TWI608240B - Smu rf電晶體穩定性配置 - Google Patents

Smu rf電晶體穩定性配置 Download PDF

Info

Publication number
TWI608240B
TWI608240B TW102139076A TW102139076A TWI608240B TW I608240 B TWI608240 B TW I608240B TW 102139076 A TW102139076 A TW 102139076A TW 102139076 A TW102139076 A TW 102139076A TW I608240 B TWI608240 B TW I608240B
Authority
TW
Taiwan
Prior art keywords
electrically coupled
input
cables
ground
capacitor
Prior art date
Application number
TW102139076A
Other languages
English (en)
Other versions
TW201432273A (zh
Inventor
詹姆士 奈門
Original Assignee
吉時利儀器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉時利儀器公司 filed Critical 吉時利儀器公司
Publication of TW201432273A publication Critical patent/TW201432273A/zh
Application granted granted Critical
Publication of TWI608240B publication Critical patent/TWI608240B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/2612Circuits therefor for testing bipolar transistors for measuring frequency response characteristics, e.g. cut-off frequency thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

SMU RF電晶體穩定性配置 相關申請案對照
本申請案擁有於2013年2月1日提出申請的美國臨時專利申請案序號61/759,987之權益,本申請案特此引用該專利申請案以供參照。
本發明之揭示係大致有關射頻(Radio-Frequency;簡稱RF)電晶體之領域。本發明尤其說明了一種用來提供測試及量測RF電晶體時的較高的穩定性之系統。
使RF電晶體以及其他放大器及三端分立裝置保持穩定的設計要求通常與對這些裝置進行直流(DC)量測時對電源管理單元(Source Management Unit;簡稱SMU)的需求會有衝突。對此類RF裝置的DC測試尤其經常會使該RF裝置突然振盪。因此,完全無法對許多RF裝置進行DC測試。因此,目前需要一種可改善且推進用來測試這些組件的已知方法的設計之RF電晶體測試方法。下文中將說明與該領域中存在的需求有關的有用之新 系統之例子。
就這一點而言,SMU通常被用來測試諸如電晶體及積體電路放大器等的高速裝置(速度大於1Mhz(Mhz:百萬赫))。電晶體的DC I/V(電流/電壓)曲線以及RF放大器的IDDQ量測是對這些裝置進行的常見測試。該符號IDDQ有兩種意義。IDDQ通常被用來稱為靜態供電電流,且亦可被用來稱為一種基於採取靜態供電電流(IDDQ)量測之測試方法。因此,作為測試方法的IDDQ是一種基於量測待測裝置(device-under-test;簡稱DUT)的靜態電源電流之測試方法。
在使用或測試這些裝置時,這些裝置中之每一裝置都有要特別留意的一共同點,亦即,增益。如此項技術中習知的,具有增益的任何裝置之輸出若容許在零相位且放大器增益大於1一之情形下被耦合回到輸入,則有可能振盪。當這些高速放大器被用於其預期應用時,必須小心使輸出不會被耦合會到具有相位對準延遲的輸出。此外,在極高速放大器的情形中,必須特別小心確保這些裝置的輸入及輸出線被適當地終止,以便消除反射。來自放大器輸出的反射可能被耦合到放大器輸入,而使該放大器振盪。在此種情形中,反射可將能量自該放大器的輸出耦合到該放大器的輸入,而產生前文所述之零相位情況。
通常以長的香蕉線(banana cable)或三軸纜線(triaxial cable)將諸如電晶體及放大器等的先前高速裝置連接到各SMU。在每一種情形中,該等長纜線(傳 輸線)沒有被適當地終止,且該等長纜線沒有可消除不需要的振盪之正確RF阻抗。因此,再以前文所述之方式嘗試對許多高速裝置進行基本I/V量測時,該等高速裝置將會振盪。
通常被簡稱為"triax cable"的這些三軸纜線屬於類似於同軸纜線(被簡稱為coax)之電纜線類型,但是三軸纜線增加了一額外的絕緣層及一第二導電鞘。因此,該等三軸纜線提供了比同軸纜線更大的頻寬及對干擾的拒斥。三軸纜線理想上呈現自內導體至外殼的大約100歐姆之阻抗。
用來消除此種不需要的隔離的先前已知之方法及系統需要該等三軸纜線之內屏蔽,用以提供至該SMU的Hi及Sense Hi輸入連接之「防護」。該防護頻率在遠低於SMU閉迴路(loop closure)處衰減,而使該SMU不會由於前文所述之不需要的情況而振盪(被稱為「防護環(guard-ring)振盪器」)。藉由驅動具有一電阻之一纜線防護(cable guard),而實現上述之分離防護。該電阻性防護將在一頻率下衰減,而容許該防護在高頻下「浮接」。因此,該等三軸纜線中之該內屏蔽或「防護導體」將根據其在該等三軸纜線的內屏蔽與外屏蔽間之位置而在遠高於防護衰減頻率(roll-off frequency)之所有頻率下呈現適當的RF電壓。
因此,朝向可減少或消除不需要的振盪的高速RF裝置之測試改良是所希望的。
所揭示技術之實施例大致包括DC量測路徑亦可表現得像被適當地終止的RF路徑之RF測試系統。達到該目標需要以一種有頻率選擇性之方式終止輸出HI、LO、及Sense HI導體,使該等終止不會影響到SMU DC量測。一旦所有SMU輸入/輸出阻抗被控制,且被適當地終止而消除反射之後,只要各儀器在儀器與儀器(個別的儀器被用在閘極及汲極上,或被用在該裝置的輸入及輸出上)之間維持高隔離,則該等高速裝置在裝置測試期間將不再振盪。
若參照各圖式而閱讀下文中之詳細說明,將可更易於了解本發明的前文所述及其他的目的、特徵、及優點。
10‧‧‧系統
12‧‧‧待測裝置
44、46、48、144、146、148‧‧‧測試點
49、56、64、149、156、164‧‧‧三軸纜線
70、72、74‧‧‧節點
14‧‧‧第一SMU
114‧‧‧第二SMU
50、60、66、150、160、166‧‧‧中央信號導體
54、62、68、154、162、168‧‧‧外屏蔽
52、58、67、152、158、167‧‧‧中間導體
26、126‧‧‧第一防護電阻
16‧‧‧HI輸入端
18‧‧‧Sense HI輸入端
20‧‧‧LO輸入端
22‧‧‧第一終端電阻
24‧‧‧第一防護電容
28‧‧‧第二防護電容
38‧‧‧接地電容
42‧‧‧接地端
30‧‧‧第二終端電阻
32‧‧‧第三防護電容
36‧‧‧第四防護電容
34、134‧‧‧第二防護電阻
40、140‧‧‧第三防護電阻
第1圖是根據所揭示技術的某些實施例的一SMU RF電晶體穩定性配置的一第一例子之一方塊圖。
第2圖是第1圖所示該SMU RF電晶體穩定性配置的一例子之一示意圖。
若配合各圖式而檢閱下文中之詳細說明,將可對本發明揭示的RF測試方法有更佳的了解。該詳細說 明及各圖式只是提供了本說明書中所述的各發明之例子。熟悉此項技術者當可了解:可在不脫離本說明書所述的該等發明之範圍下,變更、修改、及改變所揭示的該等例子。針對不同的應用及設計考量而考慮到許多變化;然而,為了顧及簡潔,下文的詳細說明中將不個別地說明所考慮的各個及每一變化。
在下文的詳細說明中,提供了各種RF測試方法之例子。在不同的例子中,該等例子中之相關特徵可能是相同的、相似的、或不同的。為了顧及簡潔,每一例子中將不多餘地說明各相關特徵。替代地,使用相關特徵名稱時,將提示讀者:具有相關特徵名稱的特徵可能類似於先前所述的一例子中之相關特徵。針對某一例子的特徵將在該特定例子中被說明。讀者應可了解:某一特徵不需要相同於或類似於對任何特定圖式或例子中之一相關特徵的特定描述。
請參閱第1圖,現在將說明一SMU RF電晶體穩定性配置系統及方法10的一第一例子之一方塊圖。系統10包含一待測裝置(DUT)12、有第一組的至少三個測試點44、46、48之一第一SMU 14、第一組的三軸纜線49、56、64、被連接到DUT 12之一組節點70、72、74、有第二組的至少三個測試點144、146、148之一第二SMU 114、以及第二組的三軸纜線149、156、164。
如第2圖所示,第一組的三軸纜線49、56、64中之每一條三軸纜線分別至少包含一中央信號導體 50、60、66、一外屏蔽54、62、68、以及一中間導體52、58、67。同樣地,第二組的三軸纜線149、156、164中之每一條三軸纜線分別至少包含一中央信號導體150、160、166、一外屏蔽154、162、168、以及一中間導體152、158、167。系統10運行而提供一種可在SMU的輸入與輸出間之較小的干擾之情形下量測一RF DUT的I/V特性之纜線互連方法。
在第2圖所示之例子中,以相同於SMU 14之方式配置SMU 114;因此,只需要以與關於SMU 14之方式說明方法及系統10以及其至三軸纜線49、56、64之連接。為了便於了解,且於SMU14與SMU 114之間參照時,以對應的SMU 14標號增加100之方式標示SMU 114的每一鏡像組件(例如,SMU 14相同於SMU 114,且第一防護電阻26相同於第一防護電阻126的標示方式,等等)。將在圓括號內提供所述之每一電阻及電容的值,但是讀者應可了解:那些值只不過是特定組件的一組值中之一個例子。因此,系統10的其他例子可包括本發明所述的每一電阻及電容的許多其他組之值。此外,DUT 12在本發明之例子中被示為雙極電晶體,但是其他系統例子中之DUT 12可以是任何三端裝置。
如第2圖所示,SMU 14進一步包含一HI輸入端16、一Sense HI輸入端18、及一LO輸入端20。提供至LO輸入端20之串聯的一第一終端電阻22(50歐姆)、一第一防護電容24(50微微法拉)、及一第二防 護電容28(150微微法拉),且經由接地電容38(100微微法拉)將該等串聯的組件接地到一接地端42,而使HI輸入端16在射頻上被終止於一截止頻率(CUTOFF frequency)之上。此外,HI輸入端16也經由測試點44而在電氣上被耦合到三軸纜線49。請注意,係為三軸纜線49之中央信號導體50在電氣上被耦合到HI輸入端16。三軸纜線49之中央信號導體50也經由節點70而在電氣上被耦合到DUT 12之基極。
同樣地,提供至LO輸入端20之串聯的一第二終端電阻30(50歐姆)、一第三防護電容32(50微微法拉)、及一第四防護電容36(150微微法拉),且經由接地電容38(100微微法拉)將該等串聯的組件接地到一接地端42,而使Sense HI(S+)輸入端18在射頻上被終止於該截止頻率之上。此外,Sense HI輸入端18也經由測試點46而在電氣上被耦合到三軸纜線56。請注意,係為三軸纜線56之中央信號導體60在電氣上被耦合到Sense HI輸入端18。三軸纜線56之中央信號導體60也經由節點70而在電氣上被耦合到DUT 12之基極。
在低於該截止頻率的所有頻率中,第一終端電阻22及第二終端電阻30兩者以及該等終端電阻的各別防護電容24、32中之一防護電容都被其各別的防護電阻26、34「防護」。防護電阻26、34及所有的防護電容24、28、32、36被設計成:使DC防護只在該截止頻率之下工作,而仍然使HI輸入端16及Sense HI輸入端18在 射頻上被正確地終止於該截止頻率之上。此外,三軸纜線49、56、64之外屏蔽54、62、68在電氣上被耦合在一起,且被接地到接地端42。在本發明揭示之實施例中,要求這些連接維持正確的終止。
LO輸入端20在電氣上被耦合到前文所述之HI輸入端16及Sense HI輸入端18,且在電氣上被耦合到三軸纜線64之中央信號導體66。此外,三軸纜線64之中間導體67也在電氣上被耦合到LO輸入端20,而三軸纜線64之中央信號導體66經由節點74而在電氣上被耦合到DUT 12之射極,且節點74也在電氣上被耦合到三軸纜線164之中央信號導體166。
一第三防護電阻40(20千歐姆)經由各別的中間導體52、58而在電氣上被耦合到三軸纜線49及三軸纜線56。防護電阻40以與防護電阻26、34相同之方式工作,因而利用該等三個防護輸入端中之每一防護輸入端上之一運算放大器(並未示出運算放大器電路)分別檢視HI輸入端16及Sense HI輸入端18上呈現的任何電壓,且將那些相同的電壓放在那些各別的防護輸入端。因此,例如,在低於該截止頻率的頻率時,DC防護起作用;然而,在高於該截止頻率的頻率時,DC防護將不起作用,且HI輸入端16及Sense HI輸入端18將正確地終止於接地端42。
請注意,如前文所述,系統10適用於I/V量測(在低於該截止頻率的頻率時)及RF量測(在高於該 截止頻率的頻率時)。雖然每一SMU的截止頻率可能因內部組件的值而改變,但是該截止頻率的最佳值部分地取決於量測頻寬以及使DUT正確地終止及穩定所需之RF頻率。然而,就一般規則而言,應將截止頻率設計成儘量地低,且通常使截止頻率略高於量測頻寬。對於高解析度的I/V量測而言,略高於I/V量測而在3Khz(Khz:千赫)與6Khz之間的截止頻率將不是不尋常的。例如,在本發明揭示的實施例中,該截止頻率大約為3,538赫茲,係為低於所進行的大部分I/V量測之一頻率。或者,其他方法可具有在前文中揭示的3-6Khz的範圍內之截止頻率。
如第2圖所示,本實施例揭示了一共射極(common-emitter)組態中之DUT 12的互連,其中DUT 12之射極經由三軸纜線64之中央信號導體66及接地電容38而共接地端42。或者,在其他例子中,可以共基極(common-base)或共集極(common-collector)組態將該DUT互連。此外,本實施例中之該DUT恰好是一NPN電晶體,但是在其他例子中,該DUT可以是一金屬氧化物半導體場效電晶體(Metal Oxide Semiconductor Field Effect Transistor:簡稱MOSFET)、一運算放大器、或任何其他三端分立裝置。
在參照一些實施例而說明且示出了本發明的原理之後,我們應可了解:可在不脫離這些原理的情形下,修改所示該等實施例之配置其細節,且可以任何所需之方式合併該等實施例。且雖然前文之說明係將重點放在 一些特定實施例,但是亦可考慮其他的組態。尤其縱然在本說明書中使用了諸如"根據本發明的一實施例"等的詞語,這些詞語的意思是大致參照實施例之可能性,且其用意並非將本發明限制在特定的實施例組態。在本說明書的用法中,這些術語可參照到被合併到其他實施例之相同的或不同的實施例。
因此,考慮到本發明所述的該等實施例之廣泛的變更,本詳細說明及附隨資料之用意只是例示,且不應被理解為對本發明範圍的限制。因此,申請作為本發明的專利範圍是在最後的申請專利範圍及其等效物的範圍及精神內之所有此類修改。
10‧‧‧系統
12‧‧‧待測裝置
14‧‧‧第一SMU
16‧‧‧HI輸入端
18‧‧‧Sense HI輸入端
20‧‧‧LO輸入端
22‧‧‧第一終端電阻
24‧‧‧第一防護電容
26、126‧‧‧第一防護電阻
28‧‧‧第二防護電容
30‧‧‧第二終端電阻
32‧‧‧第三防護電容
34、134‧‧‧第二防護電阻
36‧‧‧第四防護電容
38‧‧‧接地電容
40、140‧‧‧第三防護電阻
42‧‧‧接地端
44、46、48、144、146、148‧‧‧測試點
49、56、64、149、156、164‧‧‧三軸纜線
50、60、66、150、160、166‧‧‧中央信號導體
52、58、67、152、158、167‧‧‧中間導體
54、62、68、154、162、168‧‧‧外屏蔽
70、72、74‧‧‧節點
114‧‧‧第二SMU

Claims (15)

  1. 一種用於測試待測裝置(DUT)之方法,包含下列步驟:將包含至少三個測試點之第一電源量測單元(SMU)連接到第一組的至少三條三軸纜線,每一條三軸纜線至少具有中央信號導體、外屏蔽、中間導體及接地端,以使該等三個測試點中之每一個被分別連接到該第一組的該等三條三軸纜線中的每一條的該中央信號導體之第一端,且其中該第一組的三軸纜線的該等外屏蔽中之每一個連同該接地端在電氣上被耦合在一起;將該第一組的三軸纜線中之每一條之第二端連接到該待測裝置之一組節點;將包含至少三個測試點之第二SMU連接到第二組的至少三條三軸纜線,並且具有中央信號導體、外屏蔽、中間導體及接地端,以使該等三個測試點中之每一個被分別連接到該第二組的該等三條三軸纜線中的每一條的該中央信號導體之第一端,且其中該第二組的三軸纜線的該等外屏蔽中之每一個連同該接地端在電氣上被耦合在一起;以及將該第二組的三軸纜線中之每一條之第二端連接到該待測裝置之該組節點;其中該第一組及該第二組的三軸纜線之該外屏蔽在電氣上被耦合在一起,且在電氣上被耦合到其各別的接地端,且其中該第一及第二SMU進一步包含: 在電氣上被耦合到該第一測試點之第一輸入端,該第一輸入端具有:在電氣上被以串聯方式與該第一輸入端耦合之第一終端電阻;在電氣上被以串聯方式與該第一終端電阻耦合之第一及第二防護電容;在電氣上被與該第一防護電容及該第二防護電容耦合之第一防護電阻;在電氣上被以串聯方式與其各別的接地端耦合之接地電容;在電氣上被耦合到該第二測試點之第二輸入端,該第二輸入端具有:在電氣上被以串聯方式與該第二輸入端耦合之第二終端電阻;在電氣上被以串聯方式與該第二終端電阻耦合之第三及第四防護電容;在電氣上被與該第三防護電容及該第四防護電容耦合之第二防護電阻;以及在電氣上被耦合到該第一輸入端、該第二輸入端及該第三測試點之第三輸入端,且其中該第三輸入端也在電氣上被耦合到該接地電容及其各別的接地端。
  2. 如申請專利範圍第1項之方法,其中該第一及第二SMU分別包含機殼接地端,而該第一組及該第二組的三 軸纜線之該等各別的外屏蔽在電氣上被耦合到該機殼接地端。
  3. 如申請專利範圍第1項之方法,其中該第一輸入端被配置成接收Hi信號輸入。
  4. 如申請專利範圍第1項之方法,其中該第二輸入端被配置成接收Sense Hi信號輸入。
  5. 如申請專利範圍第1項之方法,其中該第三輸入端被配置成接收Lo信號輸入。
  6. 如申請專利範圍第1項之方法,其中該DUT是金屬氧化物半導體場效電晶體(MOSFET)或運算放大器或三端分立裝置。
  7. 如申請專利範圍第1項之方法,其中該DUT被以共射極組態方式而在電氣上耦合到該第一組及該第二組的三軸纜線。
  8. 如申請專利範圍第1項之方法,其中該DUT被以共基極組態方式而在電氣上耦合到該第一組及該第二組的三軸纜線。
  9. 如申請專利範圍第1項之方法,其中該DUT被以共集極組態方式而在電氣上耦合到該第一組及該第二組的三軸纜線。
  10. 如申請專利範圍第1項之方法,其中該第一及第二SMU分別具有在電氣上被耦合到第一測試點之各別的第一輸入,每一SMU具有在電氣上被與第一終端電阻耦合之各別的第一輸入端,每一SMU之終端電阻具有至少 50歐姆之電阻值。
  11. 如申請專利範圍第1項之方法,其中該第一組及該第二組的三軸纜線具有至少100歐姆之阻抗。
  12. 如申請專利範圍第1項之方法,其中每一SMU進一步包含分別在電氣上被耦合到該第一組及該第二組三軸纜線的該等中間導體之第三防護電阻。
  13. 一種用於測試待測裝置(DUT)之系統,包含:包含被連接到第一組的至少三條三軸纜線的至少三個測試點之第一電源量測單元(SMU),每一纜線至少具有中央信號導體、外屏蔽、中間導體及第一接地端,以使該等三個測試點中之每一個被分別連接到該第一組的該等三條三軸纜線中的每一條的該中央信號導體之第一端,且其中該第一組的三軸纜線的該等外屏蔽中之每一個在電氣上被耦合在一起,且在電氣上被耦合到該第一接地端;一組節點,該組節點被連接到該第一組的三軸纜線中之每一條之第二端,且被連接到該DUT;包含被連接到第二組的至少三條三軸纜線的至少三個測試點之第二SMU,每一纜線至少具有中央信號導體、外屏蔽、中間導體及第二接地端,以使該等三個測試點中之每一個被分別連接到該第二組的該等三條三軸纜線中的每一條的該中央信號導體之第一端,且其中該第二組的三軸纜線的該等外屏蔽中之每一個在電氣上被耦合在一起,且在電氣上被耦合到該第二接地端;以及被連接到該組節點且被連接到該DUT的該第二組的 三軸纜線中之每一條之第二端;其中該第一組及該第二組的三軸纜線之該等外屏蔽在電氣上被耦合到其各別的第一及第二接地端,且其中該第一及第二SMU進一步包含:在電氣上被耦合到該第一測試點之第一輸入端,該第一輸入端具有:在電氣上被以串聯方式與該第一輸入端耦合之第一終端電阻;在電氣上被以串聯方式與該第一終端電阻耦合之第一及第二防護電容;在電氣上被與該第一防護電容及該第二防護電容耦合之第一防護電阻;在電氣上被以串聯方式與其各別的接地端耦合之接地電容;在電氣上被耦合到該第二測試點之第二輸入端,該第二輸入端具有:在電氣上被以串聯方式與該第二輸入端耦合之第二終端電阻;在電氣上被以串聯方式與該第二終端電阻耦合之第三及第四防護電容;在電氣上被與該第三防護電容及該第四防護電容耦合之第二防護電阻;以及在電氣上被耦合到該第一輸入端、該第二輸入端及該第三測試點之第三輸入端, 且其中該第三輸入端也在電氣上被耦合到該接地電容及其各別的接地端。
  14. 如申請專利範圍第13項之系統,其中該第一及第二SMU分別包含機殼接地端,而該第一組及該第二組的三軸纜線之該等各別的外屏蔽在電氣上被耦合到該機殼接地端。
  15. 如申請專利範圍第13項之系統,其中該DUT是金屬氧化物半導體場效電晶體(MOSFET)或運算放大器或三端分立裝置。
TW102139076A 2013-02-01 2013-10-29 Smu rf電晶體穩定性配置 TWI608240B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361759987P 2013-02-01 2013-02-01
US13/901,430 US9335364B2 (en) 2013-02-01 2013-05-23 SMU RF transistor stability arrangement

Publications (2)

Publication Number Publication Date
TW201432273A TW201432273A (zh) 2014-08-16
TWI608240B true TWI608240B (zh) 2017-12-11

Family

ID=50097546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139076A TWI608240B (zh) 2013-02-01 2013-10-29 Smu rf電晶體穩定性配置

Country Status (7)

Country Link
US (1) US9335364B2 (zh)
EP (1) EP2762906A3 (zh)
JP (1) JP6552154B2 (zh)
KR (1) KR20140099423A (zh)
CN (1) CN103969566B (zh)
RU (1) RU2645129C2 (zh)
TW (1) TWI608240B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983228B2 (en) * 2014-09-24 2018-05-29 Keithley Instruments, Llc Triaxial DC-AC connection system
US10782348B2 (en) * 2017-03-10 2020-09-22 Keithley Instruments, Llc Automatic device detection and connection verification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123994A1 (en) * 2002-12-30 2004-07-01 Hohenwater Gert K. G. Method and structure for suppressing EMI among electrical cables for use in semiconductor test system
US6998869B2 (en) * 2004-04-16 2006-02-14 Agilent Technologies, Inc. Semiconductor device characteristics measurement apparatus and connection apparatus
CN1811475A (zh) * 2005-01-26 2006-08-02 Sealive株式会社 电线识别装置和电线识别方法
US20070182429A1 (en) * 2006-02-03 2007-08-09 Goeke Wayne C Triaxial interconnect system
US20100127714A1 (en) * 2008-11-24 2010-05-27 Cascade Microtech, Inc. Test system for flicker noise

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888548A (en) * 1988-03-31 1989-12-19 Hewlett-Packard Company Programmatically generated in-circuit test of digital to analog converters
JPH0720172A (ja) * 1993-06-30 1995-01-24 Yokogawa Hewlett Packard Ltd 回路定数・材料特性測定装置
JP3442822B2 (ja) 1993-07-28 2003-09-02 アジレント・テクノロジー株式会社 測定用ケーブル及び測定システム
JPH1082837A (ja) * 1996-09-06 1998-03-31 Advantest Corp Lsi試験装置
US7151389B2 (en) * 2004-03-05 2006-12-19 Qualitau, Inc. Dual channel source measurement unit for semiconductor device testing
JP2005321379A (ja) * 2004-04-07 2005-11-17 Agilent Technol Inc 半導体特性測定装置の統合接続装置およびケーブルアセンブリ
JP2007024718A (ja) * 2005-07-19 2007-02-01 Agilent Technol Inc 半導体特性測定装置の制御方法および制御プログラム
CN101405607A (zh) * 2006-03-20 2009-04-08 英富康公司 用于微电子等离子体处理工具的高性能微型射频传感器
US8067718B2 (en) * 2006-05-04 2011-11-29 Tektronix, Inc. Method and apparatus for probing
US8278936B2 (en) * 2007-11-23 2012-10-02 Evan Grund Test circuits and current pulse generator for simulating an electrostatic discharge
US20090267634A1 (en) * 2008-04-25 2009-10-29 Agilent Technologies, Inc. Switch Module for Semiconductor Characteristic Measurement and Measurement Method of Semiconductor Characteristics
US8456173B2 (en) * 2009-09-30 2013-06-04 Tektronix, Inc. Signal acquisition system having probe cable termination in a signal processing instrument
US8717053B2 (en) * 2011-11-04 2014-05-06 Keithley Instruments, Inc. DC-AC probe card topology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123994A1 (en) * 2002-12-30 2004-07-01 Hohenwater Gert K. G. Method and structure for suppressing EMI among electrical cables for use in semiconductor test system
US6998869B2 (en) * 2004-04-16 2006-02-14 Agilent Technologies, Inc. Semiconductor device characteristics measurement apparatus and connection apparatus
CN1811475A (zh) * 2005-01-26 2006-08-02 Sealive株式会社 电线识别装置和电线识别方法
US20070182429A1 (en) * 2006-02-03 2007-08-09 Goeke Wayne C Triaxial interconnect system
US20100127714A1 (en) * 2008-11-24 2010-05-27 Cascade Microtech, Inc. Test system for flicker noise

Also Published As

Publication number Publication date
EP2762906A2 (en) 2014-08-06
CN103969566B (zh) 2018-05-08
TW201432273A (zh) 2014-08-16
CN103969566A (zh) 2014-08-06
JP2014149298A (ja) 2014-08-21
US20140218064A1 (en) 2014-08-07
KR20140099423A (ko) 2014-08-12
JP6552154B2 (ja) 2019-07-31
US9335364B2 (en) 2016-05-10
EP2762906A3 (en) 2017-12-20
RU2014103467A (ru) 2015-08-27
RU2645129C2 (ru) 2018-02-15

Similar Documents

Publication Publication Date Title
US6856126B2 (en) Differential voltage probe
US7518385B2 (en) Probe using high pass ground signal path
JP6222916B2 (ja) Dc−acプローブ・カード
KR20130090776A (ko) 절연기의 소산 계수를 측정하기 위한 장치 및 방법
Hewson et al. An improved Rogowski coil configuration for a high speed, compact current sensor with high immunity to voltage transients
US6483284B1 (en) Wide-bandwidth probe using pole-zero cancellation
EP3422020B1 (en) Measurement input circuit and measurement device
TWI608240B (zh) Smu rf電晶體穩定性配置
Johnson et al. Oscilloscope probes for power electronics: Be sure to choose the right probe for accurate measurements
US8963559B2 (en) Variable impedance device
CN109709152B (zh) 一种用于fA~pA量级微弱电流的绝缘薄膜测量系统
US9952256B2 (en) Matching circuit for matching an impedance value and a corresponding system and method
CN111487452A (zh) 一种超快电流探测装置及脉冲测试系统
US10707673B2 (en) Protection circuit for oscilloscope measurement channel
US9983228B2 (en) Triaxial DC-AC connection system
US7855544B1 (en) AC low current probe card
KR20130090777A (ko) 절연기의 소산 계수를 측정하기 위한 장치 및 방법
CN113544970B (zh) 差分噪声消除
CN116936540A (zh) 测试电路、设备及系统
Săpunaru et al. Propagation Phenomena of Conducted Disturbances in a Converter Powered through a LISN
Suto Principles of analog in-circuit testing
Bickley Measurement of transistor characteristic frequencies in the 20–1000 Mc/s range
RU2530262C1 (ru) Быстродействующий аттенюатор для входных цепей аналого-цифровых интерфейсов
CN110967536A (zh) 具有保护驱动电路的源测量单元
JP2001074792A (ja) 二端子トリオ測定装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees