TWI679170B - 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置 - Google Patents

由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置 Download PDF

Info

Publication number
TWI679170B
TWI679170B TW106121365A TW106121365A TWI679170B TW I679170 B TWI679170 B TW I679170B TW 106121365 A TW106121365 A TW 106121365A TW 106121365 A TW106121365 A TW 106121365A TW I679170 B TWI679170 B TW I679170B
Authority
TW
Taiwan
Prior art keywords
nano particles
nano
solvent
flakes
nanoparticle
Prior art date
Application number
TW106121365A
Other languages
English (en)
Other versions
TW201815686A (zh
Inventor
耐吉 皮凱特
Nigel Pickett
史蒂芬 丹尼爾斯
Steven Daniels
歐貝塔 瑪莎拉
Ombretta Masala
Original Assignee
英商納諾柯技術有限公司
Nanoco Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商納諾柯技術有限公司, Nanoco Technologies Limited filed Critical 英商納諾柯技術有限公司
Publication of TW201815686A publication Critical patent/TW201815686A/zh
Application granted granted Critical
Publication of TWI679170B publication Critical patent/TWI679170B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/688Sulfates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/755Nanosheet or quantum barrier/well, i.e. layer structure having one dimension or thickness of 100 nm or less
    • Y10S977/759Quantum well dimensioned for intersubband transitions, e.g. for use in unipolar light emitters or quantum well infrared photodetectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/825Heterojunction formed between semiconductor materials that differ in that they belong to different periodic table groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/954Of radiant energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

本發明係關於一種合成二維(2D)奈米薄片的方法,其包含切割預製奈米顆粒。該方法允許高度控制該等2D奈米薄片之形狀、尺寸及組成,且可用以大量生產具有均一性質的材料。凡得瓦爾異質結構裝置藉由以下來製備:製造奈米顆粒、化學切割該等奈米顆粒以形成奈米薄片、使該等奈米薄片分散於溶劑中以形成油墨,且使該油墨沈積以形成薄膜。

Description

由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置
本發明大體上係關於合成二維(2D)材料。更具體而言,其係關於一種合成方法,該方法包含切割預製奈米顆粒,及使用藉由預製奈米顆粒之化學切割所形成的2D薄片的凡得瓦爾異質結構裝置。
經由 石墨之機械剝離來分離石墨烯[K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubnos, I.V. Grigorieva及A.A. Firsov,Science , 2004,306 , 666]已在二維(2D)層狀材料中引發強烈的關注。石墨烯之性質包括優越的強度及較高電及熱導率,同時為輕質、可撓及透明的。此開拓一批廣泛之潛在應用的可能性,包括高速電晶體及傳感器、阻隔材料、太陽能電池、電池組及複合材料。 受關注的其他類別之2D材料包括過渡金屬二硫屬化物(TMDC)材料、六角氮化硼(h-BN)及基於第14族元素之彼等材料,諸如矽烯(silicene)及鍺烯(germanene)。此等材料之性質可在半金屬性(例如NiTe2 及VSe2 )到半導電性(例如WSe2 及MoS2 )至絕緣(例如h-BN)之範圍內。 對於TMDC材料之2D奈米薄片在催化至感測、能量儲存及光電裝置範圍內之應用的關注不斷增加。單層及幾層TMDC為直接帶隙半導體,視組成、結構及維度而定具有變化的帶隙及載體類型(n型或p型)。 在2D TMDC中,半導體WSe2 及MoS2 尤其備受關注,因為在大部分保持其本體性質同時,在材料之尺寸減少到單層或幾層時由於量子侷限效應而產生額外性質。在WSe2 及MoS2 之情況下,此等性質包括當厚度減少至單個單層時展現間接至直接帶隙躍遷,伴隨強烈的激子作用。此導致對光致發光效率的強烈促進,開拓此類材料在光電裝置中之應用的新機會。此外,當材料之橫向尺寸在奈米級上減少時,其經受「尺寸量化」作用,藉此材料之新建立的帶隙改變且由此可簡單地藉由改變材料的總體尺寸來操控材料之光學、電子及化學性質。其他受關注的材料包括WS2 及MoSe2 。 第4族至第7族TMDC在層狀結構中顯著結晶,導致其電、化學、機械及熱性質的各向異性。各層包含經由 共價鍵包夾在兩層硫屬元素原子之間的金屬原子之六角形填充層。鄰近層藉由凡得瓦爾相互作用弱結合,其可輕易地由機械或化學方法打破以形成單層及幾層結構。 2D h-BN之晶格結構與石墨烯之結構類似。由於其絕緣性質,h-BN之潛在應用包括在高溫下於氧化環境中運作的裝置及在絕緣複合材料中。h-BN之另一用途是作為與石墨烯完全晶格匹配的電絕緣基板。 近來研究了矽(矽烯)、鍺(鍺烯)及錫(錫烯)之石墨烯類似物。矽烯的潛在優勢之一是其與目前矽技術的相容性,使得其能夠不經額外處理步驟而應用於現有電路及裝置。鍺烯在場效電晶體中具有潛在應用,同時理論研究表明錫烯可用於奈米電子。 高效能應用需要平坦、無缺陷的材料,然而電池組及超級電容器中之應用期望缺陷、空隙及凹穴。 單層及幾層2D材料可使用「由上而下」及「由下而上」方法來產生。由上而下方法涉及自塊材以機械或化學方式移除層。此類技術包括機械剝離、超音波輔助液相剝離(LPE)及插層技術。由下而上方法(其中層自其成分元素生長)包括化學氣相沈積(CVD)、原子層沈積(ALD)及分子束磊晶法(MBE),以及基於溶液的方法(包括熱注入法)。 可經由 機械剝落大塊固體之層(所謂的「透明膠帶方法」)來少量生產2D材料之單層及幾層薄片,以產生僅通過凡得瓦爾力來相互作用的不帶電薄片。機械剝離可用以產生數量級為毫米的高度結晶層,其中尺寸由起始物質之單晶晶粒所限制。然而,該技術為低產率、不可擴展的,且提供較差厚度控制。由於該技術產生不同的尺寸及厚度之薄片,必須使用光學識別以找到所期望的原子級薄片。如此,該技術最適合生產用於展示高效能裝置及凝聚態物質現象的2D薄片。 2D材料可藉由採用超音波在液體中剝離以萃取單層。LPE方法通常涉及三個步驟:i)將塊材分散於溶劑中;ii)剝離;及iii)純化。純化步驟對於自未剝離薄片分離已剝離薄片為必需的,且通常需要超速離心。超音波輔助剝離藉由液體中氣泡或空隙因壓力波動所致之形成、生長及向內塌陷來控制。超音處理用以破壞薄片之間的弱凡得瓦爾力,以自塊材形成幾層及單層2D薄片。即使由LPE在可擴展性方面提供優勢,該方法之挑戰包括厚度控制、較差反應產率及生產受限於較小薄片。 並未知曉矽烯、鍺烯及錫烯形成本體層狀結構,因此此等材料之單層不能使用剝離技術來分離。 對於2D材料,使用CVD常規地獲得較大面積可擴展性、均一性及厚度控制。然而,缺點包括難以保持均一生長及因大量未反應前驅物所致的浪費。 基於溶液的方法對於形成2D薄片是高度期望的,因為其可以提供對所得材料之尺寸、形狀及均一性的控制,以及使得配位體能夠應用於材料表面,以提供溶解度及由此提供溶液可加工性。如對於CVD生長樣品所觀測到的,有機配位體應用至材料表面亦可藉由充當對氧氣及其他外來物種之阻隔來限制劣化。所得材料為獨立的,進一步促進其可加工性。然而,迄今所研發之基於溶液的方法未提供可擴展的反應來產生具有所期望的結晶期、可調的狹窄形狀及尺寸分佈的2D層狀材料及易失性覆蓋配位體,該配位體為所期望的,以使得其可在裝置加工期間輕易地移除。 生產2D層狀材料之挑戰之一為,大規模地獲得無論高品質無缺陷材料或含缺陷所需的組成均一性。其他挑戰包括形成具有均勻形狀及尺寸分佈的2D薄片。 不同2D材料之層狀組合通常稱作凡得瓦爾異質結構。 已研究凡得瓦爾異質結構裝置用於自隧道傳輸裝置至光伏打裝置及發光二極體之廣泛範圍的應用。藉由堆疊具有不同性質的2D材料之不同組合來形成不同類型的裝置。凡得瓦爾異質結構裝置最初藉由以機械方式組合的堆疊(一種緩慢且繁瑣的製程)來形成。[K.S. Novoselov, A. Mishchenko, A. Carvalho及A.H. Castro Neto,Science , 2016,353 , 461] 早期方法係基於在犧牲膜上製備2D薄片,使其對準且將其置放於另一薄片上,隨後移除該膜。可重複該過程以沈積其他層。已研發較新技術,包括轉移藉由CVD生長的大面積結晶、藉由CVD或物理磊晶法直接生長異質結構及在溶液中一步生長。2D異質結構裝置之溶液加工尤其有吸引力,因為其提供低成本、可擴展的沈積製程。 先前技術中,經溶液加工的凡得瓦爾異質結構裝置依賴於液相剝離的2D奈米薄片。舉例而言,Withers等人描述了使用藉由對應塊材之LPE所形成的2D薄片之2D異質結構裝置之溶液加工。[F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, C.R. Woods, V. Sanchez Romeguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov及C. Casiraghi,Nano Lett . , 2014,14 , 3987]。異質結構藉由經由 滴落塗佈、噴墨列印及真空過濾來沈積石墨烯、TMDC及六角氮化硼(h-BN)之油墨而產生。研究顯示凡得瓦爾異質結構裝置可自經溶液處理的2D材料產生。然而,本體粉末之LPE可導致廣泛尺寸分佈之奈米薄片。已研發選擇性分離類似尺寸之奈米薄片的方法,但此製程極浪費材料。此外,自LPE製程的反應產率通常較差。 由此,需要以高產量生產均一2D材料之合成方法。
在本文中,揭示形成2D層狀材料之「由下而上-由上而下」方法。該方法包含形成所期望形狀、尺寸及組成之三維(3D)或零維(0D)奈米顆粒,隨後藉由處理(諸如化學處理,例如回流、液相剝離(LPE)及回流,或插層及剝離)以形成均一尺寸之2D奈米薄片,該尺寸由3D或0D奈米顆粒之固有形狀決定。該方法為可擴展的,且可用來大量產生具有均一性質的2D奈米薄片。 藉由控制預製奈米顆粒之形狀,該方法提供對所得2D奈米薄片之形狀及尺寸分佈的控制。預製奈米顆粒之形狀可以包括但不限於球形、奈米棒、奈米線、奈米管、四角錐、奈米立方體等。 藉由控制預製奈米顆粒之化學組成,該方法提供對所得2D奈米薄片之化學組成的控制。例如,該方法可用以形成具有均一摻雜水準、具有梯度組成及/或具有核/殼結構的奈米薄片。 在一個實施例中,奈米顆粒經由 膠態合成方法製造,允許控制其形狀、尺寸及組成,且可提供可擴展性。 在一個實施例中,奈米顆粒為量子點(QD)。QD之切割可用以形成2D量子點(2D QD),包括單層QD。 在一個實施例中,預製奈米顆粒切割為2D奈米薄片包含LPE及/或回流步驟。 在一個實施例中,預製奈米顆粒切割為2D奈米薄片包含插層及剝離步驟。 已發現可以藉由以下來製備凡得瓦爾異質結構裝置:製造奈米顆粒,化學切割奈米顆粒以形成奈米薄片,使奈米薄片分散於溶劑中以形成油墨及使油墨沈積以形成薄膜。
交叉參考相關申請案 :本申請案為申請於2016年6月28日之美國臨時申請案第62/355,428號及申請於2017年2月21日美國臨時申請案第62/461,613號之非臨時申請案,其全文以引用之方式併入本文中。 在本文中,揭示形成2D層狀材料之「由下而上-由上而下」方法。該方法包含形成所期望的形狀、尺寸及組成之3D或0D奈米顆粒,隨後處理(諸如化學處理,例如回流、LPE及回流,或插層及剝離)以形成均一尺寸之2D奈米薄片,該尺寸由3D或0D奈米顆粒之固有形狀決定。該方法為可擴展的,且可用來大量產生具有均一性質的2D奈米薄片。 如本文所使用,奈米顆粒之「切割」意謂將奈米顆粒分離為兩個或超過兩個部分。該術語不意欲暗示對分離方法之任何限制,且可包含物理及化學分離方法。物理分離方法可以包括但不限於:機械剝離(所謂的「透明膠帶方法」)、分層、研磨及碾磨。如本文所使用,奈米顆粒之「化學切割」意謂將奈米顆粒分離成兩個或超過兩個部分,其中該分離由化學處理實現。在某些實施例中,化學處理可以包括:對奈米顆粒之溶液或分散液施加熱、壓力、真空、超音波處理及/或攪拌;化學蝕刻;及插層。化學切割方法之非限制性實例包括:回流溶液中之奈米顆粒;LPE奈米顆粒隨後回流;或插層及剝離奈米顆粒。 如本文所使用,術語「奈米顆粒」用以描述尺寸之數量級為約1至100 nm的顆粒。術語「量子點」(QD)用以描述顯示量子侷限效應之半導體奈米顆粒。QD之尺寸通常但非排他地為介於1至10 nm之間。術語「奈米顆粒」及「量子點」不意欲暗示對顆粒形狀之任何限制。術語「奈米棒」用以描述具有橫向尺寸xy 及長度z 的稜柱形奈米顆粒,其中zxy 。術語「2D奈米薄片」用以描述橫向尺寸數量級為約1至100 nm且厚度介於1至5個原子或分子單層之間的顆粒。 該方法允許控制2D奈米薄片之形狀,其由預製奈米顆粒之形狀決定。在基於溶液的合成期間控制奈米顆粒形狀之方法為此項技術中所熟知的,且可包含修改反應條件(諸如溫度),使用晶種或模板來介導奈米顆粒生長或向反應溶液添加配位體、界面活性劑及/或添加劑。 在又一實施例中,該方法允許控制所得2D奈米薄片之尺寸分佈。例如,奈米棒之化學切割將導致形成均一形狀及尺寸的圓形2D奈米薄片之集合,如 1 中所示,而球形奈米顆粒之化學切割將導致形成具有均一形狀但具有尺寸分佈的圓形2D奈米薄片之集合,如 2 中所示。當使用單色光激發該集合時,不同尺寸的2D奈米薄片之集合可以提供諸如以橫跨一定範圍之多種不同的波長光致發光的性質。此可用以由切割自單一尺寸之球形奈米顆粒群的2D奈米薄片之集合產生多色光。在一替代性實施例中,其中存在不同尺寸的奈米薄片之集合,該等奈米薄片可隨後使用此項技術中已知之技術根據尺寸分離,該等技術包括但不限於高速離心、尺寸選擇性沈澱、滲析、管柱層析法或凝膠滲透層析法(GPC)。 奈米顆粒之形狀包括但不限於球形、奈米棒、奈米線、奈米管、四角錐、奈米立方體等。控制奈米顆粒之形狀的方法可包括添加將優先與生長顆粒之特定晶格平面結合且隨後在特定方向上抑制或減緩顆粒生長的化合物,如發佈於2009年9月15日的美國專利第7,588,828號中所描述,其以全文引用之方式併入本文中。 藉由自奈米顆粒形成2D奈米薄片,根據本發明之方法使得能夠經控制2D材料之化學組成。例如,將摻雜劑引入奈米顆粒之方法在本文中用於將摻雜劑原子引入2D奈米薄片。藉由化學切割均勻摻雜奈米顆粒,所得2D奈米薄片具有均一摻雜水準,如 3 中所示。 奈米顆粒之組成不受限制。適合之材料包括但不限於: 石墨烯、石墨烯氧化物及經還原的石墨烯氧化物; 過渡金屬二硫屬化物(TMDC),諸如WO2 ;WS2 ;WSe2 ;WTe2 ;MnO2 ;MoO2 ;MoS2 ;MoSe2 ;MoTe2 ;NiO2 ;NiTe2 ;NiSe2 ;VO2 ;VS2 ;VSe2 ;TaS2 ;TaSe2 ;RuO2 ;RhTe2 ;PdTe2 ;HfS2 ;NbS2 ;NbSe2 ;NbTe2 ;FeS2 ;TiO2 ;TiS2 ;TiSe2 ;及ZrS2 ; 過渡金屬三硫屬化物,諸如TaO3 ;MnO3 ;WO3 ;ZrS3 ;ZrSe3 ;HfS3 ;及HfSe3 ; 第13-16 (III-VI)族化合物,諸如InS;InSe;GaS;GaSe;及GaTe; 第15-16 (IV-VI)族化合物,諸如Bi2 Se3 ;及Bi2 Te3 ; 氮化物,諸如h-BN; 氧化物,諸如LaVO3 ;LaMnO3 ;V2 O5 ;LaNbO7 ;Ca2 Nb3 O10 ;Ni(OH)2 ;及Eu(OH)2 ;層狀銅氧化物;雲母;及鉍鍶鈣銅氧化物(BSCCO); 磷化物,諸如Li7 MnP4 ;及MnP4 ;及 第14族元素之2D同素異形體,諸如矽烯;鍺烯;及錫烯。在前述材料中,相鄰層藉由凡得瓦爾相互作用結合在一起,其可輕易藉由技術(諸如剝離技術,例如LPE)破壞以形成2D薄片。在替代性實施例中,奈米顆粒包含非層狀半導體材料,包括但不限於: 第12-16 (II-VI)族半導體,諸如ZnS;ZnSe;CdS;CdSe;CdTe; 第13-15 (III-V)族材料,諸如GaN;GaP;GaAs;InN;InP;InAs;及 第I-III-VI族材料,諸如CuGaS2 ;CuGaSe2 ;CuGa(S,Se)2 ;CuInS2 ,CuInSe2 ;CuIn(S,Se)2 ;Cu(In,Ga)S2 ;Cu(In,Ga)Se2 ;Cu(In,Ga)(S,Se)2 ;CuInTe2 ;AgInS2 ;及AgInSe2 ;及 包括其摻雜物種及合金。 在又其他實施例中,奈米顆粒可包含金屬,諸如但不限於:Ag;Au;Cu;Pt;Pd;Ru;及Re,且包括其摻雜物種及合金。 奈米顆粒之組成可為均一的,或可為梯度的,使得組成自中心橫跨奈米顆粒之一或多個平面而變化。就梯度球形奈米顆粒而言,化學切割將導致視2D奈米薄片源自組成梯度的奈米顆粒之薄片尺寸或區域而定具有不同組成的2D奈米薄片,如 4 中所示。 在一些實施例中,奈米顆粒為QD。由於其來源於「量子侷限效應」之獨特的光學、電子及化學性質,已對QD進行廣泛研究;隨著半導體奈米顆粒之尺寸減少至低於波爾半徑的兩倍,能級經量化,產生離散能級。帶隙隨著粒度減小而增加,導致尺寸可調的光學、電子及化學性質,諸如尺寸依賴性光致發光。此外,已發現將2D奈米薄片之橫向尺寸減少為量子侷限範圍可以產生又其他獨特的性質,視2D奈米薄片之橫向尺寸及層之數目兩者而定。在一些實施例中,2D奈米薄片之橫向尺寸可呈量子侷限範圍,其中奈米顆粒之光學、電子及化學性質可藉由改變其橫向尺寸來操控。例如,具有約10 nm或小於10 nm之橫向尺寸的諸如MoSe2 及WSe2 之材料的金屬硫屬化物單層奈米薄片在激發時可顯示諸如尺寸可調的發射之性質。此可使得能夠藉由操控奈米顆粒之橫向尺寸來調節2D奈米薄片之電致發光最大值(ELmax )或光致發光最大值(PLmax )。如本文所使用,「2D量子點」或「2D QD」係指橫向尺寸呈量子侷限範圍且厚度介於1至5個單層之間的半導體奈米顆粒。如本文所使用,「單層量子點」或「單層QD」係指橫向尺寸呈量子侷限範圍且厚度為單層之半導體奈米顆粒。與習知QD相比,2D QD之表面積比體積比率高很多,該比率隨著單層之數目減少而減小。最高的表面積比體積比率可見於單層QD。此可導致具有與習知QD非常不同的表面化學反應之2D QD,其可用於諸如催化之應用。 對於光致發光應用,已知在半導體QD奈米顆粒「核」上生長具有較小晶格失配之一或多個帶隙更寬的半導體材料之「殼」層,可藉由消除位於核表面上的缺陷及懸鍵來增加奈米顆粒材料之光致發光量子產率。在一些實施例中,在核奈米顆粒材料上磊晶生長一或多個第二材料之殼層以形成核/殼奈米顆粒結構。可切割核/殼奈米顆粒以形成核/殼2D奈米薄片。如本文所使用,「核/殼2D奈米薄片」係指第一材料之2D奈米薄片,其中該第一材料之至少一個表面至少部分地由第二材料覆蓋。 5 說明了自核/殼奈米棒之化學切割產生核/殼2D奈米薄片。 在替代性實施例中,核/殼2D奈米薄片可由化學切割預製核奈米顆粒隨後在核奈米薄片上形成一或多個殼層來產生。 奈米顆粒之膠態合成係尤其有利的,因為其允許控制奈米顆粒之形狀、尺寸及組成,且可提供可擴展性。亦可用配位體(覆蓋劑)使膠態奈米顆粒表面功能化,其中配位體可經選擇以賦予在一系列溶劑中之溶解度。亦可使用配位體來控制所得奈米顆粒之形狀。在奈米顆粒合成期間沈積於奈米顆粒表面上之固有配位體可與替代性配位體互換以賦予特定功能,諸如在特定溶劑中改良的溶液可加工性。例如,一種合成石墨烯QD奈米顆粒之常用方法係基於由Müllen及同事研發的氧化縮合反應。[M. Müller, C. Kübel and K. Müllen,Chem .- Eur . J . , 1998,4 , 2099]。該方法涉及以下步驟:i)使較小的鹵化苯乙炔化合物經由 鈴木偶合與芳基鹵化物合成,以形成較大的芳基乙炔;ii)使芳基乙炔經由 四苯基-環戊二烯酮之Diels-Alder環加成偶合為較大聚伸苯基樹枝狀聚合物;及,iii)樹枝狀聚合物之氧化環脫氫(例如藉由氯化鋁(III)),以形成石墨烯QD。經由 溶劑熱途徑製備膠態MoS2 奈米顆粒已由Zong等人描述[X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun及C. Li,Chem . Commun . , 2009, 4536]。藉由在內襯有鐵氟龍的不鏽鋼高壓釜中加熱(NH4 )2 MoS4 於甲醇、聚(乙烯吡咯啶酮)及一水合肼N2 H4 ·H2 O中之溶液來製備奈米顆粒。可使用膠態奈米顆粒合成之其他方法,諸如雙注入[C.B. Murray, D.J. Norris及M.G. Bawendi,J . Am . Chem . Soc . , 1993,115 , 8715]或分子播晶種方法[美國專利7,588,828]。 在一個實施例中,在膠態溶液中使用由下而上方法生長奈米顆粒。 根據某些實施例,將奈米顆粒在切割之前自膠態反應溶液分離。分離技術可包括但不限於離心或過濾。 可使用任何適合之技術將預製奈米顆粒切割為奈米薄片。適合之實例包括化學及物理剝離方法。在一個實施例中,藉由化學方法(諸如LPE)進行預製奈米顆粒之切割,該方法包含在溶劑中超音波處理預製奈米顆粒。可選擇溶劑之表面張力以匹配經剝離之材料之表面張力。LPE技術已由Ferrari等人回顧,[A.C. Ferrari等人,Nanoscale , 2015,7 , 4598]其以全文引用之方式併入本文中。在一些實施例中,經剝離奈米顆粒隨後回流至溶液中。將經剝離的MoS2 奈米薄片回流以形成MoS2 QD已由Stengl及Henych描述。[V. Stengl及J. Henych,Nanoscale , 2013,5 , 3387]。 在一些實施例中,可藉由在溶液中將預製奈米顆粒回流而不經先前的剝離來進行預製奈米顆粒之切割。一般熟習此項技術者應認識到預製奈米顆粒溶液回流之溫度視形成溶液之溶劑的沸點而定。不欲受任何特定理論束縛,一種可能之機制為施加熱可在奈米顆粒內熱擴張層;將溶液回流可形成將層化學切割開的氣體。在一些實施例中,溶液包含配位溶劑。適合之配位溶劑之實例包括但不限於:飽和烷基胺,諸如C6 -C50 烷基胺;不飽和脂肪胺,諸如油胺;脂肪酸,諸如肉豆蔻酸、棕櫚酸及油酸;膦,諸如三辛基膦(TOP);膦氧化物,諸如三辛基氧化膦(TOPO);醇,諸如十六烷醇、苯甲醇、乙二醇、丙二醇;且可包括初級、次級、三級及分支鏈溶劑。在一些實施例中,溶液包含非配位溶劑,諸如但不限於C11 -C50 烷烴。在一些實施例中,溶劑之沸點介於150℃至600℃之間,例如160℃至400℃,或更特定言之180℃至360℃。在一特定實施例中,溶劑為十六烷基胺。 在又其他實施例中,藉由插層及剝離方法進行預製奈米顆粒之切割。使用路易斯鹼插入物的TMDC多層奈米結構之插層及剝離此前已由Jeong等人描述[S. Jeong, D. Yoo, M. Ahn, P. Miró, T. Heine及J. Cheon,Nat . Commun . , 2015,6 , 5763]。可藉由在第一插入劑及第二插入劑存在下在第一溶劑中攪拌預製奈米顆粒持續第一時間段來進行第一插層及剝離製程。視情況,可隨後添加第二溶劑,接著攪拌第二時間段。在一些實施例中,藉由使第一插層及剝離製程之產物與第三插入劑及第三溶劑混合,且攪拌第三時間段來進行第二插層及剝離製程。視情況,可隨後添加第四溶劑,接著攪拌第四時間段。第一插入劑及第二插入劑可包含烴,其中第一插入劑之烴鏈長度不同於第二插入劑之烴鏈長度。第三插入劑可與第一及/或第二插入劑相同或不同。適合之第一、第二及第三插入劑可包括但不限於: 路易斯鹼,諸如胺,諸如丙胺、己胺;醇鹽,諸如甲醇鈉、乙醇鈉;羧酸鹽,諸如己酸鈉;及胺基醇,諸如3-胺基-1-丙醇; 胺基硫醇,諸如半胱胺、6-胺基-1-己硫醇及8-胺基-1-辛硫醇;及 胺基酸,包括烷胺基酸,諸如3-胺基丙酸(β-丙胺酸)、6-胺基己酸、8-胺基辛酸; 一般熟習此項技術者應認識到選擇進行插層及剝離製程之溶劑將視奈米顆粒及插入劑之選擇而定。在插層及剝離期間,需要奈米顆粒充分分散或溶解於溶劑中。進一步期望插入劑可溶於溶劑中。第二溶劑可不同於第一溶劑。第三溶劑可與第一溶劑或第二溶劑相同,或可與第一溶劑及第二溶劑均不同。適合之溶劑包括但不限於:極性非質子溶劑,諸如二甲亞碸(DMSO)及乙腈;及極性質子溶劑,諸如丙醇。 第一時間段可在1小時至1個月範圍內,例如2小時至2週,或更特定言之4小時至3天。第二時間段可在1小時至2個月範圍內,例如2天至2週,或更特定言之1週至3週。第三時間段可在1小時至1個月範圍內,例如2小時至2週,或更特定言之4小時至3天。第四時間段可在1小時至2個月範圍內,例如2天至2週,或更特定言之1週至3週。然而,一般熟習此項技術者應認識到時間段將視以下因素而定:諸如溶劑及插入劑之選擇、奈米顆粒內鍵結強度及在溶液中奈米顆粒相對於插入劑之濃度,且較長時間段可導致2D奈米薄片之較高產率。 在一些實施例中,第一及/或第二及/或後續插層及剝離方法可使用超音波處理實現。使用超音波處理代替攪拌可以促成實現化學切割製程所需的時間段減少。 其他切割技術可用於將預製奈米顆粒切割為2D奈米薄片,諸如但不限於蝕刻技術。根據某些實施例,2D奈米薄片可隨後藉由如下技術自溶液分離,該等技術諸如但不限於離心;過濾;滲析或管柱層析法。所得2D奈米薄片可分散於溶劑中以形成油墨,該油墨可使用習知基於溶液的沈積技術沈積以形成薄膜,沈積技術諸如但不限於:滴落塗佈、旋轉塗佈、隙縫塗覆、噴塗、狹縫模具塗覆、噴墨列印或刀片刮抹。2D奈米薄片之性質的固有均一性可以導致所得薄膜之高度均一性。薄膜厚度可藉由例如更改油墨之濃度及/或藉由改變2D奈米薄片之尺寸來控制。 可使用含2D奈米薄片之油墨來製備的凡得瓦爾異質結構裝置之實例包括:波導整合式幾層黑色磷光偵測器;MoS2 垂直同質接面光電二極體;靜電限定WSe2 光電二極體;MoS2 /WSe2 垂直光電二極體;GaS可撓性光電晶體;WS2 光電晶體;MoS2 光電晶體;O2 電漿處理增強型ReS2 光電晶體;電漿增強型MoS2 光偵測器;MoS2 /Si異質接面光電二極體;石墨烯/MoS2 /石墨烯垂直光電二極體;石墨烯/MoS2 雜合光電晶體;及石墨烯/QD雜合光電晶體。實例 實例 1 MoS2 奈米顆粒之製備、化學切割及凡得瓦爾異質結構裝置形成 合成 MoS2 奈米顆粒 合成在惰性N2 環境下進行。 在手套箱中將0.132 g Mo(CO)6 添加至用SUBA-SEAL®橡膠隔膜[SIGMA-ALDRICH CO., LLC, 3050 Spruce Street St. Louis MISSOURI 63103]加蓋的瓶中。 將14 g十八烷在100℃下於圓底燒瓶中脫氣2小時,隨後冷卻至室溫。 將2 g十六烷基胺及2 g十八烷在100℃下於瓶中脫氣2小時,隨後冷卻至40 - 50℃且注射至含有Mo(CO)6 的瓶中並且充分振盪。 將反應混合物逐漸升溫至150℃且振盪瓶以溶解任何昇華的Mo(CO)6 ,隨後冷卻至室溫以形成Mo(CO)6 -胺錯合物。 隨後將圓底燒瓶(含有14 g十八烷)加熱至300℃。 將Mo(CO)6 -胺錯合物逐漸升溫至約40℃直至固體熔融,並且添加1.5 mL 1-十二烷硫醇(DDT)。隨後立即將其加載至注射器中並快速注射至圓底燒瓶中。將溫度調節至約260℃。 將反應混合物在260℃下靜置8分鐘。 為分離產物,添加與10 mL乙腈混合的40 mL丙醇,在4000 rpm下離心5分鐘並且丟棄上澄液。 化學切割 MoS2 奈米顆粒以形成單層 MoS2 奈米薄片 將MoS 2 奈米顆粒(45 mg)、甲醇鈉(1.5 g)及己酸鈉(0.5 g)在二甲亞碸(15 mL)中混合,並且於N2 下在室溫下攪拌18小時。添加乙腈(140 mL)並且在N2 下攪拌48小時。藉由在4000 rpm下離心5分鐘使上澄液與黑色固體分離。 黑色固體用甲苯洗滌並且經離心。隨後將該固體溶解於水中。使用單層 MoS2 奈米薄片製備凡得瓦爾異質結構裝置 凡得瓦爾異質結構裝置(LED)如下製備: 剝離SiO2 上之氮化硼及聚(甲基丙烯酸甲酯) (PMMA),如PMMA上之石墨。選擇石墨烯之層及薄(2 - 5層)氮化硼薄片。 將來自PMMA之石墨烯(Gr)轉移至SiO2 上的氮化硼(BN)上,且將薄氮化硼薄片自PMMA轉移至SiO2 /BN/Gr層狀結構上以產生第二層狀結構-SiO2 /BN/Gr/BN。 在此階段,將單層MoS2 奈米薄片之上述水溶液(或分散液)滴落塗佈至第二層狀結構上,並且靜置以乾燥。重複兩次此步驟以增加MoS2 的量。發現施加熱引起所得結構(SiO2 /BN/Gr/BN/MoS2 )中較少量之MoS2 ,且因此避免加熱。 在隨後的製造階段中,使用PMMA上的石墨烯薄片收集來自SiO2 的BN並且將此堆疊(PMMA/Gr/BN)轉移至SiO2 /BN/Gr/BN/MoS2 上,產生凡得瓦爾異質結構(LED) SiO2 /BN/Gr/BN/MoS2 /BN/Gr。 石墨烯薄片可充當傳導電極以經由隧道BN勢壘將電子及電洞注射至MoS2 中。實例 2 MoS2 奈米顆粒之製備及化學切割 合成 MoS2 奈米顆粒 合成在惰性N2 環境下進行。 在手套箱中將0.132 g Mo(CO)6 添加至用SUBA-SEAL®橡膠隔膜[SIGMA-ALDRICH CO., LLC, 3050 Spruce Street St. Louis MISSOURI 63103]加蓋的瓶中。 將14 g十八烷在100℃下於圓底燒瓶中脫氣2小時,隨後冷卻至室溫。 將2 g十六烷基胺及2 g十八烷在100℃下於瓶中脫氣2小時,隨後冷卻至40 - 50℃且注射至含有Mo(CO)6 的瓶中並且充分振盪。 將反應混合物逐漸升溫至150℃且振盪瓶以溶解任何昇華的Mo(CO)6 ,隨後冷卻至室溫以形成Mo(CO)6 -胺錯合物。 隨後將圓底燒瓶(含有14 g十八烷)加熱至300℃。 將Mo(CO)6 -胺錯合物逐漸升溫至約40℃直至固體熔融,並且添加1.5 mL 1-十二烷硫醇(DDT)。隨後立即將其加載至注射器中並快速注射至圓底燒瓶中。將溫度調節至約260℃。 將反應混合物在260℃下靜置8分鐘。 為分離產物,添加丙酮(200 mL),在4000 rpm下離心5分鐘並且丟棄上澄液。 化學切割 MoS2 奈米顆粒以形成單層 MoS2 奈米薄片 將MoS2 奈米顆粒(240 mg)、甲醇鈉(15 g)及己酸鈉(3 g)於丙醇(100 mL)中混合,並且於N2 下在室溫下攪拌1天。添加乙腈(100 mL)並且在N2 下攪拌2週。藉由在4000 rpm下離心5分鐘分離不可溶材料。隨後將不溶於乙腈的材料溶解於水中。 在真空下使用旋轉式汽化器乾燥上澄液。添加水(200 mL)並且充分混合。添加甲苯(50 mL)並且使用滴液漏斗收集有機相。進一步用甲苯(3×50 mL)洗滌水相並且合併有機部分。甲苯溶液使用旋轉式汽化器乾燥並且進一步用水洗滌固體一次。隨後將該固體溶解於甲醇中。實例 3 :預製奈米顆粒經由 回流之化學切割 如同實例1製備MoS2 奈米顆粒。將MoS2 奈米顆粒(10 mg)與十六烷基胺(10 g)混合並且加熱至330℃。在回流15分鐘之後,使溶液冷卻至60℃。添加甲醇(60 mL),隨後離心,並且丟棄黑色不溶材料。上澄液在真空下乾燥,隨後添加乙腈。混合物經升溫並且傾析及丟棄可溶相。固體再次與乙腈混合,升溫以溶解過量十六烷基胺,並且傾析及丟棄可溶相。重複該製程直至材料為純淨的。將最終的材料溶解於甲苯中。實例 4 MoS2 奈米顆粒之製備及化學切割 合成 MoS2 奈米顆粒 在200 mL瓶中,十六烷基胺(10 g)及十六烷(50 mL)在80℃下於真空下脫氣。將十六烷基胺/十六烷溶液在250 mL圓底燒瓶中添加至Mo(CO)6 (0.66 g),並且在120℃下攪拌以形成溶液A。 在1 L圓底燒瓶中,將十六烷(50 mL)及十六烷基胺(5 g)於真空下在80℃下加熱1小時。將溶液在N2 下加熱至250℃以形成溶液B。在250℃下,每5分鐘向溶液B添加5 mL一份之溶液A(保持在120℃下),持續1小時以形成溶液C。 隨後使用注射泵在250℃下歷經1小時將1-十二硫醇(7.5 mL)緩慢添加至溶液C,之後在250℃下攪拌另一小時。 使溶液冷卻至60℃,隨後添加丙酮(400 mL),隨後離心。將殘餘固體分散於己烷(125 mL)中。 化學切割 MoS2 奈米顆粒以形成單層 MoS2 奈米薄片 將六分之一MoS2 奈米顆粒於己烷中之分散液與6-胺基己-1-醇(1.48 g)及丙胺(8.3 mL)在250 mL圓底燒瓶中組合,並且在N2 下攪拌11天。 添加無水乙腈(160 mL),隨後將混合物在N2 下攪拌6天。 將混合物過濾通過0.20 µm聚丙烯針筒過濾器,導致濾液與固體殘餘物之分離。 對於濾液,溶劑經真空汽化直至獲得油。添加無水乙腈(6 mL)以分散可溶於溶劑的發光材料。 對於固體殘餘物,添加去離子水(30 mL),隨後混合物在空氣中攪拌30分鐘。所得溶液過濾通過0.20 µm聚丙烯針筒過濾器並且經分離。 可溶於乙腈的材料及水溶性材料顯示不同於彼此的發光性質。 6A 6B 分別展示可溶於乙腈的材料及水溶性材料的PL等值線圖。PL等值線圖展示在給定激發波長(y軸)下的發射波長(x軸),其中強度(以任意單位)由色標表示。如 6A 中所示,可溶於乙腈的材料顯示激發波長依賴性的發射,其中在約430 nm下激發時所見的最高強度發射處於約500 nm。如 6B 中所示,水溶性材料顯示激發波長依賴性的發射,其中在約370 nm下激發時所見的最高強度發射處於約450 nm。當在相同波長下激發時,溶解於乙腈中的材料及溶解於水中的材料以彼此不同的波長發射。實例 5 MoS2 奈米顆粒之製備及化學切割 合成 MoS2 奈米顆粒 MoS2 奈米顆粒按照實例2製備。 化學切割 MoS2 奈米顆粒以形成單層 MoS2 奈米薄片 將MoS 2 奈米顆粒溶解於最少體積之己烷中,隨後轉移至圓底燒瓶中。添加肉豆蔻酸(10 g)並且在真空下使反應緩慢加熱至110℃。 將容器置放在N2 下並且加熱至330℃持續50分鐘。 使反應冷卻至60℃。添加丙酮(200 mL),隨後離心。收集黑色材料。使用旋轉式汽化器在真空下乾燥上澄液。 在25℃下向經乾燥固體添加乙腈(200 mL)並且充分振盪。材料經離心並且將黑色固體與此前收集的黑色材料合併。分離上澄液。如 7A 中所示,上澄液顯示激發波長依賴性的發射,其中在約370 nm下激發時所見的最高強度發射處於約440 nm。 對於經合併的黑色固體,添加乙腈(100 mL)並且在攪拌的同時升溫。一些黑色非發光固體保持未溶解,同時溶液出現高度發光的深黃色。將深黃色溶液與黑色非發光固體分離。如 7B 中所示,深黃色溶液顯示激發波長依賴性的發射,其中在約340 nm下激發時所見的最高強度發射處於約405 nm。 使用藉由預製奈米顆粒之化學切割形成的材料之優勢包括: ● 材料具有均一性質(組成、形狀及視情況可選之尺寸),導致薄膜及所得裝置之均一性; ● 材料高度可溶,因此可輕易地在多種溶劑中加工以形成油墨;及 ● 該製程允許根據母體奈米顆粒之尺寸控制薄片尺寸。 此外,可化學切割摻雜奈米顆粒作為向裝置中引入均一摻雜的手段。 溶液加工提供以下優勢: ● 控制層厚度及形成均一層之能力; ● 低沈積成本; ● 可擴展性;及 ● 對用於可撓性電子及光伏打之可撓性基板的適用性。 根據前述揭示,本發明之此等及其他優點對於熟習此項技術者將為顯而易見的。因此,應認識到可對上述實施例進行改變或修改而不背離本發明之廣泛發明概念。應理解,本發明不限於本文所描述之特定實施例且可在不背離如由隨附申請專利範圍字面上及等效地涵蓋之本發明的範疇的情況下進行多種變化及修改。
圖1說明將預製奈米棒化學切割為奈米薄片。 圖2說明將預製球形奈米顆粒化學切割為具有尺寸分佈之奈米薄片。 圖3說明將預製摻雜奈米棒化學切割為摻雜奈米薄片。 圖4說明將預製、組成梯度、球形奈米顆粒化學切割為組成梯度的奈米薄片。 圖5說明將預製核/殼奈米棒化學切割為核/殼奈米薄片。 圖6A及圖6B為根據本發明之實施例所產生的2D奈米薄片之溶液的光致發光(PL)等值線圖。 圖7A及圖7B為根據本發明之實施例所產生的2D奈米薄片之溶液的PL等值線圖。

Claims (19)

  1. 一種製造二維奈米薄片之方法,其包含:製造奈米顆粒;及在溶劑中將該奈米顆粒回流以將該奈米顆粒轉變為複數個二維奈米薄片。
  2. 如請求項1之方法,其中該溶劑為配位溶劑。
  3. 如請求項1之方法,其中該溶劑選自由以下各者組成之群:胺;脂肪酸;膦;膦氧化物;及醇。
  4. 如請求項1之方法,其中該溶劑為十六烷基胺或肉豆蔻酸。
  5. 如請求項1之方法,其中該奈米顆粒為量子點。
  6. 如請求項1之方法,其中該奈米顆粒為奈米棒。
  7. 如請求項1之方法,其中該奈米顆粒為3D奈米顆粒。
  8. 如請求項1之方法,其中該奈米顆粒為0D奈米顆粒。
  9. 一種製造二維奈米薄片之方法,其包含:製造奈米顆粒;在第一插入劑及第二插入劑存在下在第一溶劑中攪拌該奈米顆粒持續第一時間段;及添加第二溶劑並且攪拌第二時間段。
  10. 如請求項9之方法,其中該等第一和第二插入劑選自由以下各者組成之群:路易斯鹼;胺基硫醇;及胺基酸。
  11. 如請求項9之方法,其中該等第一和第二溶劑選自由以下各者組成之群:二甲亞碸;乙腈;及丙醇。
  12. 如請求項9之方法,其進一步包含:添加第三插入劑及第三溶劑;及攪拌第三時間段。
  13. 如請求項9之方法,其中該奈米顆粒為量子點。
  14. 如請求項9之方法,其中該奈米顆粒為奈米棒。
  15. 一種製備凡得瓦爾異質結構裝置之方法,其包含:製造奈米顆粒;化學切割該等奈米顆粒以形成二維奈米薄片;將該等奈米薄片分散於溶劑中以形成油墨;及使該油墨沈積以形成薄膜。
  16. 如請求項15之方法,其中該等奈米顆粒選自由以下各者組成之群:石墨烯;過渡金屬二硫屬化物;過渡金屬三硫屬化物;第13-16族化合物;第15-16族化合物;六角氮化硼;氧化物;磷化物;第14族元素;第12-16族化合物;第13-15族化合物;I-III-VI化合物;及金屬;及其摻雜衍生物及合金。
  17. 如請求項15之方法,其中該等奈米顆粒為MoS2奈米顆粒。
  18. 如請求項15之方法,其中該等奈米顆粒為量子點。
  19. 如請求項15之方法,其中該等奈米顆粒為奈米棒。
TW106121365A 2016-06-28 2017-06-27 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置 TWI679170B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662355428P 2016-06-28 2016-06-28
US62/355,428 2016-06-28
US201762461613P 2017-02-21 2017-02-21
US62/461,613 2017-02-21
US15/631,323 2017-06-23
US15/631,323 US10059585B2 (en) 2016-06-28 2017-06-23 Formation of 2D flakes from chemical cutting of prefabricated nanoparticles and van der Waals heterostructure devices made using the same

Publications (2)

Publication Number Publication Date
TW201815686A TW201815686A (zh) 2018-05-01
TWI679170B true TWI679170B (zh) 2019-12-11

Family

ID=59384196

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108144703A TWI706916B (zh) 2016-06-28 2017-06-27 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置
TW106121365A TWI679170B (zh) 2016-06-28 2017-06-27 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108144703A TWI706916B (zh) 2016-06-28 2017-06-27 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置

Country Status (7)

Country Link
US (1) US10059585B2 (zh)
EP (1) EP3474979B1 (zh)
JP (2) JP6856673B2 (zh)
KR (1) KR102240062B1 (zh)
CN (1) CN109641188B (zh)
TW (2) TWI706916B (zh)
WO (1) WO2018002607A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201501342D0 (en) * 2015-01-27 2015-03-11 Univ Lancaster Improvements relating to the authentication of physical entities
CN109790046A (zh) * 2016-08-30 2019-05-21 丰田自动车欧洲公司 用于光电器件的来自二维半导体层片的三维组装活性材料
US10883046B2 (en) * 2017-02-02 2021-01-05 Nanoco 2D Materials Limited Synthesis of luminescent 2D layered materials using an amine-met al complex and a slow sulfur-releasing precursor
WO2018170531A1 (en) * 2017-03-21 2018-09-27 Newsouth Innovations Pty Ltd A light emitting device
US20180366325A1 (en) * 2017-06-14 2018-12-20 Alliance For Sustainable Energy, Llc Methods of exfoliating single crystal materials
US11302531B2 (en) 2017-06-14 2022-04-12 Alliance For Sustainable Energy, Llc Methods of exfoliating single crystal materials
US11168002B2 (en) * 2017-12-06 2021-11-09 Nanoco 2D Materials Limited Top-down synthesis of two-dimensional nanosheets
US20200067002A1 (en) * 2018-08-23 2020-02-27 Nanoco 2D Materials Limited Photodetectors Based on Two-Dimensional Quantum Dots
CN111378314B (zh) * 2018-12-29 2021-10-22 Tcl科技集团股份有限公司 一种量子点墨水及其制备方法
KR102123753B1 (ko) * 2019-01-02 2020-06-17 공주대학교 산학협력단 실리신 양자점 제조방법 및 이에 의해 제조된 실리신 양자점
EP3805337B1 (en) 2019-10-08 2023-08-09 Samsung Display Co., Ltd. Ink compositions and quantum dot polymer composite pattern prepared from the same
RU2737850C1 (ru) * 2019-11-05 2020-12-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина, ТГУ им. Г.Р. Державина") Способ получения коллоидного раствора трисульфида циркония с противомикробными свойствами
US20240018004A1 (en) * 2020-11-18 2024-01-18 Arcelormittal Method for the manufacture of a self-standing graphene oxide or reduced graphene oxide film
CN112858406B (zh) * 2021-01-14 2022-08-26 青岛科技大学 一种光致电化学检测对氨基苯酚的方法
CN114225839A (zh) * 2022-01-06 2022-03-25 南京工业大学 一种制备特定转角二维异质结材料的方法
CN115571872B (zh) * 2022-11-04 2023-10-10 山东大学 基于非溶剂体系去除石墨烯表面pmma层的方法
CN116510756B (zh) * 2023-04-28 2023-10-03 广东工业大学 一种高熵氟化物量子点纳米酶、制备方法及其生化检测应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186919A (en) * 1988-11-21 1993-02-16 Battelle Memorial Institute Method for producing thin graphite flakes with large aspect ratios
US6562403B2 (en) 2001-10-15 2003-05-13 Kansas State University Research Foundation Synthesis of substantially monodispersed colloids
US7588828B2 (en) 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
JP4829046B2 (ja) * 2006-08-30 2011-11-30 国立大学法人 名古屋工業大学 硫化金属ナノ粒子の製造方法及び光電変換素子
US8132746B2 (en) * 2007-04-17 2012-03-13 Nanotek Instruments, Inc. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
EP2276087A4 (en) * 2008-04-28 2015-04-29 Dainippon Printing Co Ltd DEVICE WITH LOCHINJECTION / TRANSPORT COAT, METHOD OF PRODUCTION THEREOF AND INK FOR PRODUCING THE LOCHINJECTION / TRANSPORT COAT
US8632884B2 (en) * 2008-08-06 2014-01-21 Agency For Science, Technology And Research Nanocomposites
GB201005601D0 (en) 2010-04-01 2010-05-19 Nanoco Technologies Ltd Ecapsulated nanoparticles
GB201110937D0 (en) * 2011-06-27 2011-08-10 Ucl Business Plc Dispersion method
WO2013052541A2 (en) 2011-10-04 2013-04-11 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Quantum dots, rods, wires, sheets, and ribbons, and uses thereof
EP2769403B1 (en) * 2011-10-19 2020-01-08 Nexdot Improved biomarkers and use thereof
KR102086729B1 (ko) 2011-12-22 2020-03-10 나노코 테크놀로지스 리미티드 표면 변형된 나노입자들
KR101364811B1 (ko) * 2012-09-06 2014-02-20 (주)에나인더스트리 탄소나노튜브의 절단 방법
CN102910622B (zh) * 2012-10-25 2014-10-29 常州大学 一种二维纳米石墨烯的制备方法
US9343301B2 (en) * 2013-03-14 2016-05-17 Nanoco Technologies Ltd. Quantum dots made using phosphine
GB201304770D0 (en) * 2013-03-15 2013-05-01 Provost Fellows Foundation Scholars And The Other Members Of Board Of A scalable process for producing exfoliated defect-free, non-oxidised 2-dimens ional materials in large quantities
GB201401715D0 (en) * 2014-01-31 2014-03-19 Univ Manchester Exfoliation
WO2015121682A1 (en) * 2014-02-17 2015-08-20 Ucl Business Plc Method for producing dispersions of nanosheets
CN104843664B (zh) * 2015-03-04 2018-04-17 东华大学 一种基于化学切割制备碳纳米点的方法
CN105111723B (zh) * 2015-09-28 2017-08-25 哈尔滨工业大学 一种表面微结构有序的磁性氮化硼纳米片/聚氨酯复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Han Han, Yonghong Ni and Enhong Sheng, 「ZnO nanoplates assembled by rod-like nanoparticles: simple reflux synthesis, influential factors and shape evolution towards nanorings」, RSC Adv., 2015, 5, 51750-51761 *
Yugang Sun, Brian Mayers, and Younan Xia, 「Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process」, NANO LETTERS, 2003, Vol. 3, No. 5, 675-679 *

Also Published As

Publication number Publication date
TWI706916B (zh) 2020-10-11
JP6856673B2 (ja) 2021-04-07
KR20190019151A (ko) 2019-02-26
TW201815686A (zh) 2018-05-01
CN109641188B (zh) 2022-07-05
EP3474979B1 (en) 2020-12-23
JP2019527179A (ja) 2019-09-26
EP3474979A2 (en) 2019-05-01
US20180009676A1 (en) 2018-01-11
JP2021102553A (ja) 2021-07-15
KR102240062B1 (ko) 2021-04-13
WO2018002607A3 (en) 2018-02-22
TW202014383A (zh) 2020-04-16
JP7049012B2 (ja) 2022-04-06
CN109641188A (zh) 2019-04-16
WO2018002607A2 (en) 2018-01-04
US10059585B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
TWI679170B (zh) 由預製奈米顆粒之化學切割形成二維薄片之方法及使用該薄片所製成之凡得瓦爾異質結構裝置
US11964879B2 (en) Template-assisted synthesis of 2D nanosheets using nanoparticle templates
US11168002B2 (en) Top-down synthesis of two-dimensional nanosheets
TWI754869B (zh) 使用胺-金屬錯合物及慢速釋放硫之前驅物的發光二維層狀材料之合成
WO2008021604A2 (en) Rapid synthesis of ternary, binary and multinary chalcogenide nanoparticles
Giri et al. Layer-structured anisotropic metal chalcogenides: recent advances in synthesis, modulation, and applications
EP3022764A1 (en) Preparation of copper selenide nanoparticles
Salazar et al. Synthesis of graphene and other two-dimensional materials
Liu et al. Synthesis and morphological evolution of CuGaS2 nanostructures via a polyol method
Cheng et al. Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications