TWI614135B - 適用於光學耦合層之含有表面改質高指數奈米粒子的組合物 - Google Patents

適用於光學耦合層之含有表面改質高指數奈米粒子的組合物 Download PDF

Info

Publication number
TWI614135B
TWI614135B TW102107119A TW102107119A TWI614135B TW I614135 B TWI614135 B TW I614135B TW 102107119 A TW102107119 A TW 102107119A TW 102107119 A TW102107119 A TW 102107119A TW I614135 B TWI614135 B TW I614135B
Authority
TW
Taiwan
Prior art keywords
coupling layer
optical coupling
optical
layer
surface treatment
Prior art date
Application number
TW102107119A
Other languages
English (en)
Other versions
TW201334970A (zh
Inventor
郝恩才
阿朵 強纳森 阿摩歐 阿尼姆
蓋 道格拉斯 裘利
西爾吉 拉曼斯祺
詹姆士 派翠克 迪茲歐
Original Assignee
3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M新設資產公司 filed Critical 3M新設資產公司
Publication of TW201334970A publication Critical patent/TW201334970A/zh
Application granted granted Critical
Publication of TWI614135B publication Critical patent/TWI614135B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明描述一種使光學膜耦合至基板之方法,含有光學膜及安置於該光學膜之表面層上之光學耦合層的層壓光學構造,及適用於光學耦合層之塗佈組合物。塗佈組合物含有至少40重量%之折射率為至少1.85之無機奈米粒子及聚合矽烷表面處理劑。

Description

適用於光學耦合層之含有表面改質高指數奈米粒子的組合物
有機發光二極體(OLED)裝置包括包夾在陰極與陽極之間的電致發光有機材料之薄膜,其中此等電極中之一或兩者為透明導體。當在裝置兩端施加電壓時,電子及電洞自其各別電極注入且在電致發光有機材料中藉由中間形成發射激子而重組。
在OLED裝置中,所產生之光由於在裝置結構內之過程通常損失70%以上。在較高指數有機層及氧化銦錫(ITO)層與較低指數基板層之間的界面處之光捕獲為此不良提取效率之主要原因。僅相對少量之發射光作為「有用」光穿過透明電極。大部分光經歷內部反射,其使得光自裝置邊緣射出或在裝置內捕獲且在反覆通過之後在裝置內吸收而最終損失。
出於增加有用光量之目的,已描述多種光提取膜以供OLED裝置使用。行業將發現適用於使光提取膜耦合至OLED裝置之組合物的優點。
在一個實施例中,描述一種耦合光學膜之方法,其包括:
1)提供光學膜;2)提供基板;3)將光學耦合層施加於光學膜、基板或其組合之表面層;其中該光學耦合層含有折射率為至少1.85之至 少40重量%無機奈米粒子及聚合矽烷表面處理劑;及4)將光學膜層壓至基板以形成層壓光學構造。
在其他實施例中,描述層壓光學構造,其含有光學膜;安置於該光學膜之表面層上之光學耦合層。光學耦合層含有折射率為至少1.85之至少40重量%無機奈米粒子及聚合矽烷表面處理劑。使基板黏結至光學膜之相對表面處之光學耦合層。在一些實施例中,將該方法及層壓光學構造之光學耦合層安置於光學膜之表面層上,其中該表面層之折射率為至少1.60。在一個實施例中,層壓光學構造為中間體。在此實施例中,基板可為離型襯墊。隨後可將此中間體提供給OLED製造商,其移除離型襯墊且使光學耦合層黏結至光學基板,諸如有機發光二極體(OLED)裝置。
在另一實施例中,描述塗佈組合物,其含有折射率為至少1.85之至少40重量%無機奈米粒子及聚合矽烷表面處理劑。在一個實施例中,塗佈組合物可完全由經表面處理之無機奈米粒子組成,亦即,塗佈組合物可不含(甲基)丙烯酸酯單體,尤其分子量為1,000公克/莫耳或小於1,000公克/莫耳之單體。
如本文所用之「光學膜」一般係指透光膜。通常以將光學膜安置於光源與檢視器之間的方式利用光學膜。本文所述之光學耦合層尤其適合安置於折射率為至少1.60之光學膜的表面層上,諸如光提取膜之回填層。
已知光提取膜及其用於OLED裝置之用途,光提取膜一般係指具有增強自發射光源之光提取之提取元件的膜。提取元件(亦稱為提取特徵或提取結構)為奈米結構或微米結構,其可視情況為週期性、準週期性、無規的,或可含有在各區中具有不同週期性結構之多個區。對於提取元件為非無規結構之實施例,提取元件可稱為工程化結構或工程化奈米結構。光提取膜之實例描述於美國專利申請公開案第2009/0015757號、第2009/0015142號、第2011/0262093號及美國專利申請案第13/218610號中,該等案以引用之方式併入本文中。
光提取膜通常包括實質上透明(可撓性或剛性)基板、提取元件及平坦化回填層。圖1為光提取膜710之構造的圖。光提取膜710包括實質上透明基板712(可撓性或剛性)、低指數提取元件714及在提取元件714上形成實質上平坦表面之高指數回填層716。術語「實質上平坦表面」意謂回填層使底層平坦化,但在實質上平坦表面中可存在微小表 面變化。
光提取膜之提取元件可與基板形成整體,或在施加於基板之層中形成,例如圖1-3所說明。舉例而言,可藉由將低指數材料施加於基板且隨後使該材料圖案化而在基板上形成提取元件。提取元件可為奈米結構或微米結構。奈米結構為至少一維(諸如寬度)小於1微米之結構。微米結構為至少一維(諸如寬度)介於1微米與1毫米之間的結構。光提取膜之提取元件可為一維(1D)週期性結構,意謂提取元件僅在一維中為週期性的,亦即,最近鄰特徵沿表面之一個方向而不沿正交方向等距間隔。在1D週期性奈米結構之情況下,相鄰週期性特徵之間的間隔小於1微米。一維結構包括例如連續或細長之稜鏡或脊,或線性光柵。圖2為說明在基板30上之1D週期性結構32(在此實例中為線性稜鏡)之一個實施例的透視圖。
光提取膜之提取元件亦可為二維(2D)週期性結構,意謂提取元件在二維中為週期性的,亦即,最近鄰特徵沿表面之兩個不同方向週期性地間隔。在2D奈米結構之情況下,兩個方向上之間隔小於1微米。應注意,兩個不同方向上之間隔可不同。二維結構包括例如微透鏡,角錐,梯形、圓形或方形柱,或光子晶體結構。二維結構之其他實例包括曲面錐形結構,如美國專利申請公開案第2010/0128351號中所述,該案以引用之方式併入本文中。圖3為說明在基板34上之2D週期性結構36(在此實例中為角錐)之一個實施例的透視圖。
排列為在提取元件之間具有單一間隔之週期性結構的提取元件可稱為單間距或單週期結構。稱為多間距或多週期性結構之提取元件的替代性組態為排列成在各區中具有不同週期性特徵之多個區的提取元件,通常為工程化奈米結構。圖4A-4E說明具有至少不同間距之多週期性結構區之多種組態。一個區為複數組彼此接近且不重疊之提取元件。該等組可直接彼此相鄰,或彼此相鄰且由間隙隔開。各組為複 數個具有週期性特徵之彼此相鄰的提取元件,且一個區中之各組具有與該區中之其他組不同的週期性特徵。各組中之提取元件因此不為無規的且不為非週期性的。該區在光提取膜之整個奈米結構化表面中重複。詳言之,相同的複數個組在一個區中重複,產生提取元件之重複可變週期性特徵。一組中複數個提取元件可包括少至兩個提取元件,在此種情況下,間距(當用作多週期性特徵時)僅為該組中兩個提取元件之間的單一距離。
週期性特徵之實例包括間距、高度、縱橫比及形狀。間距係指相鄰提取元件之間的距離,通常自其最高部分量測。高度係指自奈米結構之基座(與底層接觸)至最高部分量測之奈米結構的高度。縱橫比係指提取元件之截面寬度(最寬部分)與高度之比。形狀係指提取元件之截面形狀。
與使用單間距相比,已發現控制多間距區之間的間距提供OLED光提取之較佳角分佈。又,使用多間距區提供較均勻之OLED光提取且允許針對特定色彩調節光提取。光提取膜因此使用多週期性間距區且可將多間距區與其他多週期性特徵(諸如上文所述者)組合。
為達成說明之目的,圖4A-4E展示作為提取元件之稜鏡(或角錐)。提取元件可包括其他類型之1D及2D特徵,諸如上文所述者。
圖4A說明具有具提取元件組724、726及728之區的奈米結構化表面722。組724、726及728中之每一者與該區中其他組之間距及特徵高度相比,具有不同間距及特徵高度。組724具有週期性間距730,組726具有週期性間距732,且組728具有週期性間距734。間距730、732及734彼此不相等。在一個特定實施例中,間距730=0.420微米,間距732=0.520微米,且間距734=0.630微米。構成該區之組724、726及728隨後將重複以形成光提取膜之奈米結構化表面。
圖4B說明具有具提取元件組738、740及742之重複區的奈米結構 化表面736,各組具有不同於其他組之週期性間距及特徵高度。在奈米結構化表面736中,顯示該區重複兩次。此實例之各組與圖4A中之組相比具有較少特徵。
圖4C說明具有具提取元件組746、748及750之重複區的奈米結構化表面744,各組具有不同於其他組之週期性間距及特徵高度。在奈米結構化表面744中,顯示該區重複八次。此實例之各組與圖4A及4B中之組相比具有較少特徵。
圖4D說明具有具提取元件組754及756之重複區的奈米結構化表面752,各組具有不同於另一組之週期性間距及特徵高度。在奈米結構化表面752中,顯示該區重複三次。此實例說明具有兩組之區,與圖4A-4C中具有三組之區成對比。
圖4E說明具有具提取元件組760、762及764之區的奈米結構化表面758。組760、762及764中之每一者與該區中其他組之間距及特徵高度相比,具有不同間距及特徵高度。組760具有週期性間距766,組762具有週期性間距768,且組764具有週期性間距770。間距766、768及770彼此不相等。在一個特定實施例中,間距766=0.750微米,間距768=0.562微米,且間距770=0.375微米。構成該區之組760、762及764隨後將重複以形成光提取膜之奈米結構化表面。此實例說明一個區中之變化間距與圖4A之組中之變化間距相比沿不同方向增加。
除間距及特徵高度以外,多週期性區亦可具有其他多週期性特徵組。圖4F說明具有具多週期性縱橫比之提取元件組的奈米結構化表面772。奈米結構化表面772之重複區包括組774及776,其中組774中之提取元件的縱橫比不同於組776中之提取元件。作為另一實例,圖4G說明具有具多週期性形狀之提取元件組的奈米結構化表面778。奈米結構化表面778之重複區包括組780及782,其中組780中之提取元件的形狀不同於組782中之提取元件。在此實例中,組780中之提取元件 可為1D方形脊或2D方形柱,而組782中之提取元件可為1D細長稜鏡或2D角錐。
圖4A-4G中之提取元件說明週期性特徵及區。一個區可具有兩組、三組或三組以上提取元件,各組具有週期性特徵且其不同於其他組中相同週期性特徵之值。在圖4A-4E中,使用不同高度之提取元件來實現一個區中各組之間的不同間距。然而,提取元件之高度可相同,而各組之間的間距不同。因此,一個區中各組之間可具有一或多個不同週期性特徵。
光提取元件亦可由奈米粒子形成,或由奈米粒子與各別地形成於光提取膜基板上之規則或無規元件之組合形成。圖5為一個具有週期性結構之說明性光提取膜10之構造的圖,其中奈米粒子位於週期性結構上。在圖5所示之實施例中,提取元件為週期性結構與奈米粒子之組合。光提取膜10包括實質上透明(可撓性或剛性)基板12、低指數週期性結構14、較佳以表面層方式分散於週期性結構14上的視情況選用之奈米粒子16、及在週期性結構14及奈米粒子16上形成實質上平坦表面19的高指數平坦化回填層18。
圖6為具有週期性結構及奈米粒子之另一光提取膜20之構造的圖。光提取膜20包括實質上透明(可撓性或剛性)基板22、低指數週期性結構24、奈米粒子26、及在週期性結構24及奈米粒子26上形成實質上平坦表面29的高指數平坦化回填層28。在此實施例中,奈米粒子26分佈於整個回填層28中,諸如以體積分佈方式,而非以如光提取膜10所示之表面層方式。
光提取膜10及20之視情況選用之奈米粒子(亦稱為亞微米粒子)具有奈米結構範圍內之尺寸,且對於特定膜可為彼範圍內之相同尺寸或不同尺寸。當奈米粒子在特定尺寸範圍內且具有與回填層不同之折射率時,奈米粒子亦散射光,如下文進一步說明。舉例而言,奈米粒子 之直徑可在100 nm至1,000 nm範圍內,或奈米粒子之直徑可在10 nm至300 nm範圍內且形成尺寸在100 nm至1,000 nm範圍內之聚結體。此外,奈米粒子可含有大奈米粒子與小奈米粒子混合在一起之混合粒度,諸如300 nm奈米粒子與440 nm或500 nm奈米粒子混合,其可使得相應光提取膜之光譜反應增加。視特定應用而定,奈米粒子可能具有奈米結構範圍外之尺寸。舉例而言,若將光提取膜用於OLED照明,與顯示器成對比,則奈米粒子可具有高達數微米之直徑。奈米粒子可由有機材料或其他材料構成,且其可具有任何規則或不規則粒子形狀。奈米粒子可為多孔粒子。用於光提取膜之奈米粒子的實例描述於美國專利申請公開案第2010/0150513號中,該案以引用之方式併入本文中。
對於具有以表面層方式分佈之視情況選用之奈米粒子16的光提取膜10,奈米粒子層可為呈單層之奈米粒子,其中該層具有奈米粒子聚結;或呈多層之奈米粒子。可不使用可導致奈米粒子聚結之黏合劑來塗佈奈米粒子。在一個較佳實施例中,奈米粒子16之尺寸(例如直徑)實質上等於或略小於週期性結構14之間距(例如間距之四分之一至一倍),以使得奈米粒子按週期性結構至少部分有序。至少部分有序可經由粒子在週期性結構內對齊或組裝而出現。週期性結構之間距係指相鄰結構之間的距離,例如相鄰稜鏡頂點之間的距離。尺寸匹配可用於達成至少部分有序,例如440 nm奈米粒子與600 nm間距週期性結構或300 nm奈米粒子與500 nm間距週期性結構。另外,週期性結構之形狀及縱橫比可為確定奈米粒子之尺寸匹配及部分有序的因素。
在提取元件上施加光提取膜(例如10、20及716)之平坦化回填層以使該等提取元件平坦化且提供指數對比。具有高指數回填層之低指數提取元件意謂回填層之折射率高於提取元件,且回填層及提取元件之折射率差異(較佳為0.2或大於0.2)足以增強OLED裝置在與光提取膜 光通信中之光提取。光提取膜可藉由使回填層之平坦表面相對於OLED裝置之光輸出表面直接或經另一層置放而與OLED裝置光通信。平坦化回填層視情況可為用於將光提取膜黏結至OLED裝置之光輸出表面的黏著劑。光提取膜之高指數回填層之實例描述於美國專利申請公開案第2010/0110551號中,該案以引用之方式併入本文中。
用於光提取膜(例如10及20)之基板、低指數提取元件、高指數回填層及視情況選用之奈米粒子的材料提供於先前所引用之公開專利申請案中。舉例而言,基板可為玻璃、PET、聚醯亞胺、TAC、PC、聚胺基甲酸酯、PVC或可撓性玻璃。製造光提取膜(例如10、20及716)之製程亦提供於上文所鑑別之公開專利申請案中。視情況,基板可為保護併有光提取膜之裝置免受水分或氧氣影響之障壁膜。障壁膜之實例揭示於美國專利申請公開案第2007/0020451號及美國專利第7,468,211號中,該等專利以引用之方式併入本文中。
圖7說明併入頂發射OLED裝置120中之光提取膜142。下表描述裝置120之元件及彼等元件之排列,如圖7中所提供之參考號所鑑別。圖7中所示之組態僅為達成說明之目的而提供,且OLED顯示裝置之其他組態為可能的。光提取膜142包括實質上透明基板122(可撓性或剛性)、視情況選用之障壁層124、低指數提取元件126及在提取元件126上形成實質上平坦表面之高指數平坦化回填層128。將光提取膜施加於OLED裝置意謂將光提取膜置放於OLED裝置內之適當位置處,例如圖7及下表中所述。
Figure TWI614135BD00001
Figure TWI614135BD00002
在一個實施例中,描述一種耦合光學膜之方法。該方法包括提供具有折射率為至少1.60之表面層的光學膜;提供基板;將光學耦合層施加於光學膜、基板或其組合之表面層;及將光學膜層壓至基板以形成層壓光學構造。如隨後更詳細地描述,光學耦合層含有折射率為至少1.85之至少40重量%無機奈米粒子及聚合矽烷表面處理劑。
圖8及圖9說明藉由使用光學耦合層將(例如光提取)光學膜層壓至基板(例如OLED裝置)以形成層壓光學構造之一些實施方法。
如圖8所示,將光學耦合層42施加於光提取膜44中之回填層的平坦表面48,隨後可將其層壓至OLED裝置40之光輸出表面46。光學耦合層可為提供OLED裝置之光輸出表面與光提取膜之回填層之間的光學耦合之黏著劑。與層壓製程一起使用黏著劑作為光學耦合層亦可用來將光提取膜黏著至OLED裝置且移除其間的氣隙。OLED裝置之背板形態通常為非平坦的,如像素井47所表示,且預期光學耦合層42符合或擴展成像素井幾何形狀以填充光提取膜44與OLED裝置40之間的間隙。
或者,如圖9所示,將光學耦合層52施加於OLED裝置50之光輸出表面56,且隨後將光提取膜54中之回填層的平坦表面58層壓至OLED裝置50。若如圖9所示,在層壓光提取膜之前將黏著劑光學耦合 層施加於OLED裝置,則光學耦合層亦可用來使OLED裝置之光輸出表面平坦化。舉例而言,如像素井57所表示,頂發射主動式矩陣OLED顯示器背板未必具有高平坦度,在此種情況下可在層壓光提取膜之前將光學耦合層預沈積於陰極或OLED堆疊之任何其他頂層上。光學耦合層之該預沈積可降低背板及裝置之不平坦度,允許光提取膜之後續層壓。在此種情況下,可用溶液沈積方法將光學耦合層塗佈於OLED顯示器上。舉例而言,可用液體調配物將光學耦合層施加於OLED之整個區域上,在此種情況下,在層壓光提取膜之後可視情況使用UV或熱固化方法使其固化。亦可將光學耦合層層壓為各別提供於兩個襯墊之間的光學耦合膜,其中預先移除面向OLED裝置之襯墊,在此種情況下預期符合或擴展成像素井。在施加光學耦合層之後,如圖9所示在背板形態上產生足夠平坦化。
因為背板形態決定提取元件(奈米粒子及週期性結構)與OLED裝置之間的距離,故光學耦合層之材料通常具有高折射率,至少1.65或1.70至2.2,與OLED有機層及無機層(例如ITO)之折射率相當。
軸向增益(如根據實例中所述之測試方法所量測)通常為至少1.5或2。在一些實施例中,軸向增益不大於約3。另外,積分增益可為至少1.5或1.6或1.7。在一些實施例中,軸向增益不大於約2。
除具有適當折射率之外,光學耦合層亦必須充分透明,透射率為至少80%或85%。混濁度通常不大於10%或5%。另外,光學耦合層必須充分黏著至(例如頂發射)OLED裝置及光提取膜(例如回填層)。
方才所述之方法可製造一類層壓光學構造。在另一實施例中,層壓光學構造為中間體。在此實施例中,基板可為離型襯墊。舉例而言,含有施加於平坦表面48之光學耦合層42的圖6之光提取膜44可暫時地另外含有以可脫離方式附著至光學耦合層43之離型襯墊。隨後可將此中間體提供給OLED製造商,其移除離型襯墊且將光學耦合層黏 結至光學基板,諸如有機發光二極體(OLED)裝置。
亦描述適合用作OLED裝置或需要高折射率光學耦合層之其他光學裝置之光學耦合層的塗佈組合物。
塗佈組合物含有高折射率無機奈米粒子。該等無機奈米粒子之折射率為至少1.85、1.90、1.95、2.00或2.00以上。
已知多種高折射率奈米粒子,包括例如單獨或組合形式之氧化鋯(「ZrO2」)、二氧化鈦(「TiO2」)、經銻摻雜之氧化錫、氧化錫。亦可採用混合金屬氧化物。在一些有利實施例中,無機奈米粒子為「二氧化鈦奈米粒子」,其係指至少具有二氧化鈦核心之奈米粒子。通常,包括表面之實質上整個奈米粒子完全為二氧化鈦。
高指數金屬氧化物溶膠可為有利的,此係因為該等溶膠較易進行表面處理且保持良好分散。氧化鋯溶膠以商品名稱「Nalco 00SS008」購自Nalco Chemical Co.,以商品名稱「Buhler zirconia Z-WO sol」購自Buhler AG Uzwil,Switzerland,及以商品名稱NanoUse ZRTM購自Nissan Chemical America Corporation。氧化鋯奈米粒子亦可諸如美國專利公開案第2006/0148950號及美國專利第6,376,590號中所述而製備。含有氧化錫與經氧化銻覆蓋之氧化鋯之混合物的奈米粒子分散液(RI為約1.9)可以商品名稱「HX-05M5」購自Nissan Chemical America Corporation。氧化錫奈米粒子分散液(RI為約2.0)可以商品名稱「CX-S501M」購自Nissan Chemicals Corp.。次佳TiO2溶膠通常在強酸或強鹼條件中分散,諸如可以商品名稱STS-01購自Ishhihara Sangyo Kaisha Ltd.的TiO2溶膠。可以商品名稱NTB-01購自Showa Denko Corp及以商品名稱AM-15購自Taki chemical Co.Ltd之TiO2溶膠為具有弱酸(pH=4~5)之穩定溶膠且可為較佳溶膠。
一般而言,奈米尺寸粒子之平均核心直徑小於100 nm,且更通常小於50 nm。在一些實施例中,奈米尺寸粒子之平均核心直徑為至 少5 nm。在一些實施例中,奈米尺寸粒子之平均核心直徑在10至20 nm範圍內。
雖然可使用其他方法,諸如滴定及光散射技術,但本文所提及之粒度係基於透射電子顯微術(TEM)。使用此技術收集奈米粒子之TEM影像,且使用影像分析來測定各粒子之粒度。隨後藉由對粒度處於許多預定離散粒度範圍中之每一者內之粒子的數目進行計數來測定基於計數之粒度分佈。隨後計算數目平均粒度。一種此類方法描述於2010年2月11日申請之美國臨時申請案61/303,406(「Multimodal Nanoparticle Dispersions」,Thunhorst等人)中,且在本文中將稱作「透射電子顯微術程序」。
根據透射電子顯微術程序,為量測粒度及粒度分佈,藉由取1或2滴溶膠且將其與20 mL去離子蒸餾水混合來稀釋奈米粒子溶膠。對經稀釋之樣品音波處理(Ultrasonic Cleaner,Mettler Electronics Corp.,Anaheim,CA)10分鐘,且將一滴經稀釋之樣品置於具有碳/弗姆瓦(Formvar)膜(Product 01801,Ted Pella,Inc,Redding,CA)之200目Cu TEM網格上,且在環境條件下乾燥。在300 kV下使用透射電子顯微鏡(TEM)(HITACHI H-9000NAR,Hitachi,Ltd.,Tokyo,Japan)使經乾燥之樣品成像,視各樣品中之粒度而定,放大率在10K倍至50K倍範圍內。使用CCD相機(ULTRASCAN 894,Gatan,Inc.,Pleasanton,CA)上之Gatan Digital Micrograph軟體擷取影像。各影像具有經校準之標度標記。使用穿過各粒子中心之單線量測粒度;因此,量測係基於粒子為球形之假設。若特定粒子為非球形,則穿過該粒子之最長軸獲取量測線。在各種情況下,針對個別粒子所進行之量測次數超過誤差級為5 nm之ASTM E122測試方法中所規定之次數。
光學耦合層含有相對高濃度之無機奈米粒子,其折射率為至少1.85。光學耦合層通常含有至少40重量%之該等無機奈米粒子。在一 些實施例中,高折射率奈米粒子之濃度為至少45重量%、50重量%或55重量%。通常,無機奈米粒子之濃度不大於約75重量%或70重量%。
用聚合矽烷表面處理劑對高折射率奈米粒子進行表面處理。
一般而言,「聚合矽烷表面處理劑」含有聚合或共聚合重複單元及烷氧基矽烷基。烷氧基與二氧化鈦奈米粒子表面上之羥基反應,從而在表面處理劑與二氧化鈦表面之間形成共價鍵。
聚合矽烷表面處理劑一般含有低分子量聚合物。在一些實施例中,聚合矽烷表面處理劑之重量平均分子量為至少1000公克/莫耳或1500公克/莫耳或2000公克/莫耳。聚合矽烷表面處理劑之重量平均分子量通常不大於20,000公克/莫耳、10,000公克/莫耳或5,000公克/莫耳。對於聚合矽烷表面處理劑,根據凝膠滲透層析法(GPC)計算重量平均分子量。
聚合矽烷表面處理劑通常含有(例如無規)丙烯酸系共聚物,其含有一或多個(甲基)丙烯酸酯單體之反應產物。如本文所用之「(甲基)丙烯酸酯」係指丙烯酸酯及/或甲基丙烯酸酯。
丙烯酸系共聚物含有衍生自一或多個含有4至18個碳原子之第一(甲基)丙烯酸烷酯的重複單元。在一些實施例中,以丙烯酸系共聚物之總重量計,丙烯酸系共聚物含有至少50重量%或60重量%或70重量%之衍生自具有4至18個碳原子之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,丙烯酸系共聚物含有不大於98重量%或95重量%之衍生自包含4至18個碳原子之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,丙烯酸系共聚物含有衍生自具有至少6個碳原子之第一(甲基)丙烯酸烷酯的重複單元。在一些實施例中,丙烯酸系共聚物含有衍生自具有至少8個碳原子(例如(甲基)丙烯酸異辛酯及/或(甲基)丙烯酸2-乙基己酯)及通常不多於12個碳原子之第一(甲基)丙烯酸烷酯的重複單 元。
包含至少4、5、6、7或8個碳原子之(甲基)丙烯酸烷酯之高濃度有助於降低聚合矽烷表面處理劑之玻璃轉移溫度(Tg)。在一些實施例中,聚合矽烷表面處理劑之Tg低於-20℃或-30℃或-40℃或-50℃或-60℃。聚合矽烷表面處理劑之Tg通常為至少-80℃。
當聚合矽烷表面處理劑用作高折射率奈米粒子之表面處理劑時,包涵視情況與交聯劑組合之奈米粒子通常使Tg升高至少約10℃或15℃或20℃。因此,經表面處理之高指數粒子組合物(例如光學耦合層)之Tg通常低於0℃或-10℃或-20℃或-30℃或-40℃。經表面處理之高指數粒子組合物之Tg通常為至少-60℃。
在一些實施例中,聚合矽烷表面處理劑含有衍生自至少一個包含相比第一(甲基)丙烯酸烷酯較少之碳原子之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,聚合矽烷表面處理劑含有衍生自至少一個具有1-3個碳原子或1-2個碳原子(例如丙烯酸乙酯)之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,以丙烯酸系共聚物之總重量計,丙烯酸系共聚物含有至少1重量%或2重量%或3重量%之衍生自包含1-3個碳原子或1-2個碳原子之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,聚合矽烷表面處理劑含有不大於20重量%或15重量%或10重量%之衍生自包含1-3個碳原子或1-2個碳原子之(甲基)丙烯酸烷酯的重複單元。在一些實施例中,該等短鏈(甲基)丙烯酸烷酯可另外含有羥基。舉例而言,藉由使用丙烯酸羥基-烷酯,可將側位羥基官能基併入聚合矽烷表面處理劑中。該側位羥基官能基可與諸如聚異氰酸酯或環氧化物之羥基反應性交聯劑交聯。
在一些實施例中,聚合矽烷表面處理劑含有衍生自乙烯基羧酸之重複單元,該乙烯基羧酸為諸如丙烯酸、甲基丙烯酸、衣康酸、順丁烯二酸、反丁烯二酸及丙烯酸β-羧乙酯。在一些實施例中,以丙烯 酸系共聚物之總重量計,丙烯酸系共聚物含有至少0.1重量%或0.2重量%或0.3重量%之衍生自乙烯基羧酸(例如丙烯酸)的重複單元。當聚合矽烷表面處理劑含有衍生自乙烯基羧酸之重複單元時,該聚合物含有可與諸如氮丙啶或三聚氰胺交聯劑之羧酸反應性交聯劑交聯之側位羧酸基。
在一些實施例中,聚合矽烷表面處理劑含有包含諸如羥基、酸基或胺基之側位反應性基團之重複單元。丙烯酸系聚合物通常含有不大於15重量%或10重量%,且在一些實施例中不大於5重量%或4重量%或3重量%或2重量%或1重量%之貢獻該等側位反應性基團之單體。該側位官能基可與交聯劑交聯。交聯劑之濃度通常為至少0.1重量%且不大於5重量%或4重量%或3重量%或2重量%或1重量%。因此,聚合矽烷表面處理劑含有相對低程度之交聯。
聚合矽烷表面處理劑含有末端烷氧基矽烷基。將末端烷氧基矽烷基併入聚合物中之一種方法為藉由使用3-巰基丙基三甲氧基矽烷。此化合物通常在丙烯酸系共聚物之聚合中用作鏈轉移劑及封端單元。
在一些實施例中,聚合矽烷表面處理劑可含有衍生自一或多種其他(甲基)丙烯酸酯單體之重複單元。在一些實施例中,可採用折射率為至少1.50或1.51或1.52或1.53或1.54或1.54以上之(例如(甲基)丙烯酸酯)單體來提高聚合矽烷表面處理劑之折射率,且由此提高含有其之光學耦合層的折射率。已知多種高折射率單體。該等單體通常含有至少一個芳族基及/或硫原子。通常,此等其他(甲基)丙烯酸酯單體之濃度不大於光學耦合組合物之10重量%或5重量%。
高指數粒子可視情況含有不為聚合表面處理劑之第二表面處理劑。一般而言,非聚合表面改質劑不具有任何聚合或共聚合重複單元。在一些實施例中,非聚合表面改質劑之分子量小於1500公克/莫耳或小於1000公克/莫耳或小於500公克/莫耳。非聚合表面改質劑之實 例包括三烷氧基烷基矽烷及三烷氧基芳基矽烷。在一些實施例中,非聚合表面處理劑之折射率為至少1.50或1.51或1.52或1.53或1.54。包含高指數表面處理劑可有助於提高經表面改質之高折射率奈米粒子的折射率。苯基三甲氧基矽烷為適合之非聚合表面處理劑之一個實例。非聚合表面處理劑之濃度與聚合矽烷表面處理劑相比一般相對較低。舉例而言,濃度通常不大於經表面改質之奈米粒子之5重量%或7.5重量%或10重量%。
在一些實施例中,塗佈組合物可完全由經表面處理之無機奈米粒子組成。因此,聚合矽烷表面處理劑可為光學耦合層之唯一聚合組分。光學耦合層通常含有至少30重量%或31重量%或32重量%或33重量%或35重量%之聚合矽烷表面處理劑。在一些實施例中,光學耦合層中聚合矽烷表面處理劑之濃度不大於60重量%或55重量%或50重量%或45重量%。在此實施例中,塗佈組合物可實質上不含(甲基)丙烯酸酯組分(例如單體及寡聚物),尤其分子量為1,000公克/莫耳或小於1,000公克/莫耳之組分。實質上不含意謂組合物含有不大於5重量%或4重量%或3重量%或2重量%或1重量%之該等(甲基)丙烯酸酯組分。已發現,包涵可觀量之該等單體可使OLED裝置在固化期間破裂。然而,可添加小濃度之較高分子量單體(大於1,000公克/莫耳)及尤其聚合物,通常稱為聚合黏合劑。在一些實施例中,光學耦合層可含有至多10重量%之聚合黏合劑。然而,在有利實施例中,光學耦合組合物不含聚合黏合劑。
雖然PSA之性質可用諸如增黏劑及增塑劑之常用添加劑改質,但在一些有利實施例中,適用作光學耦合層之塗佈組合物含有極少或不含增黏劑及增塑劑。在一些實施例中,增黏劑與增塑劑組合之總量不大於10重量%或5重量%或2重量%或1重量%。
經表面改質之高指數奈米粒子一般係藉由將弱酸溶膠(pH=4-5) 與聚合矽烷表面處理劑及視情況選用之非聚合表面處理劑組合來製備。隨後加熱混合物隔夜以完成粒子表面處之偶合反應。此後,在使用旋轉式蒸發器移除所有水之後將經聚合物改質之粒子轉移至有機溶劑中。
通常在施加於(例如光提取)光學膜之前或在將光學耦合層施加於基板(例如OLED)之前移除溶劑。因此,光學耦合層在層壓時實質上不含溶劑。實質上不含溶劑意謂光學耦合層含有小於1重量%溶劑。已發現,包涵可觀量之溶劑可使得OLED隨時間推移而無法工作。
在一些實施例中,經乾燥及視情況固化之塗佈組合物展現壓敏性黏著劑性質。壓敏性黏著劑之一個特徵為黏性。光學耦合層組合物之探針黏性(如根據即將呈現之實例中所述之測試方法所量測)通常為至少5公克。在有利實施例中,黏性為至少30、40或50公克。在一些實施例中,黏性不大於150或100公克。壓敏性黏著劑組合物之另一特徵為剝離力。峰值剝離力(如根據即將呈現之實例中所述之測試方法所量測)通常為至少40或50或60公克/公分,且在一些實施例中為至少70或80公克/公分。在一些實施例中,峰值剝離力不大於約200或150公克/公分。最小剝離力通常在1或2公克/公分至10、15或20公克/公分範圍內。平均剝離力通常為至少10或15公克/公分,且在一些實施例中為至少20或30公克/公分。在一些實施例中,平均峰值力不大於100或80或60公克/公分。
10‧‧‧光提取膜
12‧‧‧實質上透明(可撓性或剛性)基板
14‧‧‧低指數週期性結構
16‧‧‧視情況選用之奈米粒子
18‧‧‧高指數平坦化回填層
19‧‧‧實質上平坦表面
20‧‧‧光提取膜
22‧‧‧實質上透明(可撓性或剛性)基板
24‧‧‧低指數週期性結構
26‧‧‧奈米粒子
28‧‧‧高指數平坦化回填層
29‧‧‧實質上平坦表面
30‧‧‧基板
32‧‧‧1D週期性結構
34‧‧‧基板
36‧‧‧2D週期性結構
40‧‧‧OLED裝置
42‧‧‧光學耦合層
44‧‧‧光提取膜
46‧‧‧光輸出表面
47‧‧‧像素井
48‧‧‧回填層的平坦表面
50‧‧‧OLED裝置
52‧‧‧光學耦合層
54‧‧‧光提取膜
56‧‧‧光輸出表面
57‧‧‧像素井
58‧‧‧回填層的平坦表面
120‧‧‧頂發射OLED裝置
121‧‧‧視情況選用之功能層
122‧‧‧實質上透明基板/光提取膜基板
124‧‧‧視情況選用之障壁層
126‧‧‧低指數提取元件/低指數結構
128‧‧‧高指數平坦化回填層
130‧‧‧光學耦合層
132‧‧‧電極1
134‧‧‧視情況選用之薄膜囊封層或視情況選用之罩蓋層
136‧‧‧有機層
138‧‧‧電極2
140‧‧‧裝置基板
142‧‧‧光提取膜
710‧‧‧光提取膜
712‧‧‧實質上透明基板
714‧‧‧低指數提取元件
716‧‧‧高指數回填層/光提取膜
722‧‧‧奈米結構化表面
724‧‧‧提取元件組
726‧‧‧提取元件組
728‧‧‧提取元件組
730‧‧‧週期性間距
732‧‧‧週期性間距
734‧‧‧週期性間距
736‧‧‧奈米結構化表面
738‧‧‧提取元件組
740‧‧‧提取元件組
742‧‧‧提取元件組
744‧‧‧奈米結構化表面
746‧‧‧提取元件組
748‧‧‧提取元件組
750‧‧‧提取元件組
752‧‧‧奈米結構化表面
754‧‧‧提取元件組
756‧‧‧提取元件組
758‧‧‧奈米結構化表面
760‧‧‧提取元件組
762‧‧‧提取元件組
764‧‧‧提取元件組
766‧‧‧週期性間距
768‧‧‧週期性間距
770‧‧‧週期性間距
772‧‧‧奈米結構化表面
774‧‧‧提取元件組
776‧‧‧提取元件組
778‧‧‧奈米結構化表面
780‧‧‧提取元件組
782‧‧‧提取元件組
將隨附圖式併入本說明書中且其構成本說明書之一部分,且與描述內容一起說明本發明之優點及原理。
圖1為說明光提取膜之層的圖;圖2為一維週期性結構之透視圖;圖3為二維週期性結構之透視圖;圖4A為說明具有不同間距之奈米結構之第一多週期性區的圖;圖4B為說明具有不同間距之奈米結構之第二多週期性區的圖;圖4C為說明具有不同間距之奈米結構之第三多週期性區的圖;圖4D為說明具有不同間距之奈米結構之第四多週期性區的圖; 圖4E為說明具有不同間距之奈米結構之第五多週期性區的圖;圖4F為說明具有不同縱橫比之奈米結構之多週期性區的圖;圖4G為說明具有不同形狀之奈米結構之多週期性區的圖;圖5為具有在週期性結構上之亞單層中所應用之奈米粒子之光提取膜的圖;圖6為具有分佈於整個回填層中之奈米粒子之光提取膜的圖;圖7為具有光提取膜之頂發射OLED顯示裝置的圖;圖8為說明將光提取膜層壓至OLED裝置之圖;圖9為說明將光提取膜層壓至OLED裝置之圖。
除非另有註釋,否則實例中之所有份數、百分比、比率等均以重量計。除非有不同規定,否則所用溶劑及其他試劑獲自Sigma-Aldrich Chemical Company;Milwaukee,WI。
材料
Figure TWI614135BD00003
多種矽烷功能性聚合物係藉由如下在乙酸乙酯(「EthAc」)中進行溶液聚合來製備。
製備實例 合成矽烷功能性聚合物 合成聚合物-I
在8盎司瓶中,將27 g丙烯酸異辛酯、3.0 g丙烯酸羥乙酯、7.4 g 3-巰基丙基三甲氧基矽烷、80 g乙酸乙酯及0.15 g Vazo 67混合在一起。混合物在N2下鼓泡20分鐘,隨後將混合物置放於70℃之油浴中24小時。此得到具有30.9%(wt%)固體之光學澄清溶液。
合成聚合物-II
在8盎司瓶中,將27 g丙烯酸異辛酯、3.0 g丙烯酸羥乙酯、3.7 g 3-巰基丙基三甲氧基矽烷、80 g乙酸乙酯及0.15 g Vazo 67混合在一起。混合物在N2下鼓泡20分鐘,隨後將混合物置放於70℃之油浴中24小時。此得到具有31.04%(wt%)固體之光學澄清溶液。
合成聚合物-III
在8盎司瓶中,將27 g丙烯酸異辛酯、3.0 g DMAEMA、3.7 g 3-巰基丙基三甲氧基矽烷、80 g乙酸乙酯及0.15 g Vazo 67混合在一起。混合物在N2下鼓泡20分鐘,隨後將混合物置放於70℃之油浴中24小時。此得到具有30.8%(wt%)固體之光學澄清溶液。
合成聚合物-IV
在8盎司瓶中,將29.4 g丙烯酸異辛酯、0.6 g丙烯酸、3.7 g 3-巰基丙基三甲氧基矽烷、80 g乙酸乙酯及0.15 g Vazo 67混合在一起。混合物在N2下鼓泡20分鐘,隨後將混合物置放於70℃之油浴中24小時。此得到具有30.8%(wt%)固體之光學澄清溶液。
製備回填光提取膜
奈米結構化膜係藉由首先使用聚焦離子束(FIB)銑削製造多端焊鑽石工具來製造,如美國專利第7,140,812號中所述。該鑽石工具隨後用於製造微複製銅輥,其隨後用於利用可聚合樹脂在連續澆鑄及固化 製程中於PET膜上製造400 nm間距之線性三角波形結構,該可聚合樹脂係藉由將0.5%(2,4,6-三甲基苄醯基)二苯基膦氧化物混合至PHOTOMER 6210與SR238之75:25摻合物中來製備。奈米結構化膜用約2 μm厚之高折射率回填層回填,如美國專利申請案公開案2012/0234460中所述。
測試方法 黏性量測
使用具有6 mm半球形探針之TA.XT Plus質構儀(Texture Analyzer)(購自Texture Technologies Corp,Scarsdale,NY)進行黏性測試。使用以下設置:測試前速度0.50毫米/秒,測試速度0.01毫米/秒,測試後速度0.05毫米/秒,施加力100.0公克,返回距離5.00毫米,接觸時間30秒,觸發類型自動,觸發力5.0公克,皮重模式自動,比例增益50,積分增益20,微分增益5,及最大追蹤速度0.00毫米/秒。
如下進行測試。將取自塗層中間部分之經塗佈樣品之12.7 cm×2.5 cm(5吋×1吋)條帶層壓至0.64 cm(1/4吋)厚×2.5 cm×15.2 cm(1吋×6吋)棒之背面且使其滑動至直接處於測試探針下面之固持夾具中。使探針在接觸之後靜置於樣品上30秒,以使塗層鬆弛。沿各樣品條帶進行四次量測。若數據點為離群值,則捨棄該點且自其餘數據測定平均峰值力。
剝離測試
藉由將光學耦合溶液塗佈於上文所述之回填光提取膜之回填側上來製備樣品。向下敲打光提取膜至平坦表面且用#30 Meyer棒施加塗層。該塗層在65℃下加熱10分鐘。所有塗層均產生10-12微米之乾燥黏著劑厚度。隨後使用手推輥(hand roller)將經乾燥之塗層層壓至障壁膜。障壁膜如美國專利第7,468,211號之實例1中所述。在IMASS SP-2000滑動剝離測試器(購自Instrumentors Inc.,Strongsville Ohio) 上,使用2.5 cm(1吋)寬之條帶,以(5吋/分鐘)之剝離速率,經25秒進行T剝離測試。記錄25秒測試期間之峰值力、在第一峰值之後出現之最小力及力之平均值,且對三個測試樣品求取平均值。
剪切測試
藉由將光學耦合材料塗佈於如關於剝離測試所述之光提取膜上來製備剪切測試樣品。隨後切割該等膜,且將其黏著至接觸面積為1.3 cm×1.3 cm(0.5吋×0.5吋)或2.5 cm×2.5 cm(1吋×1吋)之不鏽鋼板。將過量膠帶緊固於0.5 kg或1 kg砝碼。使總成垂直懸掛,由此量測黏著劑之剪切。記錄黏著劑失效所需之時間。
分子量
藉由凝膠滲透層析法測定各聚合物之重量平均(Mw)分子量。結果提供於下表中。
玻璃轉移溫度
由以下方式製備樣品:將3公克待測試溶液澆注於離型襯墊上且在25℃下乾燥18小時,隨後將樣品置放於65℃之烘箱中,持續10分鐘。隨後使用以調制DSC模式運作之TA Instruments(New Castle,DE)Q200型差示掃描熱析儀(DSC)量測玻璃轉移溫度。
聚合矽烷表面處理劑
Figure TWI614135BD00004
含有聚合矽烷表面處理劑之TiO 2 奈米粒子
向配備有滴液漏斗、溫度控制器、漿式攪拌器及蒸餾頭之2 L圓 底燒瓶中饋入177 g NTB-1溶膠及200 g 1-甲氧基-2-丙醇,將其混合在一起。在快速攪拌下,添加3.24 g苯基三甲氧基矽烷、30 g甲苯及下表中所指定之聚合物溶液。15分鐘後,升高溫度至48℃且再添加240 g甲苯。隨後加熱混合物至80℃,維持16小時。
使溫度返回至室溫,隨後將混合物轉移至圓形燒瓶中。使用旋轉式蒸發器移除溶劑,得到白色濕濾餅狀材料。隨後再添加400 g甲苯。使用旋轉式蒸發器進一步移除溶劑。最終產物為經表面處理之TiO2奈米粒子於甲苯中之分散液。下表中提供分散液中之固體重量百分比。
使用玻璃棒將溶液塗佈於底層PET上。在65℃下於真空烘箱中乾燥經塗佈之樣品5分鐘。乾燥後,該等樣品在厚區域中產生具有淺藍色之光學透明而具黏性之塗層。如上所述量測黏性,且使用Metricon 2010型稜鏡耦合器(Metricon Corporation Inc.Pennington,NJ)在632.8 nm下量測材料之折射率,且黏性及折射率報導於下表中。
經表1之矽烷功能性聚合物表面處理之TiO 2
Figure TWI614135BD00005
根據先前所述之測試方法測定根據實例2製備之黏著劑的玻璃轉移溫度且發現其為-43℃。在65.7℃下觀測到實例2之另一玻璃轉移溫度,其與黏結至奈米粒子表面之苯基矽烷對應。
實例5
向小罐中添加20 g根據實例2製備之溶液及0.168 g Desmodur® N3300聚異氰酸酯。超音波處理混合物5分鐘,得到良好混合物。隨後,使用玻璃棒將溶液塗佈於底層PET表面上。在70℃下於烘箱中加熱所得淺藍色塗層3小時。發現所得膜為黏性的。折射率為1.69。
實例6
向小罐中添加10.1 g根據實例2製備之溶液及0.0927 g雙[4-(2,3-環氧基丙基硫基)苯基]硫化物。超音波處理混合物5分鐘,得到良好混合物。隨後,使用玻璃棒將溶液塗佈於底層PET表面上。在70℃下於烘箱中加熱所得淺藍色塗層3小時。發現所得膜為黏性的。折射率為1.72。
實例7
在3頸燒瓶中,將180 g NTB-01 TiO2溶膠(15重量%)、91 g如上製備之聚合物-II、230 g PM及50 g甲苯添加在一起,在室溫下攪拌混合物30分鐘。隨後加熱混合物之溫度至45℃,再添加220 g甲苯。加熱最終混合物至80℃,維持16小時。
隨後使溫度返回至室溫。隨後將混合物轉移至圓形燒瓶中,且使用旋轉式蒸發器移除溶劑,得到白色濕濾餅狀材料。隨後再添加800 g甲苯。使用旋轉式蒸發器進一步移除溶劑。最終產物為經聚合物-II改質之TiO2奈米粒子於甲苯中之分散液,具有約31.8重量%固體。
將實例7澆鑄於PET膜上且在室溫下乾燥。所得透明黏性固體之折射率為1.65。
根據先前所述之測試方法對經聚合物-II改質之TiO2溶液進行剝離測試及剪切測試。亦對藉由添加1% IPDI或1% DER331環氧化物至經聚合物-II改質之TiO2溶液中而製備之其他樣品進行剝離及剪切測試。在峰值期間,所有剝離均因分離而受衝擊(內聚破壞)。亦在剪切測試中觀測到內聚破壞。結果如下。
Figure TWI614135BD00006
使用#30 Meyer棒在底層PET上製備塗層以用於光學測試,塗層厚度為約10微米。在65℃下於真空烘箱中乾燥經塗佈之樣品5分鐘。使用HazeGard Plus(BYK-Gardner USA,Columbia,MD)量測透射率、混濁度及透明度。對各樣品之中央區域附近之三個部分進行量測,且求取平均值。結果報導於下表中。
Figure TWI614135BD00007
比較實例C-1:製造頂發射OLED(不具有光提取膜及光學耦合層)
在真空系統中於約10-6托之基礎壓力下,藉由標準熱沈積將約2 nm鉻(Cr)及100 nm銀(Ag)預塗佈於0.7 mm厚之拋光鈉鈣玻璃樣品(Delta Technologies,Stillwater,USA)基板上。隨後,在直流電條件(400 W前向功率)下,將10 nm厚之氧化銦錫(ITO)層真空濺鍍於玻璃/Cr/Ag基板上,以完成底部OLED電極製造(底部電極遮蔽罩用於Cr、 Ag及ITO塗層)。在ITO濺鍍製程之後,旋塗約500 nm厚光阻(TELR-P003 PM,TOK America)之層,且根據預定義圖案進行光微影圖案化並在230℃下硬性烘烤,以界定用於頂發射(TE)OLED製造之成品基板。
使用為有機層沈積而設計之遮蔽罩來沈積以下OLED構造用於發綠光TE OLED裝置: EIL(20 nm)/ETL(25 nm)/EML(30 nm)/HTL2(10 nm)/HTL1(165 nm)/HIL(100 nm),其中EIL為電子注入層,ETL為電子傳輸層,EML為具有綠色電致發光特徵之發射層,HTL1及HTL2為電洞傳輸層,且MoO3用作電洞注入層(HIL)。在真空系統中於約10-6托之基礎壓力下,藉由標準熱沈積製造上述所有層。
在有機層沈積之後,在直流電條件(400 W前向功率)下,使用為頂部電極而設計之遮蔽罩真空濺鍍約80 nm厚之ITO。
最後,藉由使用類似於塗佈OLED有機層所用之遮蔽罩將另一200 nm MoO3作為罩蓋層塗佈於ITO頂部電極上來完成TE OLED裝置。在真空系統中於約10-6托之基礎壓力下,藉由標準熱沈積製造MoO3層。
完成之後,用玻璃罩囊封TE OLED且施加UV可固化環氧化物Nagase Corp.,Japan)並在玻璃罩之周邊固化。在囊封之前將水分吸收乾燥劑納入封裝中以提高裝置穩定性。
使用光學耦合層將OLED光提取膜層壓於頂發射OLED上
如先前所述製備回填光提取膜。在層壓之前,使用Myre棒#30將實例2-4之光學耦合塗佈組合物自溶液塗佈於回填光提取膜上。隨後在60℃下真空乾燥各塗層5分鐘以蒸發溶劑且在膜表面上形成凝膠光學耦合層,且即刻轉移至惰性手套箱中。此後,在80℃下預烘烤約5分鐘以乾燥在轉移至手套箱期間所捕捉之任何水分。根據比較實例C- 1中所述之程序製造TE OLED樣品。在如比較實例C-1中所述用玻璃囊封裝置之前,將具有基於單體之OCL(m-based OCL)之提取膜層壓於裝置上。在層壓之後,如比較實例C-1中所述囊封裝置。
使用以下各種OLED表徵技術來分析比較實例C-1所製造之TE OLED及實例2-4所製備者:諸如使用Keithley 2400TM源錶及PR650適光相機(Photo Research Inc.,USA)之亮度-電流-電壓(LIV)測試;使用AutronicTM錐光鏡(Autronic Melchers GmbH,Karsruhe,Germany)之角亮度量測;及使用PR650相機及內部建構之手動測角計在不同視角下之效率及電致發光光譜的角度量測。在LIV測試中,對裝置進行通常在4至20 mA/cm2電流密度範圍內之DC電流掃描。在角錐光鏡及測角計量測中,關於各操作裝置,在對應於10 mA/cm2電流密度之恆定電流下操作所有裝置。
下表提供具有使用基於聚合物之OCL材料層壓之提取物之裝置的軸向及積分光學增益。以層壓提取裝置之亮度(軸向)及發光強度(積分)除以在相同附體試片上製備之對照樣品(比較實例C-1)之彼等值來計算增益。使用如上所述之錐光鏡測試獲得軸向亮度及積分發光強度數據。軸向增益代表沿相對於裝置光輸出表面垂直之檢視方向的提取效率,且積分增益反映沿自OLED裝置之光輸出表面射出之光之所有方向的提取效率。
Figure TWI614135BD00008
亦測試實例1之光學耦合層,且發現由於硬度鑒於含有較低濃度之聚合矽烷表面處理劑而增加,故其為次佳的。
120‧‧‧頂發射OLED裝置
121‧‧‧視情況選用之功能層
122‧‧‧實質上透明基板/光提取膜基板
124‧‧‧視情況選用之障壁層
126‧‧‧低指數提取元件/低指數結構
128‧‧‧高指數平坦化回填層
130‧‧‧光學耦合層
132‧‧‧電極1
134‧‧‧視情況選用之薄膜囊封層或視情況選用之罩蓋層
136‧‧‧有機層
138‧‧‧電極2
140‧‧‧裝置基板
142‧‧‧光提取膜

Claims (39)

  1. 一種耦合光學膜之方法,其包括:提供光學膜;提供基板;將光學耦合層施加於該光學膜、該基板或其組合之表面層;其中該光學耦合層含有至少40重量%之折射率為至少1.85之無機奈米粒子,及聚合矽烷表面處理劑;及將該光學膜層壓至該基板以形成層壓光學構造。
  2. 如請求項1之方法,其中該光學膜之該表面層的折射率為至少1.60。
  3. 如請求項1之方法,其中該光學膜為光提取膜且該基板為頂發射有機發光二極體(OLED)裝置。
  4. 如請求項3之方法,其中該光提取膜含有實質上透明基板;在該實質上透明基板上之提取元件;及施加於該等提取元件上之平坦化回填層,形成該回填層之實質上平坦表面,其中該回填層之折射率高於該等提取元件之折射率。
  5. 如請求項4之方法,其中該等提取元件含有具有多週期性區之工程化奈米結構,該等多週期性區含有該等奈米結構之重複區,其中該區含有具有第一複數個週期性特徵之第一組奈米結構及具有不同於該第一複數個週期性特徵之第二複數個週期性特徵的第二組奈米結構。
  6. 如請求項4之方法,其中該等提取元件含有週期性結構及施加於該等週期性結構上之光散射奈米粒子層。
  7. 如請求項4之方法,其中將該光學耦合層施加於該回填層。
  8. 如請求項3之方法,其中將該光學耦合層施加於該頂發射有機發光二極體(OLED)裝置。
  9. 如請求項1至3中任一項之方法,其中該光學耦合層在層壓時實質上不含溶劑。
  10. 如請求項1至3中任一項之方法,其中該光學耦合層實質上不含分子量為1,000公克/莫耳或未滿1,000公克/莫耳之(甲基)丙烯酸酯組分。
  11. 如請求項1至3中任一項之方法,其中該聚合矽烷表面處理劑含有無規丙烯酸系共聚物,其含有至少50重量%之衍生自一或多種含有4至18個碳原子之(甲基)丙烯酸烷酯單體的重複單元。
  12. 如請求項1至3中任一項之方法,其中該聚合矽烷表面處理劑之Tg係在-20℃至-80℃範圍內。
  13. 如請求項1至3中任一項之方法,其中該聚合矽烷表面處理劑之重量平均分子量係在1000至5000公克/莫耳範圍內。
  14. 如請求項1至3中任一項之方法,其中該等無機奈米粒子進一步含有非聚合表面處理劑。
  15. 如請求項14之方法,其中該非聚合表面處理劑之折射率為至少1.50。
  16. 如請求項1至3中任一項之方法,其中該光學耦合層之折射率為至少1.65。
  17. 如請求項1至3中任一項之方法,其中該光學耦合層之折射率為至少1.70。
  18. 如請求項1至3中任一項之方法,其中該等無機奈米粒子含有二 氧化鈦。
  19. 如請求項1至3中任一項之方法,其中該聚合矽烷表面處理劑含有包含選自羥基、酸基或胺基之側位反應性基團的重複單元。
  20. 如請求項19之方法,其中該光學耦合層含有交聯該等側位反應性基團之交聯劑。
  21. 如請求項1至3中任一項之方法,其中該層壓光學構造之峰值剝離力為至少50g/cm。
  22. 一種層壓光學構造,其含有:光學膜;安置於該光學膜之表面層上之光學耦合層,其中該光學耦合層含有至少40重量%之折射率為至少1.85之無機奈米粒子;及聚合矽烷表面處理劑;及黏結至該光學膜之相對表面處之該光學耦合層的基板。
  23. 如請求項22之層壓光學構造,其中該光學膜或光學耦合層係由請求項2至10中之任一項進一步表徵。
  24. 如請求項22之層壓光學構造,其中該基板為離型襯墊。
  25. 如請求項22至24中任一項之層壓光學構造,其中該聚合矽烷表面處理劑含有無規丙烯酸系共聚物,其含有至少50重量%之衍生自一或多種含有4至18個碳原子之(甲基)丙烯酸烷酯單體的重複單元。
  26. 如請求項22至24中任一項之層壓光學構造,其中該聚合矽烷表面處理劑之Tg係在-20℃至-80℃範圍內。
  27. 如請求項22至24中任一項之層壓光學構造,其中該聚合矽烷表面處理劑之重量平均分子量係在1000至5000公克/莫耳範圍內。
  28. 如請求項22至24中任一項之層壓光學構造,其中該等無機奈米 粒子進一步含有非聚合表面處理劑。
  29. 如請求項28之層壓光學構造,其中該非聚合表面處理劑之折射率為至少1.50。
  30. 如請求項22至24中任一項之層壓光學構造,其中該光學耦合層之折射率為至少1.65。
  31. 如請求項22至24中任一項之層壓光學構造,其中該光學耦合層之折射率為至少1.70。
  32. 如請求項22至24中任一項之層壓光學構造,其中該等無機奈米粒子含有二氧化鈦。
  33. 如請求項22至24中任一項之層壓光學構造,其中該聚合矽烷表面處理劑含有包含選自羥基、酸基或胺基之側位反應性基團的重複單元。
  34. 如請求項33之層壓光學構造,其中該光學耦合層含有交聯該等側位反應性基團之交聯劑。
  35. 如請求項22至24中任一項之層壓光學構造,其中該層壓光學構造之峰值剝離力為至少50g/cm。
  36. 一種塗佈組合物,其含有:至少40重量%之折射率為至少1.85之無機奈米粒子;及聚合矽烷表面處理劑。
  37. 如請求項36之塗佈組合物,其中該塗佈組合物為如請求項9至33中任一項所述之光學耦合層。
  38. 如請求項36或37之塗佈組合物,其中該塗佈組合物實質上不含聚合黏合劑。
  39. 如請求項36或37之塗佈組合物,其中該塗佈組合物之折射率為至少1.65且峰值剝離力為至少50g/cm。
TW102107119A 2012-02-28 2013-02-27 適用於光學耦合層之含有表面改質高指數奈米粒子的組合物 TWI614135B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261604169P 2012-02-28 2012-02-28
US61/604,169 2012-02-28

Publications (2)

Publication Number Publication Date
TW201334970A TW201334970A (zh) 2013-09-01
TWI614135B true TWI614135B (zh) 2018-02-11

Family

ID=49083156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107119A TWI614135B (zh) 2012-02-28 2013-02-27 適用於光學耦合層之含有表面改質高指數奈米粒子的組合物

Country Status (6)

Country Link
US (3) US9818983B2 (zh)
JP (1) JP6290794B2 (zh)
KR (1) KR102079583B1 (zh)
CN (1) CN104662689B (zh)
TW (1) TWI614135B (zh)
WO (1) WO2013130247A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662689B (zh) * 2012-02-28 2017-06-27 3M创新有限公司 适于光学耦合层的包含表面改性高折射率纳米粒子的组合物
US9005357B2 (en) * 2012-05-24 2015-04-14 Agency For Science, Technology And Research Method of preparing molybdenum oxide films
CN108878685A (zh) 2012-08-22 2018-11-23 3M创新有限公司 透明oled光提取
KR102278454B1 (ko) 2012-11-30 2021-07-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 하이브리드 편광자를 갖는 발광 디스플레이
US10450431B2 (en) 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
WO2015040931A1 (ja) 2013-09-20 2015-03-26 リケンテクノス株式会社 ポリ(メタ)アクリルイミド系樹脂層を含む透明多層フィルム、及びその製造方法
JP6531104B2 (ja) * 2013-09-23 2019-06-12 ピクセリジェント・テクノロジーズ・エルエルシー 高屈折率シリコーンナノ複合材
KR101695525B1 (ko) * 2014-12-26 2017-01-12 한밭대학교 산학협력단 금속산화물 나노입자가 분산된 광추출층 제조방법과 이의 방법으로 이루어진 광추출층을 포함하는 유기발광다이오드 소자
KR102459818B1 (ko) 2015-05-06 2022-10-27 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102407115B1 (ko) * 2015-06-25 2022-06-09 삼성디스플레이 주식회사 유기 발광 표시 장치
JP2017027872A (ja) * 2015-07-27 2017-02-02 ソニー株式会社 表示装置
CN105355798A (zh) * 2015-11-25 2016-02-24 京东方科技集团股份有限公司 有机电致发光器件及其制作方法、显示装置
KR102554620B1 (ko) * 2016-09-21 2023-07-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 유리를 갖는 보호 디스플레이 필름
DE102016219060A1 (de) * 2016-09-30 2018-04-05 Osram Oled Gmbh Optoelektronische Vorrichtung mit Reflektionseigenschaft
US11034843B2 (en) 2016-12-29 2021-06-15 3M Innovative Properties Company Flexible nanoparticle optical coating compositions
CN106654050B (zh) * 2017-01-16 2019-07-30 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
CN106935725A (zh) * 2017-02-17 2017-07-07 武汉华星光电技术有限公司 有机电致发光显示装置
KR102601647B1 (ko) 2017-02-20 2023-11-13 삼성전자주식회사 감광성 조성물, 이로부터 제조된 양자점-폴리머 복합체, 및 이를 포함하는 적층 구조물과 전자 소자
CN110945090A (zh) * 2017-07-26 2020-03-31 3M创新有限公司 可固化的高折射率油墨组合物和由油墨组合物制备的制品
US11889910B2 (en) * 2018-06-15 2024-02-06 Lg Chem, Ltd. Decoration member
CN111223400B (zh) * 2018-11-27 2023-08-15 北京小米移动软件有限公司 显示屏及电子设备
EP4040963A1 (en) * 2019-10-10 2022-08-17 Ecole Polytechnique Federale De Lausanne (Epfl) Nanopatterned antimicrobial surfaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017952A1 (en) * 2001-08-03 2011-01-27 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
US20110229992A1 (en) * 2007-07-13 2011-09-22 3M Innovative Properties Company Light extraction film for organic light emitting diode lighting devices

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376590B2 (en) 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
US7140812B2 (en) 2002-05-29 2006-11-28 3M Innovative Properties Company Diamond tool with a multi-tipped diamond
US20060063015A1 (en) 2004-09-23 2006-03-23 3M Innovative Properties Company Protected polymeric film
US7241437B2 (en) 2004-12-30 2007-07-10 3M Innovative Properties Company Zirconia particles
DE102005000824A1 (de) * 2005-01-05 2006-07-13 Consortium für elektrochemische Industrie GmbH Nanopartikelhaltige Organocopolymere
JP4410123B2 (ja) * 2005-02-10 2010-02-03 株式会社東芝 有機elディスプレイ
JP2008530346A (ja) 2005-02-17 2008-08-07 スリーエム イノベイティブ プロパティズ カンパニー 低ガラス転移温度を有する重合有機相を含む輝度向上フィルム
US20070020451A1 (en) 2005-07-20 2007-01-25 3M Innovative Properties Company Moisture barrier coatings
US8372492B2 (en) 2006-12-15 2013-02-12 Nitto Denko Corporation Pressure-sensitive adhesive optical film and image display
JP4805240B2 (ja) * 2006-12-15 2011-11-02 日東電工株式会社 粘着型光学フィルムおよび画像表示装置
US20090015142A1 (en) 2007-07-13 2009-01-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display devices
JP2010073469A (ja) * 2008-09-18 2010-04-02 Konica Minolta Opto Inc 有機エレクトロルミネッセンス発光素子、及びそれを用いたディスプレイ、照明装置
US20100110551A1 (en) * 2008-10-31 2010-05-06 3M Innovative Properties Company Light extraction film with high index backfill layer and passivation layer
US20100128351A1 (en) 2008-11-21 2010-05-27 3M Innovative Properties Company Curved sided cone structures for controlling gain and viewing angle in an optical film
JP5321010B2 (ja) * 2008-11-25 2013-10-23 住友大阪セメント株式会社 有機el素子
US7957621B2 (en) 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings
WO2010080684A2 (en) * 2009-01-08 2010-07-15 Nanogram Corporation Composites of polysiloxane polymers and inorganic nanoparticles
WO2010118336A1 (en) 2009-04-10 2010-10-14 Rensselaer Polytechnic Institute Diblock copolymer modified nanoparticle-polymer nanocomposites for electrical insulation
US8247820B2 (en) * 2009-12-21 2012-08-21 General Electric Company Utilizing gradient refractive index films for light extraction and distribution control in OLED
KR101910202B1 (ko) 2010-02-11 2018-10-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 분산된 다중모드 표면 개질된 나노입자를 포함하는 수지 시스템
RU2558102C2 (ru) 2010-04-20 2015-07-27 3М Инновейтив Пропертиз Компани Отверждаемые под давлением клеи, имеющие в составе полимерные поверхностно-модифицированные наночастицы
US8427747B2 (en) 2010-04-22 2013-04-23 3M Innovative Properties Company OLED light extraction films laminated onto glass substrates
US8538224B2 (en) 2010-04-22 2013-09-17 3M Innovative Properties Company OLED light extraction films having internal nanostructures and external microstructures
JP5520752B2 (ja) * 2010-09-01 2014-06-11 株式会社日立製作所 粘着シート,粘着シートを用いた光学部材,有機発光素子および照明装置並びにそれらの製造方法
US8469551B2 (en) 2010-10-20 2013-06-25 3M Innovative Properties Company Light extraction films for increasing pixelated OLED output with reduced blur
WO2012087665A2 (en) 2010-12-22 2012-06-28 3M Innovative Properties Company Surface-modified zirconia nanoparticles
US8692446B2 (en) 2011-03-17 2014-04-08 3M Innovative Properties Company OLED light extraction films having nanoparticles and periodic structures
US8659221B2 (en) 2011-08-26 2014-02-25 3M Innovative Properties Company OLED light extraction film with multi-periodic zones of nanostructures
CN104662689B (zh) * 2012-02-28 2017-06-27 3M创新有限公司 适于光学耦合层的包含表面改性高折射率纳米粒子的组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017952A1 (en) * 2001-08-03 2011-01-27 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
US20110229992A1 (en) * 2007-07-13 2011-09-22 3M Innovative Properties Company Light extraction film for organic light emitting diode lighting devices

Also Published As

Publication number Publication date
US20180062117A1 (en) 2018-03-01
TW201334970A (zh) 2013-09-01
JP6290794B2 (ja) 2018-03-07
CN104662689B (zh) 2017-06-27
US9818983B2 (en) 2017-11-14
CN104662689A (zh) 2015-05-27
KR102079583B1 (ko) 2020-04-07
JP2015512132A (ja) 2015-04-23
WO2013130247A1 (en) 2013-09-06
US20140370307A1 (en) 2014-12-18
US10644267B2 (en) 2020-05-05
KR20140130717A (ko) 2014-11-11
US11127927B2 (en) 2021-09-21
US20200235344A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
TWI614135B (zh) 適用於光學耦合層之含有表面改質高指數奈米粒子的組合物
JP6394392B2 (ja) 光学シート及び面光源装置
JP5684791B2 (ja) 光学フィルム
TWI550933B (zh) 用於有機發光裝置(OLEDs)之光擷取薄膜
WO2014115639A1 (ja) 光学部材用粘着剤組成物、光学部材用粘着層及び面光源装置
TW201240179A (en) Light extraction films for increasing pixelated OLED output with reduced blur
WO2016017781A1 (ja) 有機el発光装置
US10074828B2 (en) Light scattering layer having particles for an organic EL light-emitting device
TW201205125A (en) OLED light extraction films laminated onto glass substrates
JP6627783B2 (ja) 光学積層体及びその製造方法
KR102205622B1 (ko) 광학 적층체 및 면광원 장치
JP2012190647A (ja) 有機エレクトロルミネッセンス光源装置、複層フィルム及びそれらの製造方法
JP2014209439A (ja) 面光源装置
TW201819550A (zh) 具有光擴散功能的封裝組成物、封裝膜以及使用該組成物的有機發光元件

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees