaptive coordinate method for reconstructing suitable for laser cutting machine | |
JP2006308500A (en) | Three dimensional workpiece measuring method | |
JPS6374530A (en) | Automatic mounting method for component | |
JP2013188921A (en) | Apparatus and method of screen printing, and substrate position correction method in screen printing method | |
TWI620999B (en) | Printing device, exposure printing device, printing method and storage medium | |
JP2004327922A (en) | Working position correction method | |
JP2010240694A (en) | Laser processing method and laser processing apparatus | |
US7623941B2 (en) | Method for adjusting the relative position of device of laser engraver | |
KR20240055034A (en) | Direct drawing device and its control method | |
JP7106761B2 (en) | tolerance setting system, circuit board inspection machine, tolerance setting method, circuit board inspection method | |
JP2005229111A (en) | Method of presuming at least one part arrangement position on substrate, and equipment executing the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |