TWI683089B - 膜厚感測器 - Google Patents

膜厚感測器 Download PDF

Info

Publication number
TWI683089B
TWI683089B TW106130286A TW106130286A TWI683089B TW I683089 B TWI683089 B TW I683089B TW 106130286 A TW106130286 A TW 106130286A TW 106130286 A TW106130286 A TW 106130286A TW I683089 B TWI683089 B TW I683089B
Authority
TW
Taiwan
Prior art keywords
film
frequency
quartz oscillator
film thickness
quartz
Prior art date
Application number
TW106130286A
Other languages
English (en)
Other versions
TW201819847A (zh
Inventor
伊藤敦
Original Assignee
日商愛發科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商愛發科股份有限公司 filed Critical 日商愛發科股份有限公司
Publication of TW201819847A publication Critical patent/TW201819847A/zh
Application granted granted Critical
Publication of TWI683089B publication Critical patent/TWI683089B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明提供一種抗熱衝擊特性優異的膜厚感測器。本發明的一個實施方式的膜厚傳感器具有石英振子。該石英振子由表面粗糙度(Ra)為0.4μm以下、並且切割水準50%的載荷長度比率(tp)為95%以上的成膜面的AT切型石英振子構成。該成膜面的切割水準50%的載荷長度比率(tp)較佳為97%以上,該成膜面的表面粗糙度(Ra)較佳為0.25μm以下。

Description

膜厚感測器
本發明涉及一種成膜工藝中使用的膜厚感測器。
以往,在真空蒸鍍裝置等成膜裝置中,為了測量被成膜於基板的膜厚度和成膜速度,使用所謂的石英振盪法(QCM:Quartz Crystal Microbalance,石英晶體微天平)的技術。該方法是利用被配置於腔室內的石英振子的諧振頻率隨著蒸鍍物的堆積引起的品質增加而減小的方法。因此,能夠通過測量石英振子的諧振頻率的變化來測量膜厚和成膜速度。
對於該種膜厚感測器,隨著膜量的增加,石英振子的諧振頻率逐步降低,當達到規定的頻率時,頻率的變動大到已經無法進行穩定的膜厚測量的程度。因此,諧振頻率降低規定值以上時,判斷石英振子達到使用壽命並實施更換。為了易於進行此更換,例如在日本特開2003-139505號案中公開有一種感測器頭,其保持多個具有5MHz的諧振頻率的石英板,並且能夠各自更換所使用的石英板。
另一方面,該種膜厚感測器具有所謂的抗熱衝擊特性引起的成膜率的測量值變動大的問題。例如,在日本特開2003-139505號案中記載的使用感測器頭的石英振子的更換時,或者在遮擋蒸發源的遮擋板的打開操作時,存在瞬間接受來自蒸發源的輻射熱而導致石英振子頻率特性大幅變動的情況。為了改善這樣的問題,例如在WO2015/182090號案中,公開了使石英振子的成膜面的表面粗糙度(Ra)為規定值以下的技術方案,由此改善石英振子的抗熱衝擊特性。
最近幾年,在真空蒸鍍裝置等成膜裝置中,要求膜厚感測器的高精度化,特別是關於抗熱衝擊特性,因為對成膜率、膜厚的控制帶來的影響很大,因此開發抗熱衝擊特性優異的膜厚感測器成為當務之急。然而,僅僅減小石英振子的表面粗糙度仍不足以改善抗熱衝擊特性,需要進一步改善。此外,SC切型、IT切型石英振子具有抗熱衝擊特性比較優異的優點,但因為與如AT切型那樣廣泛應用的石英振子相比價格高,因此存在導致膜厚感測器的高成本化的問題。
鑒於上述情況,本發明的目的在於提供一種抗熱衝擊特性優異、能夠抑制高成本化的膜厚感測器。
為了實現上述目的,本發明人發現,使石英振子的成膜面的表面粗糙度(Ra)為規定值以下,並且切割水準50%的載荷長度比率(tp)為規定值以上的情況下,石英振子的抗熱衝擊特性大幅改善。
也就是說,本發明的一個實施方式的膜厚感測器具備石英振子。該石英振子由具有表面粗糙度(Ra)為0.4μm以下、並且切割水準50%的載荷長度比率(tp)為95%以上的成膜面的AT切型石英振子構成。
該成膜面的切割水準50%的載荷長度比率(tp)較佳為97%以上。此外,該成膜面的表面粗糙度(Ra)較佳為0.25μm以下。
該石英振子也可以由相對於晶體的r面具有3°05'±03'的切割方位的石英振子構成。
該石英振子的基本振盪頻率沒有特別限制,典型地為4MHz、5MHz或6MHz。
該成膜面可以由金屬膜構成。典型地,金屬膜為Ag膜或Au膜。
該石英振子可以具有該成膜面為平坦面的平凸形狀。由此,能夠得到等效電阻低、易於振動的振子。
如上所述基於本發明的膜厚感測器,能夠優化抗熱衝擊特性,抑制高成本化。
以下,參照附圖,對本發明的實施方式進行說明。
圖1是表示具有本發明的一個實施方式的膜厚感測器的成膜裝置的剖面簡圖。本實施方式的成膜裝置構成為真空蒸鍍裝置。
本實施方式的成膜裝置10具有真空腔室11、設置在真空腔室11的內部的蒸鍍源12、與蒸鍍源12相對設置的基板架13、設置在真空腔室11的內部的膜厚感測器14。
真空腔室11構成為與真空排氣系統15連接,內部能夠排氣為規定的減壓氣氛並能夠保持。
蒸鍍源12構成為能夠產生蒸鍍材料的蒸汽(粒子)。在本實施方式中,蒸鍍源12構成為用於加熱蒸發金屬材料、金屬化合物材料或有機材料而放出蒸鍍粒子的蒸發源。蒸發源的種類沒有特別的限制,能夠應用電阻加熱式、感應加熱式、電子束加熱式等各種方式。
基板架13構成為能夠將半導體晶片、玻璃基板等作為成膜對象的基板W朝向蒸鍍源12地進行保持。
膜厚感測器14內置有具有規定基本頻率(固有頻率)的石英振子,如後所述,構成用於測量基板W上的蒸鍍膜的膜厚及成膜率的感測器頭。膜厚感測器14配置在真空腔室11的內部、且與蒸鍍源12相對設置的位置。典型的是,膜厚感測器14配置在基板架13的附近。
膜厚感測器14的輸出向測量單元17供給。測量單元17根據石英振子的諧振頻率的變化,測量該膜厚及成膜率,並且控制蒸鍍源12以使該成膜率成為規定值。QCM的吸附引起的頻率變化與品質載荷的關係使用以下數學式(1)所示的Sauerbrey的數學式。
【數學式1】
Figure 02_image001
在數學式1中,ΔFs 表示頻率變化量、Δm表示品質變化量、f0 表示基本頻率、ρQ 表示石英的密度、μQ 表示石英的剪切應力、A表示電極面積、N表示常數。
成膜裝置10還具有遮擋板16。遮擋板16被設置在蒸鍍源12與基板架13之間,且構成為能夠打開或遮擋從蒸鍍源12至基板架13和膜厚感測器14的蒸鍍粒子的入射路徑。
遮擋板16的開關由未圖示的控制單元控制。典型的是,蒸鍍開始時,遮擋板16關閉,直至在蒸鍍源12穩定放出蒸鍍粒子。然後,穩定放出蒸鍍粒子時,遮擋板16被打開。由此,來自蒸鍍源12的蒸鍍粒子到達基板架13上的基板W,開始基板W的成膜處理。同時,來自蒸鍍源12的蒸鍍粒子到達膜厚感測器14,監測基板W上的蒸鍍膜的膜厚及其成膜率。
[膜厚感測器]
接下來,對膜厚感測器14進行詳細說明。圖2是膜厚感測器14的剖面簡圖。
如圖2所示,膜厚感測器14具有石英振子20和可振動地支撐石英振子20的殼體140。石英振子20具有平凸(plano convex)形狀,該平凸形狀是作為成膜面的表面21為平坦面、與之相反的背面22為凸面。石英振子20以其成膜面與蒸鍍源12相對設置的方式被容納於殼體140。
膜厚感測器14在殼體140內部還具有:與石英振子20的背面22的周圍的電極膜32(如圖4B所示)彈性接觸的多個施力部件141、以及與石英振子20的表面21的周圍的電極膜31(如圖4A所示)抵接的保持爪142。施力部件141由與殼體140電絕緣的金屬等導電性材料構成,與後述振盪電路41電連接。保持爪142構成使石英振子20的表面21朝向蒸鍍源12露出的殼體140的開口的周圍部。殼體140及保持爪142由金屬等導電性材料構成,與震盪電路41電連接。
膜厚感測器14不限於保持有單個石英振子20的結構,也可以構成為能夠保持有多個石英振子20。這種情況下,即使沒有圖示,多個石英振子也可保持為能夠在殼體內同一圓周上旋轉。該殼體設有使位於任意旋轉角度的石英振子向蒸鍍源露出的單一的開口,並且設有能夠選擇切換面對該開口的石英振子的切換機構。
[測量單元]
接著,對測量單元17進行說明。
圖3是表示測量單元17的一個結構例子的概略框圖。測量單元17具有振盪電路41、測量電路42和控制器43。
振盪電路41使膜厚感測器14的石英振子20振盪。測量電路42用於測量從振盪電路41輸出的石英振子20的諧振頻率。控制器43按照每單位時間借助測量電路42獲取石英振子20的諧振頻率,算出成膜到基板W上的蒸鍍材料粒子的成膜率以及堆積在基板W上的蒸鍍膜的膜厚。控制器43進一步控制蒸鍍源12以使成膜率達到規定值。
測量電路42具有混頻電路51、低通濾波器52、低頻計數器53、高頻計數器54和基準信號生成電路55。從振盪電路41輸出的信號被輸入高頻計數器54,首先測量振盪電路41的振盪頻率的概略值。用高頻計數器54測量到的振盪電路41的振盪頻率的概略值被輸出到控制器43。控制器43以與測量到的概略值接近的頻率的基準頻率(例如5MHz)來使基準信號生成電路55振盪。以這個基準頻率振盪的頻率信號和從振盪電路41輸出的信號被輸入混頻電路51。
混頻電路51將輸入的兩種信號混合,並且經由低通濾波器52輸出到低頻計數器53。在此,在將從振盪電路41輸入的信號設為cos((ω+α)t),將從基準信號生成電路輸入的信號設為cos(ωt)時,在混頻電路51內生成由數學式cos(ωt)・cos((ω+α)t)表示的交流信號。該數學式為cos(ωt)和cos((ω+α)t)乘積的形式,該數學式表示的交流信號等於由cos((2・ω+α)t)表示的高頻分量信號與由cos(αt)表示的低頻分量信號的和。
由混頻電路51生成的信號被輸入低通濾波器52,高頻分量信號cos((2・ω+α)t)被除去,僅低頻分量信號cos(αt)被輸入低頻計數器53。即,在低頻計數器53輸入作為振盪電路41的信號cos((ω+α)t)與基準信號生成電路55的信號cos(ωt)之差的頻率絕對值|α|的低頻分量信號。
低頻計數器53測量該低頻分量信號的頻率,並將測量值向控制器43輸出。控制器43根據由低頻計數器53測量到的頻率與基準信號生成電路55的輸出信號的頻率,算出振盪電路41輸出的信號的頻率。具體而言,在基準信號生成電路55的輸出信號的頻率比振盪電路41的輸出信號的頻率小的情況下,在振盪電路41的輸出信號上加上低頻分量信號的頻率,在相反的情況下,從振盪電路41的輸出信號減去低頻分量信號的頻率。
例如,在通過高頻計數器54對振盪電路41的振盪頻率的測量值超出5MHz、以5MHz的頻率使基準信號生成電路55振盪的情況下,基準信號生成電路55的振盪頻率變得低於振盪電路41的實際振盪頻率。因此,為了求得振盪電路41的實際振盪頻率,將由低頻計數器53求得的低頻分量信號的頻率
Figure 02_image003
與基準信號生成電路55的設定頻率5MHz相加即可。若低頻分量的頻率
Figure 02_image005
為10kHz,則振盪電路41的準確的振盪頻率為5.01MHz。
低頻計數器53的解析度具有上限,但為了測量該差的頻率|α|能夠分配其解析度,因此,與以相同解析度來測量振盪電路41的振盪頻率的情況相比,能夠進行準確的頻率測量。
另外,基準信號生成電路55的振盪頻率通過控制器43控制,能夠以使差值的頻率
Figure 02_image005
變得比規定值小的方式設定該振盪頻率,所以能夠有效利用低頻計數器53的解析度。所求得的頻率的值被存儲於控制器43。控制器43從所求得的頻率的值,通過運用數學式1所示的運算式算出堆積在基板W上的蒸鍍材料的膜厚及成膜率。
[石英振子]
接下來,對石英振子20進行詳細說明。圖4A、圖4B分別是石英振子20的前視圖和後視圖。
在石英振子20的表面21和背面22,分別形成有規定形狀的電極膜31、32。電極膜31與保持爪142相接觸,電極膜32與施力部件141相接觸。如圖4A、圖4B的網點部分所示,電極膜31、32形成為互不相同的形狀,但電極膜31、32的形狀不限於圖示的例子。電極膜31、32分別用金(Au)、銀(Ag)等金屬膜形成。
經由振盪電路41向電極膜31、32施加高頻電壓,使得石英振子20在厚度滑動振動(thickness slip vibration)模式下振動。本實施方式中的石英振子20使用在25℃下基本頻率為5MHz或6MHz的石英振子。
而且,石英振子20的基本頻率不限於5MHz,能夠使用以不足5MHz的任意頻率(例如4MHz、3.25MHz、2.5MHz等)作為基本頻率的石英振子。或者,也可使用以超過5MHz的任意頻率(例如6MHz等)作為基本頻率的石英振子。
石英振子20的背面22由具有規定曲率半徑的曲面構成。通過使背面22由曲面構成,石英振子20的串聯電阻變小,能夠使石英振子20在期望的基本振動頻率下穩定地振動。背面22的曲率半徑沒有特別限制,能夠根據石英振子20的直徑等適當設定。本實施形式的石英振子20中,直徑為12.4mm,背面22的曲率半徑為100mm~200mm。
[石英振子的抗熱衝擊特性]
在這種膜厚感測器中,存在抗熱衝擊特性引起的成膜率的測量值變動很大的問題。這裡所說的抗熱衝擊特性是指,例如在石英振子的更換時,或者,在遮擋蒸鍍源的遮擋板的打開操作時,瞬間接受來自蒸發源的輻射熱時的石英振子的局部溫度變化引起的測量頻率的暫時變動,這個頻率的變動量越大,成膜率、膜厚的測量精度越低。圖5以及圖6表示模擬這個的實驗。在熱量輸入的開始和結束時觀測頻率的變動量(ΔF)。僅以該熱量輸入引起的、而非以整個振子的溫度變化引起的頻率變動來定義耐抗熱衝擊特性。
這裡,已知通過將石英振子的成膜面的表面粗糙度(Ra)設定在規定值以下,可改善石英振子的抗熱衝擊特性。例如圖5比較並示出了成膜面的表面粗糙度(Ra)為0.37μm的石英振子樣本6M-1(基本頻率6MHz,切割角θ=35°15′±20′)的抗熱衝擊特性以及成膜面的表面粗糙度(Ra)為0.43μm的石英振子樣本6M-2(基本頻率6MHz,切割角θ=35°15′±20′)的抗熱衝擊特性。圖5還示出了用30W的鹵素燈在石英振子的成膜面側施加熱輻射時的頻率的變化,設置為自測量開始10秒後開燈,40秒後關燈。如圖5所示,表面粗糙度(Ra)小的樣本6M-1的頻率變化更小,抗熱衝擊特性優異。
雖然,如上所述在成膜面上設有金屬膜(電極膜31),但因為電極膜31的厚度薄至約為150nm,因此以成膜面的表面粗糙度(Ra)作為電極膜31的表面粗糙度(Ra)來評價。
近年來,膜厚感測器被要求高精度化,特別是關於抗熱衝擊特性,由於其對成膜率、膜厚的控制帶來的影響很大,因此開發抗熱衝擊特性優異的膜厚感測器成為當務之急。然而,單是減小石英振子的表面粗糙度仍不足以改善抗熱衝擊特性,需要進一步改善。
另一方面,本發明人發現,通過使石英振子的成膜面的表面粗糙度(Ra)為規定值以下、而且切割水準50%的載荷長度比率(tp)為規定值以上,石英振子的抗熱衝擊特性大幅改善。也就是說,石英振子的抗熱衝擊特性不僅與成膜面的表面粗糙度(Ra)有關,還與該載荷長度比率(tp)有很大關係,即使表面粗糙度(Ra)控制為較小,在該載荷長度比率(tp)的值不足規定值的情況下,相反地有抗熱衝擊特性有劣化的傾向。
例如圖6中示出了成膜面的表面粗糙度(Ra)為0.34μm的石英振子樣本6M-3(基本頻率6MHz,切割角θ=35°15′±20′)的抗熱衝擊特性。實驗條件與圖5的例子相同。樣本6M-3的切割水準50%的載荷長度比率(tp)是80.2%,與樣本6M-1的95.2%、樣本6M-2的95.5%相比更低。
雖然樣本6M-3的表面粗糙度(Ra)與樣本6M-1和6M-2的相比更小,但由圖5及圖6所示,樣本6M-3的頻率變化比樣本6M-1和6M-2差。如此,可以確認,成膜面的切割水準50%的載荷長度比率與石英振子的抗熱衝擊特性有很大相關性。
此外,將該樣本6M-1、6M-2和6M-3的各自的表面粗糙度(Ra、Ry、Rz)和切割水準50%的載荷長度比率(tp)歸納在表1中。
【表1】
Figure 106130286-A0304-0001
在這裡,Ra為算術平均粗糙度,Ry為最大高度,Rz為十點平均粗糙度(ten-point average roughness)(JIS B0601-1994)。
對於表面粗糙度,通過最小二乘法求得高度資料的基準面,計算該基準面與各點的高度資料的差作為粗糙度。
表面粗糙度(Ra)通過對從基準面到測量曲面的偏差的絕對值進行加和平均計算求得。
表面粗糙度(Ry)通過從基準面到最高頂點的高度Yp和從基準面到最低谷底的深度Yv的和求得。
表面粗糙度(Rz)通過“從最高頂點到第五高頂點的標高的絕對值的平均值”與“從最低谷底到第五低谷底的標高的絕對值的平均值”之和求得。
切割水準50%的載荷長度比率(tp)通過將粗糙曲面以平行於頂點面的切割水準(Ry的50%)切割時得到的切割面積的和相對於基準面的百分比求得。
在本說明書中,使用表面粗糙度計(Keyence公司制 控制器VK-9500/測量器9510)測得上述各值。後述的說明中也是一樣的。
本實施方式中的石英振子20具有表面粗糙度(算術平均粗糙度:Ra)為0.4μm以下且切割水準50%的載荷長度比率(tp)為為95%以上的成膜面(表面21)。
與表面粗糙度(Ra)為0.4μm以下的情況相比,即使該載荷長度比率(tp)為95%以上,當成膜面的表面粗糙度(Ra)超過0.4μm時,熱衝擊時的頻率變化增大(參照樣本6M-1、6M-2)。此外,與該載荷長度比率(tp)為95%以上的情況相比,即使表面粗糙度(Ra)為0.4μm以下,當成膜面的該載荷長度比率(tp)不足95%時,熱衝擊時頻率變化增大(參照樣本6M-1、6M-3)。
此外,比較具有大致一樣的表面粗糙度(Ra)的樣本6M-1和樣本6M-3,從兩者的ΔF的比(390/580:67%)可以看到樣本6M-1相對於樣本6M-3的大約33%的ΔF的改善。這是因為樣本6M-1的載荷長度比率(tp)高於樣本6M-3的載荷長度比率,由此可知載荷長度比率(tp)對於ΔF減小的顯著效果。
該載荷長度比率(tp)的效果在表面粗糙度(Ra)比樣本6M-3高的樣本6M-2上也能同樣地看到,從二者的ΔF的比(480/580:83%)可知,相對於樣本6M-3,樣本6M-2的ΔF大約改善了17%。
此外,雖然不特別限定表面粗糙度(Ra)的下限,但是,表面粗糙度(Ra)的值越小,一方面能夠將熱衝擊時的頻率變化抑制得更小,而另一方面成膜面的加工變得更加困難、有加工成本增加的趨勢。為此,作為表面粗糙度(Ra)的下限,例如能夠設為0.19μm。由此,能夠抑制加工成本的增加並得到抗熱衝擊特性優異的石英振子。
獲取該成膜面的方法沒有特別限制,典型的是通過使用游離磨粒的雙面研磨機,以經由粗研磨至可得期望的基本頻率的厚度後、再進行中度研磨、最終研磨的順序加工石英板。
該成膜面較佳實施方式是一鏡面,但是鏡面加工如上所述通常需要巨大的加工成本。因此,並不將成膜面的整個區域均質地加工為鏡面,而是將成膜面的部分區域研磨成鏡面或者接近鏡面的狀態。
具體而言,作為最終研磨,使用例如#1000~#2000左右細微性的研磨磨粒,以僅刮除表面的突出部(山頂部)的方式研磨。也可根據需要並用化學研磨。此外,也可以分階段地調節加工方向、加工壓力。通過這樣的加工方法,能夠得到具有該表面粗糙度(Ra)及載荷長度比率(tp)的成膜面。
圖7表示將本實施方式中的石英振子20的成膜面以150倍放大時的表面狀態的一個例子。在圖7中,符號S對應鏡面或者接近鏡面狀態的區域(以下稱為鏡面部)。如圖7所示,可知鏡面部S分散存在於成膜面的部分區域。
作為石英振子20,典型的是,使用溫度特性比較優異的AT切型石英振子(切割角θ=35°15′±20′)。除此以外,石英振子20也可以使用與AT切型相比溫度特性更優異的SC切型石英振子(切割角θ=33°30′±11′、φ=20°25′±6°),但通常SC切型基板與AT切型基板相比價格更高,因此導致膜厚感測器的高成本化。所以,石英振子20較佳為使用AT切型基板。
通常的AT切型基板如圖8B所示,圍繞晶體的X軸(電軸)以相對於Z軸(成長軸)35°15′的角度切出而形成。另一方面,相對於晶體的Z軸構成規定角度的r面(晶面指數(01-11))及R面(晶面指數(10-11))如圖8A所示,交替地定位為以Z軸為中心繪製正六邊形。這些r面及R面相對於Z軸的角度,如圖8B所示,均為38°13′。
實際獲取石英振子時,需要從晶體切下石英片,得到坯料。在這種情況下,因為石英坯料變薄,Z軸變不清晰。但是,因為晶體的r面能夠確認,能夠以該r面作為基準切出石英坯料。AT切型基板相對於該r面的切割角度為(38°13′)-(35°15′)=2°58′。
AT切型基板中,具有35°08′±03′(相對於r面的切割方位為3°05′±03′)的切割角θ的石英振子,其諧振頻率的溫度漂移能夠控制為在室溫(25℃)到80℃附近的範圍內在20ppm以下,因此抗熱衝擊性優異。由此,可以謀求頻率測定的穩定化,能夠實現高精度的膜厚監測和成膜率的控制。
[實驗例]
接下來,對使用基本頻率為5MHz的石英振子的實驗例進行說明。
本發明人準備了具有表2所示的各種表面粗糙度的成膜面的基本頻率為5MHz的石英振子,評價了它們的抗熱衝擊特性。在本實驗例中,將熱衝擊引起的頻率變動量的允許值設為300Hz,將ΔF的值為300Hz以上的樣本評價為“×”,ΔF的值為200Hz以上且不足300Hz的樣本評價為“△”,ΔF的值不足200Hz的樣本評價為“○”。為了實現高精度的膜厚監測及成膜率的控制,ΔF的值較佳為不足300Hz,進一步較佳為不足200Hz。
【表2】
Figure 106130286-A0304-0002
(實驗例1)
準備在表面粗糙度(Ra)為0.23μm且切割水準50%的載荷長度比率(tp)為98.4%的成膜面上蒸鍍有厚度約150nm的Au膜作為電極膜的、直徑為12.4mm且曲率為200mm的平凸型石英振子樣本(切割角θ=35°08′±03′(相對於r面的切割方位為3°05′±03′))5M-1。然後,用30W的鹵素燈在樣本5M-1的成膜面一側施加熱輻射並測定頻率變化時,頻率變化量(ΔF)約為140Hz。樣本5M-1的抗熱衝擊特性示於圖9。
(實驗例2)
除成膜面的表面粗糙度(Ra)為0.19μm、切割水準50%的載荷長度比率(tp)為97.0%以外,製備其他特徵與實驗例1相同的石英振子樣本5M-2,在與實驗例1同樣條件下測定熱衝擊時的頻率變化。測定結果是頻率變化量(ΔF)約為140Hz。
(實驗例3)
除成膜面的表面粗糙度(Ra)為0.19μm、切割水準50%的載荷長度比率(tp)為72.2%、曲率為100mm以外,製備其他特徵與實驗例1相同的石英振子樣本5M-3,在與實驗例1同樣條件下測定熱衝擊時的頻率變化。測定結果是頻率變化量(ΔF)約為300Hz。樣本5M-3的抗熱衝擊特性示於圖10。
(實驗例4)
除成膜面的表面粗糙度(Ra)為0.28μm、切割水準50%的載荷長度比率(tp)為76.9%、切割角θ=35°15′±20′(相對於r面的切割方位為2°58′±20′)以外,製備其他特徵與實驗例1相同的石英振子樣本5M-4,在與實驗例1同樣條件下測定熱衝擊時的頻率變化。測定結果是頻率變化量(ΔF)約為330Hz。樣本5M-4的抗熱衝擊特性示於圖11。
(實驗例5)
除成膜面的表面粗糙度(Ra)為0.25μm、切割水準50%的載荷長度比率(tp)為99.0%、切割角θ=35°15′±20′(相對於r面的切割方位為2°58′±20′)以外,製備其他特徵與實驗例1相同的石英振子樣本5M-5,在與實驗例1同樣條件下測定熱衝擊時的頻率變化。測定結果是頻率變化量(ΔF)約為280Hz。樣本5M-5的抗熱衝擊特性示於圖12。
樣本5M-1~5M-5的石英振子與該的基本頻率為6MHz的石英振子相比較,可以確認在熱衝擊時的頻率變化更小。(參考表1、表2)。
此外,根據成膜面的表面粗糙度(Ra)為0.4μm以下且切割水準50%的載荷長度比率(tp)為95%以上的樣本5M-1、5M-2、5M-5,與樣本5M-3、5M-4相比較,頻率變化量(ΔF)較小。其中,根據該表面粗糙度(Ra)為0.23μm以下的樣本5M-1、5M-2,可以確認頻率變化量(ΔF)能夠進一步減小,能夠控制在樣本5M-5的一半大小。
其中,較佳的是,成膜面的切割水準50%的載荷長度比率(tp)為97%以上,進一步較佳的是,成膜面的表面粗糙度(Ra)為0.25μm以下。
這裡,具有大致相同的表面粗糙度(Ra)的樣本5M-4和樣本5M-5相比較,從兩者的ΔF的比(280/330:85%)可知,相對於樣本5M-4,樣本5M-5的ΔF改善約15%。這是因為以下原因:樣本5M-5的載荷長度比率(tp)比樣本5M-4高,由此認定載荷長度比率(tp)有利於ΔF的減小。
此外,相同切割方位的樣本5M-1和樣本5M-3相比較,從兩者的ΔF的比(140/300:47%)可知,相對於樣本5M-3,樣本5M-1的ΔF改善約53%。從這個例子,可認定載荷長度比率(tp)對於ΔF的減小有顯著效果。
另一方面,樣本5M-1與樣本5M-5相比,儘管載荷長度比率(tp)變差,但ΔF提高了50%。這是由兩個樣本的切割方位不同引起的,由此發現,切割角θ為35°08′±03′(相對於r面的切割方位為3°05′±03′)的石英振子的優勢。
如上所述,根據本實施方式,能夠得到抗熱衝擊特性優異的膜厚感測器。由此,使得難以受到例如石英振子的更換時、蒸鍍源的遮擋板打開時的熱輻射的影響的、高精度的成膜率測量或膜厚測量成為可能。
此外,根據本實施方式,通過調整石英振子的成膜面的載荷長度比率(tp),能夠穩定地製造具有期望的振動特性的石英振子。特別是,無需對成膜面進行鏡面加工、或使用SC切型基板等價高的石英板,也能夠比較低價地製造抗熱衝擊特性優異的石英振子。
以上是有關本發明的實施方式的說明,當然,本發明不僅限於該實施方式,還可以進行各種改變。
例如,在該實施方式中,作為石英振子20,列舉說明了平凸形狀的石英振子,但並不限於此,本發明也能夠適用於兩面由平坦面構成的石英振子。
此外,該實施方式中,作為成膜裝置雖然列舉說明了真空蒸鍍裝置,但不限於此,本發明也能夠適用於濺射裝置等其他的成膜裝置。濺射裝置的情況下,有機材料源由濺射陰極構成,該濺射陰極含有由有機材料構成的靶材。
10‧‧‧成膜裝置11‧‧‧真空腔室12‧‧‧蒸鍍源13‧‧‧基板架14‧‧‧膜厚感測器140‧‧‧殼體141‧‧‧施力部件142‧‧‧保持爪16‧‧‧遮擋板17‧‧‧測量單元20‧‧‧石英振子21‧‧‧表面22‧‧‧背面31‧‧‧電極膜32‧‧‧電極膜41‧‧‧振盪電路42‧‧‧量測電路43‧‧‧控制器51‧‧‧混頻電路52‧‧‧低通濾波器53‧‧‧低頻計數器54‧‧‧高頻計數器55‧‧‧基準信號生成電路W‧‧‧基板S‧‧‧鏡面部
圖1是表示具有本發明一個實施方式的膜厚感測器的成膜裝置的剖面示意圖。 圖2是表示該膜厚感測器的結構的剖面示意圖。 圖3是表示在該成膜裝置中的測定單元的結構方塊圖。 圖4A是示意性地表示在該膜厚感測器中的石英振子的成膜面的前視圖。 圖4B是示意性地表示在該膜厚感測器中的石英振子的成膜面的後視圖。 圖5是表示該石英振動板的抗熱衝擊特性的曲線圖。 圖6是表示該石英振動板的抗熱衝擊特性的曲線圖。 圖7是表示該石英振動板的成膜面的部分放大圖。 圖8A及圖8B是說明一般的AT切型基板的切割角的石英的示意圖。 圖9是表示該石英振動板的抗熱衝擊特性的曲線圖。 圖10是表示該石英振動板的抗熱衝擊特性的曲線圖。 圖11是表示該石英振動板的抗熱衝擊特性的曲線圖。 圖12是表示該石英振動板的抗熱衝擊特性的曲線圖。
S‧‧‧鏡面部

Claims (8)

  1. 一種膜厚感測器,具有AT切型石英振子;其中該石英振子具有作為成膜面的表面及其相反面的背面,該成膜面的表面粗糙度(Ra)為0.19μm以上且0.4μm以下,並且所述成膜面的切割水準50%的載荷長度比率(tp)為95%以上。
  2. 如請求項1所述之膜厚感測器,其中該成膜面的切割水準50%的載荷長度比率(tp)為97%以上。
  3. 如請求項1所述之膜厚感測器,其中該成膜面的表面粗糙度(Ra)為0.25μm以下。
  4. 如請求項1至3中任一項所述之膜厚感測器,其中該石英振子由相對於晶體的r面具有3°05'±03'的切割方位的石英振子構成。
  5. 如請求項1至3中任一項所述之膜厚感測器,其中該石英振子的基本振盪頻率為5MHz或6MHz。
  6. 如請求項1至3中任一項所述之膜厚感測器,其中該成膜面由金屬膜構成。
  7. 如請求項6所述之膜厚感測器,其中該金屬膜是Ag膜或Au膜。
  8. 如請求項1至3中任一項所述之膜厚感測器,其中該石英振子具有該成膜面為平坦面的平凸形狀。
TW106130286A 2016-09-06 2017-09-05 膜厚感測器 TWI683089B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-173297 2016-09-06
JP2016173297A JP6564745B2 (ja) 2016-09-06 2016-09-06 膜厚センサ

Publications (2)

Publication Number Publication Date
TW201819847A TW201819847A (zh) 2018-06-01
TWI683089B true TWI683089B (zh) 2020-01-21

Family

ID=61532169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130286A TWI683089B (zh) 2016-09-06 2017-09-05 膜厚感測器

Country Status (4)

Country Link
JP (1) JP6564745B2 (zh)
KR (1) KR102341835B1 (zh)
CN (1) CN107794509B (zh)
TW (1) TWI683089B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210068783A (ko) 2019-12-02 2021-06-10 주식회사 디비 축산분뇨 보일러
JP7348873B2 (ja) * 2020-03-31 2023-09-21 太陽誘電株式会社 センサ素子及びガスセンサ
CN117897517A (zh) 2023-10-26 2024-04-16 株式会社爱发科 真空处理装置、静电吸盘和运送辊

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060137452A1 (en) * 2003-04-21 2006-06-29 Tangidyne Corporation Method and apparatus for measuring film thickness and film thickness growth
WO2006138678A2 (en) * 2005-06-17 2006-12-28 Tangidyne Corporation Method and apparatus for measuring film thickness and film thickness growth
JP2012142733A (ja) * 2010-12-28 2012-07-26 Nippon Dempa Kogyo Co Ltd 圧電振動子、膜厚センサ、エッチング量センサ及び膜厚検出方法並びにエッチング量検出方法
WO2016017108A1 (ja) * 2014-07-31 2016-02-04 株式会社アルバック 膜厚センサの診断方法および膜厚モニタ
JP2016042643A (ja) * 2014-08-15 2016-03-31 株式会社アルバック 膜厚モニタ用発振回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953301B2 (ja) 2001-11-05 2007-08-08 株式会社アルバック 水晶発振式膜厚モニタ用センサヘッド
JP6223275B2 (ja) * 2014-05-15 2017-11-01 キヤノントッキ株式会社 水晶発振式膜厚計
JP6263441B2 (ja) * 2014-05-23 2018-01-17 キヤノントッキ株式会社 水晶発振式膜厚モニタによる膜厚制御方法
KR20180063369A (ko) * 2014-05-26 2018-06-11 가부시키가이샤 아루박 성막 장치, 유기막의 막후 측정 방법 및 유기막용 막후 센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060137452A1 (en) * 2003-04-21 2006-06-29 Tangidyne Corporation Method and apparatus for measuring film thickness and film thickness growth
WO2006138678A2 (en) * 2005-06-17 2006-12-28 Tangidyne Corporation Method and apparatus for measuring film thickness and film thickness growth
JP2012142733A (ja) * 2010-12-28 2012-07-26 Nippon Dempa Kogyo Co Ltd 圧電振動子、膜厚センサ、エッチング量センサ及び膜厚検出方法並びにエッチング量検出方法
WO2016017108A1 (ja) * 2014-07-31 2016-02-04 株式会社アルバック 膜厚センサの診断方法および膜厚モニタ
JP2016042643A (ja) * 2014-08-15 2016-03-31 株式会社アルバック 膜厚モニタ用発振回路

Also Published As

Publication number Publication date
JP2018040604A (ja) 2018-03-15
TW201819847A (zh) 2018-06-01
CN107794509B (zh) 2021-10-01
KR102341835B1 (ko) 2021-12-21
CN107794509A (zh) 2018-03-13
JP6564745B2 (ja) 2019-08-21
KR20180027334A (ko) 2018-03-14

Similar Documents

Publication Publication Date Title
KR102035146B1 (ko) 성막 장치, 유기막의 막후 측정 방법 및 유기막용 막후 센서
TWI683089B (zh) 膜厚感測器
CN106574833B (zh) 膜厚传感器的诊断方法以及膜厚监视器
CN111829428B (zh) 一种双石英晶振膜厚控制仪及误差校正方法
JP2024056101A (ja) 表面弾性波素子用の複合基板およびその製造方法
TWI769306B (zh) 表面聲波裝置及其製造方法
WO2019188350A1 (ja) 接合体および弾性波素子
WO2016140321A1 (ja) 膜厚監視装置用センサ、それを備えた膜厚監視装置、および膜厚監視装置用センサの製造方法
JP4388443B2 (ja) 膜厚監視方法および膜厚監視装置
JP2005269628A (ja) 水晶振動子とその電極膜の製造方法
JP5747318B2 (ja) 薄膜共振子
JP2016066909A (ja) 水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、および成膜制御装置の製造方法
JP2008048315A (ja) 圧電振動片およびその製造方法
JP5839868B2 (ja) 膜厚測定方法および膜厚測定システム
JP2003273682A (ja) 圧電振動片の周波数調整方法、圧電振動片および圧電デバイス
JP3916529B2 (ja) 結晶性薄膜形成方法
WO2023151812A1 (en) Calibration assembly for a lithium deposition process, lithium deposition apparatus, and method of determining a lithium deposition rate in a lithium deposition process
JP2007053520A (ja) 圧電デバイスの周波数調整方法、その方法を用いて製造された圧電デバイス、及び、その方法に用いられるマスク
WO2019188325A1 (ja) 接合体および弾性波素子
JP2005256171A (ja) 金薄膜の製造方法とそれを用いた水晶振動子
JPH09250918A (ja) 電極成膜装置用モニター