CN112858406B - 一种光致电化学检测对氨基苯酚的方法 - Google Patents

一种光致电化学检测对氨基苯酚的方法 Download PDF

Info

Publication number
CN112858406B
CN112858406B CN202110050569.9A CN202110050569A CN112858406B CN 112858406 B CN112858406 B CN 112858406B CN 202110050569 A CN202110050569 A CN 202110050569A CN 112858406 B CN112858406 B CN 112858406B
Authority
CN
China
Prior art keywords
aminophenol
boron nitride
solution
photoelectrochemical
bnnss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110050569.9A
Other languages
English (en)
Other versions
CN112858406A (zh
Inventor
混旭
王如昊
林健健
高杰
邓陆平
秦娜娜
王明竞
张慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110050569.9A priority Critical patent/CN112858406B/zh
Publication of CN112858406A publication Critical patent/CN112858406A/zh
Application granted granted Critical
Publication of CN112858406B publication Critical patent/CN112858406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明属于分析化学和环境监测领域,具体涉及一种光致电化学检测对氨基苯酚的方法。用硒化锌纳米片和胶体金氮化硼纳米片复合材料修饰碳糊电极,以对氨基苯酚对修饰电极的光致电化学信号的增强,根据光致电化学信号的强弱实现对对氨基苯酚的测定。方法具有选择性测定对氨基苯酚的优点,此外该方法简单易于实现微型化和自动化。

Description

一种光致电化学检测对氨基苯酚的方法
技术领域
本发明属于分析化学与光致电化学传感器领域,具体为一种光致电化学检测对氨基苯酚的方法。
背景技术
对氨基苯酚亦称“对羟基苯胺”,是广泛应用的一种精细有机化工中间体,在染料工业上用于合成许多物质,在医药工业上对氨基苯酚用于合成扑热息痛、安妥明等。也用于制备显影剂、抗氧剂和石油添加剂等产品。由于其热稳定性差,故其检测受到一定限制。建立对氨基苯酚高灵敏度检测方法,对产品质量控制,环境废水监测和药物研发等均有着深远意义。目前已经有许多分析方法应用到了对氨基苯酚的检测中:比色法、荧光法、电化学法、色谱法等。光致电化学方法具有价格低廉、响应速度快、操作简单、灵敏度高等优点,有望更好地应用于对氨基苯酚的检测中。因此,本发明使用光敏材料修饰电极来制备用于对氨基苯酚的灵敏检测的光致电化学传感器,建立一种测定对氨基苯酚的新方法。
发明内容
鉴于现有技术的不足,本发明的目的在于提供一种光致电化学检测对氨基苯酚的方法。
本发明的目的是这样实现的:用硒化锌纳米片和胶体金氮化硼纳米片复合材料修饰碳糊电极,构建光致电化学传感器以实现对对氨基苯酚的测定;一种检测对氨基苯酚的硒化锌修饰碳糊电极光致电化学传感器制备方法及应用,包括如下步骤:
(1)氮化硼纳米片的制备
称取1mg~100mg的氮化硼粉末加入到盛有1mL~500mL的乙二醇溶液的烧杯中,超声剥离0.1h-24h后使氮化硼均匀的分散在溶液中,制得氮化硼纳米片。之后盛有该溶液的烧杯置于磁力搅拌器上匀速搅拌,同时用制备的0.1mM ~5mM的氢氧化钠溶液滴定,直至溶液pH达到10.0。
(2)胶体金氮化硼纳米片复合材料的制备
随后,将烧杯转移到恒温水浴加热搅拌器上,并向烧杯中加入0.1mL~20.0 ml0.0240mol/L氯金酸,在100℃恒温水浴中加热0.1h~4h,加热完成后,将烧杯中的溶液分装到离心管中并分别离心三次(12000r/min,10min)。离心后,收集沉淀物在80℃下干燥0.1h~2h,获得了AuNPs/BNNSs材料。
(3)纳米硒化锌的制备
称取1mg~150mg块状硒化锌分散于DMF中,超声剥离0.1h~48h后得到ZnSeNSs
(4)复合材料ZnSeNSs/AuNPs/BNNSs的制备
吸取2mL AuNPs/BNNSs和2mL ZnSeNSs分散液转移到同一离心管中,超声波振动使溶液均匀混合,制得ZnSeNSs/AuNPs/BNNSs复合材料。
(5)对氨基苯酚的测定
一种光致电化学检测对氨基苯酚的方法,将光致电化学传感器插入含一定浓度的对氨基苯酚溶液中时,得光致电化学信号I,以I为分析信号,进行对氨基苯酚的测定。
发明的优点与效果
剥离和未剥离的ZnSe表征如图1所示。从图1(a)可以看出,剥离后的 ZnSe是一种薄层无规则片状结构,比较薄。从图1(b)可以看出,未剥离的 ZnSe厚度明显厚于剥离的ZnSe,未剥离的ZnSe是多层ZnSe叠加在一起形成的片状结构,TEM图像中间部分的黑色阴影说明粉体ZnSe没有分散开,而且颜色深浅不均也说明了厚度存在较大的差异。从二者的对比不难看出,超声对 ZnSe的剥离起到了显著的效果。图1(c)显示出BN纳米片的片状结构,并且可以在图1(d)图中看到金纳米粒子均匀的分散在BN纳米片的表面,说明二者通过水热反应成功的合成。最后图1(e)中片状的叠加和金纳米粒子的分布说明了 ZnSe纳米片与金纳米粒子和BN纳米片成功的结合在一起。
实验研究了不同材料的光致电化学活性性能,实验分别用不同的材料修饰碳糊电极。在电极表面滴加15μL不同材料的悬浊液,在室温下干燥。不同材料修饰的电极分别在pH7.4磷酸缓冲溶液中和含有对氨基苯酚的pH为7.4的磷酸缓冲溶液中测其光致电化学信号。
如图2所示,在磷酸缓冲溶液中,裸电极(A)的光致电化学信号很小, BNNSs的PEC信号为310.2nA;BN的PEC信号为145.7nA;AuNPs/BNNSs 的PEC信号为337.0nA;ZnSeNSs的PEC信号为480.6nA;ZnSe的PEC信号为258.3nA。ZnSeNSs/AuNPs/BNNSs的PEC信号为830.8nA。
如图3所示,14种小分子对ZnSeNSs/AuNPs/BNNSs的PEC信号增强,其中对氨基苯酚的增强最大,信号达到3856.0nA。
如图4所示,对氨基苯酚对纳米材料的PEC增强情况,可以看出对氨基苯酚对ZnSeNSs/AuNPs/BNNSs的PEC信号增强最大。在对氨基苯酚存在时 ZnSeNSs/AuNPs/BNNSs的PEC信号为3821.0nA,是ZnSeNSs/AuNPs/BNNSs 在磷酸缓冲溶液中信号的4.6倍。AuNPs/BNNSs的PEC信号为501.3nA; ZnSeNSs的PEC信号为820.0nA。由此可知,对氨基苯酚对ZnSeNSs/AuNPs/BNNSs光致电化学信号有明显的增强作用。
由于上述方法制备的光致电化学传感器可以检测对氨基苯酚,因此,本发明提供了上述的光致电化学传感器在检测对氨基苯酚含量中的应用。
与现有技术相比,本发明涉及的光致电化学传感器具有如下优点和显著地进步:根据实验光致电化学信号强度(图3)可以看出,当本发明的传感器用于检测其他的小分子时,其光致电化学信号强度远远低于检测对氨基苯酚的光致电化学信号强度,这说明该传感器具有很高的选择性检来测对氨基苯酚。因此,本发明涉及的一种检测对氨基苯酚的硒化锌修饰碳糊电极光致电化学传感器制备方法及应用有良好的发展前景。
所述的磷酸缓冲溶液浓度为10mM。
附图说明
图1电镜图。块状ZnSe(a),ZnSeNSs(b),BN粉末(c),AuNPs/BNNSs(d), ZnSeNSs/AuNPs/BNNSs。
图2修饰碳糊电极的光致电化学信号响应曲线。
图3光致电化学传感器的选择性。从左到右分别为:空白溶液,对氨基苯酚,天冬氨酸,丝氨酸,谷胱甘肽,对苯二甲酸,双酚A,方酸,酒石酸,抗坏血酸,四甲基联苯胺,间苯二酚,邻苯二酚,多巴胺,对苯二酚。小分子的浓度均为0.1mM。
图4对氨基苯酚对纳米材料的PEC增强情况。
图5电位优化1。从左到右,在-0.3V-0.3V电位时裸电极在对氨基苯酚的磷酸缓冲溶液中的信号。
图6电位优化2。从左到右,在-0.3V-0.3V电位时修饰电极在对氨基苯酚的磷酸缓冲溶液中的信号。
图7纳米材料的用量优化。从左到右修饰电极在修饰剂体积为5μL,10μL, 15μL,20μL,25μL时在对氨基苯酚磷酸缓冲溶液中的光致电化学响应。
图8光致电化学信号与对氨基苯酚浓度关系图。
具体实施方式
下面结合具体实施例进一步说明本发明,但不构成对发明的进一步限制。
实施例1传感器的制备
光致电化学传感器ZnSeNSs/AuNPs/BNNSs修饰碳糊电极的制备
取上述(4)所得的ZnSeNSs/AuNPs/BNNSs溶液1μL~50μL滴加在经抛光处理的碳糊电极表面,在室温条件下自然干燥,即可得到 ZnSeNSs/AuNPs/BNNSs修饰碳糊电极。制备好的ZnSeNSs/AuNPs/BNNSs修饰碳糊电极放置在室温下备用。
实施例2对氨基苯酚的测定
将实施例1所得的光致电化学传感器插入到含对氨基苯酚的磷酸缓冲溶液中,进行光致电化学测试,以I为分析信号实现对对氨基苯酚的测定。
实施例3电位优化
制备的光致化学传感器会因为电极电位的不同来改变自身的电子传递,从而对光致电化学信号测定产生一定的影响。分别在-0.3V、-0.2V、-0.1V、0.0 V、0.1V、0.2V、0.3V不同工作电位下测定光致电化学信号。图3为不同电位下的光致电化学信号响应。当电位在小于-0.3V时,所得光致化学信号不稳定,峰形无法读数。在0.2V的电位下光致电化学信号的响应最大且稳定,所以最终选择的电极电位为0.2V。
实施例4 ZnSeNSs/AuNPs/BNNSs溶液用量的优化
用移液枪分别准确移取5μL、10μL、15μL、20μL、25μL的硒化锌溶液滴涂在碳糊电极上,测定光致电化学信号。图5为不同硒化锌用量情况下的光致电化学信号。可以看出,在硒化锌用量为5μL到15μL时光电信号逐渐增大,在硒化锌用量为15μL到25μL区间则呈现下降趋势。硒化锌用量为15μL时光致电化学信号最大。选择硒化锌用量为15μL。
实施例5方法灵敏度
考察了方法测定的灵敏度和线性范围等分析特性。在优选的条件下,目标物对氨基苯酚的浓度在1.0×10-10mol/L到1.0×10-4mol/L范围内与光致电化学信号成线性函数关系式(图6)。线性函数关系式为:I=-424.92log c+5278.33(I是光电流信号,nA;c是对氨基苯酚的浓度,mol/L),其中R2=0.9931,相对标准偏差(RSD)为3.1%,实验检出限达到3.0×10-11mol/L。
实施例6传感器的选择性
在光致电化学传感器的构建中,选择性是一个重要因素。本发明中, ZnSeNSs/AuNPs/BNNSs上的电子转移到碳糊电极上,而此时溶液中的对氨基苯酚作为电子供体降低了电子空穴对的复合几率,从而增加了光电流。考察了常见小分子对传感器选择性的影响。在对氨基苯酚,天冬氨酸,丝氨酸,谷胱甘肽,对苯二甲酸,双酚A,方酸,酒石酸,抗坏血酸,四甲基联苯胺,间苯二酚,邻苯二酚,多巴胺,对苯二酚小分子中,只有对氨基苯酚对光致电化学信号有明显的增强做作用(图7)。说明传感器对对氨基苯酚具有选择性,可实现对对氨基苯酚的选择性测定。

Claims (2)

1.一种光致电化学检测对氨基苯酚的方法,其特征在于以硒化锌纳米片和胶体金氮化硼纳米片复合材料修饰碳糊电极,以对氨基苯酚对修饰电极的光致电化学信号的增强,根据光致电化学信号的强弱实现对对氨基苯酚的测定,具体步骤:
(1)氮化硼纳米片的制备
称取1mg~100mg的氮化硼粉末加入到盛有1mL~500mL的乙二醇溶液的烧杯中,超声剥离0.1h-24h后使氮化硼均匀的分散在溶液中,制得氮化硼纳米片;之后盛有该溶液的烧杯置于磁力搅拌器上匀速搅拌,同时用制备的0.1mM~5mM的氢氧化钠溶液滴定,直至溶液pH达到10.0;
(2)胶体金氮化硼纳米片复合材料的制备
随后,将烧杯转移到恒温水浴加热搅拌器上,并向烧杯中加入0.1mL~20.0ml0.0240mol/L氯金酸,在100℃恒温水浴中加热0.1h~4h,加热完成后,将烧杯中的溶液分装到离心管中并分别离心三次;离心转速为12000r/min,时间为10min;离心后,收集沉淀物在80℃下干燥0.1h~2h,获得了AuNPs/BNNSs材料;
(3)纳米硒化锌的制备
称取1mg~150mg块状硒化锌分散于DMF中,超声剥离0.1h~48h后得到ZnSeNSs
(4)复合材料ZnSeNSs/AuNPs/BNNSs的制备
吸取2mL AuNPs/BNNSs和2mL ZnSeNSs分散液转移到同一离心管中,超声波振动使溶液均匀混合,制得ZnSeNSs/AuNPs/BNNSs复合材料;
(5)对氨基苯酚的测定
将光致电化学传感器插入含一定浓度的对氨基苯酚溶液中时,得光致电化学信号I,以I为分析信号,进行对氨基苯酚的测定。
2.根据权利要求1所述的一种光致电化学检测对氨基苯酚的方法,其特征在于氮化硼粉末购自于南京先锋纳米有限公司;硒化锌购自于麦克林生化有限公司。
CN202110050569.9A 2021-01-14 2021-01-14 一种光致电化学检测对氨基苯酚的方法 Active CN112858406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110050569.9A CN112858406B (zh) 2021-01-14 2021-01-14 一种光致电化学检测对氨基苯酚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110050569.9A CN112858406B (zh) 2021-01-14 2021-01-14 一种光致电化学检测对氨基苯酚的方法

Publications (2)

Publication Number Publication Date
CN112858406A CN112858406A (zh) 2021-05-28
CN112858406B true CN112858406B (zh) 2022-08-26

Family

ID=76006298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110050569.9A Active CN112858406B (zh) 2021-01-14 2021-01-14 一种光致电化学检测对氨基苯酚的方法

Country Status (1)

Country Link
CN (1) CN112858406B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2468251A1 (en) * 2001-11-26 2003-06-05 Sony International (Europe) G.M.B.H. The use of 1d semiconductor materials as chemical sensing materials, produced and operated close to room temperature
US7531136B2 (en) * 2001-11-26 2009-05-12 Sony Deutschland Gmbh Chemical sensor
US10059585B2 (en) * 2016-06-28 2018-08-28 Nanoco Technologies Ltd. Formation of 2D flakes from chemical cutting of prefabricated nanoparticles and van der Waals heterostructure devices made using the same
US11591223B2 (en) * 2017-08-15 2023-02-28 Northwestern University Nanocomposites, nanocomposite sensors and related methods
CN108358177A (zh) * 2018-04-26 2018-08-03 牡丹江师范学院 一种硒化锌多晶块体材料的高温高压制备方法
CN109738500B (zh) * 2019-02-20 2019-08-06 青岛大学 纳米复合物及其免标记适体电化学γ-干扰素传感器的制备方法
CN110938424B (zh) * 2019-12-06 2022-10-04 河北工业大学 一种量子点与纳米片互联的组装复合材料及其制备方法
CN111426729B (zh) * 2020-05-07 2022-08-02 青岛科技大学 纳米硒化锌修饰金电极光致电化学传感器制备方法及应用
CN112813199B (zh) * 2021-01-14 2022-07-15 青岛科技大学 一种检测肠道病毒cvb3的方法

Also Published As

Publication number Publication date
CN112858406A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Pan et al. Preparation of electrochemical sensor based on zinc oxide nanoparticles for simultaneous determination of AA, DA, and UA
Zhuo et al. Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application
CN113390943B (zh) 一种检测有机磷农药的电化学传感器及其制备方法
CN103323509B (zh) 石墨烯-氧化石墨纳米复合材料修饰电极及其同时测定邻苯二酚和对苯二酚浓度的方法
CN110146580A (zh) 一种基于柿单宁复合纳米材料检测l,5-脱水葡萄糖醇的方法
Fei et al. A sandwich electrochemical immunoassay for Salmonella pullorum and Salmonella gallinarum based on a AuNPs/SiO 2/Fe 3 O 4 adsorbing antibody and 4 channel screen printed carbon electrode electrodeposited gold nanoparticles
Zhang et al. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers
Wang et al. A chemiluminescence excited photoelectrochemistry aptamer-device equipped with a tin dioxide quantum dot/reduced graphene oxide nanocomposite modified porous Au-paper electrode
CN113504283A (zh) 用于检测没食子酸的复合材料修饰电极的制备方法及应用
Zhang et al. Sensitive and selective determination of riboflavin in milk and soymilk powder by multi-walled carbon nanotubes and ionic liquid [BMPi] PF 6 modified electrode
CN107607597A (zh) 一种柿单宁‑石墨烯‑Pt复合材料修饰丝网印刷电极检测过氧化氢的方法
CN107064254A (zh) 一种检测微囊藻毒素的电化学方法
Hu et al. Acetylcholinesterase sensor with patterned structure for detecting organophosphorus pesticides based on titanium dioxide sol‐gel carrier
Shahrokhian et al. Sensitive electrochemical sensor for determination of methyldopa based on polypyrrole/carbon nanoparticle composite thin film made by in situ electropolymerization
Guan et al. Electrochemical Enhanced Detection of Uric Acid Based on Peroxidase‐like Activity of Fe3O4@ Au
CN112858406B (zh) 一种光致电化学检测对氨基苯酚的方法
CN113189187B (zh) 一种应用于铬离子检测的电化学传感器
CN112305053B (zh) 一种硫化铟纳米微球修饰的标记电化学免疫传感器及其电化学免疫分析方法
CN112525971B (zh) 一种基于钨酸铋的光电化学检测氯霉素的方法
Li et al. A novel strategy of electrochemically treated ZrOCl2 doped carbon paste electrode for sensitive determination of daidzein
Tajik et al. Electrochemical determination of mangiferin using modified screen printed electrode
Zheng et al. An ultrasensitive electrochemiluminescent sensor based on a pencil graphite electrode modified with CdS nanorods for detection of chlorogenic acid in honeysuckle
CN112649607A (zh) 一种夹心免疫试剂盒及其应用
Hou et al. Electrochemical assay for analysis of circulation tumor cells based on isolation of the cell with magnetic nanoparticles and reaction of DNA with molybdate
Chen et al. Highly sensitive detection of Brucella in milk by cysteamine functionalized nanogold/4-Mercaptobenzoic acid electrochemical biosensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant