TWI633279B - Substrate measuring device and laser processing system - Google Patents
Substrate measuring device and laser processing system Download PDFInfo
- Publication number
- TWI633279B TWI633279B TW106123047A TW106123047A TWI633279B TW I633279 B TWI633279 B TW I633279B TW 106123047 A TW106123047 A TW 106123047A TW 106123047 A TW106123047 A TW 106123047A TW I633279 B TWI633279 B TW I633279B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- laser
- machining
- laser processing
- unit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
基板測量裝置(1)包括:測量用攝影機(8),係取得設置有定位用對準標記(7)且具有經雷射加工之被加工部(6)之基板(5)的圖像資料;測量台(4),係承載基板(5),並變更基板(5)與測量用攝影機(8)之相對位置;圖像處理部(12),係依據圖像資料及測量台(4)的位置資訊,求出對準標記(7)的測量位置座標及被加工部(6)的測量位置座標;轉換係數計算部(13),係求出從對準標記(7)的測量位置座標轉換至對準標記(7)的設計位置座標之轉換係數;以及加工誤差計算部(14),係使用轉換係數,將被加工部(6)的測量位置座標予以座標轉換成轉換後位置座標,並依據轉換後位置座標與被加工部(6)的設計位置座標之差,求出加工誤差。 The substrate measuring device (1) includes: a measuring camera (8) that acquires image data of a substrate (5) provided with a positioning alignment mark (7) and having a laser processed portion (6); The measuring station (4) is a carrier substrate (5), and changes the relative position of the substrate (5) and the measuring camera (8); the image processing unit (12) is based on the image data and the measuring station (4) The position information is obtained, and the measurement position coordinates of the alignment mark (7) and the measurement position coordinates of the processed portion (6) are obtained; and the conversion coefficient calculation unit (13) determines the coordinates of the measurement position from the alignment mark (7). a conversion coefficient to the design position coordinate of the alignment mark (7); and a machining error calculation unit (14) that converts the coordinate of the measurement position of the processed portion (6) into a converted position coordinate using a conversion coefficient, and The machining error is obtained based on the difference between the coordinate of the position after the conversion and the coordinates of the design position of the workpiece (6).
Description
本發明係關於對於以雷射進行開孔加工後之印刷基板等的加工孔的加工位置誤差進行測量之基板測量裝置,以及使用基板測量裝置的測量結果對印刷基板進行雷射開孔加工之雷射加工系統。 The present invention relates to a substrate measuring device for measuring a processing position error of a processing hole of a printed substrate or the like after laser drilling, and a laser for laser drilling of the printed substrate using the measurement result of the substrate measuring device Injection processing system.
習知的雷射加工系統中,為謀求提升雷射加工的加工精確度而使用一種雷射鑽孔裝置,在進行雷射加工後,藉由加工位置精確度檢查單元測量開孔加工的位置誤差而製作修正資料,並使用修正資料來進行雷射加工(例如參閱專利文獻1)。 In the conventional laser processing system, a laser drilling device is used for improving the processing precision of the laser processing, and after the laser processing, the position error of the drilling processing is measured by the machining position accuracy inspection unit. The correction data is produced and the correction data is used for laser processing (for example, refer to Patent Document 1).
此種雷射加工系統係具備鑽孔加工單元及加工位置精確度檢查單元,該鑽孔加工單元(以下簡稱為加工單元)係具備電流計掃描器(galvano scanner)及加工台,對印刷基板(以下簡稱為基板)照射雷射光進行雷射開孔加工,該加工精確度檢查單元(以下簡稱為檢查單元)係使用攝影機及測量台進行基板的雷射加工孔的位置測量。 The laser processing system includes a drilling processing unit and a machining position accuracy inspection unit. The drilling processing unit (hereinafter referred to as a machining unit) is provided with a galvano scanner and a processing table for the printed substrate ( Hereinafter, the laser light is irradiated by irradiating laser light, and the processing accuracy inspection unit (hereinafter referred to as an inspection unit) performs measurement of the position of the laser processing hole of the substrate using a camera and a measuring station.
加工單元係依據在雷射加工前測量之基板收 縮量求出比例值並傳送至檢查單元。於檢查單元中係藉由攝影機測量基板的雷射加工孔的加工位置誤差,並使用上述比例值求出位置修正資料亦即偏差值,而傳送至加工單元。加工單元進一步使用上述偏差值修正雷射的照射位置,抑制連續運作時之加工精確度的經時變化而保障加工精確度。 The processing unit is based on the substrate measured before laser processing The scale value is determined by the reduction and transmitted to the inspection unit. In the inspection unit, the machining position error of the laser processing hole of the substrate is measured by the camera, and the position correction data, that is, the deviation value is obtained by using the above-mentioned proportional value, and transmitted to the processing unit. The processing unit further corrects the irradiation position of the laser using the above-described deviation value, and suppresses the temporal change of the processing accuracy in the continuous operation to ensure the processing accuracy.
另外,於上述檢查單元中,就開孔加工位置精確度的檢查方法而言,係使用CCD(Charge-Coupled Device,電荷耦合元件)攝影機來測量成為雷射光的照射目標之基板上的焊墊的中心座標,以及對該焊墊照射雷射光而進行過雷射加工後之加工孔的中心座標,並求出兩者的差而求得加工位置誤差。 Further, in the above-described inspection unit, in the inspection method of the accuracy of the drilling processing position, a CCD (Charge-Coupled Device) camera is used to measure the pad on the substrate which is the target of the irradiation of the laser light. The center coordinates and the center coordinates of the machined holes after the laser beam is irradiated with the laser beam, and the difference between the two is obtained to obtain a machining position error.
再者,與基板收縮量對應之比例值係在雷射鑽孔加工前,於加工單元進行之屬於對照基板的位置偏移之處理之對準處理時,測量基板收縮量並據此求出者。 Further, the ratio value corresponding to the amount of shrinkage of the substrate is measured before the laser drilling process, and when the processing unit performs the alignment process of the process of shifting the position of the reference substrate, the amount of shrinkage of the substrate is measured and determined therefrom. .
專利文獻1:日本特開2003-88983號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2003-88983
然而,在如專利文獻1所示之雷射加工裝置中,尤其是在進行依據如CO2雷射之熱加工之雷射加工時,在雷射加工後基板會熱變形,導致雷射加工後,基板收縮量及比例值產生變化。結果,於檢查單元中,依據加 工位置誤差及上述比例值所求出之位置修正資料會包含熱變形誤差。因此,在依據此位置修正資料來修正加工單元的加工位置資料時,會有加工精確度變得不佳之問題。 However, in the laser processing apparatus as disclosed in Patent Document 1, especially when laser processing according to thermal processing such as CO 2 laser is performed, the substrate is thermally deformed after laser processing, resulting in laser processing. The amount of substrate shrinkage and the ratio change. As a result, in the inspection unit, the position correction data obtained based on the machining position error and the above-described proportional value may include thermal deformation errors. Therefore, when the machining position data of the machining unit is corrected based on the position correction data, there is a problem that the machining accuracy becomes poor.
再者,由於加工單元與檢查單元係使用不同XY台,因此在如各個XY台的X軸與Y軸的直角度不同之情形,於各個XY台的機械誤差特性有差異時,於加工單元與檢查單元間會產生座標系統的偏移,始由檢查單元所測量之加工位置誤差會包含有座標系統的偏移,導致在依據此加工位置誤差來修正加工單元的加工位置資料時,會有加工精確度變得不佳之問題。 Furthermore, since the machining unit and the inspection unit use different XY stages, in the case where the direct angles of the X-axis and the Y-axis of the respective XY stages are different, when the mechanical error characteristics of the respective XY stages are different, in the processing unit and The offset of the coordinate system will be generated between the inspection units. The machining position error measured by the inspection unit will include the offset of the coordinate system, resulting in machining when the machining position data of the machining unit is corrected according to the machining position error. The problem of poor accuracy.
同樣地,當基板傾斜地設置於檢查單元的測量台時,以檢查單元測量之加工位置誤差亦包含基板的對準誤差,導致在依據此加工位置誤差來修正加工單元的加工位置資料時,會有加工位置精確度變得不佳之問題。 Similarly, when the substrate is obliquely disposed on the measuring table of the inspection unit, the machining position error measured by the inspection unit also includes the alignment error of the substrate, resulting in correction of the machining position data of the machining unit according to the machining position error. The problem of poor processing accuracy becomes poor.
本發明係有鑑於上述課題所研創者,目的在於獲得一種基板測量裝置,能夠以高精確度測量加工誤差。 The present invention has been made in view of the above problems, and an object thereof is to obtain a substrate measuring device capable of measuring a machining error with high accuracy.
為了解決上述課題、達成目的,本發明係包括:測量用攝影機,係取得設置有定位用對準標記且具有經雷射加工之被加工部之基板的圖像資料;測量台,係承載基板,並變更基板與測量用攝影機之相對位置;以及圖像處理部,係依據圖像資料及測量台的位置資訊,求出對準標記的測量位置座標及被加工部的測量位置座標。本發明更包括:轉換係數計算部,係求出從對準標記的測量位 置座標轉換至對準標記的設計位置座標之轉換係數;以及加工誤差計算部,係使用轉換係數,將被加工部的測量位置座標轉換成轉換後位置座標,並依據轉換後位置座標與被加工部的設計位置座標之差,求出加工誤差。 In order to solve the above problems and achieve the object, the present invention includes a camera for measurement, which is obtained by acquiring an image of a substrate provided with a positioning alignment mark and having a processed portion subjected to laser processing, and a measuring station, which is a carrier substrate. And changing the relative position between the substrate and the measuring camera; and the image processing unit obtains the measurement position coordinates of the alignment mark and the measurement position coordinates of the processed portion based on the image data and the position information of the measurement table. The present invention further includes: a conversion coefficient calculation unit that determines a measurement bit from the alignment mark The conversion coefficient of the coordinates of the design position of the alignment mark is converted; and the machining error calculation unit converts the measurement position coordinate of the processed portion into the converted position coordinate using the conversion coefficient, and is processed according to the converted position coordinate and the coordinate The difference between the coordinates of the design position of the part and the machining error.
依據本發明,可達成實現能夠以高精確度測量加工誤差之基板測量裝置之效果。 According to the present invention, it is possible to achieve the effect of realizing a substrate measuring device capable of measuring a machining error with high accuracy.
1‧‧‧基板測量裝置 1‧‧‧Substrate measuring device
2‧‧‧測量驅動部 2‧‧‧Measurement drive department
3‧‧‧測量控制部 3‧‧‧Measurement Control Department
4‧‧‧測量台 4‧‧‧Measuring station
4a、33a‧‧‧頂台 4a, 33a‧‧‧ top
5、31‧‧‧基板 5, 31‧‧‧ substrate
6‧‧‧加工孔 6‧‧‧Processing holes
7‧‧‧對準標記 7‧‧‧ alignment mark
8‧‧‧測量用攝影機 8‧‧‧Measurement camera
9‧‧‧測量指令部 9‧‧‧Measurement Command Department
10‧‧‧測量台控制部 10‧‧‧Measurement Desk Control Department
11‧‧‧測量用攝影機控制部 11‧‧‧Measurement Camera Control Department
12‧‧‧圖像處理部 12‧‧‧Image Processing Department
13‧‧‧轉換係數計算部 13‧‧‧Conversion coefficient calculation department
14‧‧‧加工誤差計算部 14‧‧‧Machining Error Calculation Department
15‧‧‧雷射加工修正值計算部 15‧‧‧ Laser processing correction value calculation unit
16‧‧‧加工不良判定部 16‧‧‧Making defective judgment department
17‧‧‧搬運裝置 17‧‧‧Transportation device
20、44、63、73‧‧‧雷射加工系統 20, 44, 63, 73‧ ‧ laser processing systems
21、51、64、74‧‧‧雷射加工裝置 21, 51, 64, 74‧‧ ‧ laser processing equipment
22、60、70‧‧‧系統指令部 22, 60, 70‧‧‧System Command Department
23‧‧‧雷射加工部 23‧‧‧ Laser Processing Department
24、54、65、75‧‧‧雷射加工控制部 24, 54, 65, 75‧‧ ‧ Laser Processing Control Department
25‧‧‧雷射振盪器 25‧‧‧Laser oscillator
26‧‧‧雷射光 26‧‧‧Laser light
27X、27Y‧‧‧電流計反射鏡 27X, 27Y‧‧‧ galvanometer mirror
28X、28Y‧‧‧馬達 28X, 28Y‧‧‧ motor
29X、29Y‧‧‧電流計掃描器 29X, 29Y‧‧‧ galvanometer scanner
30‧‧‧F θ透鏡 30‧‧‧F θ lens
32‧‧‧加工頭 32‧‧‧Processing head
33‧‧‧加工台 33‧‧‧Processing table
34‧‧‧加工用攝影機 34‧‧‧Processing camera
35‧‧‧加工指令部 35‧‧‧Processing Command Department
36‧‧‧雷射振盪器控制部 36‧‧‧Laser Oscillator Control Unit
37‧‧‧加工台控制部 37‧‧‧Processing Station Control Department
38‧‧‧加工用攝影機控制部 38‧‧‧Processing Camera Control Department
39‧‧‧對準修正值計算部 39‧‧‧Alignment correction calculation unit
40、47‧‧‧台對準修正部 40, 47‧‧ ‧ alignment correction department
41、46、61、71‧‧‧雷射加工修正部 41, 46, 61, 71‧‧ ‧ Laser Processing Correction Department
42、45‧‧‧偏向器對準修正部 42, 45‧‧‧ deflector alignment correction unit
43‧‧‧雷射偏向器控制部 43‧‧‧Laser deflector control unit
50‧‧‧第二圖像處理部 50‧‧‧Second Image Processing Department
62、72‧‧‧雷射加工修正值記憶部 62, 72‧‧ ‧ laser processing correction value memory
101‧‧‧CPU 101‧‧‧CPU
102‧‧‧記憶體 102‧‧‧ memory
103‧‧‧處理電路 103‧‧‧Processing Circuit
第1圖係顯示本發明實施形態1之基板測量裝置的構成之圖。 Fig. 1 is a view showing the configuration of a substrate measuring apparatus according to a first embodiment of the present invention.
第2圖係說明實施形態1之基板的態樣之圖。 Fig. 2 is a view showing the state of the substrate of the first embodiment.
第3圖係說明實施形態1之基板測量裝置的動作之流程圖。 Fig. 3 is a flow chart for explaining the operation of the substrate measuring apparatus of the first embodiment.
第4圖係顯示本發明實施形態2之雷射加工系統的構成之圖。 Fig. 4 is a view showing the configuration of a laser processing system according to a second embodiment of the present invention.
第5圖係說明實施形態2之雷射加工系統的動作之流程圖。 Fig. 5 is a flow chart showing the operation of the laser processing system of the second embodiment.
第6圖係顯示本發明實施形態3之雷射加工系統的構成之圖。 Fig. 6 is a view showing the configuration of a laser processing system according to a third embodiment of the present invention.
第7圖係說明實施形態3之雷射加工系統的動作之流程圖。 Fig. 7 is a flow chart showing the operation of the laser processing system of the third embodiment.
第8圖係顯示本發明實施形態5之雷射加工系統的構成之圖。 Fig. 8 is a view showing the configuration of a laser processing system according to a fifth embodiment of the present invention.
第9圖係顯示實施形態5之雷射加工系統的另一構成之圖。 Fig. 9 is a view showing another configuration of the laser processing system of the fifth embodiment.
第10圖係顯示實施形態1至5之電腦系統的硬體構成之圖。 Fig. 10 is a view showing the hardware configuration of the computer system of the first to fifth embodiments.
第11圖係顯示以專用的硬體實現實施形態1至5之測量控制部、系統指令部、及雷射加工控制部的功能時的構成之圖。 Fig. 11 is a view showing a configuration in which the functions of the measurement control unit, the system command unit, and the laser processing control unit of the first to fifth embodiments are realized by dedicated hardware.
以下,依據圖式詳細說明本發明實施形態之基板測量裝置及雷射加工系統。另外,本發明並非被本實施形態所限定者。 Hereinafter, a substrate measuring device and a laser processing system according to embodiments of the present invention will be described in detail based on the drawings. Further, the present invention is not limited to the embodiment.
第1圖係顯示本發明實施形態1之基板測量裝置1的構成之圖。基板測量裝置1係測量對基板進行之雷射開孔加工之加工誤差。基板測量裝置1係包括測量驅動部2及控制測量驅動部2之測量控制部3。第2圖係說明實施形態1之基板5的態樣之圖。第2圖係依第1圖的紙面的上下方向,從上往下方觀看基板5之圖。 Fig. 1 is a view showing the configuration of a substrate measuring apparatus 1 according to Embodiment 1 of the present invention. The substrate measuring device 1 measures the machining error of the laser drilling process performed on the substrate. The substrate measuring device 1 includes a measurement driving unit 2 and a measurement control unit 3 that controls the measurement driving unit 2. Fig. 2 is a view showing a state of the substrate 5 of the first embodiment. Fig. 2 is a view of the substrate 5 viewed from the top to the bottom in the vertical direction of the paper surface of Fig. 1.
第1圖中,針對測量控制部3,顯示處理功能之方塊圖。測量控制部3係具備測量指令部9、測量台控制部10、測量用攝影機控制部11、圖像處理部12、轉換係數計算部13、加工誤差計算部14、雷射加工修正值計算部15、以及加工不良判定部16。 In the first drawing, a block diagram of the processing function is displayed for the measurement control unit 3. The measurement control unit 3 includes a measurement command unit 9, a measurement station control unit 10, a measurement camera control unit 11, an image processing unit 12, a conversion coefficient calculation unit 13, a machining error calculation unit 14, and a laser machining correction value calculation unit 15. And the processing failure determining unit 16.
測量驅動部2係具備屬於XY台之測量台4。測量台4的頂台4a係承載經雷射開孔加工之基板5。第1圖中,測量台4的驅動方向係屬於紙面的垂直方向之X方向及屬於紙面的左右方向之Y方向。測量台4的頂台4a係可沿X方向及Y方向移動之測量台4的一部分。另外,於測量台4的X軸及Y軸設置有未圖示之線性編碼器,可高精確度地定位頂台4a。設置於測量台4的頂台4a之基板5係形成有屬於經雷射加工之被加工部之加工孔6,並且印刷有用於定位之對準標記7。 The measurement drive unit 2 includes a measurement stage 4 belonging to the XY stage. The top table 4a of the measuring table 4 carries the substrate 5 processed by the laser opening. In Fig. 1, the driving direction of the measuring table 4 belongs to the X direction of the vertical direction of the paper surface and the Y direction of the left and right direction of the paper surface. The top table 4a of the measuring table 4 is a part of the measuring table 4 that is movable in the X direction and the Y direction. Further, a linear encoder (not shown) is provided on the X-axis and the Y-axis of the measuring table 4, so that the top table 4a can be positioned with high precision. The substrate 5 provided on the top table 4a of the measuring table 4 is formed with a processing hole 6 belonging to the laser-processed portion, and an alignment mark 7 for positioning is printed.
第2圖中,基板5形成有多數個加工孔6。此種基板5係個人電腦、行動電話等電子機器所具備之印刷基板,雷射加工而成之加工孔6主要為連接多層印刷基板的層間之孔,亦即為貫孔。一般而言,加工孔6的孔徑為φ 20μm至φ 200μm,加工孔6的孔數為每張基板有數萬孔至百萬孔左右。 In Fig. 2, a plurality of machined holes 6 are formed in the substrate 5. The substrate 5 is a printed circuit board provided in an electronic device such as a personal computer or a mobile phone, and the processed hole 6 formed by laser processing is mainly a hole for connecting the layers of the multilayer printed circuit board, that is, a through hole. Generally, the hole diameter of the machined hole 6 is φ 20 μm to φ 200 μm, and the number of holes of the machined hole 6 is tens of thousands of holes to about one million holes per substrate.
再者,於基板5的周邊部,藉由印刷而設有屬於基板5的定位用之定位標記之對準標記7。一般而言,對準標記7係於被加工物印刷有二個至四個。第2圖中例示在基板5印刷有四個對準標記7。 Further, an alignment mark 7 belonging to the positioning mark for positioning of the substrate 5 is provided on the peripheral portion of the substrate 5 by printing. In general, the alignment mark 7 is printed with two to four prints on the workpiece. In the second drawing, four alignment marks 7 are printed on the substrate 5.
如第1圖所示,測量驅動部2之測量台4的上方係具備有測量用攝影機8,該測量用攝影機8係取得形成於基板的加工面上之屬於被加工部之加工孔6及對準標記7的圖像資料。測量用攝影機8係裝設於未圖示之Z軸台。Z軸台係藉由沿屬於第1圖的紙面的上下方向之Z 方向移動而能夠進行測量用攝影機8的焦點調整。 As shown in FIG. 1, the measurement camera 4 of the measurement drive unit 2 is provided with a measurement camera 8 that acquires the processing hole 6 and the pair of the processed portion formed on the processed surface of the substrate. Image data of the quasi-marker 7. The measuring camera 8 is mounted on a Z-axis stage (not shown). The Z-axis table is by the Z in the up and down direction of the paper belonging to the first figure. The focus adjustment of the camera 8 for measurement can be performed by moving in the direction.
藉由使測量台4移動而變更基板5與測量用攝影機8的相對位置,因此測量用攝影機8能夠拍攝基板5上的全部的加工孔6及對準標記7的圖像。另外,雖未圖示,但測量用攝影機8係附加有照明功能及自動對焦功能。具體而言,測量用攝影機8係使用直線感測器(line sensor)之直線攝影機。圖像處理部12依據由直線感測器所得之圖像資訊與測量台4的位置資訊而進行圖像處理,高速地測量加工孔6及對準標記7的位置座標。 Since the relative position of the substrate 5 and the measuring camera 8 is changed by moving the measuring table 4, the measuring camera 8 can capture images of all the processed holes 6 and the alignment marks 7 on the substrate 5. Further, although not shown, the measurement camera 8 is provided with an illumination function and an autofocus function. Specifically, the measuring camera 8 is a linear camera using a line sensor. The image processing unit 12 performs image processing based on the image information obtained by the linear sensor and the position information of the measuring table 4, and measures the position coordinates of the machining hole 6 and the alignment mark 7 at high speed.
另外,直線攝影機之測量寬度較大的也僅有80mm左右,因此,在基板5的尺寸為例如320mm×320mm時,以使直線攝影機來回二次掃描之方式,或以沿一方向排列四台攝影機並往與該方向垂直之方向掃描一次之方式,使測量台4及測量用攝影機8動作而進行拍攝,從而可收集基板5的整面的圖像資料。另外,將使用圖像處理部12、測量台4、及測量用攝影機8所測量之位置座標定義為測量位置座標。 In addition, the linear camera has a measurement width of only about 80 mm. Therefore, when the size of the substrate 5 is, for example, 320 mm × 320 mm, the linear camera is scanned twice or twice, or four cameras are arranged in one direction. By scanning the measurement table 4 and the measurement camera 8 in a direction perpendicular to the direction, the image data of the entire surface of the substrate 5 can be collected. Further, the position coordinates measured by the image processing unit 12, the measurement table 4, and the measurement camera 8 are defined as measurement position coordinates.
測量控制部3係控制測量台4及測量用攝影機8之控制部。實現測量控制部3的功能之電腦系統係更具備未圖示之監視器及各種外部介面、伺服放大器等。 The measurement control unit 3 controls the measurement unit 4 and the control unit of the measurement camera 8. The computer system that realizes the function of the measurement control unit 3 further includes a monitor (not shown), various external interfaces, a servo amplifier, and the like.
測量指令部9係依據測量程式而對各部輸出獲得自儲存於第1圖未顯示之記憶體之CAD(Computer-Aided Design,電腦輔助設計)等之加工孔6的設計位置座標及對準標記7的設計位置座標。並且,對測量 台控制部10輸出給予測量台4之控制指令,對測量用攝影機控制部11輸出給予測量用攝影機8之控制指令。另外,設計位置座標係由CAD等給予之設計上的座標位置。 The measurement command unit 9 outputs the design position coordinates and the alignment mark 7 of the machining hole 6 obtained from the CAD (Computer-Aided Design) stored in the memory not shown in FIG. 1 in accordance with the measurement program. Design location coordinates. And, for measurement The station control unit 10 outputs a control command to the measurement station 4, and outputs a control command to the measurement camera control unit 11 to the measurement camera 8. In addition, the design position coordinates are coordinate positions given by CAD or the like.
測量台控制部10係使用從測量指令部9輸入之位置指令及來自設置於測量台4之上述線性編碼器之位置資訊,而將測量台4定位控制。再者,測量台控制部10係配合測量用攝影機8拍攝之取樣週期,對圖像處理部12輸出線性編碼器的位置資訊。 The measurement stage control unit 10 uses the position command input from the measurement command unit 9 and the position information from the linear encoder provided on the measurement table 4 to position and control the measurement table 4. Further, the measurement station control unit 10 outputs the position information of the linear encoder to the image processing unit 12 in accordance with the sampling period captured by the measurement camera 8.
測量用攝影機控制部11係藉由從測量指令部9輸入之攝影機控制指令來控制測量用攝影機8的拍攝。另外,一般而言,用以作為測量用攝影機之直線攝影機係以數kHz至數十kHz之取樣週期來拍攝圖像。再者,測量用攝影機控制部11係將以上述取樣週期由測量用攝影機8所拍攝之圖像資料輸出至圖像處理部12。 The measurement camera control unit 11 controls the imaging of the measurement camera 8 by the camera control command input from the measurement command unit 9. Further, in general, a linear camera used as a measuring camera captures an image with a sampling period of several kHz to several tens of kHz. Further, the measurement camera control unit 11 outputs the image data captured by the measurement camera 8 in the sampling cycle to the image processing unit 12.
另外,測量指令部9係以測量用攝影機8能夠拍攝基板5的全部加工孔6及對準標記7的圖像資訊之方式,對測量台控制部10發出移動指令,並且以配合測量台4的移動而使測量用攝影機8拍攝之方式,對測量用攝影機控制部11下達指令。藉此,測量用攝影機控制部11係收集測量用攝影機8所拍攝之基板5的整面的圖像資料。 Further, the measurement command unit 9 issues a movement command to the measurement table control unit 10 so that the measurement camera 8 can capture image information of all the processing holes 6 of the substrate 5 and the alignment mark 7, and cooperates with the measurement table 4. The measurement is performed on the measurement camera control unit 11 by moving the measurement camera 8 to move. Thereby, the measurement camera control unit 11 collects image data of the entire surface of the substrate 5 captured by the measurement camera 8.
圖像處理部12係從測量用攝影機控制部11收集以上述取樣週期由測量用攝影機8所拍攝之圖像資料,並且從測量台控制部10收集在拍攝到該圖像資料時之從測量台4的線性編碼器取得之X方向及Y方向的位置座 標,作為測量台4的位置資訊。 The image processing unit 12 collects image data captured by the measurement camera 8 in the sampling cycle from the measurement camera control unit 11, and collects the measurement station from the measurement station control unit 10 when the image data is captured. 4 linear encoders to obtain the X and Y position positions The target is used as the position information of the measuring station 4.
在上述圖像資料及測量台4的位置座標的收集結束後,圖像處理部12係依據圖像資料及測量台4的位置座標,應用所謂圖案媒合之圖像處理技術,求出屬於基板5的被加工部之加工孔6的測量位置座標及對準標記7的測量位置座標。 After the image data and the collection of the position coordinates of the measurement table 4 are completed, the image processing unit 12 applies image processing techniques called pattern matching to determine the substrate belonging to the substrate based on the image data and the position coordinates of the measurement table 4. The measurement position coordinates of the machining hole 6 of the workpiece to be processed and the measurement position coordinates of the alignment mark 7.
轉換係數計算部13係輸入有圖像處理部12所求出之對準標記7的測量位置座標,並且從測量指令部9輸入有對準標記7的設計位置座標。轉換係數計算部13係使用所輸入之對準標記7的測量位置座標及所輸入之對準標記7的設計位置座標,求出從對準標記7的測量位置座標轉換成對準標記7的設計位置座標的轉換係數。 The conversion coefficient calculation unit 13 receives the measurement position coordinates of the alignment mark 7 obtained by the image processing unit 12, and inputs the design position coordinates of the alignment mark 7 from the measurement command unit 9. The conversion coefficient calculation unit 13 uses the measurement position coordinates of the input alignment mark 7 and the design position coordinates of the input alignment mark 7 to determine the design of the conversion from the measurement position coordinate of the alignment mark 7 to the alignment mark 7. The conversion factor of the position coordinates.
上述轉換係數係用以消除基板5的熱變形所造成之誤差、因測量台4的X軸及Y軸的直角度的偏差造成之誤差、或是基板5的對準誤差。 The above conversion coefficient is used to eliminate an error caused by thermal deformation of the substrate 5, an error caused by a deviation of a straight angle of the X-axis and the Y-axis of the measuring table 4, or an alignment error of the substrate 5.
使用上述轉換係數對對準標記7的測量位置座標進行座標轉換後之位置座標係與對準標記7的設計位置座標大致一致。 The position coordinate system after the coordinate conversion of the measurement position coordinates of the alignment mark 7 using the above-described conversion coefficient substantially coincides with the design position coordinate of the alignment mark 7.
再者,將使各加工孔6的測量位置座標乘上上述轉換係數時,所轉換出之加工孔6的轉換後位置座標係消除基板5的熱變形所造成之誤差,或因測量台4的X軸及Y軸的直角度的偏差造成之誤差或者基板5的對準誤差。於此,於加工孔6沒有加工誤差時加工孔6的轉換後位置座標係與加工孔6的設計位置座標大致一致。然而, 在加工孔6有加工誤差時,相對於加工孔6的設計位置座標,於加工孔6的轉換後位置座標會產生相對於加工誤差之位置誤差。 Furthermore, when the measurement position coordinates of the processing holes 6 are multiplied by the conversion coefficient, the converted position coordinates of the processed processing holes 6 are used to eliminate errors caused by thermal deformation of the substrate 5, or due to the measurement table 4 The error caused by the deviation of the straight angle of the X-axis and the Y-axis or the alignment error of the substrate 5. Here, when the machining hole 6 has no machining error, the post-conversion position coordinate of the machining hole 6 substantially coincides with the design position coordinate of the machining hole 6. however, When there is a machining error in the machining hole 6, the coordinates of the design position of the machining hole 6 may cause a positional error with respect to the machining error with respect to the design position coordinate of the machining hole 6.
對準標記7為四個之情況時的轉換係數之一例如以下所示。將各對準標記7的位置座標設為(Xam(k),Yam(k))(k=1、2、3、4),將與其對應之設計位置座標設為(Xar(k),Yar(k))(k=1、2、3、4)。並且,以P11、P12、P13、P21、P22、P23作為轉換係數計算部13所求出之轉換係數之一例時,成為如以下數式(1)之關係。 One of the conversion coefficients when the alignment mark 7 is four is as follows, for example. The position coordinates of each alignment mark 7 are set to (Xam(k), Yam(k)) (k=1, 2, 3, 4), and the corresponding design position coordinates are set to (Xar(k), Yar (k)) (k = 1, 2, 3, 4). In addition, when P11, P12, P13, P21, P22, and P23 are examples of the conversion coefficient obtained by the conversion coefficient calculation unit 13, the relationship of the following equation (1) is obtained.
(k=1、2、3、4) (k=1, 2, 3, 4)
數式(1)的轉換係數P11、P12、P13、P21、P22、P23,若對準標記7為三個以上,則可依據對準標記7的測量位置座標及與其對應之設計位置座標,利用數式(1)求出。若對準標記7為四個以上,則可使用最小平方法進一步正確地求出。 The conversion coefficients P11, P12, P13, P21, P22, and P23 of the equation (1) can be utilized according to the measurement position coordinates of the alignment mark 7 and the design position coordinates corresponding thereto if the alignment marks 7 are three or more. The equation (1) is obtained. If the alignment marks 7 are four or more, it can be further accurately obtained using the least squares method.
數式(1)的P11、P12、P13、P21、P22、P23係成為從對準標記7的測量位置座標轉換成對準標記7的設計位置座標之座標轉換矩陣的要素,構成對於存在有偏移、增益、旋轉、及座標軸的正交偏差之情形有效之座標轉換矩陣。 P11, P12, P13, P21, P22, and P23 of the equation (1) are elements of the coordinate conversion matrix converted from the measurement position coordinates of the alignment mark 7 to the design position coordinates of the alignment mark 7, and the composition is biased for existence. Effective coordinate conversion matrix for the case of shift, gain, rotation, and quadrature deviation of the coordinate axis.
依據對準標記7的測量位置座標及與其對應之設計位置座標求出上述座標轉換矩陣時,使用此座標轉換矩陣可將由圖像處理部12求出之加工孔6的測量位置座標轉換成加工孔6的轉換後位置座標。因此,不論是基板5因熱膨脹而變形之情形,測量台4的X軸及Y軸有正交偏差之情形、或是有基板5的對準誤差之情形,皆能夠求出將該等誤差消除之加工孔6的轉換後位置座標。 When the coordinate conversion matrix is obtained based on the measurement position coordinates of the alignment mark 7 and the design position coordinate corresponding thereto, the coordinates of the measurement position of the machining hole 6 obtained by the image processing unit 12 can be converted into a machining hole by using the coordinate conversion matrix. 6 post-conversion position coordinates. Therefore, regardless of the case where the substrate 5 is deformed by thermal expansion, the X-axis and the Y-axis of the measuring table 4 have orthogonal deviations, or the alignment error of the substrate 5 is present, the error can be found. The converted position coordinates of the machining hole 6.
另外,亦可利用如使用轉換係數的另一例之以下的數式(2)之關係。惟,轉換係數不限於數式(1)及數式(2)所示者。 Further, the relationship of the following formula (2) using another example of the conversion coefficient may be used. However, the conversion coefficient is not limited to those shown by the formula (1) and the formula (2).
(k=1、2、3、4) (k=1, 2, 3, 4)
加工誤差計算部14係輸入有藉由轉換係數計算部13所求出之轉換係數,並且由圖像處理部12輸入加工孔6的測量位置座標,由測量指令部9輸入所對應之加工孔6的設計位置座標。加工誤差計算部14係使用輸入之轉換係數,將加工孔6的測量位置座標予以座標轉換成轉換後位置座標,並依據加工孔6的設計位置座標與加工孔6的轉換後位置座標之差來計算加工誤差。 The machining error calculation unit 14 receives the conversion coefficient obtained by the conversion coefficient calculation unit 13, and the measurement position coordinate of the machining hole 6 is input by the image processing unit 12, and the corresponding machining hole 6 is input by the measurement command unit 9. Design location coordinates. The machining error calculation unit 14 converts the coordinate of the measurement position of the machining hole 6 into a converted position coordinate using the input conversion coefficient, and according to the difference between the design position coordinate of the machining hole 6 and the converted position coordinate of the machining hole 6 Calculate the machining error.
將加工孔6的測量位置座標設為(Xhm(n),Yhm(n)),將與其對應之加工孔6的設計位置座標設為 (Xhr(n),Yhr(n))時,各加工孔6的加工誤差(△Xe(n),△Ye(n))可由以下之數式(3)求得。其中,n=1、2、3、4、…、N,N為加工孔數。 The measurement position coordinates of the machining hole 6 are set to (Xhm(n), Yhm(n)), and the design position coordinates of the corresponding machining hole 6 are set to (Xhr(n), Yhr(n)), the machining error (ΔXe(n), ΔYe(n)) of each machining hole 6 can be obtained by the following equation (3). Where n=1, 2, 3, 4, ..., N, N are the number of processed holes.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
雷射加工修正值計算部15係輸入有加工誤差計算部14所求出之加工誤差(△Xe(n),△Ye(n))。雷射加工修正值計算部15係依據加工誤差(△Xe(n),△Ye(n)),計算對於進行過基板5的雷射開孔加工之雷射加工裝置之雷射加工修正值(△Xh,△Yh)。 The laser machining correction value calculation unit 15 receives the machining error (ΔXe(n), ΔYe(n)) obtained by the machining error calculation unit 14. The laser machining correction value calculation unit 15 calculates a laser machining correction value for the laser machining apparatus that performs the laser drilling process of the substrate 5 based on the machining error (ΔXe(n), ΔYe(n)) ( △ Xh, ΔYh).
計算雷射加工修正值(△Xh,△Yh)時,係使用複數個或全部的加工誤差(△Xe(n),△Ye(n))。具體而言,使用平均值求取雷射加工修正值(△Xh,△Yh)時,以下述數式(4)所示之方式進行平均值計算。 When calculating the laser machining correction value (ΔXh, ΔYh), a plurality of or all machining errors (ΔXe(n), ΔYe(n)) are used. Specifically, when the laser machining correction value (ΔXh, ΔYh) is obtained using the average value, the average value is calculated as shown in the following equation (4).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
數式(4)中,若n=N,則成為使用全部的加工孔6的加工誤差(△Xe(n),△Ye(n))的平均值來求出雷射加 工修正值(△Xh,△Yh),惟亦可使用2以上未達N之值作為n來計算加工誤差的平均值而求出雷射加工修正值(△Xh,△Yh)。 In the equation (4), if n=N, the average value of the machining errors (ΔXe(n), ΔYe(n)) of all the machining holes 6 is used to obtain the laser addition. For the correction value (ΔXh, ΔYh), the laser machining correction value (ΔXh, ΔYh) can be obtained by calculating the average value of the machining error using 2 or more values of N as n.
加工不良判定部16係比較以加工誤差計算部14所求出之加工誤差的計算值(△Xe(n),△Ye(n))與預先設定之加工不良判定基準值,以判定有無加工不良。藉由比較加工誤差與預先設定之加工不良判定基準值,可進行可靠性高之加工不良判定。 The machining failure determining unit 16 compares the calculated values (ΔXe(n), ΔYe(n)) of the machining errors obtained by the machining error calculating unit 14 with the machining defect determination reference values set in advance to determine whether or not there is a machining failure. . By comparing the machining error with a predetermined machining defect determination reference value, it is possible to perform a highly reliable machining failure determination.
將加工不良判定基準值設為Remax時,若X方向之加工誤差△Xhe(n)及Y方向的加工誤差△Yhe(n)的平方和之平方根與Remax在某個n滿足下述數式(5)時,則判定為加工不良。 When the machining failure determination reference value is Remax, the square root of the square of the machining error ΔXhe(n) in the X direction and the machining error ΔYhe(n) in the Y direction and Remax satisfy the following equation at some n ( 5) When it is determined, the processing is defective.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
另外,當加工不良判定部16判定為加工不良時,使未圖示之監視裝置顯示警報。另外,用於判定加工不良之數式,除了數式(5)以外,亦可使用以下數式(6)或數式(7)。 When the machining failure determining unit 16 determines that the machining is defective, the monitoring device (not shown) displays an alarm. Further, in addition to the equation (5), the following equation (6) or equation (7) may be used as the equation for determining the machining failure.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
第3圖係說明實施形態1之基板測量裝置1的動作之流程圖。 Fig. 3 is a flow chart for explaining the operation of the substrate measuring apparatus 1 of the first embodiment.
首先,藉由手動或未圖示之基板搬運裝置,將基板5設置於測量台4(步驟S1)。 First, the substrate 5 is placed on the measurement stage 4 by a manual or a substrate transfer device (not shown) (step S1).
測量台控制部10驅動測量台4,並且由測量用攝影機控制部11所控制之測量用攝影機8來收集基板5的整面之圖像資料(步驟S2)。 The measurement table control unit 10 drives the measurement table 4, and the measurement camera 8 controlled by the measurement camera control unit 11 collects image data of the entire surface of the substrate 5 (step S2).
圖像處理部12係依據基板5的加工孔6及對準標記7之圖像資料以及屬於測量台4的位置資訊之位置座標來進行圖像處理,求出加工孔6及對準標記7的測量位置座標(步驟S3)。 The image processing unit 12 performs image processing based on the image data of the processing hole 6 and the alignment mark 7 of the substrate 5 and the position coordinates of the position information belonging to the measurement table 4, and obtains the processing hole 6 and the alignment mark 7. The position coordinates are measured (step S3).
轉換係數計算部13係使用數式(1)等,從對準標記7的測量位置座標及設計位置座標求出轉換係數(步驟S4)。 The conversion coefficient calculation unit 13 obtains the conversion coefficient from the measurement position coordinates of the alignment mark 7 and the design position coordinates using the equation (1) or the like (step S4).
加工誤差計算部14係使用在步驟S4求出之轉換係數,將加工孔6的測量位置座標予以座標轉換成轉換後位置座標,並且使用數式(3)等,計算全部的加工孔6的加工誤差(△Xe(n),△Ye(n))(步驟S5)。 The machining error calculating unit 14 converts the coordinate of the measurement position of the machining hole 6 into a converted position coordinate using the conversion coefficient obtained in step S4, and calculates the machining of all the machining holes 6 using the equation (3) or the like. Error (ΔXe(n), ΔYe(n)) (step S5).
雷射加工修正值計算部15係依據由加工誤差計算部14所求出之全部的加工孔6的加工誤差,使用數式(4)計算對於進行過基板5的雷射開孔加工之雷射加工裝置 之雷射加工修正值(△Xh,△Yh)(步驟S6)。 The laser machining correction value calculation unit 15 calculates the laser for the laser drilling process of the substrate 5 by using the equation (4) based on the machining errors of all the machining holes 6 obtained by the machining error calculation unit 14. Processing device The laser processing correction value (ΔXh, ΔYh) (step S6).
加工不良品判定部16係使用加工誤差計算部14在步驟S5求出之全部的加工孔6的加工誤差及加工不良判定基準值,使用數式(5)、數式(6)、或數式(7),進行加工不良之判定(步驟S7)。當加工不良判定部16判定為加工不良時,使上述監視裝置顯示警報。 The defective product determination unit 16 uses the machining error and the machining failure determination reference value of all the machining holes 6 obtained by the machining error calculation unit 14 in step S5, and uses the equation (5), the equation (6), or the equation. (7) The determination of the processing failure is performed (step S7). When the machining failure determining unit 16 determines that the machining is defective, the monitoring device displays an alarm.
依據實施形態1之基板測量裝置1,即使是基板5於雷射加工後熱變形時、測量台4的X軸及Y軸的直角度不佳時、或是基板5產生對準誤差時,亦可消除該等誤差因素,而能夠以高精確度測量加工誤差。因此能夠求出減低該等誤差因素之雷射加工的加工修正值。 According to the substrate measuring apparatus 1 of the first embodiment, even when the substrate 5 is thermally deformed after laser processing, when the straight angles of the X-axis and the Y-axis of the measuring table 4 are not good, or when the substrate 5 is misaligned, These error factors can be eliminated, and the machining error can be measured with high accuracy. Therefore, it is possible to obtain a machining correction value for laser processing that reduces these error factors.
另外,上述說明中,雷射加工修正值計算部15係使用數式(4)求出一個雷射加工修正值(△Xh,△Yh)。然而,若將以數式(3)求出之全部的加工孔6的加工誤差(△Xe(n),△Ye(n))直接設為各加工孔6的雷射加工修正值,則可修正每個加工孔6所固有的加工誤差。藉此,可更正確地修正雷射加工。 In the above description, the laser machining correction value calculation unit 15 obtains one laser machining correction value (ΔXh, ΔYh) using the equation (4). However, if the machining error (ΔXe(n), ΔYe(n)) of all the machining holes 6 obtained by the equation (3) is directly set as the laser machining correction value of each machining hole 6, The machining error inherent to each of the machining holes 6 is corrected. Thereby, the laser processing can be corrected more correctly.
另外,實施形態1中雖說明了使用直線感測器作為測量用攝影機8,惟使用包含區域感測器之攝影機亦即區域攝影機時,亦可得到相同功效。 Further, in the first embodiment, the linear sensor is used as the measuring camera 8, and the same effect can be obtained when the area camera which is a camera including the area sensor is used.
第4圖係顯示本發明實施形態2之雷射加工系統20的構成之圖。與實施形態1相同之構成要素係附加相同符 號,故省略說明。 Fig. 4 is a view showing the configuration of a laser processing system 20 according to a second embodiment of the present invention. The same constituent elements as in the first embodiment are all the same No., so the description is omitted.
雷射加工系統20係包括雷射加工裝置21、基板測量裝置1、系統指令部22、及搬運裝置17。該雷射加工裝置21係對未進行雷射開孔加工之基板進行雷射開孔加工。該基板測量裝置1係實施形態1所說明者,測量由雷射加工裝置21進行過雷射開孔加工之基板的加工誤差。該系統指令部22係控制雷射加工裝置21及基板測量裝置1。 The laser processing system 20 includes a laser processing device 21, a substrate measuring device 1, a system command unit 22, and a transport device 17. The laser processing apparatus 21 performs laser drilling processing on a substrate which is not subjected to laser drilling. The substrate measuring device 1 is the one described in the first embodiment, and measures the machining error of the substrate subjected to the laser drilling process by the laser processing device 21. The system command unit 22 controls the laser processing device 21 and the substrate measuring device 1.
系統指令部22係對雷射加工裝置21、基板測量裝置1、及搬運裝置17等之周邊裝置進行控制之系統控制器,由如個人電腦等之電腦系統構成。系統指令部22亦連接於CAD系統及CAM(Computer-Aided Manufacturing,電腦輔助製造)系統,將加工孔6的設計位置座標、基板31的對準標記7的設計位置座標、及各種程式,傳送至雷射加工裝置21及基板測量裝置1。 The system command unit 22 is a system controller that controls peripheral devices such as the laser processing device 21, the substrate measuring device 1, and the transport device 17, and is constituted by a computer system such as a personal computer. The system command unit 22 is also connected to a CAD system and a CAM (Computer-Aided Manufacturing) system, and transmits the design position coordinates of the machining hole 6, the design position coordinates of the alignment mark 7 of the substrate 31, and various programs to Laser processing device 21 and substrate measuring device 1.
雷射加工系統20係防止起因於雷射加工裝置21的溫度上升等經時變化造成之雷射開孔加工之加工誤差擴大,而維持長時間穩定的加工精確度。為達成此目的,雷射加工系統20中係針對以雷射加工裝置21進行過雷射加工之基板,藉由基板測量裝置1測量加工誤差,並進一步於基板測量裝置1計算修正雷射加工的誤差之雷射加工誤差修正值,而修正雷射加工裝置21的加工指令。 The laser processing system 20 prevents the processing error of the laser drilling process from being augmented by the temperature rise of the laser processing apparatus 21, and maintains a long-term stable processing accuracy. To achieve this, the laser processing system 20 measures the machining error by the substrate measuring device 1 for the substrate subjected to the laser processing by the laser processing device 21, and further calculates the corrected laser processing by the substrate measuring device 1. The laser machining error correction value of the error is corrected, and the machining command of the laser machining device 21 is corrected.
雷射加工裝置21係具備雷射加工部23及控制雷射加工部23之雷射加工控制部24。 The laser processing apparatus 21 includes a laser processing unit 23 and a laser processing control unit 24 that controls the laser processing unit 23.
雷射加工部23係具備輸出雷射光之雷射振盪器25、加工頭32、及屬於承載基板31之XY台之加工台33。於此,將基板5設為第一基板,將屬於雷射加工對象之基板31設為第二基板。並且,基板5係較基板31於之前已被加工之基板。加工頭32係包括電流計掃描器29X、電流計掃描器29Y以及F θ透鏡30。該電流計掃描器29X具備電流計反射鏡27X及馬達28X。該電流計掃描器29Y具備電流計反射鏡27Y及馬達28Y。電流計掃描器29X、29Y係雷射偏向器。電流計掃描器29X、29Y係對於基板31將來自雷射振盪器25之雷射光26偏向而定位於基板31。加工頭32係固定於未圖示之Z軸台,而可沿與基板31的加工面垂直之Z方向移動,而可調整雷射光26的焦點。加工台33係變更所承載的基板31與電流計掃描器29X、29Y之相對位置。 The laser processing unit 23 includes a laser oscillator 25 that outputs laser light, a processing head 32, and a processing table 33 that belongs to the XY stage of the carrier substrate 31. Here, the substrate 5 is referred to as a first substrate, and the substrate 31 to be subjected to laser processing is referred to as a second substrate. Further, the substrate 5 is a substrate which has been processed before the substrate 31. The processing head 32 includes an ammeter scanner 29X, an ammeter scanner 29Y, and an F θ lens 30. The galvanometer scanner 29X includes a galvanomib mirror 27X and a motor 28X. The galvanometer scanner 29Y includes an ammeter mirror 27Y and a motor 28Y. The galvanometer scanners 29X, 29Y are laser deflectors. The galvanometer scanners 29X and 29Y bias the laser light 26 from the laser oscillator 25 toward the substrate 31 and are positioned on the substrate 31. The processing head 32 is fixed to a Z-axis stage (not shown), and is movable in the Z direction perpendicular to the processing surface of the substrate 31 to adjust the focus of the laser light 26. The processing table 33 changes the relative position of the substrate 31 carried by the galvanometer scanners 29X and 29Y.
從雷射加工部23的雷射振盪器25輸出之雷射光26係藉由電流計掃描器29X、29Y而朝二維方向偏向。被偏向之雷射光26係藉由F θ透鏡30聚光,而在屬於未經雷射開孔加工之被加工物之基板31上形成雷射加工孔。於此,雷射偏向器控制部43係藉由控制電流計掃描器29X、29Y的角度,而可將雷射光26定位控制於基板31上的50mm×50mm左右的範圍內。 The laser light 26 output from the laser oscillator 25 of the laser processing unit 23 is deflected in the two-dimensional direction by the galvanometer scanners 29X and 29Y. The deflected laser light 26 is condensed by the F θ lens 30, and a laser processed hole is formed on the substrate 31 belonging to the workpiece which is not subjected to laser boring. Here, the laser deflector control unit 43 can control the laser light 26 to be positioned within a range of about 50 mm × 50 mm on the substrate 31 by controlling the angles of the galvanomirrors 29X and 29Y.
另外,基板31雖為與實施形態1之基板5同等之印刷基板,惟其係雷射開孔加工前之基板,且在基板31的周邊係與第2圖所示之基板5同樣地印刷有定位用之 對準標記7。 Further, the substrate 31 is a printed circuit board equivalent to the substrate 5 of the first embodiment, but is a substrate before the laser drilling process, and the periphery of the substrate 31 is printed in the same manner as the substrate 5 shown in FIG. Use Alignment mark 7.
如第4圖所示,基板31係設置於加工台33的頂台33a。加工台33係可使基板31沿屬於第4圖的紙面垂直方向之X方向及第4圖所示之Y方向移動,而控制電流計掃描器29X、29Y與基板31之相對位置。加工台33通常係在600mm×600mm左右的範圍移動,以能夠對基板31的加工面的整面進行雷射加工。另外,加工台33係設有未圖示之線性編碼器作為定位感測器。線性編碼器係以高精確度測量設置基板31之頂台33a的位置,並且,加工台控制部37使用此測量結果來定位控制加工台33。 As shown in FIG. 4, the substrate 31 is provided on the top table 33a of the processing table 33. The processing table 33 can move the substrate 31 in the X direction which is perpendicular to the paper surface in Fig. 4 and the Y direction shown in Fig. 4, and controls the relative positions of the galvanomirrors 29X and 29Y and the substrate 31. The processing table 33 is normally moved in a range of about 600 mm × 600 mm so that the entire surface of the processed surface of the substrate 31 can be subjected to laser processing. Further, the processing table 33 is provided with a linear encoder (not shown) as a positioning sensor. The linear encoder measures the position of the top table 33a of the setting substrate 31 with high accuracy, and the processing table control portion 37 uses this measurement result to position the control processing table 33.
加工頭32係搭載有測量基板31的對準標記7的位置座標之加工用攝影機34。加工台控制部37係以加工用攝影機34能夠拍攝基板31的定位標記7之方式來定位加工台33,然後,加工用攝影機34係拍攝基板31的對準標記7。加工用攝影機34,具體而言,係使用利用CCD攝影機或CMOS(Complementary Metal-Oxide-Semiconductor,互補金屬氧化物半導體)攝影機等圖像感測器之攝影機。 The processing head 32 is mounted with a processing camera 34 that measures the position coordinates of the alignment marks 7 of the substrate 31. The processing table control unit 37 positions the processing table 33 such that the processing camera 34 can image the positioning marks 7 of the substrate 31, and then the processing camera 34 captures the alignment marks 7 of the substrate 31. The processing camera 34 is specifically a camera using an image sensor such as a CCD camera or a CMOS (Complementary Metal-Oxide-Semiconductor) camera.
使用加工用攝影機34所拍攝之對準標記7的圖像資料,及屬於拍攝圖像資料時之加工台33的位置資訊之線性編碼器的值,可測量對準標記7的位置座標。 The position coordinates of the alignment mark 7 can be measured using the image data of the alignment mark 7 taken by the processing camera 34 and the value of the linear encoder belonging to the position information of the processing table 33 when the image data is captured.
屬於測量到的對準標記7的位置座標之測量位置座標係用於電流計掃描器29X、29Y的指令或加工台33的指令之修正,即便有基板31的對準誤差或基板31的伸縮,亦能夠精確度良好地將雷射光26照射至基板31上 的目的之位置座標。 The measurement position coordinates of the position coordinates belonging to the measured alignment mark 7 are used for correction of the command of the galvanometer scanners 29X, 29Y or the command of the processing table 33, even if there is an alignment error of the substrate 31 or expansion and contraction of the substrate 31, It is also possible to irradiate the laser light 26 onto the substrate 31 with high precision. The location coordinates of the purpose.
對於基板31之雷射開孔加工結束後,依據系統指令部22之指令,基板31係藉由搬運裝置17搬運至基板測量裝置1的測量台4的頂台4a。設置於測量台4的頂台4a之經雷射開孔加工之基板31即為基板5。 After the laser drilling process of the substrate 31 is completed, the substrate 31 is transported to the top table 4a of the measuring table 4 of the substrate measuring device 1 by the transport device 17 in response to a command from the system command unit 22. The substrate 31 which is disposed on the top table 4a of the measuring table 4 by laser drilling is the substrate 5.
第4圖之雷射加工控制部24係利用方塊圖而記載功能。雷射加工控制部24係包括加工指令部35、雷射振盪器控制部36、加工台控制部37、加工用攝影機控制部38、第二圖像處理部50、對準修正值計算部39、台對準修正部40、雷射加工修正部41、偏向器對準修正部42、以及雷射偏向器控制部43。 The laser processing control unit 24 of Fig. 4 describes the function by using a block diagram. The laser processing control unit 24 includes a machining command unit 35, a laser oscillator control unit 36, a machining station control unit 37, a machining camera control unit 38, a second image processing unit 50, and an alignment correction value calculation unit 39. The stage alignment correction unit 40, the laser processing correction unit 41, the deflector alignment correction unit 42, and the laser deflector control unit 43.
雷射加工控制部24係控制雷射加工部23之裝置,控制雷射振盪器25、電流計掃描器29X、29Y、加工台33、及加工用攝影機34。 The laser processing control unit 24 controls the laser processing unit 23, and controls the laser oscillator 25, the galvanometer scanners 29X and 29Y, the processing table 33, and the processing camera 34.
雷射加工控制部24係一電腦系統。該電腦系統具備一個或複數個CPU(Central Processing Unit)、記憶體,甚至於數位傳輸介面、類比輸入裝置、類比輸出裝置、人機介面。再者,雷射加工控制部24亦具備驅動雷射振盪器25、電流計掃描器29X、29Y及加工台33之伺服放大器及電源。 The laser processing control unit 24 is a computer system. The computer system has one or a plurality of CPUs (Central Processing Units), memory, and even a digital transmission interface, an analog input device, an analog output device, and a human-machine interface. Further, the laser processing control unit 24 also includes a servo amplifier and a power source for driving the laser oscillator 25, the galvanometer scanners 29X and 29Y, and the processing table 33.
加工指令部35係從系統指令部22取得加工孔6的設計位置座標、基板31的對準標記7的設計位置座標及加工程式,並且記錄有各種設定參數及雷射加工條件等。加工指令部35係依據從系統指令部22取得之加工程 式,對雷射振盪器25、加工台33、及電流計掃描器29X、29Y之各者輸出雷射振盪指令、用以定位加工台33之指令位置座標、用以定位電流計掃描器29X、29Y之指令位置座標等之指令。 The machining command unit 35 acquires the design position coordinates of the machining hole 6 , the design position coordinates of the alignment mark 7 of the substrate 31 , and the machining program from the system command unit 22 , and records various setting parameters, laser machining conditions, and the like. The machining command unit 35 is based on the addition work acquired from the system command unit 22. a laser oscillation command, a laser oscillation command for each of the laser oscillator 25, the processing table 33, and the galvanometer scanners 29X, 29Y, a positional coordinate for positioning the processing table 33, a positioning galvanometer scanner 29X, 29Y instruction position coordinates and other instructions.
另外,從加工指令部35輸出之給予加工台33之指令位置座標及給予電流計掃描器29X、29Y之指令位置座標係從加工孔6的設計位置座標求出者,並不包含基板31的變形、加工台33的座標偏差、及對準誤差。 Further, the command position coordinates given to the processing table 33 and the command position coordinates given to the galvanomirrors 29X and 29Y which are output from the machining command unit 35 are obtained from the design position coordinates of the machining hole 6, and do not include the deformation of the substrate 31. The coordinate deviation of the processing table 33 and the alignment error.
另外,基板31的尺寸通常為300mm×300mm以上,惟取決於電流計掃描器29X、29Y之雷射光26的掃描區域為50mm×50mm左右。因此,為了以電流計掃描器29X、29Y掃描基板31的要進行開孔加工之加工區域整面而進行雷射加工,需使加工台33移動而使電流計掃描器29X、29Y的掃描區域在基板31的加工面上移動。 Further, the size of the substrate 31 is usually 300 mm × 300 mm or more, but the scanning area of the laser light 26 depending on the galvanometer scanners 29X and 29Y is about 50 mm × 50 mm. Therefore, in order to perform laser processing by scanning the entire surface of the processing area of the substrate 31 to be subjected to the hole processing by the galvanomirrometers 29X and 29Y, it is necessary to move the processing table 33 so that the scanning area of the galvanometer scanners 29X and 29Y is The processing surface of the substrate 31 moves.
用以進行如上述之加工之加工台33的指令位置座標,具體而言,係以電流計掃描器29X、29Y的掃描區域的大小來分割基板31上的要進行開孔加工之加工區域,並以分割後之各加工區域之加工孔6的中心座標之形式求出。分割後的各加工區域可能存在有一個以上之加工孔6。因此,上述中心座標係以由上述分割後之各加工區域內所包含之一個以上的加工孔6的X方向的設計位置座標的最大值、最小值、及Y方向的設計位置座標的最大值、最小值所決定之四角形的區域的中心座標之形式進行計算而求出。將上述分割出之各加工區域之加工孔6的中心座 標設為加工台33的指令位置座標(Xtr0(m),Ytr0(m))。其中,m=1、2、3、…、M,M為加工區域之上述分割之分割數。 The command position coordinates of the processing table 33 for performing the above processing, specifically, the processing area to be subjected to the hole drilling processing on the substrate 31 by the size of the scanning area of the ammeter scanners 29X and 29Y, and It is obtained in the form of the center coordinates of the machining holes 6 of the divided machining regions. There may be more than one machining hole 6 in each of the divided machining regions. Therefore, the center coordinate is a maximum value, a minimum value, and a maximum value of a design position coordinate in the Y direction of the one-side machining hole 6 included in each of the divided machining regions. The form of the central coordinate of the quadrilateral region determined by the minimum value is calculated and calculated. The center seat of the machining hole 6 of each of the above-mentioned divided processing regions The index is set to the command position coordinate of the processing table 33 (Xtr0(m), Ytr0(m)). Where m = 1, 2, 3, ..., M, M are the number of divisions of the above-described division of the processing region.
據此,對於各加工孔6之電流計掃描器29X、29Y之指令位置座標,係可藉由從加工孔6的設計位置座標減去加工台33的指令位置座標而求出,其中,該加工台33的指令位置座標係包含有該加工孔6之分割後的加工區域中之加工孔6的中心座標。 Accordingly, the command position coordinates of the galvanomirrors 29X and 29Y of the machining holes 6 can be obtained by subtracting the command position coordinates of the machining table 33 from the design position coordinates of the machining holes 6, wherein the machining is performed. The command position coordinate of the table 33 includes the center coordinate of the machining hole 6 in the divided machining region of the machining hole 6.
於此,若將從CAD資料取得之加工孔6的設計位置座標設為(Xhr(n),Yhr(n)),將包含有該設計位置座標之分割後的加工區域之加工孔6的中心座標之加工台33的指令位置座標(Xtr0(m),Ytr0(m))設為(Xtr(n),Ytr(n)),則電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))可由下述數式(8)求出。 Here, if the design position coordinates of the machining hole 6 obtained from the CAD data are (Xhr(n), Yhr(n)), the center of the machining hole 6 including the divided machining region of the design position coordinate is included. The command position coordinates (Xtr0(m), Ytr0(m)) of the coordinate processing table 33 are set to (Xtr(n), Ytr(n)), and the command position coordinates of the galvanometer scanners 29X and 29Y (Xgr(n) ), Ygr(n)) can be obtained by the following formula (8).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
另外,以上述方式求出之加工台33的指令位置座標(Xtr(n),Ytr(n))及電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))係從加工指令部35輸出。 Further, the command position coordinates (Xtr(n), Ytr(n)) of the machining table 33 and the command position coordinates (Xgr(n), Ygr(n)) of the galvanometer scanners 29X and 29Y are obtained as described above. It is output from the machining command unit 35.
再者,雷射振盪器控制部36係於加工指令部35對雷射振盪器控制部36輸入雷射加工條件,並且輸入雷射振盪指令時,以使雷射振盪器25輸出脈衝狀之雷射光 26之方式,對雷射振盪器25輸出雷射振盪指令。 Further, the laser oscillator control unit 36 is configured to input the laser processing condition to the laser oscillator control unit 36 by the machining command unit 35, and input the laser oscillation command so that the laser oscillator 25 outputs a pulse-like lightning. Light In the manner of 26, the laser oscillator 25 outputs a laser oscillation command.
加工台控制部37係從加工指令部35取得台指令位置座標而定位控制加工台33,並且依據線性尺標的位置座標,輸出加工台33的位置資訊。 The machining table control unit 37 acquires the table command position coordinates from the machining command unit 35, and positions and controls the machining table 33, and outputs the position information of the machining table 33 in accordance with the position coordinates of the linear scale.
加工用攝影機控制部38係依據來自加工指令部35之攝影機控制指令而動作,執行加工用攝影機34之控制及收集加工用攝影機34所拍攝之基板31的對準標記7的圖像資料。對準標記7的圖像資料係在加工台33的定位完成後收集。 The processing camera control unit 38 operates in accordance with the camera control command from the machining command unit 35, and performs control of the machining camera 34 and collection of image data of the alignment mark 7 of the substrate 31 captured by the processing camera 34. The image data of the alignment mark 7 is collected after the positioning of the processing table 33 is completed.
第二圖像處理部50係使用加工用攝影機控制部38所收集之圖像資料,並使用圖案媒合等的圖像處理方法,求出對準標記7位於加工用攝影機34的圖像面中的位置座標。並且,第二圖像處理部50係從加工台控制部37輸入在拍攝上述圖像資料時之加工台33的位置座標。第二圖像處理部50係將對準標記7位於上述圖像面中的位置座標與加工台33的位置座標相加,求出基板31的對準標記7位於加工台33上之測量位置座標。 The second image processing unit 50 uses the image data collected by the processing camera control unit 38, and obtains the alignment mark 7 in the image plane of the processing camera 34 by using an image processing method such as pattern matching. Position coordinates. Further, the second image processing unit 50 inputs the position coordinates of the processing table 33 when the image data is captured from the processing table control unit 37. The second image processing unit 50 adds the position coordinates of the alignment mark 7 on the image plane to the position coordinates of the processing table 33, and obtains the measurement position coordinates of the alignment mark 7 of the substrate 31 on the processing table 33. .
對準修正值計算部39係取得第二圖像處理部50所求出之基板31的對準標記7的測量位置座標,並且從加工指令部35取得對應之對準標記7的設計位置座標,而求出將基板31的加工台33上之對準誤差及基板31的變形予以修正之轉換係數。將實施形態1中轉換係數計算部13所求出之轉換係數設為第一轉換係數,將對準修正值計算部39所求出之上述轉換係數設為第二轉換係數。 The alignment correction value calculation unit 39 acquires the measurement position coordinates of the alignment mark 7 of the substrate 31 obtained by the second image processing unit 50, and acquires the design position coordinates of the corresponding alignment mark 7 from the machining command unit 35, The conversion coefficient for correcting the alignment error on the processing table 33 of the substrate 31 and the deformation of the substrate 31 is obtained. The conversion coefficient obtained by the conversion coefficient calculation unit 13 in the first embodiment is referred to as a first conversion coefficient, and the conversion coefficient obtained by the alignment correction value calculation unit 39 is referred to as a second conversion coefficient.
以Q11、Q12、Q13、Q21、Q22、Q23作為第二轉換係數之一例,並假設基板31的對準標記7有四個。當將基板31的對準標記7的測量位置座標設為(Xam2(k),Yam2(k))(k=1、2、3、4),並將對應之設計位置座標設為(Xar2(k),Yar2(k))(k=1、2、3、4)時,可表示如下述數式(9)之關係式。 Q11, Q12, Q13, Q21, Q22, and Q23 are taken as an example of the second conversion coefficient, and it is assumed that there are four alignment marks 7 of the substrate 31. When the measurement position coordinates of the alignment mark 7 of the substrate 31 are set to (Xam2(k), Yam2(k)) (k=1, 2, 3, 4), and the corresponding design position coordinates are set to (Xar2( k), Yar2(k)) (k = 1, 2, 3, 4), which can express the relational expression of the following formula (9).
(k=1、2、3、4) (k=1, 2, 3, 4)
數式(9)的第二轉換係數Q11、Q12、Q13、Q21、Q22、Q23,若基板31的對準標記7為三個以上,則可使用基板31的對準標記7的測量位置座標、設計位置座標、及數式(9)求出。若基板31的對準標記7為四個以上,則可使用最小平方法進一步正確地求出。 In the second conversion coefficients Q11, Q12, Q13, Q21, Q22, and Q23 of the equation (9), if the alignment marks 7 of the substrate 31 are three or more, the measurement position coordinates of the alignment marks 7 of the substrate 31 can be used. The design position coordinates and the equation (9) are obtained. When the alignment mark 7 of the substrate 31 is four or more, it can be further accurately obtained by the least squares method.
數式(9)的Q11、Q12、Q13、Q21、Q22、Q23係成為從基板31的對準標記7的設計位置座標轉換成加工台33上之測量位置座標之座標轉換矩陣的要素,構成對於存在有基板31的偏移、增益、旋轉、及座標軸的正交偏差之情形有效之座標轉換矩陣。 Q11, Q12, Q13, Q21, Q22, and Q23 of the equation (9) are elements that are converted from the design position coordinates of the alignment marks 7 of the substrate 31 to the coordinate conversion matrix of the measurement position coordinates on the processing table 33, and constitute a pair. There is a coordinate conversion matrix that is effective in the case of offset, gain, rotation, and orthogonal deviation of the coordinate axis of the substrate 31.
對準修正值計算部39所求出之第二轉換係數係輸出至台對準修正部40及偏向器對準修正部42。 The second conversion coefficient obtained by the alignment correction value calculation unit 39 is output to the stage alignment correction unit 40 and the deflector alignment correction unit 42.
台對準修正部40係使用第二轉換係數來轉換 從加工指令部35輸出之用以定位加工台33之指令位置座標,求出將基板31的對準誤差及因變形造成之誤差修正後之指令位置座標,並將其輸出至加工台控制部37。將使用第二轉換係數之轉換所進行之修正稱為對準修正。將從加工指令部35取得之對於加工台33之對準修正前的指令位置座標設為(Xtr(n),Ytr(n)),將依據第二轉換係數進行之對準修正後的指令位置座標設為(Xtr2(n),Ytr2(n))時,成為如下述數式(10)之關係。 The stage alignment correction unit 40 converts using the second conversion coefficient The command position coordinates for positioning the processing table 33 output from the machining command unit 35 are obtained, and the command position coordinates obtained by correcting the alignment error of the substrate 31 and the error due to the deformation are obtained and output to the processing table control unit 37. . The correction made by the conversion using the second conversion coefficient is referred to as alignment correction. The command position coordinates obtained before the alignment correction of the processing table 33 obtained from the machining command unit 35 are (Xtr(n), Ytr(n)), and the command position after the alignment correction according to the second conversion coefficient is used. When the coordinates are (Xtr2(n), Ytr2(n)), the relationship is expressed by the following equation (10).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
雷射加工修正部41係取得加工指令部35輸出之用以定位電流計掃描器29X、29Y之上述指令位置座標(Xgr(n),Ygr(n)),並且使用以基板測量裝置1求出之雷射加工裝置21的雷射加工修正值(△Xh,△Yh),修正電流計掃描器29X、29Y的指令位置座標。 The laser processing correction unit 41 acquires the command position coordinates (Xgr(n), Ygr(n)) for positioning the galvanomirrors 29X and 29Y, which are output from the machining command unit 35, and is obtained by the substrate measuring device 1. The laser processing correction value (?Xh, ?Yh) of the laser processing apparatus 21 corrects the command position coordinates of the ammeter scanners 29X and 29Y.
雷射加工部41係依據從加工指令部35輸入之電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n)),及從基板測量裝置1的雷射加工修正值計算部15輸入之雷射加工修正值(△Xh,△Yh),使用下述所示數式(11),求出電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。另外,數式(11)中,雷射加工修正值 △Xh、△Yh係分別乘上修正係數khx1、khy1而調整修正量。一般而言,修正係數khx1、khy1設定在0至1之範圍,惟設定成此範圍時,可進行加工誤差不會增大之穩定的修正。 The laser processing unit 41 calculates the command position coordinates (Xgr(n), Ygr(n)) of the galvanometer scanners 29X and 29Y input from the machining command unit 35, and the laser machining correction value from the substrate measuring device 1. The laser processing correction value (ΔXh, ΔYh) input from the unit 15 is used to obtain the corrected command position coordinates (Xgr2(n) of the galvanomirror scanners 29X and 29Y using the following equation (11). Ygr2(n)). In addition, in the equation (11), the laser processing correction value ΔXh and ΔYh are multiplied by the correction coefficients khx1 and khy1 to adjust the correction amount. In general, the correction coefficients khx1 and khy1 are set in the range of 0 to 1, but when set to this range, stable correction in which the machining error does not increase can be performed.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))係反映出對於在過去藉由雷射加工裝置21加工過之基板5的加工誤差之修正者,且為以因雷射加工裝置21的溫度變化等之經時變化導致之加工誤差的增大獲得改善之方式,將電流計掃描器29X、29Y的指令位置座標予以修正之值。 The corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X, 29Y reflect the correction of the machining error of the substrate 5 processed by the laser processing apparatus 21 in the past. Further, the command position coordinates of the ammeter scanners 29X and 29Y are corrected so as to improve the machining error caused by the temporal change of the temperature of the laser processing apparatus 21 or the like.
偏向器對準修正部42係使用第二轉換係數,將屬於雷射加工修正部41的輸出之電流計掃描器29X、29Y的經修正之指令位置座標(Xgr2(n),Ygr2(n))予以座標轉換,而輸出將基板31的對準誤差及基板31的變形所導致之誤差予以對準修正後之電流計掃描器29X、29Y的指令位置座標。將對準修正前之電流計掃描器29X、29Y的指令位置座標設為(Xgr2(n),Ygr2(n)),將對準修正後之電流計掃描器29X、29的指令位置座標設為(Xgrs(n),Ygrs(n))時,係成為下述數式(12)所示之關係。 The deflector alignment correcting unit 42 uses the second conversion coefficient to correct the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X and 29Y belonging to the output of the laser machining correction unit 41. The coordinate conversion is performed, and the output causes the alignment error of the substrate 31 and the error caused by the deformation of the substrate 31 to be aligned with the command position coordinates of the corrected ammeter scanners 29X and 29Y. The command position coordinates of the galvanometer scanners 29X and 29Y before the alignment correction are set to (Xgr2(n), Ygr2(n)), and the command position coordinates of the alignment galvanometer scanners 29X and 29 are set to (Xgrs(n), Ygrs(n)) is a relationship shown by the following formula (12).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
雷射偏向器控制部43係對於從偏向器對準修正部42輸入之指令位置座標(Xgrs(n),Ygrs(n))中,起因於F θ透鏡30等產生之光學系統的誤差,進行非線性修正,之後,轉換成電流計掃描器29X、29Y的旋轉角,並且以能夠將雷射光26照射至基板31的目標之位置之方式,定位控制電流計掃描器29X、29Y。 The laser deflector control unit 43 performs an error on the optical system generated by the F θ lens 30 or the like in the command position coordinates (Xgrs(n), Ygrs(n)) input from the deflector alignment correction unit 42. The nonlinear correction is then converted into the rotation angle of the galvanometer scanners 29X, 29Y, and the galvanometer scanners 29X, 29Y are positioned and controlled in such a manner that the laser light 26 can be irradiated to the position of the target of the substrate 31.
第5圖係說明實施形態2之雷射加工系統20的動作之流程圖。另外,對於與第3圖相同處理之步驟S1至步驟S7係附加相同步驟編號並省略說明。 Fig. 5 is a flow chart showing the operation of the laser processing system 20 of the second embodiment. In addition, steps S1 to S7 which are the same as the processing in FIG. 3 are denoted by the same step numbers, and description thereof will be omitted.
首先,雷射加工系統20係使用未圖示之基板搬運裝置將基板31設置於加工台33的頂台33a(步驟S10)。 First, the laser processing system 20 mounts the substrate 31 on the top table 33a of the processing table 33 by using a substrate transfer device (not shown) (step S10).
接著,雷射加工控制部24控制加工台33及加工用攝影機34,使加工用攝影機34拍攝基板31的對準標記7。加工用攝影機控制部38係收集加工用攝影機34所拍攝之圖像資料。第二圖像處理部50係對所收集之圖像資料進行圖像處理,並且使用加工台33的位置座標來測量基板31的對準標記7的測量位置座標(Xam2(k),Yam2(k))。對準修正計算部39係依據對準標記7的測量位置座標(Xam2(k),Yam2(k))及對準標記7的設計位置座標(Xar(k),Yar(k)),使用數式(9)求出基板31之第二轉換係數 (步驟S11)。 Next, the laser processing control unit 24 controls the processing table 33 and the processing camera 34 to cause the processing camera 34 to capture the alignment mark 7 of the substrate 31. The processing camera control unit 38 collects image data captured by the processing camera 34. The second image processing section 50 performs image processing on the collected image data, and measures the measurement position coordinates of the alignment mark 7 of the substrate 31 using the position coordinates of the processing table 33 (Xam2(k), Yam2(k) )). The alignment correction calculation unit 39 is based on the measurement position coordinates (Xam2(k), Yam2(k)) of the alignment mark 7 and the design position coordinates (Xar(k), Yar(k)) of the alignment mark 7, and the number of uses. Calculating the second conversion coefficient of the substrate 31 by the formula (9) (Step S11).
接著,加工指令部35係判定基板31的全部的開孔加工是否已結束(步驟S12)。在開孔加工尚未結束時(步驟S12:否),推進至步驟S13,在全部的開孔加工結束時(步驟S12:是),推進至步驟S20。 Next, the machining command unit 35 determines whether or not all the drilling processes of the substrate 31 have been completed (step S12). When the drilling process has not been completed (step S12: NO), the process proceeds to step S13, and when all the hole drilling processes are completed (step S12: YES), the process proceeds to step S20.
在開孔加工尚未結束時(步驟S12:否),於來自加工指令部35之用以移動至電流計掃描器29X、29Y的下一個掃描區域之加工台33的指令位置座標(Xtr(n),Ytr(n)),乘上在步驟S11求出之用於對準修正之第二轉換係數,而由台對準修正部40執行對準修正(步驟S13)。 When the drilling process has not been completed (step S12: NO), the command position coordinates (Xtr(n)) of the processing table 33 from the machining command portion 35 for moving to the next scanning region of the galvanometer scanners 29X, 29Y. Ytr(n)), multiplied by the second conversion coefficient for alignment correction obtained in step S11, and the alignment correction unit 40 performs alignment correction (step S13).
經對準修正之指令位置座標(Xtr2(n),Ytr2(n))係輸入至加工台控制部37,加工台控制部37係依據經對準修正之指令位置座標(Xtr2(n),Ytr2(n))來定位加工台33(步驟S14)。 The alignment corrected position coordinates (Xtr2(n), Ytr2(n)) are input to the processing table control unit 37, and the processing table control unit 37 is based on the alignment corrected command position coordinates (Xtr2(n), Ytr2). (n)) The processing table 33 is positioned (step S14).
藉由以雷射加工修正值計算部15求出之雷射加工修正值(△Xh,△Yh),修正來自加工指令部35之電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))(步驟S15)。另外,雷射加工修正值(△Xh,△Yh)的初始值分別為0。 The laser machining correction value (ΔXh, ΔYh) obtained by the laser machining correction value calculating unit 15 corrects the command position coordinates (Xgr(n) from the galvanometer scanners 29X and 29Y of the machining command unit 35. , Ygr(n)) (step S15). Further, the initial values of the laser machining correction values (ΔXh, ΔYh) are respectively 0.
將經由雷射加工修正值(△Xh,△Yh)修正過之電流計掃描器29X、29Y的指令位置座標(Xgr2(n),Ygr2(n))乘上第二轉換係數,而由偏向器對準修正部42進行對準修正(步驟S16)。 Multiplying the command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X, 29Y corrected by the laser machining correction values (ΔXh, ΔYh) by the second conversion coefficient, and by the deflector The alignment correction unit 42 performs alignment correction (step S16).
經對準修正之電流計掃描器29X、29Y的指 令位置座標(Xgrs(n),Ygrs(n))被輸入至雷射偏向器控制部43,由雷射偏向器控制部43定位電流計掃描器29X、29Y(步驟S17)。 The index of the galvanometer scanner 29X, 29Y corrected by alignment The position coordinates (Xgrs(n), Ygrs(n)) are input to the laser deflector control unit 43, and the galvanometer scanners 29X and 29Y are positioned by the laser deflector control unit 43 (step S17).
來自加工指令部35之雷射振盪指令係被輸入至雷射振盪器控制部36,雷射振盪器控制部36係使脈衝狀之雷射光26從雷射振盪器25輸出(步驟S18)。 The laser oscillation command from the machining command unit 35 is input to the laser oscillator control unit 36, and the laser oscillator control unit 36 outputs the pulsed laser light 26 from the laser oscillator 25 (step S18).
接著,加工指令部35係進行判定在電流計掃描器29X、29Y的掃描區域內的全部的開孔加工是否結束(步驟S19)。在掃描區域內的開孔加工尚未結束時(步驟S19:否(No)),推進至步驟S15,在掃描區域內的全部的開孔加工結束時(步驟S19:是(Yes)),推進至步驟S12。 Next, the machining command unit 35 determines whether or not all the drilling processes in the scanning area of the galvanomirrors 29X and 29Y are completed (step S19). When the drilling process in the scanning area has not been completed (step S19: No), the process proceeds to step S15, and when all the hole drilling processes in the scanning area are completed (step S19: Yes), the process proceeds to Step S12.
步驟S12中,全部的開孔加工結束時(步驟S12:是),藉由搬運裝置17將雷射加工結束之基板31移動至基板測量裝置1的測量台4(步驟S20)。 In step S12, when all the drilling processes are completed (step S12: YES), the substrate 31 whose laser processing is completed is moved by the conveying device 17 to the measuring table 4 of the substrate measuring device 1 (step S20).
步驟S20後的步驟S1至步驟S7係實施形態1所說明之內容。在基板測量裝置1進行之基板5的測量結束後,亦即在步驟S7後,使用未圖示之基板搬出裝置,將基板5從測量台4移動至外部的基板存放器等,而從基板測量裝置1搬出(步驟S21)。 Steps S1 to S7 subsequent to step S20 are the contents described in the first embodiment. After the measurement of the substrate 5 by the substrate measuring device 1 is completed, that is, after the step S7, the substrate 5 is moved from the measuring table 4 to the external substrate storage device using a substrate unloading device (not shown), and the substrate is measured from the substrate. The device 1 is carried out (step S21).
之後,系統指令部22係判定有無未加工之基板(步驟S22)。有未加工之基板時(步驟S22:是),推進至步驟S10,而沒有未加工之基板時(步驟S22:否)則結束。 Thereafter, the system command unit 22 determines whether or not there is an unprocessed substrate (step S22). When there is an unprocessed substrate (step S22: YES), the process proceeds to step S10, and when there is no unprocessed substrate (step S22: NO), the process ends.
如以上所說明,實施形態2之雷射加工系統20係以雷射加工裝置21於基板31進行雷射開孔加工,在 雷射開孔加工後,以基板測量裝置1測量形成於基板5之加工孔6的加工誤差,並且以縮小加工誤差之方式修正電流計掃描器29X、29Y的指令位置座標。藉此,雷射加工系統20即便是在連續加工複數張基板之情形,亦可抑制因雷射加工裝置21的溫度變化等所產生之經時變化而導致之加工誤差,使加工誤差不會擴大。亦即,實施形態2之雷射加工系統20即便在連續加工時,亦可實現以高精確度在長時間下進行穩定的雷射加工。 As described above, the laser processing system 20 of the second embodiment performs laser drilling on the substrate 31 by the laser processing apparatus 21, After the laser drilling process, the substrate measuring device 1 measures the machining error of the machining hole 6 formed in the substrate 5, and corrects the command position coordinates of the ammeter scanners 29X and 29Y so as to reduce the machining error. Thereby, even when the plurality of substrates are continuously processed, the laser processing system 20 can suppress the processing error caused by the temperature change of the laser processing apparatus 21 and the like, and the machining error does not increase. . That is, the laser processing system 20 of the second embodiment can realize stable laser processing with high accuracy for a long period of time even in continuous processing.
另外,上述說明中,係以測量控制部3、系統指令部22、及雷射加工控制部24分別為個別的電腦系統之情形進行說明,惟該等亦可藉由相同電腦系統構成。藉此,可得到測量控制部3、系統指令部22、及雷射加工控制部24之各個處理部之間的資料通訊變得順暢之優點。 In addition, in the above description, the case where the measurement control unit 3, the system command unit 22, and the laser processing control unit 24 are individual computer systems will be described, but these may be configured by the same computer system. Thereby, the data communication between the measurement control unit 3, the system command unit 22, and the processing unit of the laser processing control unit 24 becomes smooth.
再者,上述說明中,係針對雷射加工裝置21具備一個加工頭32之情形進行說明,惟即便是具備複數個加工頭之構成,亦可獲得與上述同等之功效。再者,基板測量裝置1亦可具備複數個測量用攝影機8。 In the above description, the case where the laser processing apparatus 21 includes one processing head 32 will be described. However, even if it has a configuration of a plurality of processing heads, the same effect as described above can be obtained. Furthermore, the substrate measuring device 1 may include a plurality of measuring cameras 8 .
再者,雷射加工修正部41係對電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n)),使用雷射加工修正值(△Xh,△Yh)及數式(11)進行修正計算。惟使用以數式(3)求出之各加工孔6的加工誤差(△Xe(n),△Ye(n))作為以雷射加工修正值計算部15求出之雷射加工修正值時,若使用下述之數式(13)取代數式(11),按每個加工孔6進行修正,則可得到進一步抑制加工誤差之功效。另外,數式(13) 中,於各加工誤差△Xe(n)、△Ye(n)分別乘上修正係數khx2、khy2而進行修正量之調整。一般而言,修正係數khx2、khy2設定在0至1之範圍,惟設定成此範圍時,能夠進行加工誤差不會增大之穩定的修正。 Further, the laser processing correction unit 41 uses the laser machining correction values (ΔXh, ΔYh) and the equations for the command position coordinates (Xgr(n), Ygr(n)) of the galvanomirrors 29X and 29Y. (11) Perform correction calculation. The machining error (ΔXe(n), ΔYe(n)) of each of the machining holes 6 obtained by the equation (3) is used as the laser machining correction value obtained by the laser machining correction value calculation unit 15. When the formula (11) is replaced by the following formula (13) and corrected for each of the processing holes 6, the effect of further suppressing the machining error can be obtained. In addition, the formula (13) In addition, the correction amounts are multiplied by the correction coefficients khx2 and khy2 for the machining errors ΔXe(n) and ΔYe(n), respectively. In general, the correction coefficients khx2 and khy2 are set in the range of 0 to 1, but when set to this range, stable correction in which the machining error does not increase can be performed.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
另外,對於在雷射加工修正部41所用之數式(11)或數式(13)中之雷射加工修正值,亦可藉由具有低通特性之濾波器進行濾波處理而調整雷射加工修正值。 Further, for the laser processing correction value in the equation (11) or the equation (13) used in the laser machining correction unit 41, the laser processing can be performed by filtering the filter having the low-pass characteristic to adjust the laser processing. Correction value.
第6圖係顯示本發明實施形態3之雷射加工系統44的構成之圖。雷射加工系統44係包括雷射加工裝置51、基板測量裝置1、系統指令部22、及搬運裝置17。該雷射加工裝置51係對未進行雷射開孔加工之基板進行雷射開孔加工。該基板測量裝置1係實施形態1所說明者,測量藉由雷射加工裝置51進行過雷射開孔加工之基板的加工誤差。該系統指令部22係控制雷射加工裝置51及基板測量裝置1。雷射加工系統51係包括雷射加工部23及控制雷射加工部23之雷射加工控制部54。 Fig. 6 is a view showing the configuration of a laser processing system 44 according to a third embodiment of the present invention. The laser processing system 44 includes a laser processing device 51, a substrate measuring device 1, a system command unit 22, and a transport device 17. The laser processing apparatus 51 performs laser drilling processing on a substrate that has not been subjected to laser drilling. The substrate measuring apparatus 1 is a method described in the first embodiment, and measures a machining error of a substrate subjected to laser drilling by the laser processing apparatus 51. The system command unit 22 controls the laser processing device 51 and the substrate measuring device 1. The laser processing system 51 includes a laser processing unit 23 and a laser processing control unit 54 that controls the laser processing unit 23.
第6圖中,與第4圖所示之實施形態2之雷射加工系統20相同之構成要素係附加相同符號並省略其 說明。雷射加工系統44的雷射加工控制部54係設置偏向器對準修正部45來取代雷射加工系統20的雷射加工控制部24的偏向器對準修正部42,且設置雷射加工修正部46來取代雷射加工修正部41,設置台對準修正部47來取代台對準修正部40。雷射加工系統44的除此之外的構成係與雷射加工系統20相同。 In the sixth embodiment, the same components as those of the laser processing system 20 of the second embodiment shown in Fig. 4 are denoted by the same reference numerals and the description thereof is omitted. Description. The laser processing control unit 54 of the laser processing system 44 is provided with a deflector alignment correcting unit 45 instead of the deflector alignment correcting unit 42 of the laser processing control unit 24 of the laser processing system 20, and is provided with laser processing correction. Instead of the laser alignment correction unit 41, the portion 46 is provided with a stage alignment correction unit 47 instead of the stage alignment correction unit 40. The other configuration of the laser processing system 44 is the same as that of the laser processing system 20.
實施形態2之雷射加工系統20中,使用以雷射加工修正值計算部15求出之雷射加工修正值,由雷射加工修正部41修正從加工指令部35輸出之電流計掃描器29X、29Y的指令位置座標,並輸入至偏向器對準修正部42。相對於此,實施形態3之雷射加工系統44與雷射加工系統20之不同點在於:構成為雷射加工修正部46依據以雷射加工修正值計算部15求出之雷射加工修正值,修正從加工指令部35輸出之用以定位加工台33之指令位置座標,並輸入至台對準修正部47。 In the laser processing system 20 of the second embodiment, the laser machining correction value obtained by the laser machining correction value calculation unit 15 is used, and the laser machining correction unit 41 corrects the galvanometer scanner 29X output from the machining command unit 35. The command position coordinates of 29Y are input to the deflector alignment correction unit 42. On the other hand, the laser processing system 44 of the third embodiment differs from the laser processing system 20 in that the laser processing correction unit 46 is configured to determine the laser machining correction value based on the laser machining correction value calculation unit 15. The command position coordinates for positioning the machining table 33 output from the machining command unit 35 are corrected and input to the stage alignment correction unit 47.
偏向器對準修正部45係使用第二轉換係數將屬於加工指令部35的輸出之電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))予以座標轉換,而輸出將基板31的對準誤差及基板31的變形所造成之誤差予以對準修正後之指令位置座標(Xgrs(n),Ygrs(n))。 The deflector alignment correcting unit 45 coordinates the command position coordinates (Xgr(n), Ygr(n)) of the galvanometer scanners 29X and 29Y belonging to the output of the machining command unit 35 using the second conversion coefficient, and outputs the same. The error caused by the alignment error of the substrate 31 and the deformation of the substrate 31 is aligned with the corrected command position coordinates (Xgrs(n), Ygrs(n)).
電流計掃描器29X、29Y的對準修正前的指令位置座標(Xgr(n),Ygr(n))與電流計掃描器29X、29Y的對準修正後的指令位置座標(Xgrs(n),Ygrs(n)),係成為如下述數式(14)之關係。 Alignment of the command position coordinates (Xgr(n), Ygr(n)) before alignment correction of the galvanometer scanners 29X, 29Y with the alignment of the galvanometer scanners 29X, 29Y (Xgrs(n), Ygrs(n)) is a relationship of the following formula (14).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
雷射加工修正部46係使用基板測量裝置1的雷射加工修正值計算部15所求出之雷射加工修正值(△Xh,△Yh),來修正加工指令部35所輸出之用以定位加工台33之指令位置座標(Xtr(n),Ytr(n))。雷射加工修正部46係依據從加工指令部35輸入之加工台33的指令位置座標(Xtr(n),Ytr(n))與從雷射加工修正值計算部15輸入之雷射加工修正值(△Xh,△Yh),使用下述之數式(15)求出加工台33的經修正之指令位置座標(Xtr2(n),Ytr2(n))。另外,數式(15)中,於雷射加工修正值△Xh、△Yh乘上修正係數khx3、khy3而進行修正量之調整。一般而言,修正係數khx3、khy3設定在0至1之範圍,惟設定成此範圍時,可進行加工誤差不會增大之穩定的修正。 The laser processing correction unit 46 corrects the laser machining correction value (ΔXh, ΔYh) obtained by the laser machining correction value calculation unit 15 of the substrate measuring device 1 to correct the output of the machining command unit 35 for positioning. The command position coordinates of the processing table 33 (Xtr(n), Ytr(n)). The laser processing correction unit 46 is based on the command position coordinates (Xtr(n), Ytr(n)) of the processing table 33 input from the machining command unit 35 and the laser machining correction value input from the laser machining correction value calculation unit 15. (ΔXh, ΔYh), the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 are obtained using the following equation (15). Further, in the equation (15), the correction amounts are adjusted by multiplying the laser machining correction values ΔXh and ΔYh by the correction coefficients khx3 and khy3. In general, the correction coefficients khx3 and khy3 are set in the range of 0 to 1, but when set to this range, stable correction in which the machining error does not increase can be performed.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
台對準修正部47係使用第二轉換係數將從雷射加工修正部46輸出之加工台33的修正過之指令位置座標(Xtr2(n),Ytr2(n))予以轉換,而輸出將基板31的對準誤 差及基板31的變形所造成之誤差予以對準修正後之台指令位置座標(Xtrs(n),Ytrs(n))。對準修正前之台指令位置座標(Xtr2(n),Ytr2(n))與對準修正後之台指令位置座標(Xtrs(n),Ytrs(n))係成為下述數式(16)所示之關係。 The stage alignment correcting unit 47 converts the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 output from the laser machining correction unit 46 using the second conversion coefficient, and outputs the substrate. 31 alignment error The error caused by the difference and the deformation of the substrate 31 is aligned with the corrected command position coordinate (Xtrs(n), Ytrs(n)). The coordinate position coordinates (Xtr2(n), Ytr2(n)) before alignment correction and the position command coordinates (Xtrs(n), Ytrs(n)) after alignment correction are the following equations (16). The relationship shown.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
第7圖係說明實施形態3之雷射加工系統44的動作之流程圖。另外,對於與第5圖相同處理之步驟係附加相同步驟編號並省略說明。以下係說明與第5圖之流程圖之不同點。 Fig. 7 is a flow chart showing the operation of the laser processing system 44 of the third embodiment. The same steps as those in the fifth embodiment are denoted by the same step numbers, and the description thereof will be omitted. The following description differs from the flowchart of Fig. 5.
步驟S12中,開孔加工未結束時(步驟S12:否),由雷射加工修正部46依據雷射加工修正值計算部15所求出之雷射加工修正值(△Xh,△Yh),將從加工指令部35輸入之用以將電流計掃描器29X、29Y往下一個掃描區域移動之加工台33的指令位置座標(Xtr(n),Ytr(n))予以修正。另外,雷射加工修正值(△Xh,△Yh)的初始值分別為0。 In step S12, when the drilling process is not completed (step S12: NO), the laser machining correction unit 46 determines the laser machining correction value (ΔXh, ΔYh) obtained by the laser machining correction value calculation unit 15, The command position coordinates (Xtr(n), Ytr(n)) of the processing table 33 for moving the galvanometer scanners 29X and 29Y to the next scanning region are input from the machining command unit 35. Further, the initial values of the laser machining correction values (ΔXh, ΔYh) are respectively 0.
對於以雷射加工修正值(△Xh,△Yh)修正過之加工台33的指令位置座標(Xtr2(n),Ytr2(n)),台對準修正部47係將其乘上屬於對準修正係數之第二轉換係數予以對準修正(步驟S24),而得到台指令位置座標(Xtrs(n),Ytrs(n))。加工台控制部37係依據經對準修正之指令位置 座標(Xtrs(n),Ytrs(n))來定位加工台33(步驟S14)。 For the command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 corrected by the laser machining correction value (ΔXh, ΔYh), the stage alignment correcting unit 47 multiplies it by the alignment. The second conversion coefficient of the correction coefficient is aligned and corrected (step S24), and the station command position coordinates (Xtrs(n), Ytrs(n)) are obtained. The processing table control unit 37 is based on the alignment position corrected by the alignment The coordinates (Xtrs(n), Ytrs(n)) are used to position the processing table 33 (step S14).
偏向器對準修正部45係將來自加工指令部35之電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))乘上第二轉換係數而以數式(14)所示之方式進行對準修正(步驟S25)。在步驟S25後推進至步驟S17。再者,步驟S19中,在掃描區域內的開孔加工尚未結束時(步驟S19:否),推進至步驟S25。 The deflector alignment correcting unit 45 multiplies the command position coordinates (Xgr(n), Ygr(n)) from the galvanometer scanners 29X and 29Y of the machining command unit 35 by the second conversion coefficient in the equation (14). The alignment correction is performed in the manner shown (step S25). After step S25, the process proceeds to step S17. In addition, in step S19, when the drilling process in the scanning area has not been completed (step S19: No), the process proceeds to step S25.
如上述所說明,依據實施形態3之雷射加工系統44,能夠以與雷射加工系統20不同之構成及手法獲得與實施形態2之雷射加工系統20相同之功效。 As described above, the laser processing system 44 according to the third embodiment can obtain the same effects as the laser processing system 20 of the second embodiment in a configuration and method different from those of the laser processing system 20.
另外,實施形態2及實施形態3中,以基板測量裝置1的測量控制部3具備雷射加工修正值計算部15之情形進行說明,惟亦可為雷射加工裝置21、51的雷射加工控制部24、54具備雷射加工修正值計算部15。此情形中,只要將從測量控制部3的加工誤差計算部14輸出之加工誤差輸入至雷射加工控制部24、54,並於雷射加工控制部24、54內設置具有雷射加工修正值計算部15的功能之構成要素,即可得到與上述相同之功效。 In the second embodiment and the third embodiment, the measurement control unit 3 of the substrate measuring device 1 includes the laser processing correction value calculating unit 15, but the laser processing of the laser processing devices 21 and 51 may be employed. The control units 24 and 54 include a laser machining correction value calculation unit 15. In this case, the machining error output from the machining error calculation unit 14 of the measurement control unit 3 is input to the laser machining control units 24 and 54, and the laser machining correction values are provided in the laser machining control units 24 and 54. The components of the function of the calculation unit 15 can obtain the same effects as described above.
再者,亦可構成為雷射加工裝置21、51的雷射加工控制部24、54同時具備實施形態2的雷射加工修正部41與實施形態3的雷射加工修正部46。 Further, the laser processing control units 24 and 54 of the laser processing apparatuses 21 and 51 may be provided with the laser processing correction unit 41 of the second embodiment and the laser processing correction unit 46 of the third embodiment.
實施形態4之雷射加工系統20的構成係與實施形態2 大致相同,如第4圖所示。與實施形態2之不同點在於雷射加工修正部41中之電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))的計算方法。以下,針對與實施形態2之不同點進行說明。 The configuration of the laser processing system 20 of the fourth embodiment and the second embodiment The same is true, as shown in Figure 4. The difference from the second embodiment is the calculation method of the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X and 29Y in the laser machining correction unit 41. Hereinafter, differences from the second embodiment will be described.
實施形態2之雷射加工修正部41係依據從加工指令部35輸入之電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n))、及從基板測量裝置1輸入之雷射加工修正值(△Xh,△Yh)或(△Xe(n),△Ye(n)),利用數式(11)或數式(13)來求出電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。相對於此,實施形態4之雷射加工修正部41係進一步使用每次以基板測量裝置1測量基板5時求出之雷射加工修正值的積分值。 The laser processing correction unit 41 according to the second embodiment is based on the command position coordinates (Xgr(n), Ygr(n)) of the galvanomirrors 29X and 29Y input from the machining command unit 35, and is input from the substrate measuring device 1. The laser processing correction value (ΔXh, ΔYh) or (ΔXe(n), ΔYe(n)) is obtained by using the equation (11) or the equation (13) to obtain the galvanometer scanners 29X and 29Y. Corrected command position coordinates (Xgr2(n), Ygr2(n)). On the other hand, the laser processing correction unit 41 of the fourth embodiment further uses the integral value of the laser processing correction value obtained each time the substrate measuring device 1 measures the substrate 5.
實施形態2之雷射加工系統20中,係反覆執行使用雷射加工修正值之雷射加工裝置20所進行之雷射加工,及用以求出雷射加工修正值之基板測量裝置1所進行之測量。然而,即便進行此反覆動作,亦有雷射加工修正值不會收斂至0之恆定偏差之情形。在此情形,若使用雷射加工修正值的積分值即有縮小恆定偏差之功效。 In the laser processing system 20 of the second embodiment, the laser processing performed by the laser processing apparatus 20 using the laser processing correction value and the substrate measuring apparatus 1 for obtaining the laser processing correction value are repeatedly performed. Measurement. However, even if this repetitive action is performed, there is a case where the laser machining correction value does not converge to a constant deviation of zero. In this case, if the integral value of the laser machining correction value is used, the effect of reducing the constant deviation is obtained.
將基板測量裝置1測量第i個基板而求出之雷射加工修正值(△Xh,△Yh)設為(△Xh(i),△Yh(i)),並將雷射加工修正值的積分值定義為(XhI(i),YhI(i))。實施形態2之雷射加工修正部41係使用數式(11)求出修正後之指令位置座標(Xgr2(n),Ygr2(n)),相對於此,實施形態4之雷射加工修正部41係使用以下的數式(14)求出修正後之指 令位置座標(Xgr2(n),Ygr2(n))。 The laser processing correction value (ΔXh, ΔYh) obtained by measuring the i-th substrate by the substrate measuring device 1 is (ΔXh(i), ΔYh(i)), and the laser processing correction value is obtained. The integral value is defined as (XhI(i), YhI(i)). The laser processing correction unit 41 of the second embodiment obtains the corrected command position coordinates (Xgr2(n), Ygr2(n)) using the equation (11), whereas the laser processing correction unit of the fourth embodiment The 41 series uses the following formula (14) to find the corrected finger. Let the position coordinates (Xgr2(n), Ygr2(n)).
(i=1、2、3、…:i為顯示基板的測量順序之變數) (i=1, 2, 3, ...: i is a variable of the measurement order of the display substrate)
數式(17)中,khx4、khy4、khx5、khy5為修正係數,(Xgr(n),Ygr(n))為從加工指令部35輸入之電流計掃描器29X、29Y的指令位置座標。 In the equation (17), khx4, khy4, khx5, and khy5 are correction coefficients, and (Xgr(n), Ygr(n)) are command position coordinates of the galvanomirrers 29X and 29Y input from the machining command unit 35.
再者,雷射加工修正值的積分值(XhI(i),YhI(i))係由以下數式(18)求出,並在每次交換雷射加工裝置21的基板31時更新。 Further, the integral value (XhI(i), YhI(i)) of the laser processing correction value is obtained by the following equation (18), and is updated every time the substrate 31 of the laser processing apparatus 21 is exchanged.
(i=1、2、3、…:i為顯示基板的測量順序之變數) (i=1, 2, 3, ...: i is a variable of the measurement order of the display substrate)
其中,雷射加工修正值的積分值XhI(i)、XhI(i)各自的初始值XhI(1)、YhI(1)分別設為0。 The initial values XhI(1) and YhI(1) of the integral values XhI(i) and XhI(i) of the laser machining correction values are set to 0, respectively.
再者,將基板測量裝置1測量第i個基板而求出之各加工孔6的雷射加工修正值(△Xe(n),△Ye(n))設為(△Xe(n)(i),△Ye(n)(i)),將各加工孔6的雷射加工修正值的積分值定義為(XeI(n)(i),YeI(n)(i))。實施形態2之雷射加工修正部41係使用數式(13)求出修正後之指令位置座標(Xgr2(n),Ygr2(n)),相對於此,實施形態4之雷射加工修正部41係使用下述數式(19)求出修正後之指令位置座標 (Xgr2(n),Ygr2(n))。 Further, the laser machining correction value (ΔXe(n), ΔYe(n)) of each of the machining holes 6 obtained by measuring the i-th substrate by the substrate measuring device 1 is (ΔXe(n)(i) ΔYe(n)(i)), the integral value of the laser processing correction value of each machining hole 6 is defined as (XeI(n)(i), YeI(n)(i)). The laser processing correction unit 41 of the second embodiment obtains the corrected command position coordinates (Xgr2(n), Ygr2(n)) using the equation (13), whereas the laser processing correction unit of the fourth embodiment The 41 series uses the following formula (19) to find the corrected command position coordinates. (Xgr2(n), Ygr2(n)).
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
(i=1、2、3、…:i為顯示基板的測量順序之變數) (i=1, 2, 3, ...: i is a variable of the measurement order of the display substrate)
數式(19)中,khx6、khy6、khx7、khy7為修正係數,雷射加工修正值(△Xe(n)(i),△Ye(n)(i))係指第i個測量之基板5的第n個孔的雷射加工修正值。再者,數式(19)中之雷射加工修正值的積分值(XeI(n)(i),YeI(n)(i))係以下述數式(20)求出,在每次交換雷射加工裝置21的基板31時更新。 In the formula (19), khx6, khy6, khx7, and khy7 are correction coefficients, and the laser processing correction value (ΔXe(n)(i), ΔYe(n)(i)) refers to the ith measurement substrate. The laser processing correction value of the nth hole of 5. Furthermore, the integral value (XeI(n)(i), YeI(n)(i))) of the laser processing correction value in the equation (19) is obtained by the following equation (20), and is exchanged each time. The substrate 31 of the laser processing apparatus 21 is updated.
(n=1、2、3、4、…、N:N為加工孔數) (n=1, 2, 3, 4, ..., N: N is the number of holes processed)
(i=1、2、3、…:i為顯示基板的測量順序之變數) (i=1, 2, 3, ...: i is a variable of the measurement order of the display substrate)
再者,雷射加工修正值的積分值XeI(n)(i)、YeI(n)(i)的初始值XeI(n)(1)、YeI(n)(1)分別設為0。 Further, the integral values XeI(n)(i) of the laser processing correction values, the initial values XeI(n)(1) and YeI(n)(1) of the YeI(n)(i) are set to 0, respectively.
如以上說明,實施形態4之雷射加工修正部41係於數式(17)及數式(19)中,利用雷射加工修正值的積分值(XhI(i),YhI(i))或(XeI(n)(i),YeI(n)(i)),計算電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。藉此,實施形態4之雷射加工系統20係可使恆 定偏差比實施形態2之雷射加工系統20更小,而可長時間進行加工誤差少之高精確度的加工。 As described above, the laser machining correction unit 41 of the fourth embodiment is based on the equations (17) and (19), and uses the integral value (XhI(i), YhI(i)) of the laser machining correction value or (XeI(n)(i), YeI(n)(i)), the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X, 29Y are calculated. Thereby, the laser processing system 20 of the fourth embodiment can be made constant The predetermined deviation is smaller than that of the laser processing system 20 of the second embodiment, and processing with high precision with little machining error can be performed for a long time.
再者,實施形態4之雷射加工系統的另一構成之雷射加工系統44係與實施形態3大致相同,如第6圖所示。與實施形態3之不同點在於雷射加工修正部46中之加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))的計算方法。以下,針對與實施形態3之不同點進行說明。 Further, the laser processing system 44 of another configuration of the laser processing system according to the fourth embodiment is substantially the same as that of the third embodiment, as shown in Fig. 6. The difference from the third embodiment is the calculation method of the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 in the laser machining correction unit 46. Hereinafter, differences from the third embodiment will be described.
如上述,將基板測量裝置1測量第i個基板而求出之雷射加工修正值(△Xh,△Yh)設為(△Xh(i),△Yh(i)),並將雷射加工修正值的積分值定義為(XhI(i),YhI(i))。實施形態3之雷射加工修正部46使用數式(15)求出修正後之指令位置座標(Xtr2(n),Ytr2(n)),相對於此,實施形態4之雷射加工修正部46係使用以下的數式(21)求出修正後之指令位置座標(Xtr2(n),Ytr2(n))。 As described above, the laser processing correction value (ΔXh, ΔYh) obtained by measuring the i-th substrate by the substrate measuring device 1 is set to (ΔXh(i), ΔYh(i)), and the laser processing is performed. The integral value of the correction value is defined as (XhI(i), YhI(i)). The laser processing correction unit 46 of the third embodiment obtains the corrected command position coordinates (Xtr2(n), Ytr2(n)) using the equation (15). On the other hand, the laser processing correction unit 46 of the fourth embodiment The corrected command position coordinates (Xtr2(n), Ytr2(n)) are obtained using the following equation (21).
(i=1、2、3、…:i為顯示基板的測量順序之變數) (i=1, 2, 3, ...: i is a variable of the measurement order of the display substrate)
數式(21)中,khx8、khy8、khx9、khy9為修正係數,(Xtr(n),Ytr(n))為從加工指令部35輸入之加工台33的指令位置座標。 In the equation (21), khx8, khy8, khx9, and khy9 are correction coefficients, and (Xtr(n), Ytr(n)) is a command position coordinate of the processing table 33 input from the machining command unit 35.
如以上說明,雷射加工修正部46係於數式(21)中,利用雷射加工修正值的積分值(XhI(i),YhI(i))來計算加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))。藉此, 實施形態4之雷射加工系統44係可使恆定偏差比實施形態3之雷射加工系統44更小,而可長時間進行加工誤差少之高精確度的加工。 As described above, the laser machining correction unit 46 calculates the corrected command position of the machining table 33 by using the integral value (XhI(i), YhI(i)) of the laser machining correction value in the equation (21). Coordinates (Xtr2(n), Ytr2(n)). With this, The laser processing system 44 of the fourth embodiment can make the constant deviation smaller than the laser processing system 44 of the third embodiment, and can perform processing with high precision with little processing error for a long time.
第8圖係顯示實施形態5之雷射加工系統的構成之圖。相對於第4圖所示之實施形態2之雷射加工系統20,實施形態5之雷射加工系統63中,新追加有雷射加工修正值記憶部62,系統指令部22變更成系統指令部60,雷射加工修正部41變更成雷射加工修正部61,雷射加工裝置21變更成雷射加工裝置64,雷射加工控制部24變更成雷射加工控制部65。系統指令部60係與系統指令部22動作不同,雷射加工修正部61係與雷射加工修正部41動作不同。第8圖之與第4圖相同符號之要素的功能,係與實施形態2所說明之功能相同。 Fig. 8 is a view showing the configuration of a laser processing system of the fifth embodiment. With respect to the laser processing system 20 of the second embodiment shown in FIG. 4, the laser processing correction unit 62 is newly added to the laser processing system 63 of the fifth embodiment, and the system command unit 22 is changed to the system command unit. 60. The laser processing correction unit 41 is changed to the laser processing correction unit 61, the laser processing device 21 is changed to the laser processing device 64, and the laser processing control unit 24 is changed to the laser processing control unit 65. The system command unit 60 operates differently from the system command unit 22, and the laser machining correction unit 61 operates differently from the laser machining correction unit 41. The functions of the elements of the same reference numerals in Fig. 8 and Fig. 4 are the same as those described in the second embodiment.
實施形態2之雷射加工修正部41係使用數式(11)或數式(13)來計算電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。相對於此,實施形態5之雷射加工修正部61之不同點在於:雷射加工裝置64將基板測量裝置1所測量之屬於第一基板之基板5作為屬於第二基板之基板31,而進一步使用在過去雷射加工時所使用之電流計掃描器29X、29Y的指令位置座標的修正值。 The laser machining correction unit 41 of the second embodiment calculates the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanomirror scanners 29X and 29Y using the equation (11) or the equation (13). . On the other hand, the laser processing correction unit 61 of the fifth embodiment differs in that the laser processing device 64 uses the substrate 5 belonging to the first substrate measured by the substrate measuring device 1 as the substrate 31 belonging to the second substrate, and further The correction value of the command position coordinates of the galvanometer scanners 29X, 29Y used in the past laser processing is used.
實施形態2之雷射加工系統20中,即便反覆執行使用雷射加工修正值之雷射加工裝置21所進行之雷 射加工,及用以求出雷射加工修正值之基板測量裝置1所進行之測量,亦有產生雷射加工修正值不會收斂至0之恆定偏差之情形。此時,與實施形態4中使用雷射加工修正值的積分值之情形同樣地,雷射加工修正部61係使雷射加工裝置64將在基板測量裝置1所測量之基板5作為基板31,而使用在過去進行雷射加工時所使用之電流計掃描器29X、29Y的指令位置座標的修正值,藉此縮小上述恆定偏差。 In the laser processing system 20 of the second embodiment, even if the laser processing apparatus 21 using the laser processing correction value is repeatedly executed, the lightning is performed. The measurement by the substrate measurement apparatus 1 for determining the laser processing correction value may also cause a situation where the laser processing correction value does not converge to a constant deviation of zero. At this time, similarly to the case where the integral value of the laser machining correction value is used in the fourth embodiment, the laser machining correction unit 61 causes the laser processing device 64 to use the substrate 5 measured by the substrate measuring device 1 as the substrate 31. On the other hand, the correction value of the command position coordinates of the galvanometer scanners 29X and 29Y used in the past laser processing is used to reduce the constant deviation.
針對從基板測量裝置1將雷射加工修正值(△Xh,△Yh)輸入雷射加工修正部61之情形的動作進行說明。 The operation in the case where the laser machining correction value (ΔXh, ΔYh) is input from the substrate measuring device 1 to the laser machining correction unit 61 will be described.
系統指令部60係除了實施形態2之系統指令部22的動作以外,亦輸出以基板測量裝置1測量之基板5的基板編號p。基板編號p係唯一具體指定基板5及基板31之編號,以雷射加工裝置64加工基板31時,由系統指令部60決定。基板編號p係例如以加工時間較早之順序來決定,p=1、2、3、…、P,P為基板31的加工張數。 The system command unit 60 outputs the board number p of the substrate 5 measured by the substrate measuring device 1 in addition to the operation of the system command unit 22 of the second embodiment. The substrate number p is the only number specifying the substrate 5 and the substrate 31, and is determined by the system command unit 60 when the substrate 31 is processed by the laser processing apparatus 64. The substrate number p is determined, for example, in the order of the processing time, and p=1, 2, 3, ..., P, and P are the number of processed sheets of the substrate 31.
雷射加工修正部61中,與實施形態2的雷射加工修正部41同樣地,從加工指令部35輸入電流計掃描器29X、29Y的指令位置座標(Xgr(n),Ygr(n)),並輸入以基板測量裝置1測量基板5所求出之雷射加工修正值(△Xh,△Yh)。 In the laser processing correction unit 61, similarly to the laser processing correction unit 41 of the second embodiment, the command position coordinates (Xgr(n), Ygr(n)) of the ammeter scanners 29X and 29Y are input from the machining command unit 35. And the laser processing correction value (ΔXh, ΔYh) obtained by measuring the substrate 5 by the substrate measuring device 1 is input.
再者,雷射加工修正部61係在基板編號(p+d)之基板31的加工時,從系統指令部60輸入基板編號p。 於此,d係起因於加工與測量之時間差所造成之偏移值。接收到基板編號p之雷射加工修正部61係從雷射加工修正值記憶部62取得預先保存之對基板編號p之基板31進行加工時所用之電流計掃描器29X、29Y的指令位置座標的修正值(△Xgr2(p),△Ygr2(p)),而計算電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。 Further, the laser processing correction unit 61 inputs the substrate number p from the system command unit 60 during the processing of the substrate 31 of the substrate number (p+d). Here, d is the offset value due to the time difference between processing and measurement. The laser processing correction unit 61 that has received the substrate number p acquires the command position coordinates of the galvanometer scanners 29X and 29Y used for processing the substrate 31 of the substrate number p stored in advance from the laser processing correction value storage unit 62. The corrected values (ΔXgr2(p), ΔYgr2(p)) are used to calculate the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanometer scanners 29X and 29Y.
於此,將基板測量裝置1測量基板編號p之基板5而求出之雷射加工修正值(△Xh,△Yh)設為(△Xh(p),△Yh(p)),並將相對於基板編號p之基板31之指令位置座標的修正值定義為(△Xgr2(p),△Ygr2(p))。 Here, the laser processing correction value (ΔXh, ΔYh) obtained by measuring the substrate 5 of the substrate number p by the substrate measuring device 1 is set to (ΔXh(p), ΔYh(p)), and the relative The correction value of the command position coordinate of the substrate 31 on the substrate number p is defined as (ΔXgr2(p), ΔYgr2(p)).
實施形態2之雷射加工修正部41係依據數式(11)求出電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n)),相對於此,實施形態5之雷射加工修正部61係依據下述數式(22)求出修正後之指令位置座標值(Xgr2(n),Ygr2(n))。 The laser processing correction unit 41 of the second embodiment obtains the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanomirror scanners 29X and 29Y based on the equation (11). The laser machining correction unit 61 of the form 5 obtains the corrected command position coordinate value (Xgr2(n), Ygr2(n)) based on the following equation (22).
(n=1、2、3、…、N:N為加工孔數) (n=1, 2, 3, ..., N: N is the number of holes processed)
(p=1、2、3、…、P:P為基板的加工張數) (p=1, 2, 3, ..., P: P is the number of processed sheets of the substrate)
數式(22)中,khx10、khy10、khx11、khy11為修正係數。再者,數式(22)所用之基板編號p之基板31的指令位置座標的修正值(△Xgr2(p),△Ygr2(p))可由下述之數式(23)求出。 In the equation (22), khx10, khy10, khx11, and khy11 are correction coefficients. Further, the correction value (ΔXgr2(p), ΔYgr2(p)) of the command position coordinates of the substrate 31 of the substrate number p used in the equation (22) can be obtained by the following equation (23).
再者,數式(23)之d係如上述,為起因於加工與測量之時間差所造成之偏移值。在雷射加工裝置64與基板測量裝置1交互執行加工與測量時d=1,在同時進行加工與測量時d=2,在基板測量裝置1的測量時間比雷射加工裝置64的加工時間更長時,d成為更大的正整數值。再者,將△Xgr2(p-d)及△Ygr2(p-d)的初始值,亦即(p-d)為1以下時之△Xgr2(p-d)及△Ygr2(p-d)分別設為0。 Further, the d of the formula (23) is as described above, and is an offset value due to a time difference between processing and measurement. When the laser processing apparatus 64 performs processing and measurement in parallel with the substrate measuring apparatus 1, d=1, and when processing and measurement are simultaneously performed, d=2, the measurement time of the substrate measuring apparatus 1 is more than the processing time of the laser processing apparatus 64. For a long time, d becomes a larger positive integer value. Further, the initial values of ΔXgr2(p-d) and ΔYgr2(p-d), that is, ΔXgr2(p-d) and ΔYgr2(p-d) when the (p-d) is 1 or less, are set to 0, respectively.
雷射加工修正值記憶部62係以資料表的形式,依序記憶從雷射加工修正部61取得之基板編號p及由數式(23)求出之指令位置座標的修正值(△Xgr2(p),△Ygr2(p))。另外,如上述,就△Xgr2(p)及△Ygr2(p)的初始值而言,係分別記憶為0。 The laser machining correction value storage unit 62 sequentially stores the substrate number p obtained from the laser machining correction unit 61 and the correction value of the command position coordinate obtained by the equation (23) in the form of a data table (ΔXgr2 ( p), ΔYgr2(p)). Further, as described above, the initial values of ΔXgr2(p) and ΔYgr2(p) are respectively stored as 0.
並且,雷射加工修正值記憶部62係於從雷射加工修正部61輸入基板編號p時,從上述資料表求出與基板編號p對應之指令位置座標的修正值(△Xgr2(p),△gr2(p)),並輸出至雷射加工修正部61。 Further, when the laser processing correction value storage unit 62 receives the substrate number p from the laser processing correction unit 61, the laser machining correction value storage unit 62 obtains the correction value (ΔXgr2(p) of the command position coordinate corresponding to the substrate number p from the data table. Δgr2(p)) is output to the laser machining correction unit 61.
如上述說明,雷射加工修正部61係使用數式(22)及數式(23),來計算電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。藉此,實施形態5之雷射加工系統63係使恆定偏差比實施形態2之雷射加工系統20更小,而可長時間進行加工誤差少之高精確度的加 工。 As described above, the laser machining correction unit 61 calculates the corrected command position coordinates (Xgr2(n), Ygr2(n) of the ammeter scanners 29X and 29Y using the equations (22) and (23). ). As a result, the laser processing system 63 of the fifth embodiment has a constant variation smaller than that of the laser processing system 20 of the second embodiment, and can perform high-precision addition with a small processing error for a long period of time. work.
接著,針對從基板測量裝置1輸入至雷射加工修正部61之雷射加工修正值為各加工孔6的加工誤差(△Xe(n),△Ye(n))之情形進行說明。 Next, the case where the laser machining correction value input from the substrate measuring device 1 to the laser machining correction unit 61 is the machining error (ΔXe(n), ΔYe(n)) of each machining hole 6 will be described.
將基板測量裝置1測量基板編號p之基板5所求出之雷射加工修正值(△Xe(n),△Ye(n))設為(△Xe(n)(p),△Ye(n)(p)),並將基板編號p之基板31的指令位置座標的修正值定義為(△Xgr2(n)(p),△Ygr2(n)(p))。 The laser processing correction value (ΔXe(n), ΔYe(n)) obtained by the substrate measuring device 1 measuring the substrate 5 of the substrate number p is (ΔXe(n)(p), ΔYe(n) (p)), and the correction value of the command position coordinate of the substrate 31 of the substrate number p is defined as (ΔXgr2(n)(p), ΔYgr2(n)(p)).
實施形態2之雷射加工修正部41係依據數式(13)而求出電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n)),相對於此,實施形態5之雷射加工修正部61係依據下述數式(24)求出修正後之指令位置座標(Xgr2(n),Ygr2(n))。 The laser processing correction unit 41 of the second embodiment obtains the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanomirror scanners 29X and 29Y based on the equation (13). The laser processing correction unit 61 of the fifth embodiment obtains the corrected command position coordinates (Xgr2(n), Ygr2(n)) based on the following equation (24).
(n=1、2、3、…、N:N為加工孔數) (n=1, 2, 3, ..., N: N is the number of holes processed)
(p=1、2、3、…、P:P為基板的加工張數) (p=1, 2, 3, ..., P: P is the number of processed sheets of the substrate)
數式(24)中,khx12、khy12、khx13、khy13為修正係數。再者,指令位置座標的修正值(△Xgr2(n)(p),△Ygr2(n)(p))係指對基板編號p之基板進行加工時的加工孔編號n的電流計掃描器29X、29Y的指令位置座標的修正值,由下述數式(25)求出。 In the equation (24), khx12, khy12, khx13, and khy13 are correction coefficients. Further, the correction value of the command position coordinates (ΔXgr2(n)(p), ΔYgr2(n)(p)) refers to the galvanometer scanner 29X of the machined hole number n when the substrate of the substrate number p is processed. The correction value of the command position coordinate of 29Y is obtained by the following equation (25).
再者,數式(25)之d係與數式(23)同樣,為起因於加工與測量之時間差所造成之偏移值。再者,將△Xgr2(n)(p-d)及△Ygr2(n)(p-d)的初始值,亦即(p-d)為1以下時之△Xgr2(n)(p-d)及△Ygr2(n)(p-d)分別設為0。 Further, the d of the equation (25) is the same as the equation (23), and is an offset value due to the time difference between the processing and the measurement. Furthermore, the initial values of ΔXgr2(n)(pd) and ΔYgr2(n)(pd), that is, ΔXgr2(n)(pd) and ΔYgr2(n) when (pd) is 1 or less ( Pd) is set to 0 respectively.
再者,此時,雷射加工修正值記憶部62係以資料表的形式,依序記憶從雷射加工修正部61取得之基板編號p及由數式(25)求出之指令位置座標的修正值(△Xgr2(n)(p),△Ygr2(n)(p))。另外,如上述,就△Xgr2(n)(p)、△Ygr2(n)(p)的初始值而言,係分別記憶為0。 In this case, the laser processing correction value storage unit 62 sequentially stores the board number p obtained from the laser processing correction unit 61 and the command position coordinates obtained from the equation (25) in the form of a data table. Correction value (ΔXgr2(n)(p), ΔYgr2(n)(p)). Further, as described above, the initial values of ΔXgr2(n)(p) and ΔYgr2(n)(p) are respectively stored as 0.
如以上說明,雷射加工修正部61係使用數式(24)及數式(25)來計算電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))。藉此,實施形態5之雷射加工系統63係使恆定偏差比實施形態2之雷射加工系統20更小,而可長時間進行加工誤差較少之高精確度的加工。 As described above, the laser machining correction unit 61 calculates the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanomirror scanners 29X and 29Y using the equations (24) and (25). . As a result, the laser processing system 63 of the fifth embodiment can make the constant deviation smaller than that of the laser processing system 20 of the second embodiment, and can perform processing with high precision with less processing error for a long time.
第9圖係顯示實施形態5之雷射加工系統的另一構成之圖。相對於第6圖所示之實施形態3之雷射加工系統44,實施形態5之雷射加工系統73中,新追加有雷射加工修正值記憶部72,系統指令部22變更成系統指令部70,雷射加工修正部46變更成雷射加工修正部71,雷射加工裝置51變更成雷射加工裝置74,雷射加工控制部54變更成雷射加工控制部75。系統指令部70係與系統 指令部22動作不同,雷射加工修正部71係與雷射加工修正部46動作不同。第9圖之與第6圖相同符號之要素的功能,係與實施形態3所說明之功能相同。 Fig. 9 is a view showing another configuration of the laser processing system of the fifth embodiment. With respect to the laser processing system 44 of the third embodiment shown in Fig. 6, in the laser processing system 73 of the fifth embodiment, the laser machining correction value storage unit 72 is newly added, and the system command unit 22 is changed to the system command unit. 70. The laser processing correction unit 46 is changed to the laser processing correction unit 71, the laser processing device 51 is changed to the laser processing device 74, and the laser processing control unit 54 is changed to the laser processing control unit 75. System command unit 70 system and system The command unit 22 operates differently, and the laser machining correction unit 71 operates differently from the laser machining correction unit 46. The functions of the elements of the same reference numerals in Fig. 9 and Fig. 6 are the same as those described in the third embodiment.
實施形態3之雷射加工修正部46係使用數式(15)來計算加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))。相對於此,實施形態5之雷射加工修正部7之不同點在於:雷射加工裝置74將基板測量裝置1所測量之屬於第一基板之基板5作為屬於第二基板之基板31,而進一步使用在過去雷射加工時所使用之加工台33的指令位置座標的修正值。 The laser machining correction unit 46 of the third embodiment calculates the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the machining table 33 using the equation (15). On the other hand, the laser processing correction unit 7 of the fifth embodiment differs in that the laser processing device 74 uses the substrate 5 belonging to the first substrate measured by the substrate measuring device 1 as the substrate 31 belonging to the second substrate, and further The correction value of the command position coordinates of the processing table 33 used in the past laser processing is used.
實施形態3之雷射加工系統44中,即便反覆執行使用雷射加工修正值之雷射加工裝置51所進行之雷射加工,及用以求出雷射加工修正值之基板測量裝置1所進行之測量,亦有產生雷射加工修正值不會收斂至0之恆定偏差之情形。此時,與雷射加工修正部61同樣地,實施形態5之雷射加工修正部71係使雷射加工裝置74將以基板測量裝置1所測量之基板5作為基板31,而使用在過去進行雷射加工時所使用之加工台33的指令位置座標的修正值,藉此縮小上述恆定偏差。 In the laser processing system 44 of the third embodiment, the laser processing by the laser processing apparatus 51 using the laser processing correction value and the substrate measuring apparatus 1 for obtaining the laser processing correction value are repeatedly performed. The measurement also has a situation in which the laser machining correction value does not converge to a constant deviation of zero. In the same manner as the laser processing correction unit 61, the laser processing correction unit 71 of the fifth embodiment causes the laser processing device 74 to use the substrate 5 measured by the substrate measuring device 1 as the substrate 31, and uses it in the past. The correction value of the command position coordinates of the processing table 33 used in the laser processing is used to reduce the constant deviation.
針對從基板測量裝置1將雷射加工修正值(△Xh,△Yh)輸入雷射加工修正部71之情形的動作進行說明。 The operation in the case where the laser machining correction value (ΔXh, ΔYh) is input from the substrate measuring device 1 to the laser machining correction unit 71 will be described.
系統指令部70係除了實施形態3之系統指令部22的動作以外,亦輸出以基板測量裝置1測量之基板5 的基板編號p。基板編號p係唯一具體指定基板5及基板31之編號,以雷射加工裝置74加工基板31時,由系統指令部70決定。基板編號p係例如以加工時間較早之順序來決定,p=1、2、3、…、P,P為基板31的加工張數。 The system command unit 70 outputs the substrate 5 measured by the substrate measuring device 1 in addition to the operation of the system command unit 22 of the third embodiment. Substrate number p. The substrate number p uniquely specifies the numbers of the substrate 5 and the substrate 31, and is determined by the system command unit 70 when the substrate 31 is processed by the laser processing apparatus 74. The substrate number p is determined, for example, in the order of the processing time, and p=1, 2, 3, ..., P, and P are the number of processed sheets of the substrate 31.
雷射加工修正部71中,與實施形態3的雷射加工修正部46同樣地,從加工指令部35輸入加工台33的指令位置座標(Xtr(n),Ytr(n)),並輸入以基板測量裝置1測量基板5所求出之雷射加工修正值(△Xh,△Yh)。 In the laser processing correction unit 71, the command position coordinates (Xtr(n), Ytr(n)) of the processing table 33 are input from the machining command unit 35 in the same manner as the laser machining correction unit 46 of the third embodiment, and are input thereto. The substrate measuring device 1 measures the laser processing correction value (ΔXh, ΔYh) obtained by the substrate 5.
再者,雷射加工修正部71係在基板編號(p+d)之基板31的加工時,從系統指令部70輸入基板編號p。於此,d係起因於加工與測量之時間差所造成之偏移值。接收到基板編號p之雷射加工修正部71係從雷射加工修正值記憶部72取得預先保存之對基板編號p之基板31進行加工時所用之加工台33的指令位置座標的修正值(△Xtr2(p),△Ytr2(p)),而計算加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))。 Further, the laser processing correction unit 71 inputs the substrate number p from the system command unit 70 during the processing of the substrate 31 of the substrate number (p+d). Here, d is the offset value due to the time difference between processing and measurement. The laser processing correction unit 71 that has received the substrate number p acquires the correction value of the command position coordinate of the processing table 33 used for processing the substrate 31 of the substrate number p stored in advance from the laser machining correction value storage unit 72 (Δ) Xtr2(p), ΔYtr2(p)), and the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 are calculated.
於此,將基板測量裝置1測量基板編號p之基板5而求出之雷射加工修正值(△Xh,△Yh)設為(△Xh(p),△Yh(p)),並將相對於基板編號p之基板31的加工台33的指令位置座標的修正值定義為(△Xtr2(p),△Ytr2(p))。 Here, the laser processing correction value (ΔXh, ΔYh) obtained by measuring the substrate 5 of the substrate number p by the substrate measuring device 1 is set to (ΔXh(p), ΔYh(p)), and the relative The correction value of the command position coordinate of the processing table 33 of the substrate 31 of the substrate number p is defined as (ΔXtr2(p), ΔYtr2(p)).
實施形態3之雷射加工修正部46係依據數式(15)求出加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n)),相對於此,實施形態5之雷射加工修正部71係 依據下述數式(26)求出修正後之指令位置座標值(Xtr2(n),Ytr2(n))。 The laser processing correction unit 46 of the third embodiment obtains the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33 based on the equation (15). The shot processing correction unit 71 is The corrected command position coordinate value (Xtr2(n), Ytr2(n)) is obtained according to the following equation (26).
(n=1、2、3、…、N:N為加工孔數) (n=1, 2, 3, ..., N: N is the number of holes processed)
(p=1、2、3、…、P:P為基板的加工張數) (p=1, 2, 3, ..., P: P is the number of processed sheets of the substrate)
數式(26)中,khx14、khy14、khx15、khy15為修正係數。再者,數式(26)所用之對於基板編號p之基板31的指令位置座標的修正值(△Xtr2(p),△Ytr2(p))係由下述之數式(27)求出。 In the equation (26), khx14, khy14, khx15, and khy15 are correction coefficients. Further, the correction value (ΔXtr2(p), ΔYtr2(p)) of the command position coordinates of the substrate 31 for the substrate number p used in the equation (26) is obtained by the following equation (27).
再者,數式(27)之d係與數式(23)同樣地,為起因於加工與測量之時間差所造成之偏移值。再者,將△Xtr2(p-d)及△Ytr2(p-d)的初始值亦即(p-d)為1以下時之△Xtr2(p-d)及△Ytr2(p-d)分別設為0。 Further, the d of the equation (27) is the offset value due to the time difference between the processing and the measurement, similarly to the equation (23). In addition, ΔXtr2(p-d) and ΔYtr2(p-d) when the initial values of ΔXtr2(p-d) and ΔYtr2(p-d), that is, (p-d) are 1 or less, are set to 0, respectively.
雷射加工修正值記憶部72係以資料表的形式,依序記憶從雷射加工修正部71取得之基板編號p及由數式(27)求出之指令位置座標的修正值(△Xtr2(p),△Ytr2(p))。另外,如上述,就△Xtr2(p)及△Ytr2(p)的初始值而言,係分別記憶為0。 The laser machining correction value storage unit 72 sequentially stores the substrate number p obtained from the laser machining correction unit 71 and the correction value of the command position coordinate obtained by the equation (27) in the form of a data table (ΔXtr2 ( p), ΔYtr2(p)). Further, as described above, the initial values of ΔXtr2(p) and ΔYtr2(p) are respectively stored as 0.
並且,雷射加工修正值記憶部72係於從雷射 加工修正部71輸入基板編號p時,從上述資料表求出與基板編號p對應之指令位置座標的修正值(△Xtr2(p),△tr2(p)),並輸出至雷射加工修正部71。 Further, the laser processing correction value storage unit 72 is attached to the laser When the processing correction unit 71 inputs the substrate number p, the correction value (ΔXtr2(p), Δtr2(p)) of the command position coordinates corresponding to the substrate number p is obtained from the data table, and is output to the laser processing correction unit. 71.
如上述說明,雷射加工修正部71係使用數式(26)及數式(27),來計算加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))。藉此,實施形態5之雷射加工系統73係使恆定偏差比實施形態3之雷射加工系統44更小,而可長時間進行加工誤差較少之高精確度的加工。 As described above, the laser machining correction unit 71 calculates the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the machining table 33 using the equations (26) and (27). As a result, the laser processing system 73 of the fifth embodiment can make the constant deviation smaller than the laser processing system 44 of the third embodiment, and can perform processing with high precision with less processing error for a long time.
另外,實施形態5之雷射加工修正部61為了求出電流計掃描器29X、29Y的修正後之指令位置座標(Xgr2(n),Ygr2(n))而使用數式(22)或數式(24),惟即便再加上實施形態4所用之數式(17)或數式(19)所用之雷射加工修正值的積分值(XhI(i),YhI(i))或(XhI(n)(i),YhI(n)(i)),亦可得到相同的功效。 Further, the laser machining correction unit 61 of the fifth embodiment uses the equation (22) or the equation in order to obtain the corrected command position coordinates (Xgr2(n), Ygr2(n)) of the galvanomirrors 29X and 29Y. (24), except that the integral value (XhI(i), YhI(i)) or (XhI() of the laser machining correction value used in the equation (17) or the equation (19) used in the fourth embodiment is added. n) (i), YhI(n)(i)), can also get the same effect.
再者,實施形態5之雷射加工修正部71為了求出加工台33的修正後之指令位置座標(Xtr2(n),Ytr2(n))而使用數式(26),惟即便再加上實施形態4所用之數式(21)之雷射加工修正值的積分值(XhI(i),YhI(i)),亦可得到相同的功效。 Further, the laser processing correction unit 71 of the fifth embodiment uses the equation (26) in order to obtain the corrected command position coordinates (Xtr2(n), Ytr2(n)) of the processing table 33, but even if it is added The integral value (XhI(i), YhI(i)) of the laser processing correction value of the equation (21) used in the fourth embodiment can also obtain the same effect.
另外,實施形態1至5之雷射偏向器係以電流計掃描器之情形進行了說明,惟使用如多邊形鏡、音響光學偏向器或電光學偏向器之雷射偏向器亦可得到與上述說明相同之功效。 In addition, the laser deflectors of Embodiments 1 to 5 are described by the galvanometer scanner, but the above description can also be obtained by using a laser deflector such as a polygon mirror, an acoustic optical deflector or an electro-optical deflector. The same effect.
第10圖係顯示實施形態1至5之電腦系統的 硬體構成之圖。如上述,實施形態1至5之測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75係分別可藉由第10圖所示之電腦系統實現。此時,測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75的功能的各者,或將該等整合為一之功能,可藉由CPU101及記憶體102而實現。測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75之功能可藉由軟體、韌體或軟體與韌體之組合而實現。軟體或韌體係以程式之形式被記述,並儲存於記憶體102。CPU101係藉由讀出並執行記憶於記憶體102之程式,而實現各部的功能。亦即,具備有用以記憶程式之記憶體102,該程式係在由電腦執行測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75的功能時,結果成為執行實施測量控制部3、系統指令部22、60、70及雷射加工控制部24、54、65、75的動作之步驟。再者,該等程式亦可謂使電腦執行測量控制部3、系統指令部22、60、70及雷射加工控制部24、54、65、75的程序或方法者。於此,記憶體102相當於如RAM(Randon Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)、快閃記憶體、EPROM(Erasable Programmable Read Only Memory,可抹除可程式化唯讀記憶體),EEPROM(Electrically Erasable Programmable Read Only Memory,電性可抹除可程式化唯讀記憶體)之非揮發性或揮發性半導體記憶體、磁碟、軟碟、光碟、CD光碟(Compact disk)、 DVD(Digital Versatile Disk,數位多功能光碟)。再者,加工不良判定部16亦包含有顯示器、列印機等顯示裝置。 Figure 10 is a diagram showing the computer system of Embodiments 1 to 5 A diagram of the hardware composition. As described above, the measurement control unit 3, the system command units 22, 60, and 70 and the laser processing control units 24, 54, 65, and 75 of the first to fifth embodiments can be realized by the computer system shown in FIG. 10, respectively. . At this time, each of the functions of the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75, or the functions integrated into one can be performed by the CPU 101. And the memory 102 is realized. The functions of the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75 can be realized by a combination of a soft body, a firmware, or a combination of a soft body and a firmware. The software or tough system is described in the form of a program and stored in the memory 102. The CPU 101 realizes the functions of the respective units by reading and executing the program stored in the memory 102. That is, the memory 102 having a memory program for performing the functions of the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75 is provided. As a result, the operation of the measurement control unit 3, the system command units 22, 60, and 70 and the laser processing control units 24, 54, 65, and 75 is performed. Further, the programs may be programs or methods for causing the computer to execute the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75. Here, the memory 102 corresponds to, for example, a RAM (Randon Access Memory), a ROM (Read Only Memory), a flash memory, or an EPROM (Erasable Programmable Read Only Memory). Non-volatile or volatile semiconductor memory, disk, floppy disk, CD-ROM, EEPROM (Electrically Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory) CD (Compact disk), DVD (Digital Versatile Disk). Further, the processing failure determining unit 16 also includes a display device such as a display or a printer.
第11圖係顯示以專用的硬體來實現實施形態1至5的測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75時的構成之圖。第11圖所示之測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75之各者係由屬於專用的硬體之處理電路103所構成。處理電路103係相當於單一電路、複合電路、經程式化之處理器、經並列程式化之處理器、ASIC(Application Specific Integrated Circuit,特定應用積體電路)、FPGA(Field Programmable Gate Array,場域可程式化閘陣列)或將該等組合而成者。測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75的各部的功能可分別由複數個處理電路103實現,亦可由一個處理電路103來一併實現各部的功能。再者,亦可由一個處理電路來實現測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75的整體。 Fig. 11 is a view showing a configuration in which the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, and 75 of the first to fifth embodiments are realized by dedicated hardware. . Each of the measurement control unit 3, the system command units 22, 60, and 70 and the laser processing control units 24, 54, 65, and 75 shown in Fig. 11 is constituted by a processing circuit 103 belonging to a dedicated hardware. The processing circuit 103 is equivalent to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate Array). Programmable gate arrays) or combine them. The functions of each of the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75 may be implemented by a plurality of processing circuits 103, or may be combined by a processing circuit 103. Achieve the functions of each department. Further, the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, 75 may be realized by one processing circuit.
再者,關於測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75之各功能,可藉由專用的硬體來實現其一部分,亦可藉由軟體或韌體來實現其一部分。如此,測量控制部3、系統指令部22、60、70、及雷射加工控制部24、54、65、75可藉由硬體、軟體、韌體或該等之組合而實現上述各功能。 Further, the functions of the measurement control unit 3, the system command units 22, 60, 70, and the laser processing control units 24, 54, 65, and 75 can be realized by a dedicated hardware, and can also be borrowed. A part of it is realized by software or firmware. As described above, the measurement control unit 3, the system command units 22, 60, and 70, and the laser processing control units 24, 54, 65, and 75 can realize the above functions by a combination of hardware, software, firmware, or the like.
以上實施形態所示之構成僅是顯示本發明內 容之一例者,亦可與別的習知技術組合,在未脫離本發明主旨的範圍內亦可將構成的一部分省略、變更。 The configuration shown in the above embodiment is only for displaying the present invention. It is to be understood that a part of the configuration may be omitted or changed without departing from the spirit and scope of the invention.
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-139423 | 2016-07-14 | ||
JP2016139423 | 2016-07-14 | ||
??PCT/JP2017/022410 | 2017-06-16 | ||
PCT/JP2017/022410 WO2018012199A1 (en) | 2016-07-14 | 2017-06-16 | Substrate measurement device and laser processing system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201807376A TW201807376A (en) | 2018-03-01 |
TWI633279B true TWI633279B (en) | 2018-08-21 |
Family
ID=60951821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106123047A TWI633279B (en) | 2016-07-14 | 2017-07-10 | Substrate measuring device and laser processing system |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6594545B2 (en) |
KR (1) | KR102127109B1 (en) |
CN (1) | CN109475974B (en) |
TW (1) | TWI633279B (en) |
WO (1) | WO2018012199A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765173B (en) * | 2019-02-22 | 2022-05-21 | 日商鎧俠股份有限公司 | Inspection device and inspection method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI667471B (en) * | 2018-04-13 | 2019-08-01 | 揚朋科技股份有限公司 | Apparatus and method for repairing printed circuit boards |
JP7444548B2 (en) * | 2019-04-15 | 2024-03-06 | ビアメカニクス株式会社 | Equipment and detection method for pattern detection and laser processing |
CN110488512B (en) * | 2019-06-11 | 2021-12-24 | 惠科股份有限公司 | Correction method and correction system of display panel measuring equipment |
TWI768235B (en) * | 2019-08-14 | 2022-06-21 | 健鼎科技股份有限公司 | 2d-barcode laser engraver and position method |
CN110441836A (en) * | 2019-08-21 | 2019-11-12 | Oppo(重庆)智能科技有限公司 | The preparation method of eyeglass |
CN114630721B (en) * | 2019-11-11 | 2024-04-16 | 三菱电机株式会社 | Lamination shaping device |
DE102019220485A1 (en) * | 2019-12-20 | 2021-06-24 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Method for determining and correcting the machine status of a machine tool and diagnostic system |
KR102470505B1 (en) * | 2020-02-21 | 2022-11-25 | 미쓰비시덴키 가부시키가이샤 | Processing energy control method and laser processing device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462801B1 (en) * | 1996-11-20 | 2008-12-09 | Ibiden Co., Ltd. | Laser machining apparatus, and apparatus and method for manufacturing a multilayered printed wiring board |
JP2014013547A (en) * | 2012-07-05 | 2014-01-23 | Amada Co Ltd | Error correction device and method in machining system |
TWI522199B (en) * | 2010-10-15 | 2016-02-21 | Mitsuboshi Diamond Ind Co Ltd | A laser processing apparatus, a processing method of a workpiece, and a method of dividing a workpiece |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3126316B2 (en) * | 1996-11-20 | 2001-01-22 | イビデン株式会社 | Apparatus and method for manufacturing multilayer printed wiring board |
JP3550617B2 (en) * | 1997-06-03 | 2004-08-04 | 日立ビアメカニクス株式会社 | Laser processing equipment |
CN1124917C (en) * | 1997-12-26 | 2003-10-22 | 三菱电机株式会社 | Laser processing apparatus |
JP3518380B2 (en) | 1998-12-16 | 2004-04-12 | 三菱電機株式会社 | Laser processing equipment |
JP2003088983A (en) * | 2001-09-18 | 2003-03-25 | Toppan Printing Co Ltd | Device for laser drilling, method for manufacturing multilayer wiring substrate and multilayer wiring substrate using the method |
JP2004288824A (en) * | 2003-03-20 | 2004-10-14 | Juki Corp | Method for calibrating electronic-part mounting device and device using its method |
CN101178544A (en) * | 2006-04-12 | 2008-05-14 | 富士胶片株式会社 | Alignment unit and image recording apparatus using the same |
WO2008038385A1 (en) * | 2006-09-28 | 2008-04-03 | Mitsubishi Electric Corporation | Laser working apparatus |
JP2010162559A (en) * | 2009-01-13 | 2010-07-29 | Mitsubishi Electric Corp | Laser processing method, processing device and workpiece |
JP4907725B2 (en) * | 2010-03-23 | 2012-04-04 | シャープ株式会社 | Calibration device, defect detection device, defect repair device, display panel, display device, calibration method |
CN101870039B (en) * | 2010-06-12 | 2014-01-22 | 中国电子科技集团公司第四十五研究所 | Double-workbench drive laser processing machine and processing method thereof |
CN103079746A (en) * | 2010-09-01 | 2013-05-01 | 三菱电机株式会社 | Laser processing apparatus and substrate position detecting method |
JP5952875B2 (en) * | 2014-09-30 | 2016-07-13 | 株式会社片岡製作所 | Laser processing machine, work distortion correction method for laser processing machine |
-
2017
- 2017-06-16 WO PCT/JP2017/022410 patent/WO2018012199A1/en active Application Filing
- 2017-06-16 CN CN201780042748.XA patent/CN109475974B/en not_active Expired - Fee Related
- 2017-06-16 KR KR1020197000560A patent/KR102127109B1/en active IP Right Grant
- 2017-06-16 JP JP2018527462A patent/JP6594545B2/en active Active
- 2017-07-10 TW TW106123047A patent/TWI633279B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462801B1 (en) * | 1996-11-20 | 2008-12-09 | Ibiden Co., Ltd. | Laser machining apparatus, and apparatus and method for manufacturing a multilayered printed wiring board |
TWI522199B (en) * | 2010-10-15 | 2016-02-21 | Mitsuboshi Diamond Ind Co Ltd | A laser processing apparatus, a processing method of a workpiece, and a method of dividing a workpiece |
JP2014013547A (en) * | 2012-07-05 | 2014-01-23 | Amada Co Ltd | Error correction device and method in machining system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765173B (en) * | 2019-02-22 | 2022-05-21 | 日商鎧俠股份有限公司 | Inspection device and inspection method |
Also Published As
Publication number | Publication date |
---|---|
KR20190017021A (en) | 2019-02-19 |
KR102127109B1 (en) | 2020-06-26 |
CN109475974A (en) | 2019-03-15 |
WO2018012199A1 (en) | 2018-01-18 |
CN109475974B (en) | 2021-01-01 |
JP6594545B2 (en) | 2019-10-23 |
TW201807376A (en) | 2018-03-01 |
JPWO2018012199A1 (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI633279B (en) | Substrate measuring device and laser processing system | |
TWI684390B (en) | Apparatus and method for calibrating machining position | |
KR101698269B1 (en) | Laser processing machine and calibration method for laser processing machine according to distortion of workpiece | |
JP5089827B1 (en) | Laser processing method and laser processing apparatus | |
JP5288987B2 (en) | Laser processing equipment | |
US9423242B2 (en) | Board-warping measuring apparatus and board-warping measuring method thereof | |
KR20100065073A (en) | Substrate inspecting method, substrate inspecting device and storage medium | |
TWI667090B (en) | Laser processing device | |
JP2010239041A (en) | Test-condition data generating method and testing system of semiconductor-wafer visual testing apparatus | |
TWI795563B (en) | Inspection fixture and inspection method | |
JP6632781B1 (en) | Laser processing apparatus, laser processing method, and error adjustment method | |
JP5096852B2 (en) | Line width measuring apparatus and inspection method of line width measuring apparatus | |
JP2007305696A (en) | Accuracy measuring method of positioning apparatus | |
TWI698953B (en) | Calibration laser printing method | |
JP7073127B2 (en) | Laser marking device | |
JP2012133122A (en) | Proximity exposing device and gap measuring method therefor | |
JP2010240694A (en) | Laser beam machining method and laser beam machining device | |
WO2023032962A1 (en) | Direct-drawing device and method for controlling the same | |
JP2012204422A (en) | Position detection method, pattern drawing method, pattern drawing apparatus, and computer program | |
JP2024043357A (en) | Drawing apparatus and drawing method | |
JP2010015234A (en) | Process processor and process processing method |