TWI654151B - 用於紫外線微影的玻璃陶瓷及其製造方法 - Google Patents

用於紫外線微影的玻璃陶瓷及其製造方法

Info

Publication number
TWI654151B
TWI654151B TW103144828A TW103144828A TWI654151B TW I654151 B TWI654151 B TW I654151B TW 103144828 A TW103144828 A TW 103144828A TW 103144828 A TW103144828 A TW 103144828A TW I654151 B TWI654151 B TW I654151B
Authority
TW
Taiwan
Prior art keywords
glass ceramic
layer
flat layer
ceramic substrate
glass
Prior art date
Application number
TW103144828A
Other languages
English (en)
Other versions
TW201529506A (zh
Inventor
霍夫曼賴夫
福德馬吉德A
比斯利卡拉
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201529506A publication Critical patent/TW201529506A/zh
Application granted granted Critical
Publication of TWI654151B publication Critical patent/TWI654151B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Abstract

一種極紫外線罩幕及製造該極紫外線罩幕的方法,包括:提供一玻璃陶瓷塊體;從該玻璃陶瓷塊體形成一玻璃陶瓷基材;及沉積一平坦層於該玻璃陶瓷基材上。

Description

用於紫外線微影的玻璃陶瓷及其製造方法 【交互參照之相關申請案】
本發明請求於西元2013年12月22日申請的美國臨時專利申請案號61/919,780的優先權,並且該美國臨時專利申請案之標的主體在此被併入到本文以作為參考。
本發明大致上關於用於極紫外線微影系統的玻璃陶瓷。
極紫外線微影(EUVL,亦稱為軟x射線投射微影)是用來取代用以製造0.13微米與更小的最小特徵結構尺寸半導體元件的深紫外線微影的替代物。
然而,大致上位在5至40奈米波長範圍中的極紫外光在實際上所有的材料中會強烈地被吸收。基於此理由,極紫外線(EUV)系統是藉由反射光而不是藉由透射光來作用。透過被塗覆有非反射吸收罩圖案的一序列的鏡子或透鏡構件以及反射構件或罩幕坯料的使用,經圖案化的光化的光被反射到塗覆阻劑的半導體晶圓上。
極紫外線微影系統的透鏡構件與罩幕坯料被塗覆有反射的多層材料塗層(諸如鉬與矽)。已經藉由使用具有會強烈地反射EUV光的塗層的基材來獲得每個透鏡構件或罩幕坯料的約65%的反射值。
半導體處理技術中存在有會在罩幕中造成問題的各種類型的缺陷。不透明缺陷通常是藉由在多層塗層或罩幕圖案的頂部上而會吸收光但應該要反射光的顆粒所造成。清晰缺陷通常是藉由罩幕圖案中多層塗層的頂部上而會反射光但應該要吸收光的針孔所造成。相位缺陷通常是藉由多層塗層下方而會造成經反射的光的相位的轉變的刮傷與表面變化所造成。
這些相位轉變造成光波干擾效應,光波干擾效應會扭曲或改變在半導體晶圓的表面上的阻劑中待被暴露的圖案。儘管已經著手進行減少或去除顆粒缺陷以及已經修復罩幕中的不透明與清晰缺陷,至今仍沒有解決相位缺陷的問題。
在過去,用於深紫外線微影的罩幕坯料大致上是玻璃,但已經提出矽或超低熱膨脹係數材料作為極紫外線微影的取代物。無論罩幕坯料是玻璃、超低熱膨脹係數材料、或矽,都會藉由以磨蝕粒進行機械研來使得磨罩幕坯料的表面盡可能平滑。這樣的製程留下的刮傷有時候稱為「刮傷-挖掘」標記,並且它們的深度與寬度取決於用以研磨罩幕坯料的磨蝕粒中的顆粒的尺寸。對於可見光與深紫外線微影,這些刮傷小到不會在半導體晶圓上的圖案中造成相位缺陷。然而,對於極紫外線微影,刮傷-挖掘標記是嚴重的問題,這是因為 它們以相位缺陷的形式出現。
由於EUV微影所需的短照射波長,所使用的圖案罩幕必須是反射罩幕,而不是現今微影中使用的透射罩幕。反射罩幕由交替的薄鉬與矽層的精確堆疊製成,該堆疊產生布瑞格(Bragg)折射件或鏡子。由於多層堆疊與小特徵結構尺寸的本質,基材的表面中的任何瑕疵將會被放大且影響最終產品,其中該多層堆疊被沉積在該基材上。數奈米尺度的瑕疵會在完成的罩幕上顯露成可印刷的缺陷且必須在多層堆疊的沉積之前從罩幕坯料的表面被去除。
一般的瑕疵包括凹洞、刮傷與顆粒。一般的清潔技術會移除許多顆粒,但會產生新凹洞或放大現存的凹洞。凹洞可來自研磨或清潔製程,或可來自在切割與研磨製程期間暴露出的基材材料本身中的內含物或裂隙。進一步研磨可用以移除表面處的凹洞,但具有在製程中會暴露出或造成新凹洞的風險,這限制了單獨使用研磨來將基材表面予以平滑化與平坦化的有用性。用於基材平滑化的另一種方法是雷射或電漿退火。這些技術會熔融並重流玻璃基材的一薄表面層,而移除局部缺陷。問題是它們在基材表面中產生更長範圍的粗糙度或波紋,並且因此無法提供EUV罩幕所需的基材平坦度。
鑑於電子部件的逐漸更小的特徵結構尺寸的需求,找到這些問題的解決方式是逐漸重要的。由於持續增長的商業競爭壓力,以及增加的消費者期待,找到這些問題的解決方式是重要的。此外,降低成本、改善效率與效能、及滿足 競爭壓力的需求更加迫使要找到這些問題的解決方式的緊急必要性。
長時間以來已經尋找這些問題的解決方式,但之前的發展沒有教示或建議任何解決方式,並且因此這些問題的解決方式已經長時間以來難倒熟習此技藝者。
本發明提供一種製造一極紫外線基材的方法,包括以下步驟:提供一玻璃陶瓷塊體;從該玻璃陶瓷塊體形成一玻璃陶瓷基材;及沉積一平坦層於該玻璃陶瓷基材上。
本發明提供一種整合式極紫外線坯料製造系統,包括:一真空腔室,該真空腔室用以放置一玻璃陶瓷基材於一真空中;一第一沉積系統,該第一沉積系統用以沉積一平坦層於該玻璃陶瓷基材上方;及一第二沉積系統,該第二沉積系統用以沉積一多層堆疊於該平坦層上,而無需將該玻璃陶瓷基材從該真空移除。
除了或取代上述者,本發明的特定實施例具有其他步驟或構件。該些步驟或構件對於熟習此技藝之人士在藉由閱讀以下詳細說明並參照附圖是顯而易知的。
100‧‧‧整合式極紫外線罩幕製造系統
102‧‧‧基材裝載與載具操縱系統
104‧‧‧基材
106‧‧‧氣鎖室
108‧‧‧晶圓操縱真空腔室
110‧‧‧第一真空腔室
112‧‧‧第二真空腔室
114‧‧‧第一晶圓操縱系統
116‧‧‧第二晶圓操縱系統
118‧‧‧去氣系統
120‧‧‧第一物理氣相沉積系統
122‧‧‧第二物理氣相沉積系統
124‧‧‧預清潔系統
126‧‧‧第一多陰極源
128‧‧‧可流動式化學氣相沉積系統(FCVD)
130‧‧‧硬化系統
132‧‧‧第二多陰極源
134‧‧‧晶圓
136‧‧‧晶圓
200‧‧‧基部
201‧‧‧基材頂表面
202‧‧‧玻璃陶瓷基材
203‧‧‧瑕疵
204‧‧‧平坦層
205‧‧‧層頂表面
207‧‧‧層厚度
301‧‧‧玻璃陶瓷塊體
304‧‧‧硬化層
306‧‧‧多層堆疊
308‧‧‧帽蓋層
310‧‧‧吸收層
312‧‧‧抗反射塗層
314‧‧‧背側夾持層
350‧‧‧EUV罩幕
400‧‧‧方法
402~412‧‧‧方塊
502‧‧‧表面粗糙度
504‧‧‧日羅杜爾(Zerodur)玻璃陶瓷塊體
600‧‧‧方法
602~628‧‧‧方塊
700‧‧‧方法
702~726‧‧‧方塊
800‧‧‧光學列
802‧‧‧電漿源
804‧‧‧收集器
806‧‧‧照射系統
808‧‧‧場面鏡子
810‧‧‧瞳孔面鏡子
812‧‧‧標線片
814‧‧‧投射光學
816‧‧‧晶圓
900‧‧‧EUV微影系統
902‧‧‧EUV光源區域
904‧‧‧標線片平台
906‧‧‧晶圓平台
第1圖示出一整合式極紫外線罩幕製造系統。
第2圖是根據本發明的一實施例的EUV罩幕的基部的剖視圖。
第3A圖示出處於製造的起初EUV罩幕製作階段的玻璃陶瓷塊體。
第3B圖示出處於製造的硬化階段的第2圖的基部。
第3C圖示出處於製造的堆疊形成階段的第3B圖的結構。
第4圖示出一種用以製造第2圖的基部的方法,其中該基部用於第3B圖的EUV罩幕。
第5圖是第2圖的基部200的示意俯視圖。
第6圖示出一種用以製造具有超低缺陷的第3C圖的EUV罩幕的方法。
第7圖示出一種用以製造第3C圖的EUV罩幕的替代方法。
第8圖示出一用於EUV微影系統的光學列。
第9圖示出一EUV微影系統。
以足夠詳細的方式來描述以下的實施例,而使熟習此技藝者能利用與使用本發明。應瞭解的是基於本文可設想出其他實施例,並且可進行系統、製程或機械變化而不悖離本發明的範疇。
在以下的說明中,提供許多特定細節以能全盤瞭解本發明。然而,清楚的是可在不具有這些特定細節下實現本發明。為了避免使本發明模糊,沒有詳細地揭示一些已知的部件與電路、系統組態、與製程步驟。
顯示系統的實施例的圖式是概略的且沒有依比例繪製,並且尤其一些尺寸是為了清楚呈現而在圖式中誇張地示出。同樣地,儘管圖式中的視圖為了敘述方便起見而顯示類 似的方位,圖式中對於最主要部分的顯示是武斷的。大致上,本發明能以任何方位來運作。
儘管揭示與描述了多個具有一些共同特徵結構的實施例,為了說明、描述、與瞭解的清楚與方便起見,將以類似的元件符號來描述類似與相似的特徵結構。
為了說明,在此使用的詞語「水平」是被定義成平行於罩幕坯料的平面或表面的一平面,而無論該平面的方位為何。詞語「垂直」是指垂直於如剛剛所定義的水平的方向。諸如「上方」、「下方」、「底部」、「頂部」、「側」(例如「側壁」)、「更高」、「更低」、「以上」、「之上」、與「之下」的詞語是相對於水平平面被定義,如圖式中所示。詞語「上」表示構件之間具有直接接觸。
在此所使用的詞語「處理」包括材料或光阻劑的沉積、所需要形成被描述的結構的材料或光阻劑的圖案化、暴光、顯影、蝕刻、清潔、與/或移除。
本發明是用於用在極紫外線微影(EUV/EUVL)(亦稱為軟x射線投射微影)的基材(諸如的玻璃陶瓷基材)的平坦化的系統與方法。EUV可用以產生更小的最小特徵結構尺寸的半導體元件。
儘管玻璃陶瓷包括許多高度適合用於EUVL應用的性質,玻璃陶瓷中具有使它們不是完全非晶體的晶體相位。玻璃陶瓷的表面可能會太粗糙,尤其是在研磨以滿足EUVL系統的設計與尺寸規格之後。已經發現到一平坦層(諸如來自CVD製程的一層)可用以克服玻璃陶瓷的研磨與粗糙限制。
現在參照第1圖,第1圖示出一整合式極紫外線罩幕製造系統100。整合式EUV罩幕製造系統100包括一基材裝載與載具操縱系統102,基材104被裝載到基材裝載與載具操縱系統102內。一前端界面或一氣鎖室106提供一晶圓操縱真空腔室108的存取。
前端界面的功能是在裝載埠之間移動基材104到主框架或晶圓操縱真空腔室108。整合式EUV罩幕製造系統100的腔室可包括真空或大氣壓力。
在如圖所示的實施例中,晶圓操縱真空腔室108含有兩個真空腔室,即一第一真空腔室110與一第二真空腔室112。在第一真空腔室110內具有一第一晶圓操縱系統114,並且在第二真空腔室112內具有一第二晶圓操縱系統116。
晶圓操縱真空腔室108或主框架在其周邊具有複數個埠與沉積腔室以為了接附各種其他系統。第一真空腔室110具有一去氣系統118、一第一物理氣相沉積系統120、一第二物理氣相沉積系統122、與一預清潔系統124。
第二真空腔室112具有和其連接的一第一多陰極源126、一可流動式化學氣相沉積系統(FCVD)128、一硬化系統130、與一第二多陰極源132。
第一晶圓操縱系統114能在氣鎖室106與位在第一真空腔室110的周邊的各種系統之間移動晶圓(諸如晶圓134)且在連續真空中通過狹縫閥。第二晶圓操縱系統116能繞著第二真空腔室112移動晶圓(諸如第二晶圓136),同時將晶圓維持在連續真空中。已經發現到整合式EUV罩幕製造系統100 提供理想的用以製造EUV罩幕的環境。
現在參照第2圖,圖上顯示根據本發明的一實施例的EUV罩幕的基部200的剖視圖。基部200可包括一玻璃陶瓷基材202與一平坦層204。
玻璃陶瓷基材202可包括一多晶材料。例如,玻璃陶瓷基材202可包括日羅杜爾(Zerodur)或其他具有超低熱膨脹係數的玻璃陶瓷材料。玻璃陶瓷基材202可包括鋰鋁矽酸鹽且可包括±0.007×10-7/K的熱膨脹係數(CTE)。已經發現到±0.007×10-7/K的CTE需要被用在用於EUVL系統中的基材,這是因為超低熱膨脹係數可避免在EUV投射微影製程期間對於印刷圖像的扭曲到最小半導體元件上。
玻璃陶瓷基材202可包括幾乎不含有內含物、氣泡、與內部條痕的高三維同質性。玻璃陶瓷基材202可以是非多孔的,並且對於塗層具有高親和性。例如,已經發現到玻璃陶瓷基材202可包括能高度抗酸和鹼的材料。由於能抗酸和鹼,已經發現到玻璃陶瓷基材202(諸如日羅杜爾(Zerodur))提供對於經歷重複塗覆、沉積步驟、處理、蝕刻、或它們的組合的基材具有強健與抵抗的表面。
用在EUVL的基材需要非常低的高空間頻率粗糙度(high spacial frequency roughness,HSFR),以避免在微影印刷製程中的缺陷。玻璃陶瓷結構對於研磨以達到低HSFR是困難的,這是因為玻璃陶瓷結構的研磨會在玻璃表面中造成凹洞與缺陷的產生,凹洞與缺陷亦會負面地影響微影印刷製程。
玻璃陶瓷基材202的基材頂表面201可包括瑕疵 203(諸如凹洞、刮傷、與顆粒),該些瑕疵203是由研磨方法(諸如以磨蝕粒來進行的化學機械研磨(CMP))造成。這樣的製程所留下來的刮傷有時候稱為「凹洞」與/或「刮傷-挖掘」標記,並且它們的深度與寬度取決於用以研磨玻璃陶瓷基材202的磨蝕粒中的顆粒的尺寸。
一平坦層204可被形成在基材頂表面201上以為了達到EUVL系統中所需的低HSFR以及全面整體平坦度。平坦層204可包括可流動式化學氣相沉積(CVD)膜,該些可流動式化學氣相沉積(CVD)膜包括低k介電質。平坦層204可包括100埃(Å)至10微米(μm)範圍中的層厚度207或層寬度。
平坦層204可包括一矽碳氧膜、一矽氮膜、或它們的組合。又,平坦層204可包括一具有深寬比為30:1的非碳液體可流動式CVD(FCVD)。平坦層204可在後續的製造步驟中被硬化。已經發現到使用矽碳氧膜於平坦層204容許UV硬化,這可降低會對EUVL罩幕造成缺陷的顆粒的風險。
CVD膜的平坦層204是局部可流動的,以填充或埋沒在研磨之後玻璃陶瓷基材202上的該些瑕疵203的任何缺陷。已經發現到具有平坦層204的玻璃陶瓷基材202造成平坦與平滑的最終表面。例如,平坦層204的層頂表面205會產生小於0.6奈米(nm)均方根(rms)的表面粗糙度。該表面粗糙度(諸如,尤其是HSFR)低於玻璃陶瓷基材202的起初粗糙度。
用於平坦層204的前驅物可包括四乙氧基矽烷(TEOS)、四甲氧基矽烷(TMOS)、八甲基環四矽氧烷 (OMCTS)、三矽烷基胺(TSA)、類似的CVD/FCVD化合物、或它們的組合,以產生一可流動的沉積層,該可流動的沉積層能平坦化基材頂表面201的表面,而不會改變玻璃陶瓷基材202的性質。
已經發現到,無論玻璃陶瓷基材202的起初粗糙度為何,平坦層204可達到小於0.6奈米均方根的表面粗糙度。平坦層204的可流動性質會填充且埋沒存在於基材頂表面201上的該些瑕疵203的任何瑕疵。平坦層204亦可均等化基材頂表面201的整體平坦度。因此,平坦層204可克服玻璃陶瓷材料(諸如日羅杜爾(Zerodur))的抗研磨問題。
又,已經發現到平坦層204的可流動式CVD膜可被沉積在諸如日羅杜爾(Zerodur)的玻璃陶瓷上,以為了平滑化或平坦化諸如凹洞、顆粒、與刮傷的表面缺陷。可在真空腔室中利用低k(SiCO)或類似的化學作用來沉積可流動式CVD膜。低k是指低k介電質,低k介電質相對於二氧化矽是一種具有小介電常數的材料。
例如,CVD膜可包括具有矽、氧、碳、氮、或它們的組合的化合物,而可流動以提供一具有局部粗糙度小於0.6奈米均方根的層。CVD膜是局部可流動的,並且因此填充或埋沒基材缺陷,同時產生平坦且平滑的最終表面。
表面粗糙度,或尤其是HSFR,低於起初的玻璃陶瓷基材。已經發現到此種平坦化玻璃陶瓷基材202的方法容許基材用在需要比單獨研磨可能者更低的HSFR的應用。使用以TEOS、TMOS、OMCTS、TSA、或它們的組合所產生的在 玻璃陶瓷基材202上的平坦層204的另一個發明優點是平坦層204不會和玻璃陶瓷基材202直接反應,並且因此提供平坦化優點而不會改變玻璃陶瓷基材202的期望性質。已經發現到平坦層204可提供低HSFR、增加的對基材的結構穩定性、與增加的對玻璃陶瓷基材202的應力保護。
可在任何研磨步驟之後而使表面準備進行進一步沉積或使用來使用可流動式CVD平坦化。可流動式CVD平坦化之前所使用的研磨或平坦層204的施加不會影響可流動式CVD膜,並且因此玻璃陶瓷基材202可被研磨以達到最佳的可能的整體平坦度而無需關注這些研磨技術造成的HSFR。
被沉積的可流動式CVD膜可立即地被沉積或可進一步地使用任何研磨製程(包括CMP、離子束研磨、與久磁流變研磨)被平滑化。已經發現到針對平坦層204使用具有低k(諸如SiCO)的CVD膜係提供用在玻璃陶瓷基材上的耐久與低成本材料。
亦已經發現到藉由從可流動式CVD膜的平坦層204之小凹洞、顆粒、與刮傷的平坦化係提供由EUV製程建立的元件中更大的可靠度。又,已經發現到具有100埃至10微米的層厚度207或層寬度的平坦層204可平滑化或平坦化基材頂表面201,而不會對玻璃陶瓷基材202造成過度負載和增加的塊團。
本發明可包括各種技術,該些技術用以藉由CVD、物理氣相沉積(PVD)、原子層沉積(ALD)、與可流動式CVD(FCVD)沉積矽、氧化矽、與具有相容熱膨脹係數的相關膜, 以填充凹洞且埋沒缺陷。一旦被沉積,膜的表面是平滑且平坦到足以進行進一步的多層堆疊沉積。可使用各種已建立的平滑化或研磨技術(包括CMP、退火、或離子束研磨)來進一步平滑化平坦層204。
現在參照第3A圖,圖上顯示處於製造的起初EUV罩幕製作階段的玻璃陶瓷塊體301。玻璃陶瓷塊體301是一件可提供的玻璃陶瓷源材料或大玻璃陶瓷坯料。
玻璃陶瓷塊體301可以是一塊體或料件,而需要進一步處理以形成用於EUV罩幕製作的基材。玻璃陶瓷塊體301可被切割、被成形、且被研磨成滿足EUVL系統的設計與製造要求的基材。例如,玻璃陶瓷塊體301可被切割以形成第2圖的玻璃陶瓷基材202。
玻璃陶瓷材料相對於其他超低膨脹係數玻璃(ultra-low expansion,ULE)的使用提供溫度與CTE性質優點。例如,玻璃陶瓷(諸如日羅杜爾(Zerodur))可被調整到更大得多的工作溫度範圍,而其他ULE玻璃具有更小的工作溫度範圍。玻璃陶瓷(諸如日羅杜爾(Zerodur))中橫跨塊團的CTE均勻性比ULE玻璃更高。又,已經發現到玻璃陶瓷(諸如日羅杜爾(Zerodur))的更大的工作溫度範圍提供更多控制冷卻速率的選擇。
現在參照第3B圖,圖上顯示處於製造的硬化階段的第2圖的基部200。基部200可包括玻璃陶瓷基材202。可將第2圖的平坦層204直接地形成或沉積在玻璃陶瓷基材202上。
玻璃陶瓷基材202可包括從第3A圖的玻璃陶瓷塊體301成形造成之崎嶇的整體平坦度與瑕疵203。平坦層204可用以平滑化或平坦化第2圖的基材頂表面201,這產生了對於整個頂表面之平坦的整體平坦度且提供了一具有局部粗糙度小於0.5奈米均方根的層。
平坦層204被硬化,以形成一硬化層304。硬化製程可包括一UV硬化製程或一流製程。硬化層304包括和平坦層204相同的整體平坦度與相同的局部粗糙度。可選地,可藉由CMP製程將硬化層304進一步研磨與平坦化。
平坦層204可包括SiN膜或SiOC膜。SiN膜,一旦經由硬化被轉變成SiO/SiO2,可更抗氧化且產生比替代的平坦層更硬的膜。SiOC膜需要較少的處理步驟來達到可使用的膜。SiOC膜在直到硬化之前是柔軟的,但經硬化或未經硬化都可被使用。SiN膜在使用之前通常必須被硬化,但可造成比SiOC更平滑的膜表面。用在各類型的平坦層204上的研磨方法是不同的。例如,SiOC膜包括較少的處理步驟,這可避免顆粒污染。
已經發現到對於平坦層204在SiOC膜上的UV硬化製程的使用降低了產生會造成在沉積製程期間發生缺陷的顆粒的風險。蒸汽或臭氧硬化必須被用在SiN基底膜上,但會引進增加的會污染腔室和基材的顆粒。已經發現到SiN基底膜,在硬化之後,被轉變成SiO/SiO2,以對於直接位在玻璃陶瓷基材202上的層產生更抗氧化與更硬的膜。用於硬化層304之最終的被硬化的SiN膜可產生更平滑的頂表面,這是因 為被硬化的SiN膜的硬度可促進硬化層304的進一步平坦化。
又,已經發現到SiOC的使用需要較少的製程步驟來達到在玻璃陶瓷基材202上可使用的膜。用於平坦層204的SiOC膜是柔軟的,這可包括硬化或未硬化的選擇。使用SiN膜的膜,在進行玻璃陶瓷基材202上的後續沉積之前,需要硬化。
現在參照第3C圖,圖上顯示處於製造的堆疊形成階段的第3B圖的結構。第3C圖中所顯示的結構可包括第2圖的基部200的部分視圖,其中各種層被形成在基部200上以形成EUV罩幕350。例如,EUV罩幕350可包括一多層堆疊306、一帽蓋層308、一吸收層310、與一抗反射塗層312。
多層堆疊306可被形成在硬化層304上方。多層堆疊306可直接地被形成在硬化層304上,以形成一布瑞格(Bragg)折射件。由於光學的反射本質以及用在EUV的照射波長,反射光學被使用,並且多層堆疊306可由形成反射件之交替的高z與低z材料(諸如鉬與矽)製成。
帽蓋層308被形成在多層堆疊306上方。帽蓋層可以是諸如釕(Ru)或其非氧化的化合物的材料,以有助於保護多層堆疊306免於氧化與免於化學蝕刻劑,其中EUV罩幕350在罩幕處理期間被暴露於該化學蝕刻劑。其他材料(諸如氮化鈦、碳化硼、氮化矽、氧化釕、與碳化矽)亦可被使用在帽蓋層308中。
吸收層310被設置在帽蓋層308上方。吸收層310是對於EUV光的特定頻率(約13.5奈米)具有高吸收係數的材 料,並且可以是諸如鉻、鉭、或它們的氮化物的材料。
抗反射塗層(ARC)312被沉積在吸收層310上。ARC 312可以是諸如氮氧化鉭或氮氧化硼鉭的材料。一背側夾持層314可被形成在玻璃陶瓷基材202的背表面,以將基材夾持在靜電夾盤(未示出)或藉由靜電夾盤(未示出)來夾持基材。
本發明的此實施例可包括各種用以在玻璃陶瓷基材202上沉積不同層的技術。例如,可使用CVD、PVD、ALD、與可流動式CVD來沉積矽、氧化矽、釕、與層。
現在參照第4圖,圖上顯示一種用以製造第2圖的基部200的方法400,其中該基部200用於第3B圖的EUV罩幕350。方法400包括在方塊402中提供第3A圖的玻璃陶瓷塊體301。玻璃陶瓷塊體301可包括大片的具有低CTE的玻璃陶瓷材料(諸如日羅杜爾(Zerodur))或其他超低膨脹係數玻璃材料。
在方塊404中,玻璃陶瓷塊體301可被成形,以形成第2圖的玻璃陶瓷基材202。成形製程可包括切割、切鋸、鑚鑿、噴水切割、或它們的組合。玻璃陶瓷塊體301可被成形且被切割成一設計特定形狀,諸如一將和稱至EUVL系統的夾盤的基材。例如,玻璃陶瓷塊體301可被切割成六吋長的基材。
在方塊406中,玻璃陶瓷基材202可被研磨。根據低HSFR要求以及基材頂表面201的整體平坦度,方塊406或第一研磨步驟是可選的。玻璃陶瓷基材202亦可被研磨以減少第2圖的層厚度207,而滿足EUVL系統的腔室與夾盤尺 寸要求。
在方塊408中,平坦層204可被形成或被施加在玻璃陶瓷基材202上方。第2圖的平坦層204的施加步驟可包括用以在基材頂表面201上填充任何凹洞且埋沒任何缺陷的CVD、PLD、ALD、與可流動式CVD方法。
在方塊410中,平坦層204可被硬化,以形成第3B圖的硬化層304。硬化製程可將平坦層204轉變成更堅硬的膜或層。硬化製程可包括用於矽氧碳或矽氮的平坦層204之UV硬化製程或熱處理。硬化製程亦可包括蒸汽或臭氧處理,以藉由來自蒸汽的氧取代沉積層中的氮,而產生具有氧化矽的硬化層304。
在方塊412中,硬化層304可被研磨。根據基材頂表面201的HSFR與整體平坦度,方塊412或第二研磨步驟是可選的。玻璃陶瓷基材202亦可被研磨,以減少第2圖的層厚度207。
硬化層304的硬度決定研磨期間層的行為。例如,較硬的膜(諸如使用SiN的膜)會更易脆,並且因此更傾向於在一些研磨條件下會發生表面破裂。又,取決於所使用的材料,較硬的膜可能是無法抗化學的。較硬的膜硬會影響平坦層204到基材的黏附性。又,後續之被沉積在非常硬的平坦層204的膜變形上的層可能無法有效率地黏附。又,用於平坦層204的SiN膜需要更多處理步驟來達成,這會增加被顆粒污染的風險。已經發現到用於平坦層204的SiOC膜可將上述從SiN形成之非常硬的膜造成的缺失最小化。
已經發現到硬化層304提供一更能經受研磨的表面,而不會造成於研磨第2圖的基材頂表面201時所造成的瑕疵與缺陷。又,已經發現到硬化層304使得額外的研磨成為可選的,這是因為用以形成硬化層304的沉積與硬化製程提供一具有局部粗糙度小於0.6奈米均方根的平坦化表面。
現在參照第5圖,圖上顯示第2圖的基部200的示意俯視圖。此示意俯視圖包括使用原子力顯微鏡(AFM)方法之平坦層204的頂表面的視圖,如圖所示。
在沉積或施加平坦層204之前,第2圖的玻璃陶瓷基材202可具有超過1奈米均方根的表面粗糙度502。表面粗糙度502是表面的表面紋理或表面形態的構成。例如,已經發現到未經處理或未經修改(off the shelf)的玻璃陶瓷基材(諸如日羅杜爾(Zerodur)玻璃陶瓷塊體504)具有1.36奈米均方根的表面粗糙度。可利用AFM高度感應器在4微米乘4微米部分上決定玻璃陶瓷基材202的表面粗糙度502。
在施加平坦層204之後,已經發現到相同的4微米乘4微米日羅杜爾(Zerodur)樣品具有0.626奈米均方根的表面粗糙度。又,已經發現到具有100埃至10微米的厚度的平坦層204可被形成在被研磨或未被研磨的基材上而具有可改變程度的表面粗糙度502,並且對於第2圖的層頂表面205仍可產生低於0.6奈米均方根的表面粗糙度502。平坦層204的此優點可包括藉由移除一些研磨步驟來放棄與減少製造步驟。
現在參照第6圖,圖上顯示一種用以製造具有超低缺陷的第3C圖的EUV罩幕350的方法600。超低缺陷是實質 上零缺陷。方法600包括在方塊602中供應玻璃坯料。玻璃坯料可被放置在一真空工具(諸如第1圖的第一真空腔室110)中。玻璃坯料的背側在方塊604中被清潔,並且玻璃坯料在方塊606中被去氣與被預清潔。
在方塊608中可施加一背側夾持層,並且在方塊610中可執行一前側清潔。一些方法步驟是較佳地被執行在第1圖的整合式EUV罩幕製造系統100中,同時處於連續真空下,以避免來自外界條件的污染。
在方塊614中執行一去氣與預清潔,並且在方塊616中執行平坦化。例如,在方塊616中,第2圖的平坦層204可被施加到玻璃陶瓷基材202。施加步驟可在沉積腔室(諸如第1圖的可流動式化學氣相沉積系統128)中發生。
平坦層可在平坦層硬化方塊618中被硬化,並且多層沉積可在方塊620中被執行。例如,可在第1圖的硬化系統130中形成第3圖的硬化層304以硬化第2圖的平坦層204。第3C圖的帽蓋層308在帽蓋層方塊622中被沉積。
之後,離開整合式EUV罩幕製造系統100,一深紫外線(DUV)/光化的檢視在方塊624中被執行,罩幕坯料可選地在方塊626中被清潔,並且吸收層和抗反射塗層在方塊628中被沉積。
現在參照第7圖,圖上顯示一種用以製造第3C圖的EUV罩幕350的替代方法700。超低缺陷是實質上零缺陷。替代方法700開始於在方塊702中供應玻璃坯料。玻璃坯料的背側在方塊704中被清潔,並且玻璃坯料的前側在方塊706 中被清潔。
方塊708中的一些方法或製程步驟是較佳地被執行在第1圖的整合式EUV罩幕製造系統100中,同時處於連續真空下,以避免來自外界條件的污染。
罩幕坯料在方塊710中被去氣與被預清潔。背側夾持層214在方塊712中被沉積,並且平坦化發生在方塊714中。平坦層在方塊716中被硬化。多層沉積在方塊718中被執行,並且帽蓋層在方塊720中被施加。
儘管在方塊722中,可在整合式EUV罩幕製造系統100內執行DUV/光化的檢視,DUV/光化的檢視亦可發生在外面。罩幕坯料可選地在方塊724中被清潔,並且吸收層和抗反射塗層可在方塊726中被沉積。
現在參照第8圖,圖上顯示一用於EUV微影系統的光學列800。光學列800具有一極紫外線源(諸如電漿源802),用以產生EUV光且將EUV光收集在收集器804中。收集器804將光提供到一場面鏡子808,場面鏡子808是一照射系統806的一部分,照射系統806更包括一瞳孔面鏡子810。照射系統806將EUV光提供到一標線片812(標線片812是第3C圖的EUV罩幕350的完全處理版本),標線片812將EUV光反射通過投射光學814且到晶圓816上。
現在參照第9圖,圖上顯示一EUV微影系統900。EUV微影系統900包括一EUV光源區域902、一標線片平台904、與一作為光學列800的附屬物的晶圓平台906。EUV微影系統900可包括如第8圖所示的光學列800。
本發明的實施例係平坦化且平滑物EUV坯料,藉此移除基材表面上所有的凹洞、缺陷、與顆粒,因此表面是極微地平坦的且平滑的。此想法是沉積不含缺陷的材料在EUV坯料基材的表面上,EUV坯料基材接著被處理而不會引進任何缺陷,以達到極微地平坦的且平滑的表面。第3C圖的EUV罩幕350是EUV微影系統900的重要部件,並且EUV微影系統900不能在沒有位於適當平坦化的平坦與平滑EUV坯料上的EUV罩幕的情況下執行EUV微影系統900的功能。因此,已經發現到第2圖的平坦層204係適當地平滑化或平坦化第2圖的層頂表面205,而具有小於0.6奈米均方根的表面粗糙度502。
第一步驟是填充任何存在的凹洞,這可藉由沉積平坦層204來完成,其中該平坦層204是可流動式CVD膜。又,平坦層204亦可包括藉由CVD、PVD、ALD、或類似的製程來沉積矽、氧化矽、或相關的膜的方法。此平坦化步驟亦埋沒位在EUV坯料基材表面之上或之中的顆粒、凸塊、凹洞、與其他缺陷。在可流動式CVD膜的情況中,不需要進一步的處理以在EUV坯料基材上達到可接受的平滑的平坦表面。
平坦層204的一優點是此方法是基材獨立的且此方法可被用在各種基材與基材品質上。使用具有EUV坯料所需性質但在研磨之後不具有極微地平坦的平滑表面的玻璃基材是潛在可行的。此獨立性使得使用不同基材供應者且將供應者所造成的非期望改變對基材製備和研磨的影響最小化成為可能。
本發明的實施例主要在於提供一極微地平坦且平滑的基材表面以用於EUV罩幕的製造,但其可用於任何需要極微地平坦的平滑表面的應用(諸如EUV罩幕350和其他者)。
另一個方式是使用平坦的高熱傳導表面來生長多層堆疊在上面。按歷史觀點,由於光學的透射本質以及所使用的照射波長,玻璃是用作為用於罩幕的基材。EUV被所有材料吸收,因此使用了反射光學。然而,反射率不是100%(對於目前Mo/Si堆疊是<70%),並且輻射的被吸收的部分將會加熱基材。目前的罩幕玻璃基材組成被最佳化以提供在操作溫度下的零熱膨脹係數,以避免阻劑曝光期間的圖案扭曲。
最終的方法、製程、設備、裝置、產品、與/或系統是直接的、符合成本效益的、不複雜的、高多樣性的、精確的、敏感的、與有效的,並且可藉由適應於已知部件以為了準備的、有效率的、與符合經濟的製造的、應用、與利用被實現。
本發明的另一個重要態樣是本發明有價值地支援與服務降低成本、簡化系統、與增加效能的歷史趨勢。因此,本發明的這些和其他有價值的態樣將現有技術推進到至少下一個層次。
儘管已經以涉及特定最佳模式來描述本發明,應瞭解的是許多替代物、變更、與變化對於熟習此技藝的人士來說在參照前述說明是顯而易知的。因此,意圖包括所有這樣的落在隨附申請專利範圍的範疇內的替代物、變更、與變化。在此所公開或附圖中所顯示的全部物是以示例與非限制理解 的方式來解讀。

Claims (20)

  1. 一種製造一極紫外線基材的方法,包含以下步驟:提供一玻璃陶瓷塊體;從該玻璃陶瓷塊體形成一玻璃陶瓷基材;及使用可流動式化學氣相沉積(FCVD)來沉積一平坦層於該璃陶瓷基材上,其中該平坦層為一可流動式CVD膜。
  2. 如請求項1所述之方法,更包含以下步驟:藉由硬化該平坦層與該玻璃陶瓷基材,以形成一硬化層。
  3. 如請求項1所述之方法,其中沉積該平坦層的步驟包括以下步驟:沉積包含矽、氧、與碳的該平坦層。
  4. 如請求項1所述之方法,其中沉積該平坦層的步驟包括以下步驟:形成具有表面粗糙度小於0.6奈米均方根的該平坦層。
  5. 如請求項1所述之方法,其中形成該玻璃陶瓷基材的步驟包括以下步驟:形成具有一熱膨脹係數為+0.007×10-7/K或-0.007×10-7/K的該玻璃陶瓷基材。
  6. 如請求項1所述之方法,其中沉積該平坦層的步驟包括以下步驟:沉積包含矽與氮的該平坦層。
  7. 如請求項1所述之方法,更包含以下步驟:藉由以一流硬化製程來硬化該平坦層,以形成一硬化層。
  8. 如請求項1所述之方法,其中提供該玻璃陶瓷塊體的步驟包括以下步驟:提供一日羅杜爾(Zerodur)玻璃陶瓷塊體。
  9. 一種整合式極紫外線罩幕製造系統,包含:一真空腔室,該真空腔室用以放置一玻璃陶瓷基材於一真空中;一第一可流動式化學氣相沉積系統,該第一可流動式化學氣相沉積系統用以沉積一平坦層於該玻璃陶瓷基材上方,其中該平坦層為一可流動式CVD膜;及一第二沉積系統,該第二沉積系統用以沉積一多層堆疊於該平坦層上,而無需將該玻璃陶瓷基材從該真空移除。
  10. 如請求項9所述之系統,更包含:一載具操縱系統,該載具操縱系統用以將該玻璃陶瓷基材定位在該真空腔室內。
  11. 如請求項9所述之系統,其中該第一沉積系統用以沉積該平坦層,該平坦層包括矽、氧、與碳。
  12. 如請求項9所述之系統,更包含:一硬化系統,該硬化系統用以從該平坦層形成該硬化層。
  13. 如請求項9所述之系統,其中該第一沉積系統用以沉積具有表面粗糙度小於0.6奈米均方根的該平坦層。
  14. 如請求項9所述之系統,其中該第二沉積系統用以沉積該多層堆疊於該平坦層上方,以形成一極紫外線罩幕。
  15. 一種極紫外線微影罩幕系統,包含:一玻璃陶瓷基材;及一硬化層,該硬化層具有100埃至10微米的一層厚度。
  16. 如請求項15所述之系統,其中該硬化層包括矽、氧、與碳。
  17. 如請求項15所述之系統,其中該硬化層包括小於0.6奈米均方根的一表面粗糙度。
  18. 如請求項15所述之系統,其中該玻璃陶瓷基材包括+0.007×10-7/K或-0.007×10-7/K的一熱膨脹係數。
  19. 如請求項15所述之系統,其中該硬化層包括氧化矽。
  20. 如請求項15所述之系統,其中該硬化層包括矽與氮。
TW103144828A 2013-12-22 2014-12-22 用於紫外線微影的玻璃陶瓷及其製造方法 TWI654151B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361919780P 2013-12-22 2013-12-22
US61/919,780 2013-12-22

Publications (2)

Publication Number Publication Date
TW201529506A TW201529506A (zh) 2015-08-01
TWI654151B true TWI654151B (zh) 2019-03-21

Family

ID=53403782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144828A TWI654151B (zh) 2013-12-22 2014-12-22 用於紫外線微影的玻璃陶瓷及其製造方法

Country Status (7)

Country Link
US (2) US10551731B2 (zh)
JP (2) JP6688221B2 (zh)
KR (1) KR102279659B1 (zh)
CN (2) CN112759278A (zh)
SG (2) SG11201604722WA (zh)
TW (1) TWI654151B (zh)
WO (1) WO2015095803A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716508B (zh) * 2016-06-24 2023-08-15 克罗米斯有限公司 多晶陶瓷衬底及其制造方法
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP6947914B2 (ja) 2017-08-18 2021-10-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧高温下のアニールチャンバ
CN117936420A (zh) 2017-11-11 2024-04-26 微材料有限责任公司 用于高压处理腔室的气体输送系统
JP2021503714A (ja) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧処理システムのためのコンデンサシステム
CN111656510A (zh) 2018-02-22 2020-09-11 应用材料公司 处理掩模基板以实现更佳的膜质量的方法
KR20230079236A (ko) 2018-03-09 2023-06-05 어플라이드 머티어리얼스, 인코포레이티드 금속 함유 재료들을 위한 고압 어닐링 프로세스
TWI676237B (zh) * 2018-05-02 2019-11-01 世界先進積體電路股份有限公司 半導體結構、高電子遷移率電晶體及半導體結構製造方法
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10453947B1 (en) 2018-06-12 2019-10-22 Vanguard International Semiconductor Corporation Semiconductor structure and high electron mobility transistor with a substrate having a pit, and methods for fabricating semiconductor structure
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
DE102019110706A1 (de) 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zum herstellen von euv-fotomasken
US11106126B2 (en) * 2018-09-28 2021-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing EUV photo masks
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
TW202142949A (zh) * 2020-04-23 2021-11-16 美商應用材料股份有限公司 極紫外光遮罩毛胚缺陷之減少

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164998A1 (en) * 2002-03-01 2003-09-04 The Regents Of The University Of California Ion-assisted deposition techniques for the planarization of topological defects
US20050118533A1 (en) * 2002-03-01 2005-06-02 Mirkarimi Paul B. Planarization of substrate pits and scratches
US6835503B2 (en) * 2002-04-12 2004-12-28 Micron Technology, Inc. Use of a planarizing layer to improve multilayer performance in extreme ultra-violet masks
US6908713B2 (en) * 2003-02-05 2005-06-21 Intel Corporation EUV mask blank defect mitigation
DE102004008824B4 (de) * 2004-02-20 2006-05-04 Schott Ag Glaskeramik mit geringer Wärmeausdehnung sowie deren Verwendung
US20050197424A1 (en) 2004-03-05 2005-09-08 Canon Kabushiki Kaisha Ink composition, method of producing ink composition, method of applying liquid using the ink composition and apparatus therefor
US7524735B1 (en) 2004-03-25 2009-04-28 Novellus Systems, Inc Flowable film dielectric gap fill process
US7432201B2 (en) 2005-07-19 2008-10-07 Applied Materials, Inc. Hybrid PVD-CVD system
US7712333B2 (en) * 2006-03-29 2010-05-11 Asahi Glass Company, Limited Method for smoothing a surface of a glass substrate for a reflective mask blank used in EUV lithography
US7825038B2 (en) * 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
JP5076620B2 (ja) * 2006-06-07 2012-11-21 旭硝子株式会社 ガラス基板表面の平滑化方法
JP2008118118A (ja) * 2006-10-13 2008-05-22 Asahi Glass Co Ltd Euvマスクブランク用の基板表面を平滑化する方法、および該方法により得られるeuvマスクブランク
US8449942B2 (en) * 2009-11-12 2013-05-28 Applied Materials, Inc. Methods of curing non-carbon flowable CVD films
NL2007768A (en) 2010-12-14 2012-06-18 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
US9097994B2 (en) * 2012-01-27 2015-08-04 Sematech, Inc. Abrasive-free planarization for EUV mask substrates

Also Published As

Publication number Publication date
JP6688221B2 (ja) 2020-04-28
US20160377972A1 (en) 2016-12-29
WO2015095803A1 (en) 2015-06-25
JP2017501954A (ja) 2017-01-19
KR102279659B1 (ko) 2021-07-19
KR20160102496A (ko) 2016-08-30
CN112759278A (zh) 2021-05-07
US11493841B2 (en) 2022-11-08
US20200142292A1 (en) 2020-05-07
CN105829259A (zh) 2016-08-03
JP2020117435A (ja) 2020-08-06
SG10201805220TA (en) 2018-08-30
TW201529506A (zh) 2015-08-01
SG11201604722WA (en) 2016-07-28
JP6889792B2 (ja) 2021-06-18
US10551731B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
TWI654151B (zh) 用於紫外線微影的玻璃陶瓷及其製造方法
JP7285682B2 (ja) 平坦化された極端紫外線リソグラフィブランク及びそのための製造及びリソグラフィシステム
JP6420310B2 (ja) 超平滑層紫外線リソグラフィミラー及びブランク、及びそのための製造及びリソグラフィシステム
TWI609231B (zh) 非晶層極紫外光微影術空白板以及用於製造該空白板的方法與微影術系統
KR101271644B1 (ko) 마스크블랭크용 기판
KR20140027314A (ko) 마스크 블랭크용 기판, 마스크 블랭크, 반사형 마스크 블랭크, 전사 마스크, 및 반사형 마스크, 그리고 그들의 제조방법
JP6233538B2 (ja) マスクブランク用基板およびマスクブランク
TWI754009B (zh) 光罩基底
TW202217430A (zh) Euvl用玻璃基板、及euvl用光罩基底
TW202232230A (zh) Euvl用玻璃基板、及euvl用光罩基底
JP2008116571A (ja) マスクブランク用基板の製造方法及びマスクブランクの製造方法、並びに転写マスクの製造方法
JP2022073953A (ja) Euvl用ガラス基板、及びeuvl用マスクブランク
JP2022073952A (ja) Euvl用ガラス基板、及びeuvl用マスクブランク