TWI633058B - 用於對多晶矽顆粒進行分級及除塵的設備及方法 - Google Patents

用於對多晶矽顆粒進行分級及除塵的設備及方法 Download PDF

Info

Publication number
TWI633058B
TWI633058B TW105111599A TW105111599A TWI633058B TW I633058 B TWI633058 B TW I633058B TW 105111599 A TW105111599 A TW 105111599A TW 105111599 A TW105111599 A TW 105111599A TW I633058 B TWI633058 B TW I633058B
Authority
TW
Taiwan
Prior art keywords
screening device
polycrystalline silicon
particles
silicon particles
dust
Prior art date
Application number
TW105111599A
Other languages
English (en)
Other versions
TW201704150A (zh
Inventor
麥可 佛列克
馬丁 布里克塞爾
羅伯特 安古寶
雷納 奧斯維斯
Original Assignee
瓦克化學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瓦克化學公司 filed Critical 瓦克化學公司
Publication of TW201704150A publication Critical patent/TW201704150A/zh
Application granted granted Critical
Publication of TWI633058B publication Critical patent/TWI633058B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/08Separating solids from solids by subjecting their mixture to gas currents while the mixtures are supported by sieves, screens, or like mechanical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/06Feeding or discharging arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/16Feed or discharge arrangements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明係關於一種用於對多晶矽顆粒進行分級及除塵的方法,其中將多晶矽顆粒送入一篩分裝置中,利用一個或多個篩面將其劃分成二個或更多個級分,其中在該篩分裝置中藉由多晶矽顆粒的拋擲運動(throwing motion)由多晶矽顆粒中移除黏附的粉塵微粒,其中利用送入該篩分裝置中的氣流將移除的粉塵微粒由該篩分裝置排出,其中該篩分裝置具有氣密性設計,且送入及排出之該氣流使得篩分裝置相對於環境處於正壓,以及適合於實施該方法的設備。

Description

用於對多晶矽顆粒進行分級及除塵的設備及方法
本發明提供一種用於對多晶矽顆粒進行分級及除塵的設備及方法。
多晶體矽顆粒(granular polycrystalline silicon)或簡稱多晶矽顆粒(granular polysilicon)是在一流化床反應器中生產。這是藉由在一流化床中使用一氣體流流化矽微粒,並使用一加熱裝置將該床加熱至高溫來完成。含矽反應氣體的添加引起在熱的微粒表面處的熱解反應。於矽微粒上之沉積元素矽及個別微粒的直徑增大。有規律地取出直徑長大的微粒並且添加相對較小的矽微粒作為晶種微粒,使得該方法可以連續地實施,具有所有的其所伴隨的優點。作為含矽的反應物氣體,可以使用矽-鹵素化合物(例如氯矽烷或溴矽烷)、單矽烷(SiH4 )及這些氣體與氫的混合物。
多晶矽顆粒通常在其製備之後利用篩分裝置劃分(分級)成二個或更多個級分或等級。隨後可以在磨機中將最小的篩分級分(篩下料)處理成晶種微粒並添加至反應器中。篩分目標級分則通常包裝並運輸至客戶。客戶特別是將多晶矽顆粒用於根據Czochralski法(Cz法)生長單晶。
使用篩分機進行分級。概括而言篩分機是用於篩分的機器,即,用於根據粒徑分離固體混合物的機器。盤式振盪篩分機與搖動篩分機之運動特點係不同的。篩分機通常藉由電磁方式或者不平衡馬達或驅動器所驅動。篩盤的運動在篩網縱向方向上輸送進料材料,並促使細小級分通過篩孔。與盤式振盪篩分機不同,搖動篩分機實施了垂直以及水平篩分加速。
在搖動篩分機中,垂直拋擲運動與溫和的旋轉運動結合。其效果為,試樣材料被分佈在篩盤的全部區域,而微粒同時歷經垂直加速(被向上拋起)。微粒可在空氣中進行自由旋轉,並在落回至篩網時與篩網布的網孔相比較。若微粒小於網孔,其穿過篩網,若微粒大於網孔,其被再次向上拋起。旋轉運動確保微粒在下一次撞擊篩網布時具有不同的方向,因此最終可穿過篩孔。
在平面篩分機中,篩分塔在一平面上進行水平盤旋運動。其結果是,微粒在絕大部分下在篩網布上保持其方向。針對針狀、小片狀、細長或纖維狀的篩分物料,較佳使用平面篩分機,其中將試樣材料向上拋起不一定是有利的。
一種特殊的類型為多層篩分機(multideck screening machine),其可以同時分級多種粒徑。其是針對在中等粒徑至超細粒徑範圍內的多種清晰分離(sharp separations)而設計的。多層平面篩分機的驅動原理是基於在相反的方向運行以產生一線性振動的二個不平衡馬達。所篩分的材料以直線在水平分離表面上方運動。該機器以低振動加速度運行。使用積木式系統(building block system)可以將多個篩板組裝成篩網堆疊(screen stack)。由此,在需要時,可以在單一機器中產生不同的粒徑,不必更換篩盤。通過多次重複相同的篩板序列,可以使篩分材料用到大量的篩網面積。
US 7,959,008 B2請求保護一種藉由沿著第一篩面輸送顆粒從而由包含第一微粒及第二微粒的顆粒篩分出第一微粒的方法,其中在該面與沿著篩面延伸的蓋之間沿著該篩面輸送該顆粒,通過該蓋使第一微粒以其長軸沿著該篩面延伸的方式排列,其中每個第一微粒的縱向延伸度大於形成第一篩面的篩的網孔寬度,且第二微粒的縱向延伸度等於或小於該網孔寬度。根據該方法,在上游的篩級中移除粉塵微粒。藉由拋擲運動使鬆散地黏附的微米尺寸的粉塵微粒脫離,並通過在篩板上方及/或下方的一吸除裝置由篩分裝置排出。
US 2012/0052297 A1揭露了一種使用壓縮空氣或乾冰對以顆粒狀或棒狀、碎棒狀或碎塊狀存在的多晶體矽進行除塵的方法,無需任何濕化學處理以由多晶體矽去除矽塵。
US 2014/0262981 A1描述了一種對多晶矽顆粒進行除塵的設備及方法。在此,多晶矽顆粒落在位於以圓柱形成型的有襯裡的容器中的一圓錐形分配器(conical distributor)上,由此使多晶矽顆粒轉向成徑向向外方向的運動。噴嘴位於圓錐形分配器下方,由此將一惰性氣體注入該容器中,從而將脫離的粉塵在相對於流入的多晶矽顆粒的逆流中經由分離的連接件排出。為了額外地促進該排出過程,可以對排出接頭施加真空。
US 6,609,870 B2描述了一種多晶矽顆粒的氣動輸送系統,其包含一除塵裝置。在該系統中多晶矽顆粒係由第一容器經由導管藉由氣動方式垂直向上輸送至第二容器中。在該第二容器中,多晶矽顆粒係藉由重力經由導板輸送至一接收容器中。通過與導板接觸,使粉塵由多晶矽顆粒發生移動,並通過位於上方的氣流藉由抽吸加以移除。
已知,多晶體矽顆粒具有表面黏附的粉塵微粒。該黏附的粉塵微粒較佳為尺寸小於10 微米的微粒。這些黏附的粉塵微粒係上述加工產生的矽微粒,來自固體運輸的塑膠或金屬磨屑(attritus),或者是任何來自環境的有機/無機微粒。
這些粉塵微粒因為在熔化時漂浮並由此在CZ拉伸時會導致黏著問題,所以對進一步加工造成不利影響。此外,導管及接頭配件由於這些粉塵微粒而發生積垢。此外,粉塵微粒由於其大的比表面積所以是潛在的污染物載體。
因此存在移除這些粉塵微粒的需要。
在先前技術中,通過在個別裝置中在為此提供的表面上的衝擊效應,或者藉由在篩分過程中的運動,使表面黏附的粉塵微粒發生移動。該發生移動的粉塵微粒通過吸除裝置由該設備排出。在某些情況下藉由一氣體之注入促進該吸除過程。
據觀察,在先前技術中多晶矽顆粒在除塵時被環境污染。這歸因於,來自環境的雜質被吸入篩分裝置中。
由該問題產生了本發明所要實現的目的。
本發明的目的藉由以下方法實現:一種用於對多晶矽顆粒進行分級及除塵的方法,其中將多晶矽顆粒送入一篩分裝置中,利用一個或多個篩面將其劃分成二個或更多個級分,其中在該篩分裝置中藉由多晶矽顆粒的拋擲運動由多晶矽顆粒中移除黏附的粉塵微粒,其中利用送入該篩分裝置中的氣流將移除的粉塵微粒由篩分裝置排出,其中該篩分裝置具有氣密性設計,且送入及排出之該氣流使得篩分裝置相對於環境處於正壓。
該目的也藉由用於對多晶矽顆粒進行分級及除塵的設備實現,其包含具有整合的多晶矽顆粒除塵作用的一篩分裝置、用於將多晶矽顆粒送入篩分裝置中的一單元、一個或多個篩面、利用注入篩分裝置中的氣流排出粉塵微粒的一排出區域,其中該篩分裝置具有氣密性設計,且篩分裝置相對於環境處於正壓。
該方法提供了藉由篩分裝置的篩面上的拋擲運動使黏附的粉塵微粒由多晶矽顆粒脫離。
該篩分裝置係氣密性設計。該篩分裝置較佳包含一蓋及一底部。較佳在該篩分過程中在篩分裝置的蓋上均勻地注入氣流,由此將粉塵微粒在相對於微粒流的同向流中輸送至位於篩分裝置的底部的排出口。將粉塵微粒作為一單獨級分在篩分裝置的底部移除。
為了在除塵中排除周圍環境的影響,在篩分裝置中的除塵係在相對於環境的正壓下進行。
為了確保對篩分裝置施加恆定的正壓,較佳通過一閉環控制電路(closed-loop control circuit)控制氣體的送入及排出。在先前技術中,吸除過程導致在該篩槽中相對於環境處於一負壓。該設備的任何輕微的洩漏或者允許與周圍環境氣體交換的一設備佈置會將雜質由環境吸入該設備中,該雜質會導致多晶矽顆粒之表面污染。
這在本發明中可以藉由將特徵「 篩分裝置的氣密性設計」及「在相對於環境的正壓下運行」相結合而加以避免。
該氣流促進的是粉塵微粒的排出,而不是粉塵微粒由多晶矽顆粒的脫離。藉由在篩分裝置中多晶矽顆粒的拋擲運動及藉由在進料(task)過程中的衝擊效應實現粉塵微粒的脫離。
該氣流在相對於微粒流的同向流中被提供。
在一個實施態樣中,用於將該多晶矽顆粒送入篩分裝置中的單元是一計量單元。
較佳在用於供應多晶矽顆粒的該單元中,較佳地在一計量單元中,及經由篩分裝置的蓋,注入氣體。
為了確保在篩分裝置中氣體的均勻化及避免自由噴流(free jet)進入篩分裝置中,較佳經由設置在篩分裝置的蓋上的過濾墊(微孔塑性體)均勻地注入氣體。
同樣可以經由傳統噴嘴進行注入。
通過篩分裝置的蓋上的過濾墊的氣體注入點的數量可以任意改變,條件是連接件可以在安裝方面技術上可行地設置在篩分裝置的蓋上。
較佳的數量是在蓋上每平方米篩面1至50個注入點,特別較佳地為在蓋上每平方米篩面30至40個注入點。
在向過濾墊供應氣體方面,每個注入點用一專用的氣流供應及控制,或者注入點以具有最多10個注入點的群組共同地供應及控制。
當向多個注入點的一群組共同地供應氣體,則氣體注入應當在其上游設置一橫截面收縮(例如經由孔板(perforated plates)或經由第拉瓦噴嘴(de Laval nozzles)),從而在注入點處實現相等的體積流量。
為了進一步促進粉塵微粒的排出,在篩分裝置的底部以該排出之方向注入氣體。
藉由最後的篩級由粉塵級分分離出篩分材料的最小的產品級分,從而將該粉塵經由篩分裝置的底部經由一專用的出口排出。
通過不同的氣體注入點在篩分裝置中實現最佳的流量分佈(flow profile),從而能夠盡可能最佳地由篩分裝置氣動地排出粉塵微粒。
為了進一步進行除塵,產品級分較佳在各個排出導管中額外地施加氣體的逆流。
各個排出導管的裝載有粉塵微粒的氣流與來自篩分裝置的粉塵的排出導管相接合。
調節裝載有粉塵微粒的廢氣流的體積流量,使得在篩分裝置中相對於環境處於一正壓。
此外通過調節確保藉由在篩分裝置下方的逆流除塵,沒有粉塵微粒吹回至篩分裝置中。
篩分裝置中的平均氣體流速應當為0.1至0.4 公尺/秒,特別較佳為0.2至0.3 公尺/秒。
平均氣體流速可以由供應的可測量的氣體體積流量計算出。
例如可以通過在標準條件下基於篩面約200 立方公尺/(小時 平方公尺)的氣體通過量實現0.2 公尺/秒的平均氣體流速。
篩分裝置應當相對於環境處於5至50 毫巴、較佳10至20 毫巴的正壓。
在離開篩分裝置之後,較佳以氣動方式輸送粉塵微粒。
此可以藉由經由一氣體供應單元(藉由與文托利噴嘴(Venturi nozzle)相似的原理)將氣體送至排出管而實現。
較佳經由一過濾單元由排出的氣流移除細小粉塵。
可以將淨化的氣體作為廢氣排放至環境,或者重新送入氣體供應裝置並進行再循環。
合適的氣體包含淨化的空氣、氮氣或其他惰性氣體。
為了避免由於逸出粉塵導致氣體損失、氧含量降低及提高的微粒濃度,必須以如下方式建構根據本發明的篩分裝置,不可將注入的氣體逸出至篩分裝置周邊的工作區域中。
然而若篩分裝置發生洩漏,則採用相對於環境的正壓的運行模式以確保沒有外部雜質可以進入篩分裝置中。
該運行模式排除了由環境造成表面污染的風險。
藉由測量篩分裝置中的壓力及藉由相應地調節除塵氣體的送入及排出,確保在該設備中相對於環境恆定地處於正壓。
關於本發明方法的上述實施態樣提到的特徵可以相應地應用到根據本發明的設備。反之,關於本發明設備的上述實施態樣提到的特徵也可以相應地應用到根據本發明的方法。根據本發明的實施態樣的這些及其他的特徵在附圖的說明及申請專利範圍中加以闡述。個別特徵可以單獨地或者相結合地理解為本發明的實施態樣。該等特徵可以進一步描述適合於保護其自身權利的有利實施方案。
1 所示為用於對多晶矽顆粒進行分級及除塵的設備的示意性結構。
該篩分裝置1 包含蓋3 及底部4 。利用產品供應裝置2 注入待分級及除塵的多晶矽顆粒。為了進行分級,提供篩面/篩板5 。經由氣體供應裝置6 注入氣體。裝載有粉塵微粒的氣體經由氣體排出裝置7 由篩分裝置1 排出。提供粉塵微粒的過濾裝置8 ,利用該裝置可以由排出的氣流移除細小粉塵。將多晶矽顆粒分級成為三個級分(篩下料、目標粒徑、篩上料)。針對這三個級分,提供排出口91011比較實施例及實施例
在比較實施例及實施例中,測定以不同的方式分級及除塵的多晶矽顆粒上細小粉塵、表面碳、硼、磷及鈉的濃度。
表面上的碳濃度根據在US 2013/0216466 A1中詳細描述的所謂的LECO法加以測定。
根據SEMI MF 1398在由多晶材料生產的FZ單晶(SEMI MF 1723)的單晶試樣上藉由光致發光測定硼及磷。
依據ASTM 1724-01藉由ICP-MS(電感耦合等離子質譜(inductively coupled plasma mass spectrometry))測定金屬濃度(鈉)。
依據DE 10 2010 039754 A1的過程洗去細小粉塵。細小粉塵含量並不是利用粒徑測量裝置測量,而是藉由UV/Vis光譜以測量光度的方式測定粉塵含量。UV/Vis譜是利用紫外線(UV)及可見光(VIS)的電磁波的光譜。
比較實施例(非本發明)
比較實施例 使用根據先前技術的一篩分裝置(參見WO 2015/032584 A1),其中將粉塵由篩分區域藉由抽吸加以移除。然而篩分裝置並不是向外封閉的。由於吸除粉塵及與此相關地由周圍環境吸入空氣,雜質可以到達產品表面。
1 所示為5個試樣的結果以及平均值。
1<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>參數</b></td><td> 試樣1 </td><td> 試樣2 </td><td> 試樣3 </td><td> 試樣4 </td><td> 試樣5 </td><td> 平均值 </td></tr><tr><td><b>細小粉塵</b> [百萬分之一(重量)(ppmw)] </td><td> 3.5 </td><td> 3.7 </td><td> 3.5 </td><td> 3.7 </td><td> 3.6 </td><td> 3.6 </td></tr><tr><td><b>表面碳</b> [百萬分之一(重量)(ppmw)] </td><td> 0.251 </td><td> 0.269 </td><td> 0.243 </td><td> 0.26 </td><td> 0.238 </td><td> 0.2522 </td></tr><tr><td><b>硼</b> [兆分之一(原子)(ppta)] </td><td> 21 </td><td> 25 </td><td> 28 </td><td> 31 </td><td> 25 </td><td> 26 </td></tr><tr><td><b>磷</b> [兆分之一(原子)(ppta)] </td><td> 110 </td><td> 126 </td><td> 119 </td><td> 132 </td><td> 112 </td><td> 119.8 </td></tr><tr><td><b>鈉</b> [十億分之一(重量)(ppbw)] </td><td> 0.21 </td><td> 0.18 </td><td> 0.44 </td><td> 0.2 </td><td> 0.13 </td><td> 0.232 </td></tr></TBODY></TABLE>
在實施例中,採用根據本發明的方法/根據本發明的設備(氣密性篩分裝置,在相對於環境的正壓下運行)。此外,改變篩分裝置中的氣體通過量及由此改變流量。
實施例 1
供應的體積流量在標準條件下基於每單位用於沖洗的篩面為100 立方公尺/(小時 平方公尺)。
2 所示為5個試樣的結果以及平均值。
2<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>參數</b></td><td> 試樣1 </td><td> 試樣2 </td><td> 試樣3 </td><td> 試樣4 </td><td> 試樣5 </td><td> 平均值 </td></tr><tr><td><b>細小粉塵</b> [百萬分之一(重量)(ppmw)] </td><td> 3.4 </td><td> 3.1 </td><td> 3.5 </td><td> 3.4 </td><td> 3.2 </td><td> 3.32 </td></tr><tr><td><b>表面碳</b>[百萬分之一(重量)(ppmw)] </td><td> 0.243 </td><td> 0.236 </td><td> 0.251 </td><td> 0.239 </td><td> 0.233 </td><td> 0.2404 </td></tr><tr><td><b>硼</b> [兆分之一(原子)(ppta)] </td><td> 15 </td><td> 14 </td><td> 12 </td><td> 16 </td><td> 18 </td><td> 15 </td></tr><tr><td><b>磷</b> [兆分之一(原子)(ppta)] </td><td> 80 </td><td> 65 </td><td> 74 </td><td> 83 </td><td> 68 </td><td> 74 </td></tr><tr><td><b>鈉</b> [十億分之一(重量)(ppbw)] </td><td> 0.12 </td><td> 0.09 </td><td> 0.15 </td><td> 0.14 </td><td> 0.16 </td><td> 0.132 </td></tr></TBODY></TABLE>
實施例 2
供應的體積流量在標準條件下基於每單位用於沖洗的篩面為200 立方公尺/(小時 平方公尺)。
3 所示為5個試樣的結果以及平均值。
3<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>參數</b></td><td> 試樣1 </td><td> 試樣2 </td><td> 試樣3 </td><td> 試樣4 </td><td> 試樣5 </td><td> 平均值 </td></tr><tr><td><b>細小粉塵</b> [百萬分之一(重量)(ppmw)] </td><td> 1.2 </td><td> 1.6 </td><td> 1.5 </td><td> 1.8 </td><td> 1.2 </td><td> 1.46 </td></tr><tr><td><b>表面碳</b> [百萬分之一(重量)(ppmw)] </td><td> 0.18 </td><td> 0.206 </td><td> 0.176 </td><td> 0.194 </td><td> 0.213 </td><td> 0.1938 </td></tr><tr><td><b>硼</b> [兆分之一(原子)(ppta)] </td><td> 12 </td><td> 13 </td><td> 16 </td><td> 15 </td><td> 15 </td><td> 14.2 </td></tr><tr><td><b>磷</b> [兆分之一(原子)(ppta)] </td><td> 69 </td><td> 83 </td><td> 76 </td><td> 71 </td><td> 84 </td><td> 76.6 </td></tr><tr><td><b>鈉</b> [十億分之一(重量)(ppbw)] </td><td> 0.1 </td><td> 0.14 </td><td> 0.13 </td><td> 0.11 </td><td> 0.14 </td><td> 0.124 </td></tr></TBODY></TABLE>
實施例 3
供應的體積流量在標準條件下基於每單位用於沖洗的篩面為400 立方公尺/(小時 平方公尺)。
4 所示為5個試樣的結果以及平均值。
4<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>參數</b></td><td> 試樣1 </td><td> 試樣2 </td><td> 試樣3 </td><td> 試樣4 </td><td> 試樣5 </td><td> 平均值 </td></tr><tr><td><b>細小粉塵</b> [百萬分之一(重量)(ppmw)] </td><td> 1.3 </td><td> 1.3 </td><td> 1.4 </td><td> 1.4 </td><td> 1.5 </td><td> 1.38 </td></tr><tr><td><b>表面碳</b> [百萬分之一(重量)(ppmw)] </td><td> 0.201 </td><td> 0.169 </td><td> 0.195 </td><td> 0.188 </td><td> 0.206 </td><td> 0.1918 </td></tr><tr><td><b>硼</b> [兆分之一(原子)(ppta)] </td><td> 15 </td><td> 16 </td><td> 13 </td><td> 15 </td><td> 18 </td><td> 15.4 </td></tr><tr><td><b>磷</b> [兆分之一(原子)(ppta)] </td><td> 85 </td><td> 62 </td><td> 76 </td><td> 71 </td><td> 87 </td><td> 76.2 </td></tr><tr><td><b>鈉</b> [十億分之一(重量)(ppbw)] </td><td> 0.13 </td><td> 0.14 </td><td> 0.12 </td><td> 0.14 </td><td> 0.12 </td><td> 0.13 </td></tr></TBODY></TABLE>
為了進一步加以說明, 2 6 作為細小粉塵、表面碳、硼、磷及鈉的參數的方塊折線圖顯示了比較實施 例和實施例1至3的結果。
實施例 1 3 可以看出,根據本發明的方法改善了除塵。
此外還可以看出,氣流的增大表現出除塵性能的進一步改善。
高於特定的沖洗體積流量,則不能實現進一步的改善。
在所示的實施例中,在標準條件下基於每單位篩面為200 立方公尺/(小時 平方公尺)與400 立方公尺/(小時 平方公尺)的體積流量之間,沒有測量到細小粉塵含量的進一步減少。
該特性表明,粉塵係藉由篩分運動發生移動。
較佳選擇最小氣體量為200 立方公尺/(小時 平方公尺),從而將由篩分區域移動的粉塵排出,及由此避免反向污染。
對於以塑膠殘餘物的形式黏附在多晶矽顆粒及矽粉塵微粒的表面上的表面碳,觀察到與細小粉塵相似的特性。粉塵微粒的排出,同時也影響了部分塑膠磨屑的排出。
對於元素硼及磷藉由氣密性運行模式在相對於環境的正壓下實現了改善。對於這些經由環境注入的元素,由於氣密性設計及正壓運行模式是產生這一效果的原因,因此沖洗氣體的量實質上是不重要的。
對於通常通過環境到達多晶矽顆粒上的元素Na,同樣通過相對於環境處於正壓的篩分裝置的氣密性設計,防止其進入該設備中。由此,相似於磷及硼,實現了相對於比較實施例 的數值之減少。
以上對示例性實施態樣的描述應理解為示例性的。由此公開的內容一方面能夠使本領域技術人員理解本發明及與其相關的優點,另一方面還涵括對於本領域技術人員而言明顯的對於所描述結構及方法的改變及修改。因此,申請專利範圍的保護範圍涵蓋所有的這樣的改變及修改以及其均等物。
1‧‧‧篩分裝置
2‧‧‧產品供應裝置
3‧‧‧篩分裝置的蓋
4‧‧‧篩分裝置的底部
5‧‧‧篩面/篩板
6‧‧‧氣體供應裝置
7‧‧‧裝載有粉塵微粒的氣體排出裝置
8‧‧‧粉塵微粒的過濾裝置
9‧‧‧篩下料排出級分
10‧‧‧目標粒徑排出級分
11‧‧‧篩上料排出級分
1 所示為用於對多晶矽顆粒進行分級及除塵的設備。
2 所示為根據先前技術(比較實施例)分級及除塵的多晶矽顆粒以及本發明的三個示例性實施態樣(根據本發明的分級及除塵)的細小粉塵濃度。
3 所示為根據先前技術(比較實施例)分級及除塵的多晶矽顆粒以及本發明的三個示例性實施態樣(根據本發明的分級及除塵)的表面碳濃度。
4 所示為根據先前技術(比較實施例)分級及除塵的多晶矽顆粒以及本發明的三個示例性實施態樣(根據本發明的分級及除塵)的硼濃度。
5 所示為根據先前技術(比較實施例)分級及除塵的多晶矽顆粒以及本發明的三個示例性實施態樣(根據本發明的分級及除塵)的磷濃度。
6 所示為根據先前技術(比較實施例)分級及除塵的多晶矽顆粒以及本發明的三個示例性實施態樣(根據本發明的分級及除塵)的鈉濃度。
:無。
:無。

Claims (8)

  1. 一種用於對多晶矽顆粒進行分級及除塵的方法,其中將多晶矽顆粒送入一篩分裝置中,利用一個或多個篩面將其劃分成二個或更多個級分,其中在該篩分裝置中藉由多晶矽顆粒的拋擲運動(throwing motion)由多晶矽顆粒中移除黏附的粉塵微粒,其中利用送入該篩分裝置中的氣流將移除的粉塵微粒由該篩分裝置排出,其中該篩分裝置具有氣密性設計,且送入及排出之該氣流使得該篩分裝置相對於環境處於正壓;並且其中該篩分裝置包含一蓋及一底部,在篩分過程中在該篩分裝置的蓋上均勻地注入氣流,由此將粉塵微粒在相對於微粒流的同向流中輸送至位於該篩分裝置的底部的一排出口,且作為一單獨級分在該篩分裝置的底部移除。
  2. 如請求項1所述的方法,其中利用一控制單元在該篩分裝置中建立相對於環境恆定的一正壓。
  3. 如請求項1或2所述的方法,其中利用一計量單元將該多晶矽顆粒送入該篩分裝置中。
  4. 如請求項1或2所述的方法,其中經由過濾墊將氣體導入該篩分裝置中。
  5. 如請求項1或2所述的方法,其中在該篩分裝置中,平均氣體流速為0.1至0.4公尺/秒。
  6. 如請求項1或2所述的方法,其中該篩分裝置相對於環境處於5至50毫巴的正壓。
  7. 如請求項1或2所述的方法,其中送入的氣流的體積流量在標準條件下按該篩分裝置的每單位篩面為至少200立方公尺/(小時 平方公尺)。
  8. 一種用於對多晶矽顆粒進行分級及除塵的設備,其包含具有整合的多晶矽顆粒除塵作用的一篩分裝置、用於將多晶矽顆粒送入該篩分裝置中的一單元、一個或多個篩面、利用注入該篩分裝置中的氣流排出粉塵微粒的一排出區域,其中該篩分裝置具有氣密性設計,且該篩分裝置相對於環境處於正壓;並且其中該篩分裝置包含一蓋及一底部,在篩分過程中在該篩分裝置的蓋上均勻地注入氣流,由此將粉塵微粒在相對於微粒流的同向流中輸送至位於該篩分裝置的底部的一排出口,且作為一單獨級分在該篩分裝置的底部移除。
TW105111599A 2015-04-16 2016-04-14 用於對多晶矽顆粒進行分級及除塵的設備及方法 TWI633058B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102015206849.8 2015-04-16
DE102015206849.8A DE102015206849A1 (de) 2015-04-16 2015-04-16 Vorrichtung und Verfahren zur Klassierung und Entstaubung von Polysiliciumgranulat

Publications (2)

Publication Number Publication Date
TW201704150A TW201704150A (zh) 2017-02-01
TWI633058B true TWI633058B (zh) 2018-08-21

Family

ID=55755568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105111599A TWI633058B (zh) 2015-04-16 2016-04-14 用於對多晶矽顆粒進行分級及除塵的設備及方法

Country Status (10)

Country Link
US (1) US10335832B2 (zh)
EP (1) EP3283237B1 (zh)
JP (1) JP6462144B2 (zh)
KR (1) KR102061717B1 (zh)
CN (1) CN107530737B (zh)
CA (1) CA2974255C (zh)
DE (1) DE102015206849A1 (zh)
MY (1) MY180420A (zh)
TW (1) TWI633058B (zh)
WO (1) WO2016165959A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225248A1 (de) 2016-12-16 2018-06-21 Siltronic Ag Abscheidevorrichtung für Polysilicium
EA202091499A1 (ru) 2017-12-20 2020-10-16 ДСМ АйПи АССЕТС Б.В. Синтез алкил 2-ацетил-5,9,13-триметилтетрадека-4,8,12-триеноатов и их производных периодическим способом
DE102020201847A1 (de) 2020-02-14 2021-08-19 Wacker Chemie Ag Klassierung von gemahlenem Silicium
CN111359869A (zh) * 2020-02-26 2020-07-03 江苏鑫华半导体材料科技有限公司 电子级多晶硅筛分装置和方法
US11760690B2 (en) * 2020-07-19 2023-09-19 KLAW Industries LLC Recycled glass pozzolan for concrete
CN112680782A (zh) * 2021-01-23 2021-04-20 漯河市鸿秀商贸有限公司 焰熔法生长钛酸锶单晶体的原料粉碎装置及使用方法
CN114769219A (zh) * 2022-03-28 2022-07-22 江苏鑫华半导体科技股份有限公司 利用干冰对电子级多晶硅进行清洗的方法
CN114558778B (zh) * 2022-04-29 2022-07-05 中国空气动力研究与发展中心计算空气动力研究所 一种微米级粉体物料可控分级气流筛及筛分方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201509548A (zh) * 2013-09-09 2015-03-16 Wacker Chemie Ag 將多晶矽分級

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015355A (en) * 1932-03-25 1935-09-24 Diamond Power Speciality Dedusting apparatus
US3871846A (en) * 1965-09-30 1975-03-18 Wolfgang Berz Dust filter arrangement
JPS5575769A (en) * 1978-12-04 1980-06-07 Babcock Hitachi Kk Dust separator of catalyst
US4300921A (en) * 1980-03-04 1981-11-17 Rexnord, Inc. Apparatus and method for removing finely divided solids from gases
US4452613A (en) * 1982-02-16 1984-06-05 Rexnord Inc. Vertical media bed filter and method of cleaning filter panels
JPH0543912Y2 (zh) * 1986-01-16 1993-11-05
US4790865A (en) * 1986-05-30 1988-12-13 Demarco Thomas Two compartment industrial dust collector
JPS6328181U (zh) 1986-08-07 1988-02-24
US5083577A (en) * 1990-09-27 1992-01-28 Brown & Williamson Tobacco Corporation Apparatus for metering tobacco
DE4240047C2 (de) 1991-06-01 2001-10-04 Hans J Altmeyer Vibrations-Feinsieb und Verfahren zum Betreiben des Siebes
AT401019B (de) 1993-06-22 1996-05-28 Zipfinger Erwin Ing Filter
JP2848776B2 (ja) * 1994-01-06 1999-01-20 鐘紡株式会社 供給装置
US6609870B2 (en) 2001-10-23 2003-08-26 Memc Electronic Materials, Inc. Granular semiconductor material transport system and process
JP2004181442A (ja) * 2002-12-05 2004-07-02 Meiji Kikai Kk 粉粒体の振動気流分級純化装置
CN2628165Y (zh) * 2003-05-18 2004-07-28 唐山市神州机械有限公司 复合式干法选煤装置
EP1656219A1 (en) * 2003-07-21 2006-05-17 Pirelli & C. S.p.A. Systems and methods for cleaning a batch of granular material
US7291222B2 (en) * 2004-06-18 2007-11-06 Memc Electronic Materials, Inc. Systems and methods for measuring and reducing dust in granular material
KR200393681Y1 (ko) * 2005-06-03 2005-08-26 주식회사 덕영엔지니어링 이물 선별기
US20080230446A1 (en) * 2005-08-26 2008-09-25 Miele & Cie Kg Method For Treating Dust And Devices For Carrying Out This Method
US20070287018A1 (en) * 2006-06-09 2007-12-13 Georgia-Pacific Resins, Inc. Fibrous mats having reduced formaldehyde emissions
DE102007052473A1 (de) 2007-11-02 2009-05-07 Schott Solar Gmbh Verfahren und Vorrichtung zum Aussieben von Partikeln
JP4889663B2 (ja) * 2008-02-07 2012-03-07 株式会社セイシン企業 気流式ふるい分け方法および装置
CN201175700Y (zh) * 2008-03-06 2009-01-07 柏飞 抛射式颗粒物料分选装置
CN103787336B (zh) 2008-09-16 2016-09-14 储晞 生产高纯颗粒硅的方法
US8118973B2 (en) * 2010-02-17 2012-02-21 Johns Manville Method of applying de-dusting agents to fibrous products and products
DE102010039752A1 (de) 2010-08-25 2012-03-01 Wacker Chemie Ag Polykristallines Silicium und Verfahren zu dessen Herstellung
DE102010039754B4 (de) 2010-08-25 2013-06-06 Wacker Chemie Ag Verfahren zur Bestimmung der Konzentration an Feinstaub in Silicium-Schüttgütern
DE102012202640A1 (de) 2012-02-21 2013-08-22 Wacker Chemie Ag Polykristallines Siliciumbruchstück und Verfahren zur Reinigung von polykristallinen Siliciumbruchstücken
CN202621464U (zh) * 2012-04-17 2012-12-26 福建铁拓机械有限公司 一种干混砂浆生产线中气流结合振动的干砂分级筛系统
US8833564B1 (en) 2013-03-13 2014-09-16 Sunedison Semiconductor Limited Systems and methods for reducing dust in granular material
CN203408893U (zh) * 2013-06-27 2014-01-29 福建铁拓机械有限公司 一种新型干砂分级筛

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201509548A (zh) * 2013-09-09 2015-03-16 Wacker Chemie Ag 將多晶矽分級

Also Published As

Publication number Publication date
EP3283237A1 (de) 2018-02-21
CA2974255A1 (en) 2016-10-20
CN107530737A (zh) 2018-01-02
TW201704150A (zh) 2017-02-01
CA2974255C (en) 2019-05-14
KR102061717B1 (ko) 2020-01-02
JP6462144B2 (ja) 2019-01-30
WO2016165959A1 (de) 2016-10-20
WO2016165959A8 (de) 2017-07-13
EP3283237B1 (de) 2021-10-27
US10335832B2 (en) 2019-07-02
JP2018508356A (ja) 2018-03-29
US20180104720A1 (en) 2018-04-19
MY180420A (en) 2020-11-28
DE102015206849A1 (de) 2016-10-20
KR20170130581A (ko) 2017-11-28
CN107530737B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
TWI633058B (zh) 用於對多晶矽顆粒進行分級及除塵的設備及方法
CA2923110C (en) Classifying polysilicon
JP5149386B2 (ja) 補助材料を導入するための方法と装置
KR101424288B1 (ko) 클린 벤치 및 단결정 실리콘용 원료의 제조 방법
JP6420777B2 (ja) 清浄化された多結晶シリコン塊破砕物の製造装置、及び該製造装置を用いた、清浄化された多結晶シリコン塊破砕物の製造方法
KR101817047B1 (ko) 다결정 실리콘 파쇄물, 다결정 실리콘 파쇄물의 제조 방법 및 다결정 실리콘 덩어리 파쇄 장치
CN103420374A (zh) 多晶硅
US11059072B2 (en) Screen plate for screening plants for mechanical classification of polysilicon
JP7005627B2 (ja) ポリシリコンのための分離装置
CN209424065U (zh) 一种高分子物料粉末颗粒去杂震动筛选箱
JP2004529770A5 (zh)
EA019271B1 (ru) Аэродинамическая установка для сухого обогащения дисперсных материалов