TWI663668B - 監控光學微影系統的系統及方法 - Google Patents

監控光學微影系統的系統及方法 Download PDF

Info

Publication number
TWI663668B
TWI663668B TW107114373A TW107114373A TWI663668B TW I663668 B TWI663668 B TW I663668B TW 107114373 A TW107114373 A TW 107114373A TW 107114373 A TW107114373 A TW 107114373A TW I663668 B TWI663668 B TW I663668B
Authority
TW
Taiwan
Prior art keywords
optical
optical lithography
optical source
monitoring system
command signal
Prior art date
Application number
TW107114373A
Other languages
English (en)
Other versions
TW201901828A (zh
Inventor
安德烈 多羅班特
馬修 萊恩 葛拉漢
約書亞 瓊 索恩斯
凱文 麥可 歐布萊恩
Original Assignee
美商希瑪有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商希瑪有限責任公司 filed Critical 美商希瑪有限責任公司
Publication of TW201901828A publication Critical patent/TW201901828A/zh
Application granted granted Critical
Publication of TWI663668B publication Critical patent/TWI663668B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

監控一光學微影系統。自該光學微影系統接收資訊;存取一規則,該規則係與該光學微影系統中之一事件及一時間量中之一或多者相關聯;基於該經存取規則識別儲存於一模組庫中之一模組;使用該經識別模組及自該光學微影系統接收之該資訊來判定一特定條件是否存在於該光學微影系統中;及若該特定條件存在,則基於該特定條件之一或多個特性而產生一命令信號且提供該命令信號至該光學微影系統之一光學源。該命令信號係基於該經判定特定條件,且該命令信號足以改變該光學源之一或多個操作參數。

Description

監控光學微影系統的系統及方法
本發明相關於一種用於光學微影系統的監控系統。
光微影係將半導體電路圖案化於諸如矽晶圓之基板上的製程。光學源產生用以曝光晶圓上之光阻之深紫外線(DUV)光。DUV光可包括自例如約100奈米(nm)至約400nm之波長。經常,光學源係雷射源(例如準分子雷射)且DUV光係脈衝式雷射光束。來自光學源之DUV光與投影光學系統相互作用,投影光學系統將光束經由光罩投影至矽晶圓上之光阻上。以此方式,晶片設計之層經圖案化至光阻上。隨後蝕刻及清潔光阻及晶圓,且接著光微影製程重複。
在一個通用態樣中,一種系統包括一光學微影系統及一監控系統。該光學微影系統包括一光學源及一微影裝置。該光學源經組態以產生一光束,且該光學源包括一或多個控制系統,該一或多個控制系統中之每一者經組態以調整該光學源之一操作參數。該微影裝置包括:一投影光學系統,其經組態以自該光學源接收該光束且產生一曝光光束;及一晶圓區,其經組態以收納一晶圓及該曝光光束。該監控系統耦接至該光學微影系 統,且該監控系統經組態以:存取至少一個規則;基於該經存取規則自一模組庫識別一模組;使用該經識別模組及來自該光學微影系統之資訊來判定一特定條件是否存在於該光學微影系統中;及若該特定條件存在,則提供一命令信號至該光學微影系統,該命令信號係基於該經判定特定條件且足以致使該等控制系統中之一或多者調整該光學源之一或多個操作參數。該光學源之該一或多個操作參數中之每一者指定該光學源之一行為,且調整該光學源之一或多個操作參數改變該光學源之一或多個行為。
實施方案可包括以下特徵中之一或多者。該光學源亦可包括一資料介面,該監控系統可耦接至該光學源之該資料介面,來自該光學微影系統之該資訊可接收自該光學源之該資料介面,且該命令信號可經由該光學源之該資料介面而提供至該光學微影系統。
該光學源亦可包括一資料介面,該微影裝置亦可包括一資料介面,該監控系統可耦接至該光學源之該資料介面且耦接至該微影裝置之該資料介面,來自該光學微影系統之該資訊可來自該光學源及該微影裝置中之一或多者,且該命令信號可經由該光學源之該資料介面而提供至該光學微影系統。
由該光學源產生之該光束可係具有一重複率之一脈衝式光束,該重複率指示該脈衝式光束之一特定脈衝與緊鄰該特定脈衝之一脈衝之間的一時間,該光學源之該一或多個控制系統可經組態以在一控制速率下操作,該控制速率等於或大於該重複率,使得該控制系統針對該脈衝式光束中之每一脈衝能夠調整該光學源之該一或多個操作參數,且該監控系統可具有一監控系統速率,該監控系統速率指示該命令信號之兩個分開之例項被提供至該光學微影系統之間的一最小時間量,且該命令信號之兩個分開之例 項被提供至該光學微影系統之間的該最小時間量大於該脈衝式光束之脈衝之間的時間,使得該監控系統速率比該控制速率及該重複率慢。在一些實施中,該監控系統經進一步組態以:儲存在一第一時間段期間自該光學微影系統接收之資訊,該第一時間段大於該脈衝式光束中之兩個鄰近脈衝之間的該時間;分析在該第一時間段期間自該光學微影系統接收之該經儲存資訊;其中該監控系統經組態以使用該經識別模組及該經分析之經儲存資訊來判定該特定條件是否存在。該監控系統可經進一步組態以輪詢該光學微影系統以自該光學微影系統接收該資訊。
在一些實施中,該監控系統耦接至一或多個其他光學微影系統,且該監控系統經組態以:自任何耦接之光學微影系統接收資訊,且將命令信號提供至任何耦接之光學微影系統。該監控系統可基於該所接收資訊判定出該特定條件存在於該等其他光學微影系統中之至少一者中,該監控系統可識別出該條件存在於該等光學微影系統中的哪些光學微影系統中,且該監控系統可將該命令信號僅提供至該等經識別微影系統。在此等實施中,當該監控系統基於該所接收資訊判定出該特定條件存在於該等其他光學微影系統中之至少一者中,該監控系統可識別出該條件存在於該等光學微影系統中的哪些光學微影系統中,且該監控系統可提供該命令信號至所有該等光學微影系統。
該光學源之該等操作參數可具有預設值,且該命令信號致使該一或多個控制系統中之至少一者將至少一個操作參數調整為不同於彼操作參數之該預設值的一值。
該至少一個規則可包括一規則集合,該規則集合包括基於事件之規則及基於時間之規則,該等基於事件之規則係與該光學源中之一事件相關 聯且基於該事件在該光學源中之一發生而指定該模組庫中之一或多個模組的規則,且該等基於時間之規則係與一時間量相關聯且基於該時間量之該推移而指定該模組庫中之一或多個模組的規則。該監控系統可經進一步組態以:判定在該光學源內是否已發生一事件,判定是否一時間量已推移,及基於在該光學源內是否已發生一事件之該判定及是否一時間量已推移之該判定中的一或多者而存取該規則集合中之該等規則中的一者。
在該光學源產生該光束時可提供該命令信號至該光學微影系統,且該一或多個操作參數在該光學源產生該光束時可經調整。
在另一通用態樣中,監控一種光學微影系統。在一第一時間段期間自該光學微影系統接收資訊;存取一規則,該規則係與該光學微影系統中之一事件及一時間量推移中的一或多者相關聯;基於該經存取規則識別儲存於一模組庫中之一模組;使用該經識別模組及在該第一時間段期間自該光學微影系統接收之該資訊來判定一特定條件是否存在於該光學微影系統中;及若該特定條件存在,則基於該特定條件之一或多個特性而產生一命令信號且提供該命令信號至該光學微影系統之一光學源。該命令信號係基於該經判定特定條件,該命令信號足以改變該光學源之一或多個操作參數,且在該第一時間段之後提供該命令信號至該光學源。
儲存在該第一時間段期間接收之該資訊,且判定一特定條件是否存在於該光學微影系統中可包括在該第一時間段之後分析該經儲存資訊。在一些實施中,可基於自該光學微影系統接收之該資訊而判定用來存取之一規則。
判定一特定條件是否存在可包括:比較在該第一時間段期間自該光學微影系統接收之該資訊與經儲存資訊,基於該比較判定是否符合或超過 一臨限值,及當符合或超過該臨限值時宣告該特定條件存在。
判定一特定條件是否存在可包括:分析在該第一時間段期間自該光學微影系統接收之該資訊,基於該經分析資訊而判定該光學源之一或多個操作參數之一值,比較該等經判定值與針對該一或多個操作參數中之每一者之一預期值,及當該等經判定值係在相對於該預期值之一預定義值範圍之外時宣告該特定條件存在。
在一些實施中,可呈現對該光學源之一或多個操作參數之一調整的一指示,該調整係藉由該控制信號引起,且該指示可被該光學微影系統之一操作者所感知。
在另一通用態樣中,一種監控系統包括:一監控資料介面,其經組態以將資訊發送至一或多個光學微影系統且自該一或多個光學微影系統接收資訊,該等光學微影系統中之每一者包含一光學源;一電子儲存器;及耦接至該電子儲存器之一或多個電子處理器,該電子儲存器包括在經執行時致使該一或多個處理器進行以下操作之指令:
存取至少一個規則,該規則使該一或多個光學微影系統中之任一者中的一事件及一時間段中之一或多者與一模組相關聯,該模組經組態以分析來自該一或多個光學微影系統中之任一者之資訊且產生一命令信號;基於經存取之該至少一個規則來識別儲存於該電子儲存器處的一模組庫中之一模組;使用該經識別模組及來自該光學微影系統之該資訊來判定一特定條件是否存在於該等光學微影系統中之該一或多者中的任一者中;及若該特定條件存在於該一或多個光學微影系統中之任一者中,則:產生一命令信號,該命令信號係基於該經判定特定條件且足以改變該等光學微影系統中之該一或多者中的任一者之一光學源之一或多個操作參數,且提供該命 令信號至至少一個光學源。
在該至少一個光學源產生一脈衝式光束時可提供該命令信號至該至少一個光學源。
該至少一個規則及該模組庫中之該等模組中之一或多者可經組態為由該監控系統之一操作者編輯。該至少一個規則可包括基於事件之規則及基於時間之規則中的一或多者,該等基於事件之規則係與該光學微影系統中之一事件之一發生相關聯,且該等基於時間之規則係與一時間量之一推移相關聯。
以上及本文中所描述之技術中之任一者的實施可包括製程、裝置、控制系統、儲存於非暫時性機器可讀電腦媒體上之指令及/或方法。以下隨附圖式及描述中闡述一或多個實施之細節。其他特徵將自描述及圖式及自申請專利範圍而顯而易見。
100‧‧‧系統
101‧‧‧光學微影系統
104‧‧‧資料連接
105‧‧‧光學源
107‧‧‧控制系統
115‧‧‧微影裝置
150‧‧‧監控系統
153‧‧‧規則
155‧‧‧模組庫
160‧‧‧光束
200‧‧‧系統
201‧‧‧光學微影系統
215‧‧‧微影裝置
220‧‧‧晶圓
222‧‧‧度量衡系統
224‧‧‧光罩
225‧‧‧投影光學系統
226‧‧‧隙縫
227‧‧‧投影光學件
249‧‧‧資訊
251‧‧‧命令信號
291‧‧‧曝光光束
301‧‧‧光學微影系統
304‧‧‧資料連接
305‧‧‧光學源
306‧‧‧資料介面
307‧‧‧控制系統
308‧‧‧子系統
309‧‧‧嵌入式處理器
349‧‧‧資訊
350‧‧‧監控系統
351‧‧‧命令信號
352‧‧‧監督模組
353‧‧‧規則集合
354‧‧‧命令信號引擎
355‧‧‧模組庫/模組
356‧‧‧資料介面
357‧‧‧監控參數
358‧‧‧模組
360‧‧‧光束
361‧‧‧電子處理器
362‧‧‧電子儲存器
363‧‧‧I/O介面
392‧‧‧工廠
393‧‧‧遠端台
394‧‧‧資料鏈路
400‧‧‧系統
401_1‧‧‧光學微影系統
401_n‧‧‧光學微影系統
403‧‧‧群組
404_1‧‧‧資料連接
404_n‧‧‧資料連接
405_1‧‧‧光學源
405_n‧‧‧光學源
492‧‧‧工廠
501‧‧‧光學微影系統
505‧‧‧光學源
506A‧‧‧資料介面
506B‧‧‧資料介面
507A‧‧‧控制系統
507B‧‧‧控制系統
512‧‧‧主控振盪器
514‧‧‧放電腔室
516‧‧‧線窄化模組
517‧‧‧伸長電極
518‧‧‧輸出耦合器
519‧‧‧增益介質
519'‧‧‧增益介質
520‧‧‧線中心分析模組
522‧‧‧光束耦合光學系統
524‧‧‧種子光束
530‧‧‧功率放大器
532‧‧‧光束耦合光學系統
540‧‧‧放電腔室
541‧‧‧伸長電極
548‧‧‧信號路徑
552‧‧‧光束轉向光學元件
560‧‧‧脈衝式光束
562‧‧‧頻寬分析模組
600‧‧‧晶圓曝光信號
605‧‧‧高值
607‧‧‧時間段
610‧‧‧低值
615‧‧‧閘信號
616‧‧‧叢發
620‧‧‧高值
625‧‧‧低值
630‧‧‧觸發信號
635‧‧‧兩個順次脈衝之間的時間
640‧‧‧觸發脈衝
700‧‧‧製程
710‧‧‧步驟
720‧‧‧步驟
730‧‧‧步驟
740‧‧‧步驟
750‧‧‧步驟
760‧‧‧步驟
801‧‧‧光束品質(BQ)計數
880C‧‧‧線
880D‧‧‧線
882C‧‧‧能量相對於電壓資料
882D‧‧‧能量及電壓資料
883C‧‧‧離群值
883D‧‧‧離群值
884‧‧‧漏失臨限值
885‧‧‧增加量
886‧‧‧增加量
887‧‧‧標繪圖/RPM
888‧‧‧標繪圖
900‧‧‧製程
910‧‧‧步驟
920‧‧‧步驟
930‧‧‧步驟
940‧‧‧步驟
圖1係耦接至光學微影系統之監控系統之實例的方塊圖。
圖2A係耦接至圖1之監控系統的光學微影系統之實例的方塊圖。
圖2B係用於圖2A之光學微影系統中的光罩之實例的方塊圖。
圖3係圖1之監控系統之實施之實例的方塊圖。
圖4係包括耦接至光學微影系統之群組的圖3之監控系統之系統的方塊圖。
圖5係光學微影系統之實施之另一實例的方塊圖。
圖6A至圖6C係可用以控制係圖5之光學微影系統之部分的光學源之信號的曲線圖。
圖7及圖9係可使用圖3之監控系統來執行之製程之實例的流程圖。
圖8A至圖8D展示自光學微影系統接收之資訊的實例。
揭示用於光學微影系統(或光微影系統)之監控系統。參看圖1,其展示系統100之方塊圖。系統100包括監控系統之實例。在圖1之實例中,監控系統150係經由資料連接104與光學微影系統101通信。光學微影系統包括光學源105,該光學源將光束160提供至微影裝置115以曝光晶圓。微影裝置115亦可被稱作掃描器。監控系統150可與光學微影系統101共置。舉例而言,監控系統150及光學微影系統101可在同一工廠或部位(例如晶圓製造設施)中,或監控系統150及光學微影系統101可在不同建築物中,但在同一園區或客戶地點內且在同一電子防火牆之後。
如下文更詳細地論述,監控系統150提供用於光學源105及/或光學微影系統101之效能監控、故障偵測、效能最佳化及效能恢復之構架。監控系統150監控光學微影系統101以評估光學源105及/或光學微影系統101之條件。條件為光學源105或光學微影系統101之與光學源105及/或光學微影系統101之效能相關的任何屬性。當特定條件經判定為存在時,監控系統150向光學源105發佈命令信號以改變或調整光學源105之一或多個操作參數。光學源105之操作參數為指定或控管光學源105之行為的任何數量或設定。調整操作參數中之一或多者造成光學源105之一或多個關聯行為之對應改變。因為光學源105將光束160提供至微影裝置115,所以改變光學源105之行為亦可改變光學微影系統101之總體效能。
監控系統150亦能夠將光學源105置於各種操作模式中且監控光學微影系統101之效能。舉例而言,監控系統150可將光學源105置於有限操作模式中。有限操作模式提供有限功能性且可使用其來代替使光學微影系統 101完全停止服務。在有限操作模式中,可回應於特定條件而使光學源105及/或光學微影系統101之效能有意地劣化或次佳的。在此狀況下,有限操作模式允許光學源105仍產生光束160且以有限方式曝光晶圓,但避免使光學微影系統101完全停止服務。
監控系統150亦能夠將光學源105置於診斷模式或恢復模式中。診斷模式允許光學源105執行自動及非手動測試活動。在恢復模式中,監控系統150可使光學源105採取使光學源105返回至標稱或最佳化效能狀態之動作。診斷模式及恢復模式與有限操作模式之相異之處在於:微影裝置115在此等模式中並不曝光晶圓。
監控系統150監控光學源105及/或光學微影系統101,而不干涉光學源105之操作且不需要操作者干預。監控系統150亦可監控光學源105及/或光學微影系統101之效能,且可在光學源105在操作中且產生光束160時改變光學源105之行為。舉例而言,監控系統150可在光學源105產生光束160且微影裝置115曝光一或若干晶圓時調整光學源105之一或多個操作參數。
在另一實例中,監控系統150可在將光學源105置於有限效能模式、恢復模式或診斷模式中之後監控光學微影系統101及/或光學源105之效能。當在診斷模式或恢復模式中進行操作時,監控系統150可在光學源105在操作中但並不曝光晶圓時監控源105及/或光學微影系統101之效能。當在有限操作模式中進行操作時,監控系統150可在光學微影系統101曝光晶圓時監控光學微影系統101及/或光學源105之效能。
如關於圖4及圖9進一步所論述,監控系統150亦能夠監控光學微影系統及/或光學源之群組且使用自該群組之光學微影系統及/或光學源中之一 者所判定之效能趨勢來改良該群組之其他成員之效能。光學源及/或光學微影系統之群組可位於由同一公司實體擁有之同一工廠(例如晶圓製造設施或工廠)中,且位於同一工廠中或不同工廠中但在同一電子防火牆之後,或可用於同一特定應用,而不論共置或所有權如何。
再次參看圖1,光學源105包括控制系統107,該控制系統藉由調整光學源105之某些操作參數而控制光學源105之低等級操作。控制系統107可為例如實施於嵌入式處理器上之回饋或前饋控制器。控制系統107在光學源105之特定子系統上進行操作。光學源105可包括許多子系統,其中每一者可包括例如可控制實體器件、以軟體實施之系統,或包括硬體及軟體態樣之系統。控制系統107可控制例如由源105發射之脈衝式光束之重複率、光學源105內之各種光學元件之位置,或光學源105之光學腔室中之氣態增益介質之溫度及/或壓力。
監控系統150經實施為與控制系統107相異之系統。與控制系統107分離地實施監控系統150會允許監控系統150監控及分析光學微影系統101及/或光學源105之總體效能。光學源105可包括控制系統107之許多例項,其中每一者控制一或多個子系統。監控系統150可分析關於所有子系統以及控制系統107之所有例項之資訊。因此,監控系統150能夠分析光學源105之總體效能且不限於監控特定子系統之效能。與控制系統107分離地實施監控系統150亦允許監控系統150監控光學源105,而不干涉光學源105之操作。
控制系統107可以相對較短時間框進行操作,例如對由光學源105發射之脈衝式光束之每一脈衝進行操作。與控制系統107相比,監控系統150可在更長時間段期間監控光學微影系統101及/或光學源105,且監控系 統150亦可基於光學源105之長期效能來採取校正性動作。舉例而言,監控系統150可基於光學微影系統101及/或光學源105在數天、數週或數月時段內的效能來採取校正性動作。
此外,監控系統150具有控制系統107不具有之能力。監控系統150經實施於通用電腦而非嵌入式處理器上。嵌入式處理器通常小於通用電腦且使用較小功率。通用電腦相比於嵌入式處理器能夠執行更複雜計算且儲存更大資料量。因此,監控系統150能夠儲存來自光學源105之較大資料量且以相比於運用嵌入式處理器(諸如用以實施控制系統107之嵌入式處理器)而可能之方式更複雜的方式來分析彼資料。
另外,因為監控系統150持續性地(例如恆定地、週期性地、按需求或規則地)監控光學源105之效能,所以監控系統150可在校正較簡單、較快速及/或無論何時可行之初期階段識別及校正潛在效能問題。舉例而言,監控系統150可用以在潛在問題逐步升級至需要操作者或專家手動干預時刻之前識別及校正彼等問題。此手動干預通常涉及將光學源105自服務移除(舉例而言,當將光學源105自服務移除時,光學源105及光學微影系統101不能曝光晶圓)。因而,使用監控系統150可減小或消除對光學源105之耗時且成本高的手動故障診斷及修復之需要。
此外且如關於圖3及圖7進一步所論述,監控系統150使用將光學源105及/或光學微影系統101之條件與模組庫155中之各種模組相關聯之規則153之集合。監控系統150使用規則153以自庫155選擇一或若干特定模組以供執行。監控系統150執行經選擇該或該等模組以判定特定條件是否存在於光學源105及/或光學微影系統101上,且可產生用於光學源105之命令信號。命令信號作用於光學源105以調整一或多個操作參數,從而例如校 正或改良光學源105及/或光學微影系統101之效能。
使用規則153及模組庫155亦會為由監控系統150執行之監控帶來一致性及穩固性。經由手動故障診斷及監控,此一致性及穩固性可具有挑戰性或不可達成。舉例而言,模組庫155可包括基於規則153而一日一次地將光學源105切換至診斷模式之模組。此繼而在監控系統150自光學源105收集資料時使光學源105發射脈衝之預定義圖案。在診斷模式期間收集之資料係由由監控系統150執行之模組控管。經由使用該模組,在彼診斷模式中收集資料之條件被確保隨著時間推移且遍及不同光學源為相同的。此允許收集比運用手動故障處理而可能收集之資料集更穩固且一致的資料集。
參看圖2A,展示系統200之方塊圖。系統200展示監控系統150經由資料連接104耦接至光學微影系統201之實例。光學微影系統201為光學微影系統101(圖1)之實施的實例。光學微影系統201包括光學源105,該光學源將光束160提供至微影裝置215以處理在晶圓區處被收納之晶圓220。微影裝置215亦可被稱作掃描器。光束160可為包括在時間上彼此分離之光脈衝的脈衝式光束。監控系統150監控光學微影系統201之效能。
微影裝置215包括投影光學系統225,該投影光學系統接收光束160且形成曝光光束291。微影裝置215亦可包括度量衡系統222。度量衡系統222可包括例如:攝影機或能夠捕捉晶圓220或晶圓220處之曝光光束291之影像的其他器件;光學偵測器,其能夠捕捉描述曝光光束291之特性(諸如晶圓220處之光束291在x-y平面中之強度)之資料,及/或能夠量測提供關於光束291或晶圓220之資訊的資料之任何其他器件。微影裝置215可為液體浸潤系統或乾式系統。
藉由例如運用曝光光束291來曝光晶圓220上之輻射敏感光阻材料層 而在晶圓220上形成微電子特徵。亦參看圖2B,投影光學系統225包括隙縫226、光罩224及投影光學件227。在到達投影光學系統225之後,光束160傳遞通過隙縫226。在圖2A及圖2B之實例中,隙縫226為矩形且將光束160塑形成伸長矩形形狀光束。可使用其他形狀。經塑形光束接著傳遞通過光罩224。在光罩224上形成圖案,且該圖案判定塑形光束之哪些部分由光罩224透射且哪些部分受光罩224阻擋。圖案之設計係藉由待形成於晶圓220上之特定微電子電路設計來判定。由光罩224透射之塑形光束之部分傳遞通過投影光學件227(且可由投影光學件227聚焦)且曝光晶圓220。
監控系統150可經由資料連接104自光學微影系統201之任何部分接收資訊249。舉例而言,監控系統150可自光學源105及/或度量衡系統222接收資訊。監控系統150可不斷地、週期性地自光學微影系統201接收資訊249,或監控系統150可輪詢光學微影系統201且接收作為回應之資訊249。監控系統150經由資料連接104將命令信號251提供至光學源105。
圖3為監控系統350之方塊圖。監控系統350為監控系統150之實施的實例。在圖3之實例中,監控系統350經由資料連接304耦接至光學微影系統301之光學源305。在圖3之實例中,監控系統350及光學微影系統301位於同一工廠392中。舉例而言,該工廠可為晶圓製造設施、房間或場所。在一些實施中,工廠392可包括實體地分離(諸如不同建築物)但受到同一電子防火牆保護的場所。
光學微影系統301及資料連接304可分別用作光學微影系統101及資料連接104(圖1及圖2A)。光學源305相似於光學源105(圖1及圖2A)。光學源305將光束360提供至微影裝置215。在圖3之實例中,監控系統350經由 資料連接304該資料介面306而自光學源305接收資訊349且將命令信號351提供至光學源305。監控系統350基於自光學源305接收之資訊349而產生命令信號351。
在一些實施中,微影裝置215包括相似於資料介面306之資料介面(圖3中未圖示),使得監控系統350亦自微影裝置215接收資訊。圖5展示微影裝置215包括資料介面之實例。在此等實施中,監控系統350使用相似於資料介面306之資料連接以自光學源305及微影裝置215接收資訊349。
監督模組352包括規則集合353、模組庫355及監控參數357。模組庫355包括在藉由命令信號引擎354執行時可產生命令信號351之一或多個模組。模組355中之每一者可為例如形式電腦程式或次常式之指令集。模組355處理及/或分析來自光學微影系統301之資訊349以判定特定條件是否存在於光學微影系統301中。若特定條件存在,則命令信號引擎354產生命令信號351。
在任何給定時間,命令信號引擎354執行模組庫355中之模組中的一或多者。在一些實施中,命令信號引擎354每次執行一個模組。在圖3中,由命令信號引擎354執行之模組被展示為虛線矩形且以358標註。規則集合353控管命令信號引擎354執行哪一或哪些模組。
集合353中之每一規則使模組庫355中之一或多個模組與執行準則相關聯。規則集合353可包括例如基於時間之規則及基於事件之規則。基於時間之規則之執行準則係基於預定義時間量之推移。基於事件之規則之執行準則係基於在光學微影系統301內事件之發生。舉例而言,基於時間之規則可指示命令信號引擎354每週或在來自模組庫355之某一模組之先前執行起所定義時間量已推移之後執行彼模組。基於事件之規則可指示命令 信號引擎354在來自光學微影系統301之資訊349指示設定數目個光脈衝已經提供至微影裝置215時執行來自模組庫355之某一模組。
監督模組352亦包括監控參數357。監控參數357為控管當模組庫355中之模組經執行時由命令信號引擎354執行之動作的變數、設定及/或量。監控參數357中之任一者可由模組庫355中之模組中的多於一者使用。監控參數357可被認為係由模組中之一或多者調用或參考之變數。舉例而言,監控參數357可包括模組組態參數、針對基於時間及事件之規則之組態、資料饋入規則及/或保護濾波器。
模組組態參數為用以指定由模組獲取之行為或動作之細節的任何值。組態參數可為例如由將臨限測試應用至來自光學微影系統301之資訊以判定特定條件是否存在於光學源305中的模組使用之值範圍。在一些實施中,監控光學源305之態樣之模組可藉由將來自光學微影系統301之資訊與該值範圍進行比較來分析該資料。舉例而言,模組可分析指示光學源之放大器中之氣態增益介質相對於預定義範圍的壓力之資料。在此實例中,值之預定義範圍為組態參數。若來自光學源305之資料指示壓力係在預定義範圍之外,則產生命令信號351且提供該命令信號至光學源305。
當光學源305接收命令信號351時,光學源305之一或多個操作參數經調整以例如將壓力帶至預定義範圍內及/或進入診斷模式。若來自光學源305之資訊349指示壓力係在預定義範圍內,則模組可執行替代動作。舉例而言,模組產生經儲存於電子儲存器362處之日誌檔案,而非產生命令信號351。一般而言,模組組態參數可由任何模組使用。舉例而言,與氣體壓力監控有關之任何模組可被書寫為使用以上實例中所論述之預定義範圍。
在另一實例中,模組組態參數可含有關於模組庫355中之哪些模組處於作用中狀態之資訊。亦即,模組組態參數可用以啟用或停用模組庫355中之一或多個模組。
監控參數375亦可包括造成來自模組庫355之模組待由命令信號引擎354執行的用於基於時間及事件之規則之組態。在一項實例中,用於基於時間之規則之組態為指定模組待執行之頻率之特定時間量。在另一實例中,用於基於事件之規則之組態為為了執行對應模組必須被超過的光學微影系統301之操作參數之特定值。
資料饋入規則涵蓋指定基於事件或某時間量推移而出現之資料傳送動作(例如來自光學微影系統301之資料經由資料連接304傳送至監控系統350)的另一類型之監控參數357。舉例而言,資料饋入規則可指定應基於某一事件發生或某時間量推移將光學微影系統301之某一操作參數經由資料連接304傳送至監控系統350。
保護濾波器為不論其他規則或模組防止某些動作發生的監控參數。舉例而言,保護濾波器可防止光學微影系統301之一些操作參數由命令信號351改變,而不論其在模組庫355中指定之對應模組為何。在另一實例中,保護濾波器亦可用以限制命令信號351可改變多少。在此實例中,保護濾波器可防止發出將造成光學源305試圖在其普通效能限度之外操作的命令信號351。
在一些實施中,監控參數357中之全部或一些對於監控系統350之操作者為可存取的,使得操作者能夠修正及/或添加至規則及/或模組庫355中之模組。在其他實施中,監控參數357對於監控系統350之操作者為不可存取的且在監控系統350投入運行時由製造商設定。在又其他實施中, 監控參數357對於操作者為不可存取的,但可基於當監控系統投入運行時存在之預定義內部規則而改變。
監控系統350被實施於包括電子處理器361、電子儲存器362及I/O介面363之通用電腦上。電子處理器361包括適合於執行電腦程式之一或多個處理器,諸如一般或特殊用途微處理器,及具有任何種類數位電腦之任一或多個處理器。通常,電子處理器自唯讀記憶體、隨機存取記憶體(RAM)或此兩者接收指令及資料。電子處理器361可為任何類型之電子處理器。電子處理器361執行構成監督模組352、命令信號引擎354、規則集合353中之規則及模組庫355中之模組的指令。
電子儲存器362可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施中,電子儲存器362包括非揮發性及揮發性部分或組件。電子儲存器362可儲存用於監控系統350之操作中之資料及資訊。舉例而言,電子儲存器362可儲存規則集合353、模組庫355及監控參數357。實施監督模組352及命令信號引擎354之指令(例如呈電腦程式之形式)可亦儲存於電子儲存器362上。電子儲存器362亦可儲存自光學微影系統301接收之資訊349及/或提供至光學源305之命令信號351。
電子儲存器362亦可儲存在經執行時致使處理器361與光學源305及/或微影裝置215中之組件通信之指令,而可能作為電腦程式。舉例而言,該等指令可為致使電子處理器361將由命令信號引擎354產生之命令信號351提供至光學源305之指令。在另一實例中,電子儲存器362可儲存在經執行時致使監控系統350與分開之機器相互作用之指令。舉例而言,監控系統350可與同一工廠392中之其他光學微影系統相互作用。與多於一個光學微影系統相互作用之監控系統之實例係關於圖4及圖9加以論述。
在一些實施中,監控系統350可經由資料鏈路394將資料發送至遠端台393。遠端台393可為例如電腦伺服器。遠端台393並不在工廠392內,且遠端台393並不經組態來將命令提供至光學源305或光學微影系統301之任何其他部分。資料鏈路394可為能夠將工廠392中之資料傳輸至工廠392之外部之部位的任何通信通道。資料鏈路394可經由監督控制及資料獲取(SCADA)協定或諸如安全殼(SSH)或超文字傳送協定(HTTP)之另一服務協定而傳輸資料。
I/O介面363為允許監控系統350與操作者、光學源305、光學源305之一或多個組件、微影裝置215及/或執行於另一電子器件上之自動處理程序交換資料及信號的任何種類之介面。舉例而言,在可編輯監控參數357之實施中,可經由I/O介面363進行編輯。I/O介面363可包括視覺顯示器、鍵盤及諸如平行埠、通用串列匯流排(USB)連接之通信介面及/或諸如(例如)乙太網路之任何類型之網路介面中的一或多者。I/O介面363亦可允許在無實體接觸的情況下經由例如IEEE 802.11、藍芽或近場通信(NFC)連接進行通信。I/O介面363亦可用以將監控系統350連接至資料鏈路394及遠端台393。
經由資料連接304將命令信號351提供至光學源305。資料連接304可為實體纜線或其他實體資料管道(諸如支援基於IEEE 802.3進行之資料之傳輸的纜線)、無線資料連接(諸如經由IEEE 802.11或藍芽提供資料之資料連接)或有線資料連接與無線資料連接之組合。可經由任何類型之協定或格式來設定經由資料連接提供之資料。舉例而言,檔案傳送協定(FTP)或共同物件請求代理架構(CORBA)可用以將命令信號351傳輸至光學源305及/或自光學源305接收資訊349。
資料連接304連接至監控系統350之資料介面356及光學源305之資料介面306。資料介面356及306可為能夠發送及接收資料的任何種類之介面。舉例而言,資料介面356及306可為乙太網路介面、串聯埠、平行埠或USB連接。資料介面356及306可允許經由無線資料連接進行資料通信。舉例而言,資料介面356及306可為IEEE 811.11收發器、藍芽或NFC連接。資料介面356及306可為相同資料介面,或資料介面356及306可各自具有不同形式。舉例而言,資料介面356可為乙太網路介面,且資料介面306可為平行埠。在圖3之實例中,將資料介面306與光學源305一起展示。然而,微影裝置215亦可具有經組態以與監控系統350進行通信之資料介面。
光學源305包括資料介面306、與資料介面306通信之控制系統307,及受到控制系統307控制之子系統308。圖3展示一個資料介面306、控制系統307及子系統308。然而,光學源305可包括多於一個資料介面306、控制系統307及/或子系統308。
子系統308為可控制以產生及/或導向光束360及/或曝光光束291(圖2中所展示)的任何類型之系統。子系統308可包括可控制實體器件、以軟體實施之系統,或包括硬體及軟體態樣之系統。舉例而言,子系統308可為將光束360在光學源305內聚焦及/或朝向微影裝置215轉向的光學元件之集合(諸如稜鏡、鏡面及/或透鏡及關聯機械組件)。在此實例中,控制系統307可修改關於子系統308之操作參數,諸如機械組件之位置、部位及/或定向以定向光學組件。在另一實例中,子系統308可為使光學源305以特定飽滿率產生光脈衝的時序系統。時序系統可被實施為例如與控制系統307通信之光學源305中之場可程式化閘陣列(FPGA)中的軟體。在此實例 中,控制系統307可改變時序系統之操作參數,使得改變重複率。
控制系統307為實施於嵌入式處理器309上之基於電子及軟體之控制系統。嵌入式處理器309具有與監控系統350之電子處理器361不同之特性。嵌入式處理器309為足夠快以每由光學源305產生之光脈衝執行控制系統至少一次的即時處理器。此外,嵌入式處理器309可消耗較小功率且可小於電子處理器361。嵌入式處理器309可包括中央處理單元(CPU)及記憶體。然而,嵌入式處理器309具有比電子處理器361小的通用處理功率,且相比於電子儲存器362,較小記憶體可用。因此,監控系統350相比於嵌入式處理器309能夠執行更複雜的計算且能夠儲存更多資料。此允許監控系統350執行對於嵌入式處理器309執行起來具有挑戰性或不可能的資料分析。舉例而言,監控系統350可分析在數天、數週及數月之時段期間自光學源305收集之資料。
控制系統307與監控系統350分離,且控制系統307能夠獨立於命令信號351來控制子系統308。然而,控制系統307與資料介面306通信,且可經由資料介面306自監控系統350接收資訊或命令。舉例而言,控制系統307可基於命令信號351中之資訊改變子系統308中之操作參數,使得監控系統350能夠暫時控制控制系統307。在另一實例中,命令信號351可改變控制系統307之操作參數。
圖4為系統400之方塊圖。系統400包括監控系統350。圖4展示用以監控多於一個光學微影系統之監控系統350的實例。在圖4之實例中,監控系統350經由各別資料連接404_1至404_n耦接至光學微影系統401_1至401_n(其中每一者包括各別一光學源405_1至405_n)。光學源405_1至405_n中之每一者可相似於光學源105(圖1)或光學源305(圖3)。資料連接 404_1至404_n中之每一者可相似於資料連接104(圖1)或304(圖3)。
光學微影系統401_1至401_n為群組403之部分。群組403包括n個光學微影系統,其中n為大於零之任何數目。在圖4中所展示之實例中,光學微影系統401_1至401_n係在同一工廠492內。舉例而言,工廠492可為晶圓製造設施、房間或場所。在一些實施中,工廠492可包括實體地分離(諸如不同建築物)但受到同一電子防火牆保護的場所。在一些實施中,群組403中之系統401_1至401_n可分配於若干不同工廠中。舉例而言,系統401_1至401_n可為由同一公司實體擁有之系統,或為以相同方式使用而不論所有權或場所的系統。
監控系統350自光學微影系統401_1至401_n中之任一者或全部接收資訊、分析資料且將命令信號提供至光學源405_1至405_n中之任一者或全部。在一些實施中,監控系統350可經由資料鏈路394將資料提供至遠端台393。
在進一步論述監控系統150及350之操作之前,論述關於可用作光學微影系統101或光學微影系統301的光學微影系統501之額外細節。
圖5為光學微影系統501之方塊圖。在光學微影系統501中,光學源505產生脈衝式光束560,該脈衝式光束經提供至微影裝置215。光學源505可為例如輸出脈衝式光束560(其可為雷射光束)之準分子光學源。
光學源505亦包括控制系統507A及資料介面506A。微影裝置215包括控制系統507B及資料介面506B。控制系統507A、507B相似於控制系統307(圖3),且資料介面506A、506B相似於資料介面306(圖3)。共同地,控制系統507A、507B控制光學微影系統501之各種操作,其中控制系統507A控制光學源505之態樣且控制系統507B控制微影裝置215之態 樣。控制系統507A、507B分別與資料介面506A、506B通信。
資料介面506A將來自光學源505之資訊提供至資料連接304且自監控系統350接收資訊及資料(例如命令信號351)。資料介面506B將來自微影裝置215之資訊提供至監控系統350。資料介面506A及506B亦可彼此交換資料及資訊,使得控制系統507A及507B能夠彼此通信。資料介面506A及506B可經由信號路徑(在圖5中被展示為虛線且標註為548)而彼此通信且與監控系統350通信。信號路徑548可為任何類型之有線或無線連接。
在圖5中所展示之實例中,光學源505為二級雷射系統,其包括將種子光束524提供至功率放大器530之主控振盪器512。主控振盪器512及功率放大器530可被認為係光學源505之子系統或為光學源505之部分之系統。換言之,主控振盪器512及功率放大器530為關於圖3所論述之子系統308之實例。功率放大器530自主控振盪器512接收種子光束524,且放大該種子光束524以產生光束560以用於微影裝置215中。舉例而言,主控振盪器512可發射脈衝種子光束,其具有每脈衝大致於1毫焦(mJ)之種子脈衝能量,且此等種子脈衝可藉由功率放大器530放大至約10mJ至15mJ。脈衝之持續時間(亦被稱為脈衝寬度或長度)可為期間脈衝功率連續地保持高於其最大值之百分比(例如50%)的時間。
主控振盪器512包括放電腔室514,該放電腔室具有兩個伸長電極517、為氣體混合物之一增益介質519,及用於使氣體在該等電極517之間循環的一風扇(圖5中未標註)。諧振器形成於放電腔室514之一側上之線窄化模組516與放電腔室514之第二側上之輸出耦合器518之間。線窄化模組516可包括繞射光學件,諸如微調放電腔室514之光譜輸出之光柵。輸出耦合器518可包括部分反射鏡,該部分反射鏡朝向放電腔室形成諧振器且 亦將輸出光束之部分遞送遠離放電腔室。主控振盪器512亦包括:線中心分析模組520,其自輸出耦合器518接收輸出光束;及光束耦合光學系統522,其可視需要修改輸出光束之大小、形狀及/或方向以形成種子光束524。線中心分析模組520為可用以量測或監控種子光束524之波長之量測子系統。線中心分析模組520可置放於光學源505中之其他部位處,或其可置放於光學源505之輸出端處。
用於放電腔室514中之氣體混合物可為適合於在應用所需之波長及頻寬下產生光束的任何氣體。對於準分子源,除作為緩衝氣體之氦氣及/或氖氣之外,氣體混合物可含有諸如(例如)氬氣或氪氣之惰性氣體(稀有氣體)、諸如(例如)氟或氯之鹵素及痕量的氙。氣體混合物之特定實例包括在約193奈米之波長下發射光的氟化氬(ArF)、在約248奈米之波長下發射光的氟化氪(KrF),或在約351奈米之波長下發射光的氯化氙(XeCl)。藉由將電壓施加至伸長電極517,在高電壓放電中用短(例如奈秒)電流脈衝泵浦準分子增益介質(氣體混合物)。用於放電腔室514中之氣體混合物中的不同氣體之特定量為光學源505之操作參數之另一實例。
功率放大器530包括光束耦合光學系統532,該光束耦合光學系統自主控振盪器512接收種子光束524且將光束導向通過放電腔室540,且導向至光束轉向光學元件552,該光束轉向光學元件修改或改變光束之方向,使得將該光束發送回至放電腔室540中。放電腔室540包括一對伸長電極541、為氣體混合物之一增益介質519',及用於使氣體混合物在該等電極541之間循環的一風扇(圖5中未標註)。
輸出光束560經導向通過頻寬分析模組562,在該頻寬分析模組處可量測光束560之各種操作參數(諸如光譜頻寬或波長)。輸出光束560亦可經 導向通過脈衝伸展器(圖5中未繪示),在該脈衝伸展器處輸出光束560之脈衝中之每一者例如在光延遲單元中在時間上伸展,以調整照射微影裝置215之光束之效能屬性。
控制系統507A可連接至光學源505之各種組件及子系統。控制系統507A藉由調整光學源505之操作參數來控制光學源105之低等級操作。舉例而言,控制系統507A可控制光學源505何時發射光脈衝或包括一或多個光脈衝之光脈衝叢發。光束560可包括在時間上彼此分離的一或多個叢發。每一串發可包括一或多個光脈衝。在一些實施中,一叢發包括數百個脈衝,例如100至400個脈衝。叢發中之脈衝之數目為光學源505之操作參數的另一實例。在控制系統507A中,叢發中之脈衝之數目可為可改變的操作參數。當在診斷模式中操作時,來自監控系統350之控制信號可藉由改變控制系統507A中之對應操作參數之值而改變叢發中之脈衝之數目。此外,叢發中之脈衝之數目可為關於圖3所論述之監控參數357中之一者。
圖6A至圖6C提供光學源505中之脈衝之產生的綜述。圖6A展示晶圓曝光信號600依據時間而變化的振幅,圖6B展示閘信號615依據時間而變化的振幅,且圖6C展示觸發信號依據時間而變化的振幅。
控制系統507B及資料介面506B可經組態以將晶圓曝光信號600發送至光學源505之資料介面506A以控制光學源505來產生光束560。在圖6A中所展示之實例中,晶圓曝光信號600在時間段607具有高值605(例如1),在該時間段期間光學源505產生光脈衝叢發。晶圓曝光信號600另外在晶圓120未被曝光時具有低值610(例如0)。
參看圖6B,光束560為脈衝式光束,且光束560包括脈衝之叢發。控 制系統507B亦藉由將閘信號615發送至光學源505之資料介面506A而控制脈衝叢發之持續時間及頻率。閘信號615在脈衝叢發期間具有高值620(例如1)且在順次叢發之間的時間期間具有低值625(例如0)。在所展示之實例中,閘信號615具有高值之持續時間亦為叢發616之持續時間。該等叢發在時間上分離達叢發間時間間隔。在叢發間時間間隔期間,微影裝置215可將下一晶粒定位於晶圓220上以供曝光。
參看圖6C,控制系統507B亦運用觸發信號630來控制每一叢發內之脈衝之重複率。觸發信號630包括觸發脈衝640,該等觸發脈衝中之一者被提供至光學源505以使光學源505產生光脈衝。每當待產生脈衝時,控制系統507B及資料介面506B就可將觸發脈衝640發送至光學源505之資料介面506A。因此,可由觸發信號630設定由光學源505產生之脈衝之重複率。重複率為兩個順次脈衝之間的時間之逆。兩個順次脈衝之間的時間在圖6C中被標註為元件635。脈衝光束560之重複率為光學源505之操作參數之另一實例。
如上文所論述,當藉由將電壓施加至電極517來泵浦增益介質519時,增益介質519發射光。當將電壓以脈衝形式施加至電極517時,自介質519發射之光亦為脈衝式。因此,脈衝式光束560之重複率係藉由將電壓應用至電極517之速率予以判定,其中每次施加電壓會產生光脈衝。光脈衝傳播通過增益介質519且通過輸出耦合器518射出腔室514。因此,藉由將電壓週期性地重複施加至電極517而產生脈衝串。觸發信號630例如可用以控制將電壓施加至電極517及脈衝之重複率,對於大多數應用而言該等脈衝之重複率的範圍可介於約500Hz與6,000Hz之間。在一些實施中,重複率可大於6,000Hz,且可為例如12,000Hz或更大。
控制系統507A亦可用以分別控制主控振盪器512內之電極517及功率放大器530內之電極541,以用於控制主控振盪器512及功率放大器530之各別脈衝能量,且因此控制光束560之能量。在提供至電極517之信號與提供至電極541之信號之間可存在延遲。延遲量為光學源505之操作參數的另一實例。舉例而言,延遲量可影響脈衝式光束560之光譜頻寬。在此實例中,種子光束524之脈衝之光譜頻寬可在時間上變化,其中前邊緣(第一時間出現之脈衝之部分)具有最高光譜頻寬且脈衝之較遲出現之部分具有最小光譜頻寬。提供至電極517之信號與提供至電極541之信號之間的延遲判定脈衝之哪一部分被放大。因此,較大延遲引起具有較大光譜頻寬之脈衝,且較短延遲引起具有較低光譜頻寬之脈衝。脈衝式光束560可具有在數十瓦特範圍內,例如約50W至約130W之平均輸出功率。
參看圖7,展示製程700之流程圖。該製程700為可由監控系統150或350執行之製程之實例。該製程700係關於監控系統350(圖3及圖5)及光學微影系統501(圖5)加以論述。
在第一時段期間自光學微影系統510接收資訊(710)。第一時段可為任何時間量。舉例而言,第一時段可為大於由光學源505產生之脈衝式光束之兩個順次脈衝之間的時間的時間。自光學微影系統510接收之資訊可為關於光學源505或光學微影系統501之條件之任何資訊。條件為與光學源505及/或光學微影系統501之效能相關的光學源505或光學微影系統501之任何屬性。
自光學微影系統501接收之資訊可包括例如由例如光學源505中或光學源505外部之偵測器或感測器系統獲得的經量測資料。舉例而言,所接收資訊可包括光束560之重複率、由光學源505產生之脈衝之數目、由光 學源505產生之叢發之數目、光束560之脈衝之經量測強度、光束560之脈衝之經量測均一性、光束560之光譜頻寬、光束560之波長及/或光學源之放電腔室之氣態增益介質的經量測溫度及/或壓力中的一或多者。
自光學微影系統501接收之資訊可包括來自微影裝置215之經量測資訊。舉例而言,資訊可包括提供於晶圓220處之劑量之指示(每光學微影系統之微影裝置中收納之晶圓之單位面積的光能之量),及在光學微影系統之微影裝置中所收納之晶圓處的曝光光束之峰值強度之量測。
另外或替代地,自光學微影系統501接收之資訊可包括與控制系統507A及/或507B相關聯的資訊,諸如用於控制系統507A及/或507B中之設定或參數。舉例而言,該資訊可包括與控制系統507A及/或507B相關聯的迴路增益、與控制系統507A及/或507B相關聯的操作點,及/或由控制系統507A及/或507B強加之操作極限。
自光學微影系統501及/或光學源505接收之資訊係關於光學源505及/或光學微影系統501之條件。光學源505之條件可為例如指示光學源505之效能的狀態或模式。舉例而言,光學源505之條件可為以下各者中之任一者(但不限於以下各者):預期效能、某一種類之故障之存在、可能故障、離線或經排程服務到期。光學微影系統501之條件可關於例如劑量誤差。其他條件係可能的,且下文進一步論述條件之特定實例。舉例而言,圖8A至圖8D提供判定出被稱為漏失之故障條件存在之實例的說明。
可週期性地且在監控系統350不採取動作的情況下自光學微影系統501及/或光學源505接收資訊。舉例而言,光學源505可基於諸如資料饋入規則之監控參數經由資料連接304而週期性地提供資訊之預定義設定。在其他實施中,監控系統350可週期性地、隨機地或恆定地向光學源505及/ 或光學微影系統501輪詢或請求資訊。在又其他實施中,監控系統350藉由擷取駐存於光學源505上之日誌檔案而自光學源505接收資訊。舉例而言,控制系統507A可產生包括操作參數之量測值之日誌檔案。在一些實施中,監控系統350可基於規則集合353中之基於時間之規則而向光學微影系統501輪詢或請求資訊。舉例而言,規則集合353中之規則可指定在光學源505已產生一百萬個脈衝之後自光學源505獲得的某些資訊。
存取來自集合353中之規則(720)。規則集合353中之規則係與例如(a)光學源505及/或光學微影系統501中之事件及/或(b)一定時間量(例如一週、一月或一年)推移相關聯。光學源505中之事件可為例如產生某數目個脈衝。集合353中之規則亦與模組庫355中之模組中之一或多者相關聯。基於規則識別儲存於模組庫355中之模組(730)。集合353中之規則使事件或時間推移與庫355中之模組中之一或多者相關聯。因此,(720)中存取之規則指示選擇一或若干模組以供命令信號引擎354執行。
在一項實施中,將規則集合353作為由監督模組352及/或命令信號引擎354存取之規則檔案儲存於電子儲存器362中。在此實施中,規則集合353包括模組庫355中之模組之清單及在供每一模組下一經排程執行之前的時間。在此實施中,監督模組352在無限迴路中執行,其使用含有規則集合353之規則檔案中之資訊來識別庫355中之模組。對於監督模組352之每次反覆(每次穿過迴路),與規則檔案中所列出之每一模組相關聯的時間遞減自監督模組352之最近反覆起過去之時間量。當與模組相關聯的時間達到零(或某其他預定義值)時,命令信號引擎354執行彼模組。
其他實施係可能的。舉例而言,除了與時間相關聯以外或代替與時間相關聯,清單中之模組中的一些或全部亦可與事件相關聯。若在監督模 組352之最近反覆之後發生事件,則藉由命令信號引擎354執行與彼事件相關聯的一或若干模組。事件可為例如產生某數目個光脈衝及/或量測值(諸如波長或重複率)超過臨限值或在預定義值範圍之外。事件之又一實例為諸如漏失(稍後詳細地描述)之故障條件發生,或光學源不能夠維持指定輸出功率位準。
此外,規則檔案中之清單上的模組可包括比模組庫355中之所有模組少的模組。在一些實施中,光學微影系統501之操作者可經由I/O介面363自庫355中之所有可用模組來選擇包括於模組清單中的模組。在一些實施中,可鎖定規則檔案中之清單上的模組,使得僅預定義模組集合可用於供命令信號引擎354執行。
使用經識別模組及所接收資訊來判定特定條件是否存在於光學源505及/或光學微影501中(740)。(730)中識別之一或若干模組係由命令信號引擎354執行。該或該等經執行模組處理來自光學微影系統501之資訊以判定條件是否存在於光學源505中。舉例而言,模組包括用於處理及分析來自光學源505之資訊之邏輯。在一項實施中,將在一時間段期間自光學源505及/或光學微影系統501接收之資訊與經儲存資訊進行比較。舉例而言,可將自光學源505及/或光學微影系統501接收之資訊與在早先時間被接收並儲存於電子儲存器362中的同一類型之資訊進行比較,且將差與預定義臨限值進行比較。若符合或超過臨限值,則宣告特定條件之存在。圖8A至圖8D論述宣告漏失條件之實例。
在另一實施中,藉由模組分析自光學微影系統501接收之資訊以判定或估計關於光學源505之一或多個操作參數在相對較長時間段(例如數分鐘、數小時或數日)期間之值或度量。將操作參數之經判定或估計值與表 示彼操作參數之預期值(或值範圍)之經儲存值(或值範圍)進行比較。若操作參數之經判定或估計值係在預期範圍之外或不同於彼操作參數之預期值,則宣告特定條件存在。
若特定條件存在,則命令信號引擎354產生命令信號351,且經由資料連接304將命令信號351提供至光學源505(750)。命令信號351可基於所宣告之特定條件。
若宣告條件不存在,則監控系統350可採取替代動作(760)。替代動作可為監控系統350除了產生命令信號351及將命令信號351提供至光學源505之外可執行的任何動作。舉例而言,監控系統350可產生日誌檔案以供儲存於電子儲存器362上、將在某時間段期間自光學微影系統501接收之資訊儲存於電子儲存器362上,及/或產生微影系統501之操作者可感知的指示監控系統350目前並未採取任何動作之通知。
因此,製程700可用以判定光學源505或光學微影系統501中條件之存在且回應於條件存在而採取動作。舉例而言且亦參看圖8A至圖8D,製程700可用以判定是否漏失條件存在於光學源505中,且若該條件存在,則調整使氣體在主控振盪器腔室514中循環之風扇之鼓風機速度(例如,每分鐘之旋度)。當將電壓施加至電極517但由主控振盪器512產生之光能之量遠小於預期或不產生光能時漏失條件存在。
圖8A展示依據時間而變化的光束品質(BQ)計數801之實例。BQ計數指示多少光束品質事件已出現於光學源505中。圖8A之實例為展示自水平軸線上之時間0之前的時間起已發生之光束品質事件之總數目的BQ計數之累積標繪圖。舉例而言,圖8A可展示自光學源505被開啟以來已發生之光束品質事件之總數目。
當光束560之任何態樣皆不符合預定義規格時會發生光束品質事件。舉例而言,當光束560具有在可接受值範圍之外的光能、光譜頻寬及/或波長時會發生光束品質事件。BQ計數之增大可指示故障條件存在,但BQ計數單獨不足以判定漏失(或任何其他特定誤差)已發生。在圖8A中所展示之實例中,BQ計數801包括增加量885及886,其中每一者指示在一特定時間發生一或多個光束品質事件。然而,僅增加量886係由漏失造成。在不能夠分析相對大量資料的情況下對脈衝至脈衝資料進行操作之控制系統(諸如一般回饋控制器或控制系統507A或507B)可不正確地識別漏失條件。藉由使用比運用控制系統307實用至處理更複雜的處理且藉由使用除BQ計數以外之資訊,監控系統350能夠正確地識別漏失且對於實際漏失僅增大風扇速度。
在此實例中,規則集合353包括將光束品質計數之改變與模組庫355中之漏失偵測模組相關聯之光束品質規則。光束品質規則為基於事件之規則之實例,其在不論何時存在光束品質計數增大的情況下致使藉由該規則識別漏失偵測模組且藉由命令信號引擎354執行該漏失偵測模組。監控系統350自光學源505接收光束品質計數資訊。在一些實施中,控制系統507A在光束品質計數值改變時將資料提供至監控系統350。在一些實施中,監控系統350週期性地接收光束品質計數值且判定光束品質計數是否已改變。
命令信號引擎354回應於增加量885而執行漏失偵測模組。漏失偵測模組包括以電腦程式之形式而配置之邏輯或指令,該等邏輯或指令在由命令信號引擎354執行時致使監控系統350處理及分析來自光學源505之電壓及能量資料。舉例而言,監控系統350可向光學源505請求日誌檔案(例 如藉由FTP呼叫)。日誌檔案包括用於脈衝窗之能量及電壓資料,圍繞該脈衝窗包括與光束品質計數885增大同時或幾乎同時出現的脈衝。圖8C展示指示能量依據自光學源505接收之日誌檔案中之電壓而變化的資料之實例。該窗可包括任何數目個脈衝(例如10,000個脈衝)。在一些實施中,可經由監控參數357而設定窗之大小。
當被執行時,漏失偵測模組估計線880C之斜率,其經擬合至自光學源505接收之能量相對於電壓資料882C。能量及電壓資料被展示為圖8C中之實圓點。比較資料點(針對特定脈衝之經量測能量及電壓)與擬合該資料之線以識別離群值。離群值為經量測能量大於預期能量下方臨限距離的資料點。自線880C之斜率及電壓之值判定預期能量。識別與預期能量具有最大偏差的資料點且將其與漏失臨限值884進行比較。在圖8C中,將具有最大能量偏差之資料點標註為離群值883C。執行於命令信號引擎354上之漏失偵測模組比較用於離群值883C之能量偏差之量與臨限值884。若該量超過臨限值884,則資料點被認為表示漏失。在圖8C之實例中,離群值883C並不超過臨限值884,因此命令信號引擎354不產生命令信號351。
命令信號引擎354回應於增加量886而再次執行漏失偵測模組。監控系統350自光學微影系統501接收包括用於包括在增加量886出現時所處之脈衝的窗中之脈衝之電壓及能量的資訊。漏失偵測模組之邏輯分析用於脈衝之能量及電壓資料882D(被展示為圓點)以判定擬合該資料之線。此線被展示為圖8D中之線880D。線880D之斜率可不同於線880C之斜率。比較針對每一電壓點之經量測之能量與預期能量。具有實際能量與預期能量之最大差的資料點被識別為最大離群值且被標註為883D。比較離群值883D與漏失臨限值884且判定出該離群值883D超過漏失臨限值884。因 此,離群值883D被認為漏失,且宣告漏失條件存在於光學源505中。
回應於宣告漏失條件存在,命令信號引擎354產生命令信號351。命令信號351係基於特定條件且可被模組告知命令信號引擎354被執行而判定出條件存在。舉例而言,可藉由增大主控振盪器512中風扇之速度來減輕漏失條件。因此,漏失偵測模組可包括邏輯,該邏輯指定命令信號351包括當經提供至光學源505之控制系統507A時將導致風扇速度增大某一量及/或調整儲存於控制系統507A中的風扇之設定點之資訊(諸如電壓及/或電流值)。
圖8B分別展示由風扇汲取之電流與風扇之設定點(例如在RPM中)之標繪圖887及888。圖8B展示按比例調整或正規化之RPM及電流值。如藉由比較圖8A與圖8B所展示,僅當漏失條件存在於光學源505中時才藉由監控系統350改變所汲取電流及設定點。RPM 887之增加量與BQ計數886之增加量及與圖8D中之資料相關聯之漏失條件之宣告一致。圖8A及圖8B之水平軸線為以任意單位計之時間。然而,圖8A及圖8B中所展示之總時間遠大於當光學源505產生處於6,000Hz之脈衝時自光學源505發射的兩個後續光脈衝之間的時間。
關於圖8A至圖8D所論述之實例展示監控系統350如何能夠偵測在光學源505及/或光學微影系統501中條件之存在並校正或減輕該條件。由監控系統350偵測之條件為歸因於偵測製程之複雜度及經分析以判定漏失條件存在之資料量而通常由控制系統507A不可偵測到的條件。另外,如由圖8B所指示,監控系統350可將命令信號351提供至光學源505且改變風扇之設定點(其為操作參數),而不干涉光學源505之操作,在此實例中,即使設定點改變,風扇亦會繼續操作且汲取電流。
參看圖9,展示製程900之流程圖。製程900提供使用監控系統350以監控光學微影系統之群組且基於監控效能改變該群組中之系統之行為的實例。當監控系統350連接至光學源505或光學微影系統501之多於一個例項時可由監控系統350執行製程900。圖4展示監控系統350連接至為群組403之部分的複數個光學微影系統401_1至401_n一實施之實例的方塊圖。光學微影系統401_1至401_n中之每一者可被實施為光學微影系統501之例項。光學微影系統401_1至401_n中之每一者包括一各別光學源405_1至405_n。光學源405_1至405_n可被實施為光學源505之例項。
由監控系統350接收來自光學微影系統401_1至401_n中之一者之資訊(910)。出於圖9之論述起見,監控系統350自光學微影系統401_1接收資訊,但可自群組403中之系統中的任一者接收資訊。此外,監控系統350可自光學微影系統401_1至401_n中之多於一者接收資訊。
判定特定條件存在於光學微影系統405_1中(920)。製程700之要素(710)-(740)可用以判定出特定條件存在。基於經判定條件而判定用於光學源405_1之一或多個操作參數之經更新值(930)。將在光學源405_1至405_n中之任一者處之一或多個操作參數改變為經判定之經更新值(940)。可藉由產生及提供諸如關於製程700之要素(750)所論述之命令信號來更新一或多個操作參數。
如上文所提及,對於此實例,可將光學源405_1至405_n中之每一者實施為光學源505(圖5)之例項。接下來提供使用製程900以用於群組效能管理之實例。
主控振盪器512中之氣體可為包括氖氣及氟氣之氣體混合物。在最初部署群組403之後,可更新光學源中之每一者中之控制系統507A以允許運 用氣體中之一較少氣體進行操作。更新可例如改變光學源之操作參數,使得噴射至腔室514中之氖氣及/或氟氣之最小量及最大量及/或噴射氣體中之任一者之間的時間量自預設值改變。
監控系統350在更新之後自光學微影系統401_1至401_n接收資訊。在此實例中,監控系統350自光學微影系統401_1至401_n及光學源405_1至405_n接收資訊。舉例而言,監控系統350自光學微影系統401_1至401_n接收指示在使用來自光學源405_1至405_n之光而曝光的晶圓處所接收之每單位面積之光能之量的劑量資訊。監控系統350亦可自光學源405_1至405_n中之每一者接收噴射至腔室514中之氖氣之量及施加至電極517之電壓之量的指示。在相對較長時間段(例如數日或數週)期間,監控系統350接收此資訊且使用模組庫355中之一或多個模組來分析所接收資訊。使用所接收資訊,監控系統350判定出僅在氣體中之一者之最大量被噴射至群組403之一些光學微影系統之光學源中時漏失或劑量之其他誤差才出現於彼等光學微影系統中。
基於判定出當氣體中之一者之最大量被噴射時漏失或劑量誤差條件更頻繁地存在,監控系統350產生命令信號以減小光學源405_1至405_n之與噴射至放電腔室514中之氣體之最大量有關的操作參數。儘管在群組403中少於所有的光學微影系統及光學源上觀測到劑量誤差條件或漏失條件,但因為監控系統350判定減小可被引入至腔室514中的氣體之最大量會減小漏失或劑量誤差條件之發生,所以監控系統350可將命令信號提供至群組403中之所有光學源以有助於減小劑量誤差及漏失條件在群組403之其他光學微影系統中發生之機率。
監控系統可在提供更新操作參數之命令信號之後繼續監控群組403之 光學微影系統。儘管群組403中之光學微影系統標稱地相同且以相同方式進行操作,但實際效能可歸因於例如製造及安裝變化而變化。若群組403中之光學微影系統中的任一者之效能在改變之後降級,則監控系統350可發佈命令信號以將對彼光學源作出之改變反轉。
在一些實施中,監控系統350連接至遠端台393(圖4)。在此等實施中,監控系統350可經組態以向遠端台393發送指示與被允許噴射至腔室514中之氣體之最大量有關的操作參數在群組403之光學源405_1至405_n中已改變之報告或其他通知。監控系統350亦可將關於光學源405_1至405_n之操作條件之資訊提供至遠端台393。遠端台可連接至監控系統350之其他例項,該等例項又連接至相似於群組403之其他群組。該等其他群組及該群組403可由同一生產者或公司實體擁有及控制,且所有此等群組可包括在相似條件下操作之相似設備。遠端台393及監控系統350之其他例項可進行通信,使得群組403中產生的改變之通知在該監控系統之其他例項處被接收,但遠端台393並不直接控制其他群組之光學源或光學微影系統。然而,監控系統之其他例項可在適當時採取動作以更新其他群組中之光學源。
其他實施方案係在申請專利範圍之範疇內。上文所論述之實例並非詳盡的,且製程700及900可用以判定光學微影系統501及/或光學源505中之多種條件且採取一系列校正動作。舉例而言,製程700可用以判定針對光學源505之任何態樣,更佳操作點存在。如關於圖5及圖6A至圖6C所論述,電極517與541之點火之間的時間延遲為光學源505之操作參數之實例。監控系統350可判定為了獲得較佳效能而應改變時間延遲。對於為光學源之群組之部分的光學源,可改變光學源中之一者中之時間延遲且可藉 由監控系統350進一步監控效能。若效能得以改良,則監控系統350可將命令信號發佈給群組中之所有光學源,使得改變該群組之所有光學源上之時間延遲。
判定條件亦可包括判定光學源505及/或光學系統501之效能並非最佳。可運用當光學微影系統501投入運行時由製造商設定的一組初始操作參數值或預設值來部署光學源505及/或光學微影系統501。因為不同操作者及終端使用者關於光學微影系統501之輸出及使用具有不同的目標,所以針對微影系統501之終端使用者或操作者希望使用系統501之特定情形或特定方式,預設操作參數可並非最佳。監控系統350可在終端使用者之情形下監控系統501及/或源505之效能且改變一或多個操作參數從而最佳化效能。
另外,光學源505之操作參數可自監控系統外部採取之動作而改變。舉例而言,至控制系統507A之軟體更新可導致預設操作參數中之一些改變,此可影響光學源505及/或光學微影系統501之效能。監控系統350能夠監控光學微影系統501及/或光學源505且採取校正性動作來解決可能出現之效能問題。
在圖4之實例中,單一監控系統350被展示為與群組403中之所有光學微影系統401_1至401_n通信。然而,其他組態係可能的。舉例而言,每一光學微影系統401_1至401_n可連接至一分開之監控系統。

Claims (23)

  1. 一種監控一光學微影系統的系統,其包含:一光學微影系統,該光學微影系統包含:一光學源,其經組態以產生一光束,該光學源包含一或多個控制系統,該一或多個控制系統中之每一者經組態以調整該光學源之一操作參數;及一微影裝置,其包含:一投影光學系統,其經組態以自該光學源接收該光束且產生一曝光光束;及一晶圓區,其經組態以收納一晶圓及該曝光光束;及一監控系統,其耦接至該光學微影系統,該監控系統經組態以:存取至少一個規則,基於該經存取至少一個規則自一模組庫識別一模組,使用該經識別模組及來自該光學微影系統之資訊來判定一特定條件是否存在於該光學微影系統中;及若該經判定特定條件存在,則提供一命令信號至該光學微影系統,該命令信號係基於該經判定特定條件且足以致使該等控制系統中之一或多者調整該光學源之一或多個操作參數,其中該光學源之該一或多個操作參數中之每一者指定該光學源之一行為,且調整該光學源之一或多個操作參數改變該光學源之一或多個行為。
  2. 如請求項1之系統,其中該光學源進一步包含一資料介面,該監控系統耦接至該光學源之該資料介面,來自該光學微影系統之該資訊係接收自該光學源之該資料介面,且該命令信號經由該光學源之該資料介面而提供至該光學微影系統。
  3. 如請求項1之系統,其中該光學源進一步包含一資料介面,該微影裝置進一步包含一資料介面,該監控系統耦接至該光學源之該資料介面且耦接至該微影裝置之該資料介面,來自該光學微影系統之該資訊來自該光學源及該微影裝置中之一或多者,且該命令信號經由該光學源之該資料介面而提供至該光學微影系統。
  4. 如請求項1之系統,其中由該光學源產生之該光束係一脈衝式光束,該脈衝式光束具有一重複率,該重複率指示該脈衝式光束之一特定脈衝與緊鄰該特定脈衝之一脈衝之間的一時間,該光學源之該一或多個控制系統經組態以在一控制速率下操作,該控制速率等於或大於該重複率,使得該控制系統針對該脈衝式光束中之每一脈衝能夠調整該光學源之該一或多個操作參數,且該監控系統具有一監控系統速率,該監控系統速率指示該命令信號之兩個分開之例項被提供至該光學微影系統之間的一最小時間量,且該命令信號之兩個分開之例項被提供至該光學微影系統之間的該最小時間量大於該脈衝式光束之脈衝之間的時間,使得該監控系統速率比該控制速率及該重複率慢。
  5. 如請求項4之系統,其中該監控系統經進一步組態以:儲存在一第一時間段期間自該光學微影系統接收之資訊,該第一時間段大於該脈衝式光束中之兩個鄰近脈衝之間的該時間;分析在該第一時間段期間自該光學微影系統接收之該經儲存資訊;且其中該監控系統經組態以使用該經識別模組及該經分析之經儲存資訊來判定該特定條件是否存在。
  6. 如請求項5之系統,其中該監控系統經進一步組態以輪詢該光學微影系統以自該光學微影系統接收該資訊。
  7. 如請求項1之系統,其中該監控系統耦接至一或多個其他光學微影系統,且該監控系統經組態以:自任何耦接之光學微影系統接收資訊,且將命令信號提供至任何耦接之光學微影系統。
  8. 如請求項7之系統,其中該監控系統基於該所接收資訊判定出該特定條件存在於該等其他光學微影系統中之至少一者中,該監控系統識別該等條件存在於該光學微影系統中的哪些光學微影系統中,且該監控系統將該命令信號僅提供至該等經識別光學微影系統。
  9. 如請求項7之系統,其中該監控系統基於該所接收資訊判定出該特定條件存在於該等其他光學微影系統中之至少一者中,該監控系統識別出該條件存在於該等光學微影系統中的哪些光學微影系統中,且該監控系統提供該命令信號至所有該等光學微影系統。
  10. 如請求項1之系統,其中該光學源之該等操作參數具有預設值,且該命令信號致使該一或多個控制系統中之至少一者將至少一個操作參數調整為不同於彼操作參數之該預設值的一值。
  11. 如請求項1之系統,其中該至少一個規則包含一規則集合,該規則集合包含基於事件之規則及基於時間之規則,該等基於事件之規則係與該光學源中之一事件相關聯且基於該事件在該光學源中之一發生而指定該模組庫中之一或多個模組的規則,且該等基於時間之規則係與一時間量相關聯且基於該時間量之推移而指定該模組庫中之一或多個模組的規則。
  12. 如請求項11之系統,其中該監控系統經進一步組態以:判定在該光學源內是否已發生一事件,判定是否一時間量已推移,及基於在該光學源內是否已發生一事件之該判定及是否一時間量已推移之該判定中的一或多者而存取該規則集合中之該等規則中的一者。
  13. 如請求項1之系統,其中在該光學源產生該光束時提供該命令信號至該光學微影系統,且在該光學源產生該光束時調整該一或多個操作參數。
  14. 一種監控一光學微影系統之方法,該方法包含:在一第一時間段期間自該光學微影系統接收資訊;存取一規則,該規則係與該光學微影系統中之一事件及一時間量推移(passing)中的一或多者相關聯;基於該經存取規則識別儲存於一模組庫中之一模組;使用該經識別模組及在該第一時間段期間自該光學微影系統接收之該資訊來判定一特定條件是否存在於該光學微影系統中;及若該經判定特定條件存在,則基於該經判定特定條件之一或多個特性而產生一命令信號且提供該命令信號至該光學微影系統之一光學源,其中:該命令信號係基於該經判定特定條件,該命令信號足以改變該光學源之一或多個操作參數,且在該第一時間段之後提供該命令信號至該光學源。
  15. 如請求項14之方法,其進一步包含儲存在該第一時間段期間接收之該資訊,且其中判定一特定條件是否存在於該光學微影系統中包含在該第一時間段之後分析該經儲存資訊。
  16. 如請求項15之方法,其進一步包含:在存取該規則之前,基於自該光學微影系統接收之該資訊而判定用來存取之一規則。
  17. 如請求項14之方法,其中判定一特定條件是否存在包含:比較在該第一時間段期間自該光學微影系統接收之該資訊與經儲存資訊,基於該比較判定是否符合或超過一臨限值,及當符合或超過該臨限值時宣告該特定條件存在。
  18. 如請求項14之方法,其中判定一特定條件是否存在包含:分析在該第一時間段期間自該光學微影系統接收之該資訊,基於該經分析資訊而判定該光學源之一或多個操作參數之一值,比較該等經判定值與針對該一或多個操作參數中之每一者之一預期值,及當該等經判定值係在相對於該預期值之一預定義值範圍之外時宣告該特定條件存在。
  19. 如請求項14之方法,其進一步包含呈現對該光學源之一或多個操作參數之一調整的一指示,該調整係藉由該控制信號引起,且該指示可被該光學微影系統之一操作者所感知。
  20. 一種監控系統,其包含:一監控資料介面,其經組態以將資訊發送至一或多個光學微影系統且自該一或多個光學微影系統接收資訊,該等光學微影系統中之每一者包含一光學源;一電子儲存器;及耦接至該電子儲存器之一或多個電子處理器,該電子儲存器包含在經執行時致使該一或多個處理器進行以下操作之指令:存取至少一個規則,該規則使該一或多個光學微影系統中之任一者中的一事件及一時間段中之一或多者與一模組相關聯,該模組經組態以分析來自該一或多個光學微影系統中之任一者之資訊且產生一命令信號;基於經存取之該至少一個規則來識別儲存於該電子儲存器處的一模組庫中之一模組;使用該經識別模組及來自該光學微影系統之該資訊來判定一特定條件是否存在於該等光學微影系統中之該一或多者中的任一者中;及若該經判定特定條件存在於該一或多個光學微影系統中之任一者中,則產生一命令信號,該命令信號係基於該經判定特定條件且足以改變該等光學微影系統中之該一或多者中的任一者之一光學源之一或多個操作參數,且提供該命令信號至至少一個光學源。
  21. 如請求項20之監控系統,其中在該至少一個光學源產生一脈衝式光束時提供該命令信號至該至少一個光學源。
  22. 如請求項20之監控系統,其中該至少一個規則及該模組庫中之該等模組中之一或多者經組態為由該監控系統之一操作者編輯。
  23. 如請求項20之監控系統,其中至少一個規則包含基於事件之規則及基於時間之規則中的一或多者,該等基於事件之規則係與該光學微影系統中之一事件之一發生相關聯,且該等基於時間之規則係與一時間量之一推移相關聯。
TW107114373A 2017-05-22 2018-04-27 監控光學微影系統的系統及方法 TWI663668B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/602,028 US10234769B2 (en) 2017-05-22 2017-05-22 Monitoring system for an optical lithography system
US15/602,028 2017-05-22

Publications (2)

Publication Number Publication Date
TW201901828A TW201901828A (zh) 2019-01-01
TWI663668B true TWI663668B (zh) 2019-06-21

Family

ID=64271619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107114373A TWI663668B (zh) 2017-05-22 2018-04-27 監控光學微影系統的系統及方法

Country Status (4)

Country Link
US (1) US10234769B2 (zh)
CN (1) CN110651228B (zh)
TW (1) TWI663668B (zh)
WO (1) WO2018217313A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116636100A (zh) * 2020-12-22 2023-08-22 西默有限公司 气体放电室鼓风机的能耗降低
CN113406864B (zh) * 2021-05-24 2022-10-28 上海顺灏新材料科技股份有限公司 光刻机外围设备集成监测系统及监测方法
WO2024073396A1 (en) * 2022-09-29 2024-04-04 Cymer, Llc Reducing energy consumption of a gas discharge chamber blower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140104614A1 (en) * 2012-04-27 2014-04-17 Cymer, Inc. Active Spectral Control During Spectrum Synthesis
US20150070673A1 (en) * 2013-06-11 2015-03-12 Cymer, Llc Wafer-based light source parameter control
TW201626114A (zh) * 2014-12-09 2016-07-16 希瑪有限責任公司 光學源中干擾之補償
WO2017050506A1 (en) * 2015-09-23 2017-03-30 Asml Netherlands B.V. Lithographic apparatus and method
TW201714023A (zh) * 2015-08-12 2017-04-16 Asml荷蘭公司 用於控制微影裝置之方法、微影裝置及元件製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030036254A (ko) * 2001-06-13 2003-05-09 가부시키가이샤 니콘 주사노광방법 및 주사형 노광장치 그리고 디바이스 제조방법
JP4154144B2 (ja) 2001-11-13 2008-09-24 キヤノン株式会社 露光装置、発光制御方法、およびデバイス製造方法
US20080073572A1 (en) 2006-07-20 2008-03-27 Siegfried Schwarzl Systems and methods of measuring power in lithography systems
US7935948B2 (en) 2006-08-11 2011-05-03 Sokudo Co., Ltd. Method and apparatus for monitoring and control of suck back level in a photoresist dispense system
US20080077352A1 (en) 2006-09-26 2008-03-27 Tokyo Electron Limited Methods and apparatus for using an optically tunable soft mask profile library
CN101324758B (zh) * 2007-06-13 2011-02-02 中芯国际集成电路制造(上海)有限公司 一种光刻机的监测系统及光刻机的监测方法
CN102023488A (zh) * 2009-09-09 2011-04-20 中芯国际集成电路制造(上海)有限公司 监测光刻工艺曝光机的能量偏移的方法
NL2008924A (en) 2011-06-22 2013-01-02 Asml Netherlands Bv System and method to ensure source and image stability.
KR101344037B1 (ko) 2011-10-19 2013-12-24 주식회사 인피테크 노광용 led 광원 모듈, 노광용 led 광원 장치 및 노광용 led 광원장치 관리시스템
CN102802327A (zh) 2012-07-26 2012-11-28 鸿富锦精密工业(深圳)有限公司 Led路灯及其远程智能监控系统
US9210780B2 (en) 2012-09-21 2015-12-08 Greenstar Products Limited Street lighting system allowing multiple communication
US10816905B2 (en) 2015-04-08 2020-10-27 Cymer, Llc Wavelength stabilization for an optical source
US10310490B2 (en) * 2016-02-01 2019-06-04 Qoniac Gmbh Method and apparatus of evaluating a semiconductor manufacturing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140104614A1 (en) * 2012-04-27 2014-04-17 Cymer, Inc. Active Spectral Control During Spectrum Synthesis
US20150070673A1 (en) * 2013-06-11 2015-03-12 Cymer, Llc Wafer-based light source parameter control
TW201626114A (zh) * 2014-12-09 2016-07-16 希瑪有限責任公司 光學源中干擾之補償
TW201714023A (zh) * 2015-08-12 2017-04-16 Asml荷蘭公司 用於控制微影裝置之方法、微影裝置及元件製造方法
WO2017050506A1 (en) * 2015-09-23 2017-03-30 Asml Netherlands B.V. Lithographic apparatus and method

Also Published As

Publication number Publication date
US10234769B2 (en) 2019-03-19
WO2018217313A1 (en) 2018-11-29
TW201901828A (zh) 2019-01-01
CN110651228B (zh) 2022-04-15
CN110651228A (zh) 2020-01-03
US20180335701A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
TWI663668B (zh) 監控光學微影系統的系統及方法
JP7254098B2 (ja) ガス監視システム
KR102282932B1 (ko) 광빔의 코히어런스의 양의 조정 방법
TWI811905B (zh) 氣體放電腔室鼓風機之能量消耗減量
JP2024016176A (ja) 複数の深紫外光発振器のための制御システム
TWI804817B (zh) 深紫外線(duv)光源、用於光源之控制器、及用於控制一光源之方法
TWI642914B (zh) 控制光微影系統中之光學源之方法及光微影系統
TWI829430B (zh) 光學屬性判定之設備、系統及方法
TWI794828B (zh) 用於光源之控制設備及用於控制光源之方法
WO2024073396A1 (en) Reducing energy consumption of a gas discharge chamber blower
KR20240016985A (ko) 광학 조립체의 캐비티 길이를 능동적으로 제어하기 위한 시스템
TW202328663A (zh) 光源、用於光源之光學量測裝置、用於判定標準具中之量測誤差的方法及用於校準標準具之方法