TWI606059B - 反意義核酸 - Google Patents

反意義核酸 Download PDF

Info

Publication number
TWI606059B
TWI606059B TW101150922A TW101150922A TWI606059B TW I606059 B TWI606059 B TW I606059B TW 101150922 A TW101150922 A TW 101150922A TW 101150922 A TW101150922 A TW 101150922A TW I606059 B TWI606059 B TW I606059B
Authority
TW
Taiwan
Prior art keywords
nucleic acid
exon
synthetic nucleic
oligomer
pmo
Prior art date
Application number
TW101150922A
Other languages
English (en)
Other versions
TW201336859A (zh
Inventor
渡邊直樹
瀨尾春奈
武田伸一
永田哲也
Original Assignee
日本新藥股份有限公司
獨立行政法人國立精神 神經醫療研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本新藥股份有限公司, 獨立行政法人國立精神 神經醫療研究中心 filed Critical 日本新藥股份有限公司
Publication of TW201336859A publication Critical patent/TW201336859A/zh
Application granted granted Critical
Publication of TWI606059B publication Critical patent/TWI606059B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/314Phosphoramidates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

反意義核酸
本發明係關於可使人類肌營養蛋白(human dystrophin)基因之第55、45、50及44號外顯子被跳過(skipping)之反意義寡聚物、及含有該寡聚物之醫藥組成物。
杜顯氏肌肉萎縮症(Duchenne muscular dystrophy)(DMD)為約每3,500名出生男子中就有1人發病之頻率最高之遺傳性進行性肌肉萎縮症。雖然在乳幼兒期呈現與正常人幾乎無異之運動機能,不過從4至5歲左右可見到肌力降低。之後肌力持續降低,至12歲左右變得無法步行,於20多歲由於心臟功能衰竭或呼吸器官功能衰竭而終至死亡之嚴重疾病。現今,尚無對DMD有效之治療法,正強烈需求新治療藥之開發。
已知DMD之原因為肌營養蛋白基因之變異。肌營養蛋白基因係存在於X染色體,由220萬鹼基對之DNA所構成之巨大基因。從DNA轉錄為mRNA前驅物,再藉由剪接(splicing)除去內含子,而合成由79個外顯子結合而成之mRNA。從該mRNA轉譯為3,685個胺基酸,生成肌營養蛋白質。肌營養蛋白質係參與維持肌細胞之膜安定性,為使肌細胞不易壞死所必需者。由於DMD患者之肌營養蛋白基因有變異,所以在肌細胞中具有功能之 肌營養蛋白質幾乎全未表現。因此,在DMD患者體內,會無法維持肌細胞之構造,而有多量之鈣離子流入肌細胞內。其結果係產生類似發炎之反應而纖維化,使得肌細胞難以再生。
雖然貝克型肌肉失養症(Becker muscular dystrophy;BMD)之原因亦為肌營養蛋白基因之變異,但其症狀所呈現之因肌萎縮造成之肌力降低一般而言係比DMD輕,肌力降低之進行亦較遲,許多情況係在成人期發病。DMD與BMD之臨床症狀之差異,被認為係取決於因變異使肌營養蛋白之mRNA轉譯為肌營養蛋白質時,胺基酸讀取框架係遭破壞,抑或維持(非專利文獻1)。總之,在DMD中,由於胺基酸讀取框架具有移位變異,具有功能之肌營養蛋白質幾乎未表現,而在BMD中,由於雖因變異造成外顯子之一部分缺失,不過因胺基酸讀取框架仍被維持,所以會產生雖然不完全但仍具有功能之肌營養蛋白質。
就DMD之治療法而言,外顯子跳過(exon skipping)法受到期待。此種方法為藉由改變剪接而修復肌營養蛋白之mRNA之胺基酸讀取框架,並誘導部分回復功能之肌營養蛋白質表現之方法(非專利文獻2)。成為外顯子跳過對象之胺基酸序列為部分喪失。因此,藉由該治療所表現之肌營養蛋白質雖然比正常者短,但由於維持胺基酸讀取框架,所以會保持部分肌細胞安定化之功能。因此,期待藉由外顯子跳過,能使DMD呈現與較輕症之BMD相同之症狀。外顯子跳過法,經過以小鼠或犬所進行之動物實驗,現正對人類DMD患者進行臨床試驗。
外顯子跳過,可藉由以5’或3’剪接部位之任一者或兩者、或者以外顯子之內部作為標的之反義核酸之結合來誘 導。而外顯子只有在兩側之剪接部位可被剪接體(spliceosome)複合物識別之情形下才會被包含於mRNA中。因此,藉由以反義核酸標定(targeting)剪接部位,可誘導外顯子跳過。又,為了使外顯子被剪接之機構識別,係認為需使SR蛋白質與外顯子剪接增強子(ESE,Exonic Splicing Enhancer)結合,而藉由標定ESE,亦可誘導外顯子之跳過。
由於肌營養蛋白基因之變異係因DMD患者而異,因此需要因應基因變異之位置或種類的反義核酸。迄今為止,西澳大學之Steve Wilton氏等係對於全部79個外顯子,製作出誘導外顯子跳過之反義核酸(非專利文獻3),荷蘭之Annemieke Aartsma-Rus氏等係對於39種外顯子,製作出誘導外顯子跳過之反義核酸(非專利文獻4)。
目前認為全部DMD患者之20%左右,可藉由跳過第55、45、50及44號之外顯子(以下,分別稱為「外顯子55」、「外顯子45」、「外顯子50」及「外顯子44」)而治療。近年來,已有複數個研究機關提出關於將肌營養蛋白基因之外顯子55、45、50及44作為外顯子跳過標的之研究的報告(專利文獻1至8)。不過,迄今尚未確立在患者細胞中高效率地跳過外顯子55、45、50及44之技術。
專利文獻1:國際公開公報WO 2006/000057
專利文獻2:國際公開公報WO 2004/048570
專利文獻3:美國專利公開公報US 2010/0168212
專利文獻4:國際公開公報WO 2010/048586
專利文獻5:國際公開公報WO 2004/083446
專利文獻6:國際公開公報WO2010/050801
專利文獻7:國際公開公報WO 2009/139630
非專利文獻1:Monaco A. P. et al., Genomics 1988; 2: p. 90-95
非專利文獻2:Matsuo M., Brain Dev 1996; 18: p. 167-172
非專利文獻3:Wilton S. D., et al., Molecular Therapy 2007: 15: p. 1288-96
非專利文獻4:Annemieke Aartsma-Rus et al., (2002) Neuromuscular Disorders 12: S71-S77
非專利文獻5:Linda J. Popplewell et al., (2010) Neuromuscular Disorders, vol. 20, no. 2, p. 102-10
如上述之狀況,正期望強烈誘導跳過肌營養蛋白基因之外顯子55、45、50及44之反意義寡聚物及含有該寡聚物之肌肉失養症治療藥。
本發明人等經詳細地研究肌營養蛋白基因之構造,結果發現藉由用反意義寡聚物標定包含從肌營養蛋白基因之mRNA前驅物(以下稱為「pre-mRNA」)中之外顯子55之5’末端算起第1至21號、第11至31號及第14至34號周邊之核苷酸的序列,可高效率地誘導跳過外顯子55。
又,本發明人等發現藉由用反意義寡聚物標定包含從肌營養蛋白基因pre-mRNA中之外顯子45之5’末端算起第1 至25號及第6至30號周邊之核苷酸的序列,可高效率地誘導跳過外顯子45。
再者,本發明人等發現藉由用反意義寡聚物標定包含從肌營養蛋白基因pre-mRNA中之外顯子50之5’末端算起第107至127號周邊之核苷酸的序列,可高效率地誘導跳過外顯子50。
更進一步而言,本發明人等發現藉由用反意義寡聚物標定包含從肌營養蛋白基因pre-mRNA中之外顯子44之5’末端算起第11至32號及第26至47號周邊之核苷酸的序列,可高效率地誘導跳過外顯子44。
本發明人等係基於該等認知及發現,而完成本發明。
亦即,本發明如以下所述。
[1]一種反意義寡聚物,其為可使人類肌營養蛋白基因之第55號外顯子被跳過之反意義寡聚物,該反意義寡聚物係包含與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第55號外顯子之5’末端算起第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第3至19號、第3至20號、第3至21號、第3至22號、第3至23號、第9至29號、第9至30號、第9至31號、第9至32號、第9至33號、第10至29號、第10至30號、第10至31號、第10至32 號、第10至33號、第11至29號、第11至30號、第11至31號、第11至32號、第11至33號、第12至29號、第12至30號、第12至31號、第12至32號、第12至33號、第13至29號、第13至30號、第13至31號、第13至32號、第13至33號、第12至34號、第12至35號、第12至36號、第13至34號、第13至35號、第13至36號、第14至32號、第14至33號、第14至34號、第14至35號、第14至36號、第15至32號、第15至33號、第15至34號、第15至35號、第15至36號、第16至32號、第16至33號、第16至34號、第16至35號或第16至36號之核苷酸的序列。
[2]一種反意義寡聚物,其為可使人類肌營養蛋白基因之第45號外顯子被跳過之反意義寡聚物,該反意義寡聚物係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第45號外顯子之5’末端算起第-3至19號、第-3至20號、第-3至21號、第-3至22號、第-3至23號、第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第-2至24號、第-2至25號、第-2至26號、第-2至27號、第-1至24號、第-1至25號、第-1至26號、第-1至27號、第1至24號、第1至25號、第1至26號、第1至27號、第2至24號、第2至25號、第2至26號、第2至27號、第3至23號、第3至24 號、第3至25號、第3至26號、第3至27號、第4至28號、第4至29號、第4至30號、第4至31號、第4至32號、第5至28號、第5至29號、第5至30號、第5至31號、第5至32號、第6至28號、第6至29號、第6至30號、第6至31號、第6至32號、第7至28號、第7至29號、第7至30號、第7至31號、第7至32號、第8至28號、第8至29號、第8至30號、第8至31號或第8至32號之核苷酸的序列。
[3]一種反意義寡聚物,其為可使人類肌營養蛋白基因之第50號外顯子被跳過之反意義寡聚物,該反意義寡聚物係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第50號外顯子之5’末端算起第105至125號、第105至126號、第105至127號、第105至128號、第105至129號、第106至125號、第106至126號、第106至127號、第106至128號、第106至129號、第107至125號、第107至126號、第107至127號、第107至128號、第107至129號、第108至125號、第108至126號、第108至127號、第108至128號、第108至129號、第109至125號、第109至126號、第109至127號、第109至128號或第109至129號之核苷酸的序列。
[4]一種反意義寡聚物,其為可使人類肌營養蛋白基因之第44號外顯子被跳過之反意義寡聚物,該反意義寡聚物係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第44號外顯子之5’末端算起第9至30號、第9至31號、第9至32號、第9至33 號、第9至34號、第10至30號、第10至31號、第10至32號、第10至33號、第10至34號、第11至30號、第11至31號、第11至32號、第11至33號、第11至34號、第12至30號、第12至31號、第12至32號、第12至33號、第12至34號、第13至30號、第13至31號、第13至32號、第13至33號、第13至34號、第24至45號、第24至46號、第24至47號、第24至48號、第24至49號、第25至45號、第25至46號、第25至47號、第25至48號、第25至49號、第26至45號、第26至46號、第26至47號、第26至48號、第26至49號、第27至45號、第27至46號、第27至47號、第27至48號、第27至49號、第28至45號、第28至46號、第28至47號、第28至48號、第28至49號、第29至45號、第29至46號、第29至47號、第29至48號或第29至49號之核苷酸的序列。
[5]如前述[1]記載之反意義寡聚物,其中包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第55號外顯子之5’末端算起第1至21號、第11至31號或第14至34號之核苷酸的序列。
[6]如前述[1]記載之反意義寡聚物,其中包括下述序列中之任一鹼基序列:包含序列編號5之第170至190號、第160至180號或第157至177號之核苷酸的序列。
[7]如前述[2]記載之反意義寡聚物,其中包括與下述序列中之任一者互補的鹼基序列: 包含從人類肌營養蛋白基因之第45號外顯子之5’末端算起第-2至19號、第1至21號、第1至25號或第6至30號之核苷酸的序列。
[8]如前述[2]記載之反意義寡聚物,其中包括下述序列中之任一鹼基序列:包含序列編號6之第158至178號、第156至176號、第152至176號或第147至171號之核苷酸的序列。
[9]如前述[3]記載之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第50號外顯子之5’末端算起第106至126號或第107至127號之核苷酸的序列。
[10]如前述[3]記載之反意義寡聚物,其係包括下述序列中之任一鹼基序列:包含序列編號7之第4至24號或第3至23號之核苷酸的序列。
[11]如前述[4]記載之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第44號外顯子之5’末端算起第11至32號、第25至45號、第26至46號、第26至47號或第27至47號之核苷酸的序列。
[12]前述[4]記載之反意義寡聚物,其係包括下述序列中之任一鹼基序列:包含序列編號8之第117至138號、第104至124號、第103至123號、第102至123號或第102至122號之核苷酸 的序列。
[13]如前述[1]至[12]中任一項所述之反意義寡聚物,其為寡核苷酸(oligonucleotide)。
[14]如前述[13]記載之反意義寡聚物,其中,構成前述寡核苷酸之至少一個核苷酸之糖部分及/或磷酸鍵部分係經過修飾。
[15]如前述[14]記載之反意義寡聚物,其中,構成前述寡核苷酸之至少一個核苷酸之糖部分,係2’位之-OH基被選自OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br及I所成群中之任一基置換之核糖(其中,上述R表示烷基或芳基,上述R’表示伸烷基)。
[16]如前述[14]或[15]記載之反意義寡聚物,其中,構成前述寡核苷酸之至少一個核苷酸之磷酸鍵部分,係選自硫代磷酸(phosphorothioate)鍵、二硫代磷酸(phosphorodithioate)鍵、烷基磷酸鍵、磷酸醯胺(phosphoroamidate)鍵、及硼烷磷酸(boranophosphate)鍵所成群中之任一者。
[17]如前述[1]至[12]中任一項所述之反意義寡聚物,其係嗎啉寡聚物。
[18]如前述[17]記載之反意義寡聚物,其係磷酸二醯胺嗎啉寡聚物(phosphorodiamidate morpholino oligomer)。
[19]如前述[17]或[18]記載之反意義寡聚物,其中,5’末端係下述化學式(1)至(3)中之任一基:
[20]一種肌肉失養症治療用醫藥組成物,其係以前述[1]至[19]中任一項所述之反意義寡聚物、其醫藥上可容許之鹽或水合物作為有效成分。
藉由本發明之反意義寡聚物,可高效率地誘導人類肌營養蛋白基因之外顯子55、45、50及44之跳過。又,藉由投予本發明之醫藥組成物,可有效地減輕杜顯氏肌肉萎縮症之症狀。又,由於本發明之反意義寡聚物只標定患者之外顯子序列,與標定內含子之反意義寡聚物相比較,標靶序列係保存在個體間(個人間),因此,可在不受個體差異(個人差異)影響下得到良好的跳過效率。再者,由於本發明之反意義寡聚物之鏈長短至20bp左右,因此,與以往之以治療DMD為目的之反意義寡聚物(25bp左右)相比,在標靶序列中包含SNP(Single Nucleotide Polymorphism(單核苷酸多型性))等個體(個人)間變異之可能性較低,就此點而言,亦可在不受個體差異(個人差異)影響下得到良好的跳過效率。又,一般而言,由於短鏈之反意義寡聚物較不易誘導免疫,所以本發明之反意義寡聚物具有「不易因誘導細胞激素(cytokine)等而產生副作用」之特徵。
此外,由於本發明之反意義寡聚物的鏈長較短,故 製造成本較為低廉。
第1圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第2圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第3圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第4圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第5圖:係呈現在來自人類DMD患者之纖維母細胞(GM05017細胞)導入人類MyoD基因而誘導分化成肌肉細胞之細胞中,PMO所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第6圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第7圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第8圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第9圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第10圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,2’-OMe-S-RNA寡聚物所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第11圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第12圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第13圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過效率之圖。
第14圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第15圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子45之跳過效率之圖。
第16圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第17圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第18圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第19圖:係呈現在人類橫紋肌腫瘤細胞株(RD細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過效率之圖。
第20圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子44之跳過效率之圖。
第21圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子44之跳過結果(西方墨點(western blotting)法)之圖。
第22圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過結果(RT-PCR)之圖。
第23圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過效率之圖。
第24圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過結果(RT-PCR)之圖。
第25圖:係呈現在來自外顯子45缺損之DMD患者之纖維母細胞(GM05112細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
第26圖:係呈現在來自外顯子8至9重複之DMD患者之纖維母細胞(11-0627細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過結果(RT-PCR)之圖。
第27圖:係呈現在來自外顯子8至9重複之DMD患者之纖維母細胞(11-0627細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過效率之圖。
第28圖:係呈現在來自外顯子51至55缺損之DMD患者之纖維母細胞(GM04364細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過結果(RT-PCR)之圖。
第29圖:係呈現在來自外顯子51至55缺損之DMD患者之纖維母細胞(GM04364細胞)中,PMO所造成之人類肌營養蛋白基因外顯子50之跳過效率之圖。
第30圖:係呈現在來自外顯子54單獨缺損之DMD患者之細胞(04-035細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過結果(RT-PCR)之圖。
第31圖:係呈現在來自外顯子54單獨缺損之DMD患者之細胞(04-035細胞)中,PMO所造成之人類肌營養蛋白基因外顯子55之跳過效率之圖。
以下,將詳細地說明本發明。以下之實施態樣係用於說明本發明之例示,本發明之旨趣並不只限定於此等實施態樣。只要不脫離本發明之要旨,即可以各種態樣實施。
再者,本說明書係將在本說明書中所引用之所有文獻、及公開公報、專利公報和其他專利文獻以參考文獻方式援用至本說明書中。又,本說明書係包含2011年12月28日提出申請之日本專利申請案(日本特願2011-288040號)及2012年02月29日提出申請之日本專利申請案(日本特願2012-043092號)之說明書及圖式中所記載之內容,並以該二申請案為基礎而主張本案之優先權。
以下,將詳細地說明本發明。以下之實施態樣係用 於說明本發明之例示,本發明之旨趣並不只限定於此等實施態樣。只要不脫離本發明之要旨,即可以各種態樣實施。
又,當未特別記載時,胺基酸序列即係將左端作為胺基末端、及將右端作為羧基末端,而鹼基序列係將左端作為5’末端、及將右端作為3’末端之方式表示者。
1.反意義寡聚物
本發明提供一種反意義寡聚物(以下稱為「本發明之外顯子55跳過用寡聚物」),其為可使人類肌營養蛋白基因之第55號外顯子被跳過之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第55號外顯子之5’末端算起,第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第3至19號、第3至20號、第3至21號、第3至22號、第3至23號、第9至29號、第9至30號、第9至31號、第9至32號、第9至33號、第10至29號、第10至30號、第10至31號、第10至32號、第10至33號、第11至29號、第11至30號、第11至31號、第11至32號、第11至33號、第12至29號、第12至30號、第12至31號、第12至32號、第12至33號、第13至29號、第13至30號、第13至31號、第13至32號、第13至33號、第12至34號、第12至35號、第12至36號、第13至34 號、第13至35號、第13至36號、第14至32號、第14至33號、第14至34號、第14至35號、第14至36號、第15至32號、第15至33號、第15至34號、第15至35號、第15至36號、第16至32號、第16至33號、第16至34號、第16至35號或第16至36號之核苷酸的序列(以下,亦稱為「外顯子55標靶序列」)。
又,本發明提供一種反意義寡聚物(以下稱為「本發明之外顯子45跳過用寡聚物」),其為可使人類肌營養蛋白基因之第45號外顯子被跳過之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第45號外顯子之5’末端算起,第-3至19號、第-3至20號、第-3至21號、第-3至22號、第-3至23號、第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第-2至24號、第-2至25號、第-2至26號、第-2至27號、第-1至24號、第-1至25號、第-1至26號、第-1至27號、第1至24號、第1至25號、第1至26號、第1至27號、第2至24號、第2至25號、第2至26號、第2至27號、第3至23號、第3至24號、第3至25號、第3至26號、第3至27號、第4至28號、第4至29號、第4至30號、第4至31號、第4至32號、第5至28號、第5至29號、第5至30號、第5至31號、第5至32 號、第6至28號、第6至29號、第6至30號、第6至31號、第6至32號、第7至28號、第7至29號、第7至30號、第7至31號、第7至32號、第8至28號、第8至29號、第8至30號、第8至31號或第8至32號之核苷酸的序列(以下,亦稱為「外顯子45標靶序列」)。
再者,本發明提供一種反意義寡聚物(以下稱為「本發明之外顯子50跳過用寡聚物」),其為可使人類肌營養蛋白基因之第50號外顯子被跳過之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第50號外顯子之5’末端算起,第105至125號、第105至126號、第105至127號、第105至128號、第105至129號、第106至125號、第106至126號、第106至127號、第106至128號、第106至129號、第107至125號、第107至126號、第107至127號、第107至128號、第107至129號、第108至125號、第108至126號、第108至127號、第108至128號、第108至129號、第109至125號、第109至126號、第109至127號、第109至128號或第109至129號之核苷酸的序列(以下,亦稱為「外顯子50標靶序列」)。
又再者,本發明提供一種反意義寡聚物(以下稱為「本發明之外顯子44跳過用寡聚物」),其為可使人類肌營養蛋白基因之第44號外顯子被跳過之反意義寡聚物,其係包括與下述序列中之任一者互補的鹼基序列:包含從人類肌營養蛋白基因之第44號外顯子之5’末端算起,第9至30號、第9至31號、第9至32號、第9至33 號、第9至34號、第10至30號、第10至31號、第10至32號、第10至33號、第10至34號、第11至30號、第11至31號、第11至32號、第11至33號、第11至34號、第12至30號、第12至31號、第12至32號、第12至33號、第12至34號、第13至30號、第13至31號、第13至32號、第13至33號、第13至34號、第24至45號、第24至46號、第24至47號、第24至48號、第24至49號、第25至45號、第25至46號、第25至47號、第25至48號、第25至49號、第26至45號、第26至46號、第26至47號、第26至48號、第26至49號、第27至45號、第27至46號、第27至47號、第27至48號、第27至49號、第28至45號、第28至46號、第28至47號、第28至48號、第28至49號、第29至45號、第29至46號、第29至47號、第29至48號或第29至49號之核苷酸的序列(以下,亦稱為「外顯子44標靶序列」)。
以下,有將本發明之外顯子55、45、50及44跳過用寡聚物總稱為「本發明之寡聚物」之情形。
[人類肌營養蛋白基因之第55、45、50及44號外顯子]
在本發明中,所謂「基因」,除了包含基因組(genome)基因以外,亦包含cDNA、mRNA前驅物及mRNA。基因係以mRNA前驅物,亦即,以pre-mRNA為較佳。
在人類基因組中,人類肌營養蛋白基因存在於基因座Xp21.2。人類肌營養蛋白基因具有3.0 Mbp之尺寸,就已知之人類基因而言為最大之基因。但是,人類肌營養蛋白基因之編碼區域只不過14kb,該編碼區域係以79個外顯子之形式分散於肌營 養蛋白基因內(Roberts,RG.,et al.,Genomics,16:536-538(1993))。人類肌營養蛋白基因的轉錄物之pre-mRNA係接受剪接,而生成14kb之成熟mRNA。人類之野生型肌營養蛋白基因之鹼基序列係屬公知(基因銀行(GenBank)登錄號:NM_004006)。
包含從人類之野生型肌營養蛋白基因之外顯子55之5’末端算起第-2至190號之核苷酸之鹼基序列,係示於序列編號1。又,包含從人類之野生型肌營養蛋白基因之外顯子45之5’末端算起第-3至176號之核苷酸之鹼基序列,係示於序列編號2。又,包含從人類之野生型肌營養蛋白基因之外顯子50之5’末端算起第1至109號、及從內含子50之5’末端算起第1至20號之核苷酸之鹼基序列,係示於序列編號3。
又,包含從人類之野生型肌營養蛋白基因之外顯子44之5’末端算起第1至148號之核苷酸之鹼基序列,係示於序列編號4。
本發明之寡聚物,係以「將DMD型肌營養蛋白基因所編碼之蛋白質改變成BMD型肌營養蛋白質」為目的,藉由跳過人類肌營養蛋白基因之外顯子55、45、50或44而製作者。因此,本發明寡聚物之外顯子跳過對象的肌營養蛋白基因之外顯子55、45、50及44,不僅包含野生型,也包含其之各種變異型。
變異型人類肌營養蛋白基因之外顯子55、45、50及44,具體而言,為以下之(a)或(b)所記載之聚核苷酸。
(a)一種聚核苷酸,其係在嚴格條件下,與包含與序列編號1(或包含序列編號1之第3至192號核苷酸的序列)、2(或包含序列編號2之第4至179號核苷酸的序列)、3(或包含序列編 號3之第1至109號核苷酸的序列)或4之鹼基序列互補之鹼基序列的聚核苷酸進行雜交(hybridize)者;(b)一種聚核苷酸,其係包含與序列編號1(或包含序列編號1之第3至192號核苷酸的序列)、2(或包含序列編號2之第4至179號核苷酸的序列)、3(或包含序列編號3之第1至109號核苷酸的序列)或4的鹼基序列具有90%以上相同性之鹼基序列者。
在本說明書中,「聚核苷酸」意指DNA或RNA。
在本說明書中,「在嚴格條件下雜交之聚核苷酸」意指例如以包含與序列編號1(或包含序列編號1之第3至192號核苷酸的序列)、2(或包含序列編號2之第4至179號核苷酸的序列)、3(或包含序列編號3之第1至109號核苷酸的序列)或4之鹼基序列互補之鹼基序列之聚核苷酸的全部或一部分作為探針(probe),藉由使用菌落雜交(colony hybridization)法、噬菌斑雜交(plaque hybridization)法或南方氏雜交(Southern hybridization)法等所得到之聚核苷酸。就雜交之方法而言,可利用例如在"Sambrook & Russell,Molecular Cloning:A Laboratory Manual Vol.3,Cold Spring Harbor,Laboratory Press 2001"及"Ausubel,Current Protocols in Molecular Biology,John Wiley & Sons 1987-1997"等所記載之方法。
本說明書中,「互補之鹼基序列」不僅限定於與對象之鹼基序列形成瓦生-克立克配對(Watson-Crick pair)之鹼基序列,亦包含形成搖擺鹼基對(wobble base pair)之鹼基序列。其中,瓦生-克立克配對意指腺嘌呤-胸腺嘧啶(adenine-thymine)、腺嘌呤- 尿嘧啶(adenine-uracil)及鳥嘌呤-胞嘧啶(guanine-cytosine)間形成氫鍵之鹼基對,搖擺鹼基對意指鳥嘌呤-尿嘧啶、肌苷-尿嘧啶(inosine-uracil)、肌苷-腺嘌呤及肌苷-胞嘧啶間形成氫鍵之鹼基對。又,縱使「互補之鹼基序列」未具有與對象之鹼基序列100%的互補性亦可,例如,可含有1至3個、1至2個或1個與對象之鹼基序列為非互補性之鹼基。
在本說明書中,「嚴格條件」可為低嚴格條件、中嚴格條件及高嚴格條件中之任一種。「低嚴格條件」為例如,5×SSC、5×丹哈特溶液(Denhardt’s solution)、0.5%SDS、50%甲醯胺、32℃之條件。又,「中嚴格條件」為例如5×SSC、5×丹哈特溶液、0.5% SDS、50%甲醯胺、42℃,或5×SSC、1% SDS、50mM Tris-HCl(pH7.5)、50%甲醯胺、42℃之條件。「高嚴格條件」為例如5×SSC、5×丹哈特溶液、0.5%SDS、50%甲醯胺、50℃,或0.2×SSC、0.1% SDS、65℃之條件。此等條件中,越提高溫度,越可期待有效率地得到具有高相同性之聚核苷酸。但是,就影響雜交之嚴格性之要素而言,研判有溫度、探針濃度、探針長度、離子強度、時間、鹽濃度等複數種要素,若為所屬技術領域中之通常知識者,只要藉由適宜選擇該等要素,即可實現相同的嚴格性。
再者,於雜交係使用市售之套組之情形下,可使用例如Alkphos直接標記及檢測系統(Alkphos Direct Labelling and Detection System(GE Healthcare))。此種情形下,依照隨附於套組之規程(protocol),與經標識之探針進行一夜培育(incubation)後,將膜於55℃之條件下,以含有0.1%(w/v)SDS之1次洗淨緩衝液洗淨後,可檢測出經雜交之聚核苷酸。或者,當根據與序列編號1(或 包含序列編號1之第3至192號核苷酸的序列)、2(或包含序列編號2之第4至179號核苷酸的序列)、3(或包含序列編號3之第1至109號核苷酸的序列)或4之鹼基序列互補之鹼基序列的全部或一部分製作探針時,使用市售之試藥(例如,PCR標記混合物(PCR Labeling Mix,Roche Diagnostics公司製)等)而將該探針以地谷新配質(digoxigenin;DIG)標記之情形下,可使用DIG核酸檢測套組(Roche Diagnostics公司)檢測出雜交。
就上述可雜交之聚核苷酸以外之聚核苷酸而言,可列舉:藉由同源檢索軟體BLAST,並使用預設(default)參數計算時,與包含序列編號1(或包含序列編號1之第3至192號核苷酸的序列)、2(或包含序列編號2之第4至179號核苷酸的序列)、3(或包含序列編號3之第1至109號核苷酸的序列)或4之聚核苷酸的序列,具有90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、或99.9%以上之相同性之聚核苷酸。
再者,鹼基序列之相同性,可使用Karline及Altschul之BLAST(基本區域排比搜尋工具;Basic Local Alignment Search Tool)演算法(Proc.Natl.Acad.Sci.USA 872264-2268,1990;Proc Natl Acad Sci USA 90:5873,1993)來決定。依據BLAST演算法,開發有被稱為BLASTN或BLASTX之程式(Altschul SF,et al:J Mol Biol 215:403,1990)。使用BLASTN解析鹼基序列之情形下,參數為例如計分(score)=100,字長(wordlength)=12。在使用BLAST及Gapped BLAST程式之情形下,係使用各程式之預設參數。
與從外顯子55之5’末端算起第-2至190號核苷酸之序列互補的序列,係示於序列編號5。其中,包含從外顯子55之5’末端算起第-2至-1號之核苷酸的序列(包含序列編號1之第1至2號核苷酸的序列)表示包含存在於外顯子54與外顯子55之間的內含子54之3’末端之最下游2個核苷酸的序列。亦即,外顯子55之鹼基序列為包含序列編號1之第3至192號核苷酸的序列,與外顯子55之鹼基序列互補之序列為包含序列編號5之第1至190號核苷酸的序列。
其中,與包含從人類肌營養蛋白基因之第55號外顯子之5’末端算起第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第3至19號、第3至20號、第3至21號、第3至22號、第3至23號、第9至29號、第9至30號、第9至31號、第9至32號、第9至33號、第10至29號、第10至30號、第10至31號、第10至32號、第10至33號、第11至29號、第11至30號、第11至31號、第11至32號、第11至33號、第12至29號、第12至30號、第12至31號、第12至32號、第12至33號、第13至29號、第13至30號、第13至31號、第13至32號、第13至33號、第12至34號、第12至35號、第12至36號、第13至34號、第13至35號、第13至36號、第14至32號、第14至33號、第14至34號、第14至35號、第14至36號、第15 至32號、第15至33號、第15至34號、第15至35號、第15至36號、第16至32號、第16至33號、第16至34號、第16至35號或第16至36號之核苷酸之鹼基序列互補的序列,係分別與包含序列編號5之第172至192號、第171至192號、第170至192號、第169至192號、第168至192號、第172至191號、第171至191號、第170至191號、第169至191號、第168至191號、第172至190號、第171至190號、第170至190號、第169至190號、第168至190號、第172至189號、第171至189號、第170至189號、第169至189號、第168至189號、第172至188號、第171至188號、第170至188號、第169至188號、第168至188號、第162至182號、第161至182號、第160至182號、第159至182號、第158至182號、第162至181號、第161至181號、第160至181號、第159至181號、第158至181號、第162至180號、第161至180號、第160至180號、第159至180號、第158至180號、第162至179號、第161至179號、第160至179號、第159至179號、第158至179號、第162至178號、第161至178號、第160至178號、第159至178號、第158至178號、第157至179號、第156至179號、第155至179號、第157至178號、第156至178號、第155至178號、第159至177號、第158至177號、第157至177號、第156至177號、第155至177號、第159至176號、第158至176號、第157至176號、第156至176號、第155至176號、第159至175號、第158至175號、第157至175號、第156至175號或第155至175號之核苷酸的序列相同。
與從外顯子45之5’末端算起第-3至176號核苷酸之序列互補之序列,係示於序列編號6。其中,包含從外顯子45之5’末端算起第-3至-1號之核苷酸的序列(包含序列編號2之第1至3號核苷酸的序列)係表示包含存在於外顯子44與外顯子45之間的內含子44之3’末端之最下游3個核苷酸的序列。亦即,外顯子45之鹼基序列為包含序列編號2之第4至179號之核苷酸的序列,與外顯子45之鹼基序列互補之序列為包含序列編號6之第1至176號之核苷酸的序列。
其中,與包含從人類肌營養蛋白基因之第45號外顯子之5’末端算起第-3至19號、第-3至20號、第-3至21號、第-3至22號、第-3至23號、第-2至19號、第-2至20號、第-2至21號、第-2至22號、第-2至23號、第-1至19號、第-1至20號、第-1至21號、第-1至22號、第-1至23號、第1至19號、第1至20號、第1至21號、第1至22號、第1至23號、第2至19號、第2至20號、第2至21號、第2至22號、第2至23號、第-2至24號、第-2至25號、第-2至26號、第-2至27號、第-1至24號、第-1至25號、第-1至26號、第-1至27號、第1至24號、第1至25號、第1至26號、第1至27號、第2至24號、第2至25號、第2至26號、第2至27號、第3至23號、第3至24號、第3至25號、第3至26號、第3至27號、第4至28號、第4至29號、第4至30號、第4至31號、第4至32號、第5至28號、第5至29號、第5至30號、第5至31號、第5至32號、第6至28號、第6至29號、第6至30號、第6至31號、第6至32號、第7至28號、第7至29號、第7至30號、 第7至31號、第7至32號、第8至28號、第8至29號、第8至30號、第8至31號或第8至32號之核苷酸的序列互補之鹼基序列,係分別與包含序列編號6之第158至179號、第157至179號、第156至179號、第155至179號、第154至179號、第158至178號、第157至178號、第156至178號、第155至178號、第154至178號、第158至177號、第157至177號、第156至177號、第155至177號、第154至177號、第158至176號、第157至176號、第156至176號、第155至176號、第154至176號、第158至175號、第157至175號、第156至175號、第155至175號、第154至175號、第153至178號、第152至178號、第151至178號、第150至178號、第153至177號、第152至177號、第151至177號、第150至177號、第153至176號、第152至176號、第151至176號、第150至176號、第153至175號、第152至175號、第151至175號、第150至175號、第154至174號、第153至174號、第152至174號、第151至174號、第150至174號、第149至173號、第148至173號、第147至173號、第146至173號、第147至173號、第149至172號、第148至172號、第147至172號、第146至172號、第145至172號、第149至171號、第148至171號、第147至171號、第146至171號、第145至171號、第149至170號、第148至170號、第147至170號、第146至170號、第145至170號、第149至169號、第148至169號、第147至169號、第146至169號或第145至169號之核苷酸的序列相同。
與包含從外顯子50之5’末端算起第1至109號之 核苷酸及從內含子50之5’末端算起第1至20號之核苷酸之鹼基序列互補的序列,係示於序列編號7。其中,包含從內含子50之5’末端算起第1至20號之核苷酸的序列(包含序列編號3之第110至129號核苷酸的序列)係表示包含存在於外顯子50與外顯子51之間之內含子50之5’末端之最上游20個核苷酸的序列。亦即,外顯子50之鹼基序列為包含序列編號3之第1至109號核苷酸的序列,與外顯子50之鹼基序列互補之序列為包含序列編號7之第21至129號核苷酸的序列。
其中,與從人類肌營養蛋白基因之第50號外顯子之5’末端算起第105至125號、第105至126號、第105至127號、第105至128號、第105至129號、第106至125號、第106至126號、第106至127號、第106至128號、第106至129號、第107至125號、第107至126號、第107至127號、第107至128號、第107至129號、第108至125號、第108至126號、第108至127號、第108至128號、第108至129號、第109至125號、第109至126號、第109至127號、第109至128號或第109至129號核苷酸所構成之鹼基序列互補的序列,意指分別與包含序列編號7之第5至25號、第4至25號、第3至25號、第2至25號、第1至25號、第5至24號、第4至24號、第3至24號、第2至24號、第1至24號、第5至23號、第4至23號、第3至23號、第2至23號、第1至23號、第5至22號、第4至22號、第3至22號、第2至22號、第1至22號、第5至21號、第4至21號、第3至21號、第2至21號或第1至21號核苷酸的序列相同。
與從外顯子44之5’末端算起第1至148號核苷酸之序列互補的序列係示於序列編號8。
其中,與包含從人類肌營養蛋白基因之第44號外顯子之5’末端算起第9至30號、第9至31號、第9至32號、第9至33號、第9至34號、第10至30號、第10至31號、第10至32號、第10至33號、第10至34號、第11至30號、第11至31號、第11至32號、第11至33號、第11至34號、第12至30號、第12至31號、第12至32號、第12至33號、第12至34號、第13至30號、第13至31號、第13至32號、第13至33號、第13至34號、第24至45號、第24至46號、第24至47號、第24至48號、第24至49號、第25至45號、第25至46號、第25至47號、第25至48號、第25至49號、第26至45號、第26至46號、第26至47號、第26至48號、第26至49號、第27至45號、第27至46號、第27至47號、第27至48號、第27至49號、第28至45號、第28至46號、第28至47號、第28至48號、第28至49號、第29至45號、第29至46號、第29至47號、第29至48號或第29至49號之核苷酸之鹼基序列互補的序列,意指分別與包含序列編號8之第119至140號、第118至140號、第117至140號、第116至140號、第115至140號、第119至139號、第118至139號、第117至139號、第116至139號、第115至139號、第119至138號、第118至138號、第117至138號、第116至138號、第115至138號、第119至137號、第118至137號、第117至137號、第116至137號、第115至137號、第119至136號、第118至136號、第 117至136號、第116至136號、第115至136號、第104至125號、第103至125號、第102至125號、第101至125號、第100至125號、第104至124號、第103至124號、第102至124號、第101至124號、第100至124號、第104至123號、第103至123號、第102至123號、第101至123號、第100至123號、第104至122號、第103至122號、第102至122號、第101至122號、第100至122號、第104至121號、第103至121號、第102至121號、第101至121號、第100至121號、第104至120號、第103至120號、第102至120號、第101至120號或第100至120號之核苷酸的序列相同。
外顯子55、45、50及44之鹼基序列與序列編號5至8之對應可彙整於下表中。
本發明之外顯子55跳過用寡聚物,較佳係由與包含從人類肌營養蛋白基因之第55號外顯子之5’末端算起第1至21號、第11至31號或第14至34號核苷酸的序列中之任一者互補的鹼基序列(例如,包含序列編號5之第170至190號、第160至180號或第157至177號核苷酸的序列中之任一鹼基序列)。
本發明之外顯子45跳過用寡聚物,較佳係由與包含從人類肌營養蛋白基因之第45號外顯子之5’末端算起第-2至19號、第1至21號、第1至25號或第6至30號之核苷酸的序列中之任一者互補的鹼基序列(例如,包含序列編號6之第158至178號、第156至176號、第152至176號或第147至171號核苷酸的 序列中之任一鹼基序列)所構成。
本發明之外顯子50跳過用寡聚物,較佳係包括與包含從人類肌營養蛋白基因之第50號外顯子之5’末端算起第106至126號或第107至127號之核苷酸的序列中之任一者互補的鹼基序列(例如,包含序列編號7之第4至24號或第3至23號核苷酸的序列中之任一鹼基序列)。
本發明之外顯子44跳過用寡聚物,較佳係包括與包含從人類肌營養蛋白基因之第44號外顯子之5’末端算起第11至32號、第25至45號、第26至46號、第26至47號或第27至47號之核苷酸的序列中之任一者互補的鹼基序列(例如,包含序列編號8之第117至138號、第104至124號、第103至123號、第102至123號或第102至122號核苷酸的序列中之任一鹼基序列)。
「可使人類肌營養蛋白基因之第55號外顯子被跳過」,意指藉由本發明之寡聚物鍵結在相當於人類肌營養蛋白基因之轉錄物(例如,pre-mRNA)之外顯子55的部位,該轉錄物接受剪接時,例如以缺失外顯子54之DMD患者之情形而言,意指在相當於外顯子53之3’末端的鹼基序列之3’側,與相當於外顯子56之5’末端的鹼基序列連結,而以未發生密碼子(codon)之框移(frameshift)的方式形成成熟mRNA。
同樣地,「可使人類肌營養蛋白基因之第45號外顯子被跳過」意指藉由本發明之寡聚物鍵結在相當於人類肌營養蛋白基因之轉錄物(例如,pre-mRNA)之外顯子45的部位,該轉錄物接受剪接時,例如以缺失外顯子44之DMD患者而言,意指在相 當於外顯子43之3’末端的鹼基序列之3’側與相當於外顯子46之5’末端的鹼基序列連結,而以未發生密碼子之框移的方式形成成熟mRNA。
又,「可使人類肌營養蛋白基因之第50號外顯子被跳過」意指藉由本發明之寡聚物鍵結在相當於人類肌營養蛋白基因之轉錄物(例如,pre-mRNA)之外顯子50的部位,該轉錄物接受剪接時,例如以缺失外顯子51之DMD患者而言,意指在相當於外顯子49之3’末端的鹼基序列之3’側與相當於外顯子52之5’末端的鹼基序列連結,而以未發生密碼子之框移的方式形成成熟mRNA。
又同樣地,「可使人類肌營養蛋白基因之第44號外顯子被跳過」意指藉由本發明之寡聚物鍵結在相當於人類肌營養蛋白基因之轉錄物(例如,pre-mRNA)之外顯子44,該轉錄物接受剪接時,例如以缺失外顯子45之DMD患者而言,意指在相當於外顯子43之3’末端的鹼基序列之3’側與相當於外顯子46之5’末端的鹼基序列連結,而以未發生密碼子之框移的方式形成成熟mRNA。
因此,本發明之寡聚物,只要可使人類肌營養蛋白基因之外顯子55、45、50及44被跳過,可為不具與各標靶序列(外顯子55、45、50及44)100%互補之鹼基序列。例如,本發明之寡聚物可含有1至3個、1至2個或1個與標靶序列非互補之鹼基。
其中,前述「鍵結」意指在本發明之寡聚物與人類肌營養蛋白基因之轉錄物混合之情形下,於生理條件下,兩者雜交而形成雙股。上述「生理條件下」意指調節成與生物體內部類 似之pH、鹽組成、溫度之條件。例如,可列舉25至40℃(較佳為37℃),pH5至8(較佳為pH7.4),氯化鈉濃度為150 mM之條件。
是否發生人類肌營養蛋白基因之外顯子55、45、50及44之跳過,可藉由將本發明之寡聚物導入至肌營養蛋白表現細胞(例如,人類橫紋肌腫瘤細胞),從前述肌營養蛋白表現細胞之全部RNA,以反轉錄聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction,RT-PCR)將人類肌營養蛋白基因之mRNA之外顯子55、45、50及44之周邊區域進行增幅,並藉由對該PCR增幅產物進行巢式聚合酶連鎖反應(nested PCR)或序列解析而確認。
跳過效率係從受檢細胞回收人類肌營養蛋白基因之mRNA,並測定該mRNA中外顯子55、45、50及44跳過帶之聚核苷酸量「A」,及外顯子55、45、50及44未跳過帶之聚核苷酸量「B」,基於此等「A」及「B」之測定值,依照以下公式計算。
跳過效率(%)=A/(A+B)×100
就本發明之寡聚物而言,可列舉如:具有18至28鹼基長度之寡核苷酸、嗎啉寡聚物(morpholino oligomer)、或肽核酸(Peptide Nucleic Acid:PNA)寡聚物。以15至30鹼基或20至25鹼基之長度為較佳,以嗎啉寡聚物為更佳。
前述寡核苷酸(以下稱為「本發明之寡核苷酸」)為以核苷酸作為構成單元之本發明之寡聚物,該核苷酸可為核糖核苷酸(ribonucleotide)、去氧核糖核苷酸(deoxyribonucleotide)或修飾核苷酸(modified nucleotide)之任一種。
修飾核苷酸意指構成核糖核苷酸或去氧核糖核苷酸之核酸鹼基、糖部分及磷酸鍵部分之全部或一部分經修飾者。
就核酸鹼基而言,可列舉例如:腺嘌呤、鳥嘌呤、次黃嘌呤(hypoxanthine)、胞嘧啶、胸腺嘧啶、尿嘧啶或該等之修飾鹼基。就該修飾鹼基而言,可列舉例如,偽尿嘧啶(pseudouracil)、3-甲基尿嘧啶、二氫尿嘧啶、5-烷基胞嘧啶(例如,5-甲基胞嘧啶)、5-烷基尿嘧啶(例如,5-乙基尿嘧啶)、5-鹵素尿嘧啶(5-溴尿嘧啶)、6-氮雜嘧啶、6-烷基嘧啶(6-甲基尿嘧啶)、2-硫尿嘧啶、4-硫尿嘧啶、4-乙醯基胞嘧啶、5-(羧基羥基甲基)尿嘧啶、5'-羧基甲基胺基甲基-2-硫尿嘧啶、5-羧基甲基胺基甲基尿嘧啶、1-甲基腺嘌呤、1-甲基次黃嘌呤、2,2-二甲基鳥嘌呤、3-甲基胞嘧啶、2-甲基腺嘌呤、2-甲基鳥嘌呤、N6-甲基腺嘌呤、7-甲基鳥嘌呤、5-甲氧基胺基甲基-2-硫尿嘧啶、5-甲基胺基甲基尿嘧啶、5-甲基羰基甲基尿嘧啶、5-甲基氧基尿嘧啶、5-甲基-2-硫尿嘧啶、2-甲基硫-N6-異戊烯基腺嘌呤、尿嘧啶-5-氧乙酸(uracil-5-oxacetic acid)、2-硫胞嘧啶、嘌呤、2,6-二胺基嘌呤、2-胺基嘌呤、異鳥嘌呤、吲哚、咪唑、黃嘌呤等,不過不限於此等。
就糖部分之修飾而言,可列舉例如:核糖之2’位之修飾及糖之其他部分之修飾。就核糖之2’位之修飾而言,可列舉如:將核糖之2’位之-OH基取代為OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br、I之修飾。其中,R表示烷基或芳基。R’表示伸烷基。
就糖之其他部分之修飾而言,可列舉例如:核糖或去氧核糖之4’位之O經取代為S者,糖之2'位與4'位經交聯者,例如,LNA(Locked Nucleic Acid;鎖核酸)或ENA(2'-O,4'-C-伸乙基-交聯核酸(2'-O,4'-C-Ethylene-bridged Nucleic Acids))等,不過不限 於此等。
就磷酸鍵部分之修飾而言,可列舉例如:將磷酸二酯鍵取代為硫代磷酸鍵、二硫代磷酸鍵、烷基膦酸鍵、磷酸醯胺鍵、硼烷磷酸鍵(Enya et al:Bioorganic & Medicinal Chemistry,2008,18,9154-9160)之修飾(例如,參照日本專利再公表公報第2006/129594號及第2006/038608號)。
就烷基而言,以直鏈狀或分枝鏈狀之碳數1至6之烷基為較佳。具體而言,可列舉例如:甲基、乙基、正丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、正戊基、異戊基、新戊基、三級戊基、正己基、異己基。該烷基可經取代,就其取代基而言,可列舉例如:鹵素、烷氧基、氰基、硝基,該等烷基可經1至3個取代基取代。
就環烷基而言,以碳數5至12之環烷基為較佳。具體而言,可列舉如:環戊基、環己基、環庚基、環辛基、環癸基、環十二基。
就鹵素而言,可列舉氟、氯、溴、碘。
就烷氧基而言,可列舉直鏈狀或分枝鏈狀之碳數1至6之烷氧基,例如:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、異丁氧基、二級丁氧基、三級丁氧基、正戊基氧基、異戊基氧基、正己基氧基、異己基氧基等。以碳數1至3之烷氧基為尤佳。
就芳基而言,以碳數6至10之芳基為較佳。具體而言,可列舉如:苯基、α-萘基、β-萘基。以苯基為尤佳。該芳基可經取代,就其取代基而言,可列舉如:烷基、鹵素、烷氧基、 氰基、硝基,此等芳基可經1至3個取代基取代。
就伸烷基而言,以直鏈狀或分枝鏈狀之碳數1至6之伸烷基為較佳。具體而言,可列舉如:亞甲基、伸乙基、三亞甲基、四亞甲基、五亞甲基、六亞甲基、2-(乙基)三亞甲基、1-(甲基)四亞甲基。
就醯基而言,可列舉直鏈狀或分枝鏈狀之烷醯基、或芳醯基。就烷醯基而言,可列舉如:甲醯基、乙醯基、2-甲基乙醯基、2,2-二甲基乙醯基、丙醯基、丁醯基、異丁醯基、戊醯基、2,2-二甲基丙醯基、己醯基等。就芳醯基而言,可列舉例苯甲醯基、甲苯甲醯基、萘甲醯基。該芳醯基可以在可取代之位置被取代,亦可被烷基取代。
本發明之寡核苷酸,較佳為以下述通式所示之基作為構成單元之本發明寡聚物,下述通式所示之基中,核糖之2’位之-OH基係被甲氧基取代,磷酸鍵部分為硫代磷酸鍵: (式中,Base表示核酸鹼基)。
本發明之寡核苷酸,可使用各種自動合成裝置(例如,AKTA oligopilot plus 10/100(GE Healthcare))容易地合成,或者亦可委託第三方機構(例如,Promega公司或Takara公司)等來製作。
本發明之嗎啉寡聚物係以下述通式所示之基作為構成單元之本發明之寡聚物: (式中,Base與前述者同義;W表示以下任一式所示之基: (式中,X表示-CH2R1、-O-CH2R1、-S-CH2R1、-NR2R3或F;R1表示H、烷基;R2及R3為相同或相異,表示H、烷基、環烷基、或芳基;Y1表示O、S、CH2或NR1;Y2表示O、S或NR1;Z表示O或S))。
嗎啉寡聚物較佳為以下式所示之基作為構成單元之寡聚物(磷酸二醯胺嗎啉寡聚物(以下稱為「PMO」)); (式中,Base、R2、R3與前述者同義)。
嗎啉寡聚物可依照例如國際公開公報第1991/009033號、或國際公開公報第2009/064471號來製造。尤其,PMO可依照國際公開公報第2009/064471號記載之方法來製造,或依照以下所示之方法來製造。
[PMO之製法]
就PMO之一態樣而言,可列舉例如下述通式(I)所示之化合物(以下稱為PMO(I))。
[式中,各Base、R2、R3係與前述者同義;n為1至99之範圍內之任何整數,較佳為18至28之範圍內之任何整數]。
PMO(I)可依照公知之方法製造,例如,可藉由實施下述步驟之操作而製造。
在下述步驟中所使用之化合物及試藥,只要為PMO之製造中一般所使用者即可,並無特別限定。
又,下述之所有步驟,可藉由液相法或固相法(人工 操作或使用市售之固相自動合成機)來實施。當用固相法製造PMO時,就操作順序簡便化及合成正確性之點而言,以使用自動合成機之方法為較佳。
(1)步驟A:
藉由使以下通式(II)所示之化合物(以下稱為化合物(II))與酸作用,而製造以下通式(III)所示之化合物(以下稱為化合物(III))之步驟。
[式中,n、R2、R3與前述者同義;各BP獨立地表示可經保護之核酸鹼基;T表示三苯甲基、單甲氧基三苯甲基、或二甲氧基三苯甲基;L表示氫、醯基、或以下通式(IV)所示之基(以下稱為基(IV))]:
就BP之「核酸鹼基」而言,可列舉與Base相同之「核酸鹼基」。但是,BP之核酸鹼基之胺基或羥基可經保護。
就該胺基之保護基而言,只要是可使用作為核酸之保護基者即可,並無特別限制,具體而言,可列舉例如:苯甲醯基、4-甲氧基苯甲醯基、乙醯基、丙醯基、丁醯基、異丁醯基、 苯基乙醯基、苯氧基乙醯基、4-三級丁基苯氧基乙醯基、4-異丙基苯氧基乙醯基、(二甲基胺基)亞甲基。就羥基之保護基而言,可列舉如:2-氰基乙基、4-硝基苯乙基、苯基磺醯基乙基、甲基磺醯基乙基、三甲基矽基乙基、在可取代之任何位置可經1至5個拉電子性基取代之苯基、二苯基胺甲醯基、二甲基胺甲醯基、二乙基胺甲醯基、甲基苯基胺甲醯基、1-吡咯啶基胺甲醯基、嗎啉基胺甲醯基、4-(三級丁基羧基)苯甲基、4-[(二甲基胺基)羧基]苯甲基、4-(苯基羧基)苯甲基(例如,參照國際公開公報第2009/064471號公報)。
就「固相載子(solid phase carrier)」而言,只要為可使用於核酸之固相反應之載子即可,無特別限制,但期望係符合例如下述條件者:(i)在可用於合成嗎啉核酸衍生物之試藥(例如,二氯甲烷、乙腈、四唑、N-甲基咪唑、吡啶、乙酸酐、二甲基吡啶(lutidine)、三氟乙酸)中幾乎不溶解,(ii)對可用於合成嗎啉核酸衍生物之試藥在化學上為安定,(iii)可進行化學修飾,(iv)可裝填所期望的嗎啉核酸衍生物,(v)具有可耐受處理中所施加的高壓之充分強度,(vi)分布在一定之粒徑範圍內。具體而言,可列舉:膨潤性聚苯乙烯(例如,經1%二苯甲基苯交聯之胺基甲基聚苯乙烯樹脂(aminomethyl polystyrene resin cross-linked with 1% DVB)(200至400網格(mesh))(2.4至3.0mmol/g)(東京化成公司製)、胺甲基化聚苯乙烯樹脂/HCl(Aminomethylated Polystyrene Resin/HCl)[1%二苯甲基苯,100至200網格](PEPTIDE INSTITUTE公司製))、非膨潤性聚苯乙烯(例如,Primer Support(GE Healthcare公司製))、PEG鏈結合型聚苯乙烯(例如,NH2-PEG樹脂(渡邊化學公司製)、 TentaGel樹脂)、可控孔徑玻璃(controlled pore glass;CPG)(例如,CPG公司製)、草醯化-可控孔徑玻璃(例如,參照Alul氏等之Nucleic Acids Research,Vol.19,1527(1991))、TentaGel支撐物-胺基聚乙二醇衍生物化支撐物(例如,參照Wright氏等之Tetrahedron Letters,Vol.34,3373(1993))、Poros-聚苯乙烯/二乙烯基苯之共聚物。
就「連接子(linker)」而言,可使用公知通常用於連結核酸或嗎啉核酸衍生物者,可列舉例如:3-胺基丙基、琥珀醯基、2,2’-二乙醇磺醯基、長鏈烷基胺基(LCAA)。
本步驟可藉由使化合物(II)對酸作用而實施。
就可使用於本步驟中之「酸」而言,可列舉如:三氟乙酸、二氯乙酸或三氯乙酸。就酸之使用量而言,可列舉如:以相對於1莫耳之化合物(II)為0.1莫耳當量至1000莫耳當量之範圍內為宜,以在1莫耳當量至100莫耳當量之範圍內為較佳。
又,可與前述酸一起使用有機胺。就有機胺而言,並無特別限定,可列舉例如:三乙基胺。有機胺之使用量,例如相對於酸1莫耳,以在0.01莫耳當量至10莫耳當量之範圍內為適當,以在0.1莫耳當量至2莫耳當量之範圍內為較佳。
當本步驟使用酸與有機胺之鹽或混合物之情形下,可列舉例如:三氟乙酸與三乙基胺之鹽或混合物,更具體而言,可列舉相對於2當量三氟乙酸混合有1當量三乙基胺者。
本步驟可使用之酸,亦可用適當溶劑稀釋成0.1%至30%之範圍內之濃度來使用。就溶劑而言,只要不參與反應即可,並無特別限定,可列舉如:二氯甲烷、乙腈、醇類(乙醇、異丙醇、三氟乙醇等)、水或該等之混合物。
上述反應之反應溫度,例如以在10℃至50℃之範圍內為較佳,以在20℃至40℃之範圍內為更佳,以在25℃至35℃之範圍內為進一步更佳。
反應時間雖隨所使用之酸之種類、反應溫度而異,不過通常以在0.1分鐘至24小時之範圍內為宜。較佳係在1分鐘至5小時之範圍內。
又,本步驟結束後,可為了中和存在系統中之酸而添加鹼。「鹼」並無特別限定,可列舉例如二異丙基胺。鹼亦可用適當之溶劑稀釋成為濃度在0.1%(v/v)至30%(v/v)之範圍內來使用。
就本步驟所使用之溶劑而言,只要不參與反應即可,無特別限定,可列舉:二氯甲烷、乙腈、醇類(乙醇、異丙醇、三氟乙醇等)、水或該等之混合物。反應溫度以在例如10℃至50℃之範圍內為較佳,以在20℃至40℃之範圍內為更佳,以在25℃至35℃之範圍內為進一步更佳。
反應時間雖隨所使用之鹼之種類、反應溫度而異,不過通常以在0.1分鐘至24小時之範圍內為宜,較佳係在1分鐘至5小時之範圍內。
再者,化合物(II)中,n=1且L為基(IV)之以下通式(IIa)所示之化合物(以下稱為化合物(IIa)),可依照以下之方法製造: [式中,BP、T、連接子、固相載子與前述者同義]。
步驟1:
藉由以下通式(V)所示之化合物與醯基化劑作用,製造以下通式(VI)所示之化合物(以下稱為化合物(VI))之步驟; [式中,BP、T、連接子與前述者同義;R4表示羥基、鹵素、或胺基]。
本步驟係以化合物(V)作為起始原料,可藉由公知之連接子導入反應來實施。
尤其,以下通式(VIa)所示之化合物,可藉由使用化合物(V)及琥珀酸酐進行酯化反應之已知方法而製造; [式中,BP、T與前述者同義]。
步驟2:
藉由使化合物(VI)與縮合劑等作用,並與固相載子反應,而製造化合物(IIa)之步驟; [式中,BP、R4、T、連接子、固相載子與前述者同義]。
本步驟可藉由使用化合物(VI)及固相載子進行縮合反應之已知方法來製造。
化合物(II)中n=2至99且L為基(IV)之以下通式(IIa2)所示之化合物,可藉由以化合物(IIa)作為起始原料,以期望之次數重複實施本說明書所記載之PMO製法的步驟A及步驟B而製造; [式中,BP、R2、R3、T、連接子、固相載子與前述者同義;n’表示1至98]。
又,化合物(II)中之n=1且L為氫之下通式(IIb)所示 之化合物,可藉由例如國際公開公報第1991/009033號所記載之方法而製造; [式中,BP、T與前述者同義]。
化合物(II)中,n=2至99且L為氫之以下通式(IIb2)所示之化合物,可藉由用化合物(IIb)作為起始原料,以期望之次數重複實施本說明書所記載之PMO製法中的步驟A及步驟B而製造; [式中,BP、n’、R2、R3、T與前述者同義]。
又,化合物(II)中之n=1且L為醯基之以下通式(IIc)所示之化合物,可藉由對化合物(IIb)實施醯基化反應之已知方法而製造; [式中,BP、T與前述者同義;R5表示醯基]。
化合物(II)中n=2至99且L為醯基之以下通式(IIc2)所示之化合物,可藉由用化合物(IIc)作為起始原料,以期望之次數重複實施本說明書所記載之PMO製法中之步驟A及步驟B而製造; [式中,BP、n’、R2、R3、R5、T與前述者同義]。
(2)步驟B:
藉由使化合物(III)於鹼存在下對嗎啉單體化合物作用,製造以下通式(VII)所示之化合物(以下稱為化合物(VII))之步驟; [式中,各BP、L、n、R2、R3、T與前述者同義]。
本步驟可藉由使化合物(III)於鹼存在下與嗎啉單體化合物反應而實施。
就嗎啉單體化合物而言,可列舉例如以下通式(VIII)所示之化合物; [式中,BP、R2、R3、T與前述者同義]。
就本步驟可使用之「鹼」而言,可列舉例如:二異丙基胺、三乙基胺、或N-乙基嗎啉。就鹼之使用量而言,例如,相對於1莫耳之化合物(III),以在1莫耳當量至1000莫耳當量之範圍內為宜,以在10莫耳當量至100莫耳當量之範圍內為較佳。
在本步驟可使用之嗎啉單體化合物及鹼,亦可用適當之溶劑稀釋成0.1%至30%之濃度而使用。就溶劑而言,只要不參與反應即可,無特別限定,可列舉例如:N,N-二甲基咪唑啉酮、N-甲基哌啶酮、DMF、二氯甲烷、乙腈、四氫呋喃、或該等之混合物。
反應溫度例如以在0℃至100℃之範圍內為較佳,以在10℃至50℃之範圍內為更佳。
反應時間雖隨所使用之鹼之種類、反應溫度而異,不過通常以在1分鐘至48小時之範圍內為宜,以在30分鐘至24小時之範圍內為較佳。
此外,本步驟結束後,視需要可添加醯基化劑。就「醯基化劑」而言,可列舉如:乙酸酐、乙醯氯、苯氧基乙酸酐。醯基化劑亦可用適當之溶劑稀釋成例如濃度在0.1%至30%之範圍 內而使用。就溶劑而言,只要不參與反應即可,無特別限定,可列舉如:二氯甲烷、乙腈、醇類(乙醇、異丙醇、三氟乙醇等)、水或該等之混合物。
又,視需要可與醯基化劑一起使用,例如,吡啶、二甲基吡啶、三甲基吡啶(collidine)、三乙基胺、二異丙基乙基胺、N-乙基嗎啉等鹼。就醯基化劑之使用量而言,以在0.1莫耳當量至10000莫耳當量之範圍內為較佳,以在1莫耳當量至1000莫耳當量之範圍內為更佳。就鹼之使用量而言,例如,相對於1莫耳之醯基化劑,以在0.1莫耳當量至100莫耳當量之範圍內為宜,以在1莫耳當量至10莫耳當量之範圍內為較佳。
本反應之反應溫度,以在10℃至50℃之範圍內為較佳,10℃至50℃之範圍內為較佳,以在20℃至40℃之範圍內為更佳,以在25℃至35℃之範圍內為進一步更佳。反應時間雖隨例如所使用之醯基化劑之種類、反應溫度而異,不過通常以在0.1分鐘至24小時之範圍內為宜,以在1分鐘至5小時之範圍內為較佳。
(3)步驟C:
對於在步驟B中所製造之化合物(VII),使用脫保護劑使保護基脫離,製造通式(IX)所示之化合物之步驟; [式中,Base、BP、L、n、R2、R3、T與前述者同義]。
本步驟可藉由使脫保護劑作用於化合物(VII)而實施。
就「脫保護劑」而言,可列舉例如:濃氨水、甲基胺。在本步驟所使用之「脫保護劑」,亦可用例如水、甲醇、乙醇、異丙醇、乙腈、四氫呋喃、DMF、N,N-二甲基咪唑啉酮、N-甲基哌啶酮或該等之混合溶劑稀釋後使用。其中以乙醇為較佳。就脫保護劑之使用量而言,例如,相對於1莫耳之化合物(VII),以在1莫耳當量至100000莫耳當量之範圍內為宜,以在10莫耳當量至1000莫耳當量之範圍內為較佳。
反應溫度,例如,以在15℃至75℃之範圍內為宜,以在40℃至70℃之範圍內為較佳,以在50℃至60℃之範圍內為更佳。脫保護反應時間,雖隨化合物(VII)之種類、反應溫度等而異,不過以在10分鐘至30小時之範圍內為宜,以在30分鐘至24小時之範圍內為較佳,以在5小時至20小時之範圍內為更佳。
(4)步驟D:
藉由使酸作用於步驟C所製造之化合物(IX),而製造PMO(I)之步驟; [式中,Base、n、R2、R3、T與前述者同義]。
本步驟可藉由於化合物(IX)中添加酸而實施。
就本步驟可使用之「酸」而言,可列舉如:三氯乙酸、二氯乙酸、乙酸、磷酸及鹽酸等。就酸之使用量而言,例如,以使溶液之pH在0.1至4.0之範圍內而使用為宜,更佳係使其在1.0至3.0之範圍內而使用。就溶劑而言,只要不參與反應即可,無特別限定,可列舉例如:乙腈、水、或該等之混合溶劑。
反應溫度以在10℃至50℃之範圍內為較佳,以在20℃至40℃之範圍內為更佳,以在25℃至35℃之範圍內為進一步更佳。脫保護反應時間,雖隨化合物(IX)之種類、反應溫度等而異,不過以在0.1分鐘至5小時之範圍內為宜,以在1分鐘至1小時之範圍內為較佳,以在1分鐘至30分鐘之範圍內為更佳。
PMO(I)可從本步驟所得到之反應混合物,藉由單獨或組合使用通常的分離精製手段,例如:萃取、濃縮、中和、過濾、離心、再結晶、C8至C18之逆相管柱層析、陽離子交換管柱層析、陰離子交換管柱層析、凝膠過濾管柱層析、高速液體層析、透析、超過濾等手段而得到,並可將期望之PMO(I)單離精製(例如,參照國際公開公報WO1991/09033)。
在使用逆相層析精製PMO(I)之情形下,就溶出溶劑而言,可使用例如20mM之三乙基胺/乙酸緩衝液與乙腈之混合溶液。
又,在使用離子交換層析精製PMO(I)之情形下,可使用例如1M之食鹽水與10mM之氫氧化鈉水溶液之混合溶液。
肽核酸為以下述通式所示之基作為構成單元之本發明之寡聚物; (式中,Base與前述者同義)。
肽核酸可依照例如以下之文獻而製造。
1)P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science, 254, 1497 (1991)
2)M. Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg, Jacs., 114, 1895 (1992)
3)K. L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H. F. Hansen, T. Vulpius, K. H. Petersen, R. H. Berg, P. E. Nielsen, O. Buchardt, J. Org. Chem., 59, 5767 (1994)
4)L. Christensen, R. Fitzpatrick, B. Gildea, K. H. Petersen, H. F. Hansen, T. Koch, M. Egholm, O. Buchardt, P. E. Nielsen, J. Coull, R. H. Berg, J. Pept. Sci., 1, 175 (1995)
5)T. Koch, H. F. Hansen, P. Andersen, T. Larsen, H. G. Batz, K. Otteson, H. Orum, J. Pept. Res., 49, 80 (1997)
又,本發明之寡聚物,5’末端可為下述化學式(1)至(3)之任一基。較佳為(3)-OH;
以下,將上述(1)、(2)及(3)所示之基分別稱為「基(1)」、「基(2)」及「基(3)」。
2.醫藥組成物
本發明之寡聚物與以往技術之反意義寡聚物相比,係可高效率地跳過外顯子55、45、50及44。因此,預測藉由將含有本發明之寡聚物之醫藥組成物投予至DMD患者,可高效率地緩和肌肉失養症之症狀。例如,使用含有本發明之寡聚物之醫藥組成物時,即使係使用與以往技術之寡聚物相比為較少量之投予量,仍可得到相同程度之治療效果,所以可減輕副作用,並且較為經濟。
於是,就其他實施態樣而言,係提供一種肌肉失養症治療用醫藥組成物(以下稱為「本發明之組成物」),其係以本發明之寡聚物、其醫藥上可容許之鹽或水合物作為有效成分。
本發明之組成物中所包含之本發明之寡聚物之醫藥上可容許之鹽的例子,可列舉:如鈉鹽、鉀鹽、鋰鹽之鹼金屬鹽;如鈣鹽、鎂鹽之鹼土類金屬鹽;鋁鹽、鐵鹽、鋅鹽、銅鹽、鎳鹽、鈷鹽等金屬鹽;銨鹽;如三級辛基胺鹽、二苯甲基胺鹽、嗎啉鹽、葡萄糖胺鹽、苯基甘胺酸烷酯鹽、伸乙二胺鹽、N-甲基葡糖胺鹽、胍鹽、二乙基胺鹽、三乙基胺鹽、二環己基胺鹽、N,N'-二苯甲基 伸乙二胺鹽、氯普魯卡因鹽(Chloroprocaine salt)、普魯卡因鹽、二乙醇胺鹽、N-苯甲基-苯乙基胺鹽、哌鹽、四甲基銨鹽、參(羥基甲基)胺基甲烷鹽之有機胺鹽;如氫氟酸鹽、鹽酸鹽、氫溴酸鹽、氫碘酸鹽之氫鹵酸鹽;硝酸鹽、過氯酸鹽、硫酸鹽、磷酸鹽等無機酸鹽;如甲磺酸鹽、三氟甲磺酸鹽、乙磺酸鹽之低級烷磺酸鹽;如苯磺酸鹽、對甲苯磺酸鹽之芳基磺酸鹽;如乙酸鹽、蘋果酸鹽、福馬酸鹽、琥珀酸鹽、檸檬酸鹽、酒石酸鹽、草酸鹽、馬來酸鹽等有機酸鹽;如甘胺酸鹽、離胺酸鹽、精胺酸鹽、鳥胺酸鹽、麩胺酸鹽、天冬胺酸鹽之胺基酸鹽等。該等鹽可藉由公知之方法製造。或者,本發明之組成物所包含之本發明之寡聚物,亦可為其水合物之形式。
本發明之組成物之投予形式,只要為醫藥上可容許之投予形式即可,無特別限制,可依照治療方法而選擇,不過從送達肌肉組織之容易度之觀點來看,以靜脈內投予、動脈內投予、肌肉內投予、皮下投予、經口投予、組織內投予、經皮投予等為較佳。又,就本發明之組成物可採取之劑型而言,無特別限制,可列舉如:各種注射劑、口服劑、點滴劑、吸入劑、軟膏劑、洗劑(lotion)等。
在將本發明之寡聚物投予至肌肉失養症患者時,本發明之組成物以含有促進將該寡聚物送達至肌肉組織之載子為較佳。此種載子只要為醫藥上可容許者即無特別限制,其例可列舉:陽離子性微脂體(cationic liposome)、陽離子性聚合物等陽離子性載子;或利用病毒套膜(viral envelope)之載子。就陽離子性微脂體而言,可列舉如:以2-O-(2-二乙基胺基乙基)胺甲醯基-1,3-O-二油醯 基甘油及磷脂質作為必需構成成分而形成之微脂體(以下稱為「微脂體A」)、Oligofectamine(註冊商標)(Invitrogen公司製)、Lipofectin(註冊商標)(Invitrogen公司製)、Lipofectamine(註冊商標)(Invitrogen公司製)、Lipofectamine 2000(註冊商標)(Invitrogen公司製)、DMRIE-C(註冊商標)(Invitrogen公司製)、GeneSilencer(註冊商標)(Gene Therapy Systems公司製)、TransMessenger(註冊商標)(QIAGEN公司製)、TransIT TKO(註冊商標)(Mirus公司製)、Nucleofector II(Lonza)。其中,以微脂體A為較佳。就陽離子性聚合物而言,可列舉例如JetSI(註冊商標)(Qbiogene公司製)、Jet-PEI(註冊商標)(聚伸乙亞胺,Qbiogene公司製)。就利用病毒套膜之載子而言,可列舉如:GenomeOne(註冊商標)(HVJ-E微脂體,石原產業公司製)。或者,亦可使用在日本專利2924179號中所記載之醫藥裝置、在日本專利再公表公報第2006/129594號及專利再公表公報第2008/096690號中所記載之陽離子性載子。
本發明之組成物中所含之本發明之寡聚物之濃度隨載子之種類等而異,以在0.1nM至100μM之範圍內為宜,以在1nM至10μM之範圍內為較佳,以在10nM至1μM之範圍內為更佳。又,本發明之組成物中所含之本發明之寡聚物與載子之重量比(載子/本發明之寡聚物),隨該寡聚物之性質及該載子之種類等而異,以在0.1至100之範圍內為宜,以在1至50之範圍內為較佳,以在10至20之範圍內為更佳。
在本發明之組成物中,除本發明之寡聚物及上述之載子以外,可添加任何醫藥上可容許之添加劑。就該添加劑而言,例如,乳化補助劑(例如,碳數6至22之脂肪酸或其醫藥上可容 許之鹽、白蛋白、葡聚糖)、安定劑(例如,膽固醇、磷脂酸)、等張化劑(例如,氯化鈉、葡萄糖、麥芽糖、乳糖、蔗糖、海藻糖)、pH調整劑(例如,鹽酸、硫酸、磷酸、乙酸、氫氧化鈉、氫氧化鉀、三乙醇胺)。可使用該等之一種或二種以上。在本發明之組成物中該添加劑之含量,係以90重量%以下為宜,以70重量%以下為較佳,以50重量%以下為更佳。
本發明之組成物可藉由在載子之分散液中添加本發明之寡聚物,並適當地攪拌而調製。又,添加劑可在本發明之寡聚物添加前,亦可在添加後,以適當之步驟添加。就添加本發明之寡聚物時可使用之水性溶劑而言,只要為醫藥上可容許者即無特別限制,例如,可列舉注射用水、注射用蒸餾水;生理食鹽水等電解質液;葡萄糖液、麥芽糖液等糖液。又,所屬技術領域中之通常知識者可適宜地選擇該情況之pH及溫度等條件。
本發明之組成物,可製成例如液劑或其冷凍乾燥製劑。該冷凍乾燥製劑可藉由常法,將具有液劑形式之本發明之組成物進行冷凍乾燥處理而調製。例如,將具有液劑形式之本發明之組成物適當地滅菌後,將設定量分注於小瓶中,於約-40至-20℃之條件下進行2小時左右之預冷凍,並於約0至10℃在減壓下進行一次乾燥,其次,於約15至25℃在減壓下進行二次乾燥,即可予以冷凍乾燥。於是,一般將小瓶內部用氮氣置換,封頂,即可得到本發明之組成物之冷凍乾燥製劑。
本發明之組成物之冷凍乾燥製劑,一般可藉由添加任何適當的溶液(再溶解液),使其再溶解而使用。就此種再溶解液而言,可列舉注射用水、生理食鹽水、其他一般輸注液。該再 溶解液之液量係隨用途等而異,並無特別限制,以冷凍乾燥前液量之0.5至2倍、或500 mL以下為適當。
投予本發明組成物時之用量,雖期望考慮所含之本發明之寡聚物之種類、劑型、年齢或體重等患者狀態、投予途徑、疾病之性質及程度而調整,不過對於成人而言,本發明之寡聚物之量一般在每1日0.1mg至10g/人之範圍內,以在1mg至1g/人之範圍內為較佳。此數值有時會隨標的疾病之種類、投予形式、標的分子而異。因此,視情況,有時在該量以下即已足夠,或相反地有時需使用該量以上之用量。又,1日可投予1次至數次或每隔1日至數日投予。
就本發明之組成物之其他態樣而言,可列舉:包含可表現本發明之寡核苷酸之載體(vector)及上述載子之醫藥組成物。該表現載體可為能表現複數種本發明之寡核苷酸者。在該組成物中,係與含有本發明寡聚物之本發明之組成物同樣地,可添加醫藥上可容許之添加劑。該組成物中所含之表現載體之濃度隨載子之種類等而異,以在0.1nM至100μM之範圍內為宜,以在1nM至10μM之範圍內為較佳,以在10nM至1μM之範圍內為更佳。該組成物中所含之表現載體與載子之重量比(載子/表現載體)隨表現載體之性質、載子之種類等而異,以在0.1至100之範圍內為宜,以在1至50之範圍內為較佳,以在10至20之範圍內為更佳。又,該組成物中所含之載子之含量,與含有本發明寡聚物之本發明之組成物的情況相同;關於其調製方法等,亦與本發明之組成物的情況相同。
(實施例)
以下揭示實施例及試驗例,以更詳細地說明本發明,不過本發明並不限定於實施例所示之範圍。
[參考例1] 由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(4-苯甲醯胺-2-側氧基嘧啶-1-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸 步驟1:4-{[(2S,6R)-6-(4-苯甲醯胺-2-側氧基嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸之製造
在氬蒙氣下,將3.44g之N-{1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-2-側氧基-1,2-二氫嘧啶-4-基}苯甲醯胺及1.1g之4-二甲基胺基吡啶(4-DMAP)懸浮於50mL之二氯甲烷中,並添加0.90g之琥珀酸酐,於室溫下攪拌3小時。於反應液中添加10mL之甲醇,並減壓濃縮。對殘餘物使用乙酸乙酯及0.5M之磷酸二氫鉀水溶液進行萃取操作。將所得到之有機層依序以0.5M之磷酸二氫鉀水溶液、水、飽和食鹽水洗淨。將所得到之有機層用硫酸鈉乾燥,並進行減壓濃縮,得到4.0g之目的物。
步驟2:由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(4-苯甲醯胺-2-側氧基嘧啶-1-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸之製造
將4.0g之4-{[(2S,6R)-6-(4-苯甲醯胺-2-側氧基嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸溶解於200mL之吡啶(脫水)中,添加0.73g之4-DMAP、11.5g之1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽。其次,添加25.0g之胺基聚苯乙烯樹脂Primer support 200 amino(GE Healthcare Japan公司製,17-5214-97)、8.5mL之三乙基胺,並於室溫下振盪4日。反應後, 濾取樹脂。將所得到之樹脂依序以吡啶、甲醇、二氯甲烷洗淨,並減壓乾燥。在所得到之樹脂中添加200mL之四氫呋喃(脫水)、15mL之乙酸酐、15mL之2,6-二甲基吡啶,並於室溫下振盪2小時。濾取樹脂,並依序以吡啶、甲醇、二氯甲烷洗淨,減壓乾燥,得到26.7g之目的物。
該目的物之負載(loading)量,係使用公知之方法,藉由測定於409nm之UV吸光度而決定每1g樹脂之三苯甲基的莫耳量。樹脂之負載量為129.2μmol/g。
UV測定條件
機器:U-2910(日立製作所)
溶劑:甲磺酸
波長:265nm
ε值:45000
[參考例2]
由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸
步驟1:N2-(苯氧基乙醯基)鳥苷之製造
將100g之鳥苷於80℃,在減壓下乾燥24小時。添加500mL之吡啶(脫水)、500mL之二氯甲烷(脫水),於氬蒙氣下,0℃滴入401mL之氯三甲基矽烷,並於室溫攪拌3小時。再度冰冷之,滴入66.3g之苯氧基乙醯氯,於冰冷下進一步攪拌3小時。在反應液中添加500mL之甲醇,於室溫攪拌整夜後,於減壓下餾去溶劑。在殘餘物中添加500mL之甲醇,並於減壓下進行濃縮3 次。在殘餘物中添加4L之水,並於冰冷下攪拌1小時,濾取析出物。將該析出物用水洗淨、接著用冷甲醇洗淨,乾燥,得到150.2g之目的化合物(產率:102%)(參考:Org.Lett.(2004),Vol.6,No.15,2555-2557)。
步驟2:N9-{[(2R,6S)-6-(羥基甲基)-4-嗎啉-2-基]-6-側氧基-6,9-二氫-1H-嘌呤-2-基}-2-苯氧基乙醯胺對甲苯磺酸鹽
將30g之步驟1所得到之化合物懸浮於480mL之甲醇中,於冰冷下,添加130mL之2N鹽酸。接著,依序添加56.8g之四硼酸銨4水合物、16.2g之過碘酸鈉,並於室溫攪拌3小時。將反應液冰冷,過濾除去不溶物,並將其用100mL之甲醇洗淨。合併濾液及洗淨液,進行冰冷,添加11.52g之2-甲吡啶硼烷(2-Picoline borane),攪拌20分鐘後,徐緩地添加54.6g之對甲苯磺酸‧1水合物,並於4℃攪拌整夜。濾取析出物,用500mL之冷甲醇洗淨後,進行乾燥,得到17.7g之目的化合物(產率:43.3%)。1H NMR(δ,DMSO-d6):9.9-9.2(2H,br)、8.35(1H,s)、7.55(2H,m)、7.35(2H,m)、7.10(2H,d,J=7.82Hz)、7.00(3H,m)、5.95(1H,dd,J=10.64,2.42Hz)、4.85(2H,s)、4.00(1H,m)、3.90-3.60(2H,m)、3.50-3.20(5H,m)、2.90(1H,m)、2.25(3H,s)
步驟3:N9-{(2R,6S)-6-羥基甲基-4-三苯甲基嗎啉-2-基}-N2-(苯氧基乙醯基)鳥嘌呤之製造
將2.0g之步驟2得到之化合物懸浮於二氯甲烷(30ml),於冰冷下添加三乙基胺(13.9g)、三苯甲基氯(18.3g),並於室溫攪拌1小時。將反應液用飽和碳酸氫鈉水溶液洗淨、接著用水洗淨後,回收有機層,並以硫酸鎂乾燥,並將有機層減壓濃縮。在殘 餘物中添加0.2M檸檬酸鈉緩衝液(pH3)/甲醇(1:4(v/v),40ml)並攪拌,繼而加水(40ml)及於冰冷下攪拌1小時(懸浮狀態)。將其濾取,用冷甲醇洗淨、乾燥,得到1.84g之目的化合物(產率:82.0%)。
步驟4:N9-[(2R,6S)-6-{(三級丁基二甲基矽基氧基)甲基}-4-三苯甲基嗎啉-2-基]-N2-(苯氧基乙醯基)鳥嘌呤之製造
將步驟3所得到之化合物(38.3g)溶於二氯甲烷(300mL)中,於冰冷下,依序添加咪唑(4.64g)、三級丁基二甲基矽基氯化物(9.47g),並於室溫攪拌1小時。將反應液用0.2M檸檬酸鈉緩衝液(pH3)洗淨、接著用飽和食鹽水洗淨後,回收有機層,並以硫酸鎂進行乾燥,將有機層減壓濃縮,得到44.1g呈粗生成物之目的化合物。
步驟5:N9-[(2R,6S)-6-{(三級丁基二甲基矽基氧基)甲基}-4-三苯甲基嗎啉-2-基]-N2-(苯氧基乙醯基)-O6-三異丙基苯磺醯基鳥嘌呤之製造
將步驟4所得到之化合物(44.1g)溶於二氯甲烷(300mL),於冰冷下添加4-二甲基胺基吡啶(0.64g)、三乙基胺(29.2mL)、三異丙基苯磺醯基氯化物(19.0g),於室溫攪拌1小時。將反應液用1M磷酸二氫鈉水溶液洗淨後,回收有機層,並以硫酸鎂乾燥,將有機層減壓濃縮,得到60.5g呈粗生成物之目的化合物。
步驟6:N9-[(2R,6S)-6-{(三級丁基二甲基矽基氧基)甲基}-4-三苯甲基嗎啉-2-基]-N2-(苯氧基乙醯基)-O6-(2-氰基乙基)鳥嘌呤之製造
將步驟5所得到之化合物(60.5g)溶於二氯甲烷(300mL)中,於冰冷下,添加N-甲基吡咯啶(54.5mL)並攪拌1小時。 在反應液中添加2-腈乙醇(ethylene cyanohydrin)(37.2g)、接著添加1,8-二氮雜雙環[5.4.0]十一碳-7-烯(11.96g),於冰冷下進一步攪拌2小時。將反應液用1M磷酸二氫鈉水溶液洗淨,接著用水洗淨後,回收有機層,並以硫酸鎂乾燥,將有機層減壓濃縮,得到72.4g呈粗生成物之目的化合物。
步驟7:N9-[(2R,6S)-6-羥基甲基-4-三苯甲基嗎啉-2-基]-N2-(苯氧基乙醯基)-O6-(2-氰基乙基)鳥嘌呤之製造
將步驟6所得到之化合物(72.4g)溶於二氯甲烷(300mL)中,並添加三乙基胺三氫氟酸鹽(21.1g),於室溫攪拌17小時。將反應液注入冷飽和碳酸氫鈉水溶液中,中和後回收二氯甲烷層,用硫酸鎂乾燥,並減壓濃縮。將殘餘物藉由矽凝膠管柱層析(PSQ100B(富士Silysia化學股份有限公司製,以下相同))精製,得到14.3g之目的化合物(從步驟4算起之產率:39.2%)。
步驟8:由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸之製造
藉由與參考例1相同的方法製造標題化合物。但是,本步驟係使用N9-[(2R,6s)-6-羥基甲基-4-三苯甲基嗎啉-2-基]-N2-(苯氧基乙醯基)-O6-(2-氰基乙基)鳥嘌呤來代替在參考例1之步驟1所使用之N-{1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-2-側氧基-1,2-二氫嘧啶-4-基}苯甲醯胺。
[參考例3] 由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸
藉由與參考例1相同的方法製造標題化合物。但是,本步驟係使用1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-5-甲基嘧啶-2,4(1H,3H)-二酮來代替在參考例1之步驟1所使用之N-{1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-2-側氧基-1,2-二氫嘧啶-4-基}苯甲醯胺。
[參考例4] 由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸
藉由與參考例1相同的方法製造標題化合物。但是,本步驟係使用N-{9-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]嘌呤-6-基}苯甲醯胺來代替在參考例1之步驟1所使用之N-{1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-2-側氧基-1,2-二氫嘧啶-4-基}苯甲醯胺。
[參考例5] 由胺基聚苯乙烯樹脂擔載之1,12-二側氧基-1-(4-三苯甲基哌-1-基)-2,5,8,11-四氧雜-15-十五烷酸
藉由與參考例1相同的方法製造標題化合物。但是,本步驟係使用2-[2-(2-羥基乙氧基)乙氧基]乙基4-三苯甲基哌-1-羧酸(國際公開公報第2009/064471號中記載之化合物)來代替在參考例1之步驟1所使用之N-{1-[(2R,6S)-6-(羥基甲基)-4-三苯甲基嗎啉-2-基]-2-側氧基-1,2-二氫嘧啶-4-基}苯甲醯胺。
關於外顯子45
依照以下之實施例1至8及比較例1之記載,合成表5之PMO.1至6號及8至10號所示之各種PMO。將所合成之 PMO溶解於注射用水(大塚製藥工場公司製)。又,PMO.7號係購自GeneTools公司。
[實施例1] PMO.1號
將0.2g(26μmol)之由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(4-苯甲醯胺-2-側氧基嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例1)充填於附有過濾器之管柱中,使用核酸合成機(AKTA Oligopilot 10 plus),開始下述合成循環。為了形成標題化合物之鹼基序列,在各偶合循環中,添加有期望之嗎啉單體化合物。
再者,去封阻溶液係使用含有3%(w/v)三氟乙酸之二氯甲烷溶液。中和/洗淨溶液係使用:以含有35%(v/v)乙腈之二氯甲烷溶液,將N,N-二異丙基乙基胺溶解成為10%(v/v)、且將四氫呋喃溶解成為5%(v/v)之者。偶合溶液A係使用:以四氫呋喃將嗎啉單體化合物溶解成為0.10M者。就偶合溶液B而言,係使用:以乙腈將N,N-二異丙基乙基胺溶解成為20%(v/v)、且將四氫呋喃溶解成為10%(v/v)之四氫呋喃者。就封端溶液而言,係使用相對於乙腈溶解有20%(v/v)之乙酸酐及30%(v/v)之2,6-二甲基吡啶者。
從反應容器中回收上述合成之擔載有PMO之胺基聚苯乙烯樹脂,並於室溫減壓乾燥2小時以上。將乾燥之由胺基聚苯乙烯樹脂擔載之PMO放入反應容器中,添加5mL之28%氨水-乙醇(1/4),於55℃攪拌15小時。過濾胺基聚苯乙烯樹脂,以1mL之水-乙醇(1/4)洗淨。將得到之濾液減壓濃縮。將得到之殘餘物溶解於10mL之20mM乙酸-三乙基胺緩衝液(TEAA緩衝液)與乙腈之混合溶劑(4/1)中,並用膜過濾器過濾。將得到之濾液藉由逆相HPLC精製。所使用之條件如以下所示。
分析各部分,回收目的物,並進行減壓濃縮。在濃縮殘餘物中添加0.5mL之2M磷酸水溶液,並攪拌15分鐘。然後,添加2mL之2M氫氧化鈉水溶液,調為鹼性,並用膜過濾器(0.45μm)過濾。
將所得到之含有目的物之水溶液用陰離子交換樹脂管柱精製。所使用之條件如下述。
分析各部分(HPLC),得到呈水溶液之目的物。在所得到之水溶液中添加0.1M之磷酸緩衝液(pH6.0),進行中和。其次,以下述條件,藉由逆相HPLC脫鹽。
回收目的物,並減壓濃縮。將所得到之殘餘物溶於水,冷凍乾燥,得到1.5mg之呈白色綿狀固體之目的化合物。
ESI-TOF-MS計算值:6877.8測定值:6877.4
[實施例2] PMO.3號
依照與實施例1相同的方法,製造標題化合物。
ESI-TOF-MS計算值:6862.8測定值:6862.5
[實施例3] PMO.2號
依照與實施例1相同的方法,製造標題化合物。
ESI-TOF-MS計算值:6862.8測定值:6862.3
[實施例4] PMO.4號
依照與實施例1相同的方法,製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧 基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6902.8測定值:6902.3
[實施例5] PMO.5號
依照與實施例1相同的方法,製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6902.8測定值:6902.4
[實施例6] PMO.8號
依照與實施例1相同的方法,製造標題化合物。
ESI-TOF-MS計算值:6547.5測定值:6547.2
[實施例7] PMO.9號
依照與實施例1相同的方法,製造標題化合物。
ESI-TOF-MS計算值:6547.5測定值:6547.2
[實施例8] PMO.10號
依照與實施例1相同的方法,製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之1,12-二側氧基-1-(4-三苯甲基哌-1-基)-2,5,8,11-四氧雜-15-十五烷酸(參考例5)作為起始原料。
ESI-TOF-MS計算值:7214.1測定值:7213.7
[比較例1] PMO.6號
依照與實施例1相同的方法,製造標題化合物。
ESI-TOF-MS計算值:8193.9測定值:8195.3
[試驗例1] 試管檢定(in vitro assay)
使用在序列編號19至35中記載之2’-O-甲氧基-硫代磷酸酯體(2’-OMe-S-RNA)之反意義寡聚物來進行實驗。在檢定所使用之各種反意義寡聚物係購自日本Bioservice公司。以下表示各種反意義寡聚物之序列。
將1×105個RD細胞(人類橫紋肌腫瘤細胞株)接種於12孔培養盤中,並在1mL之含有10%胎牛血清(FCS;Fetal Calf Serum)(Introgen公司製)之伊格氏最低必需培養基(Eagle's minimal essential medium(EMEM))(Sigma公司製,以下相同)中,於37℃,5%CO2之條件下培養一夜。製成上述之外顯子45跳過用之各種反意義寡聚物(日本Bioservice公司製)(0.3或1μM)與Lipofectamine 2000(Intr.ogen公司製)之複合物,並添加100μL在0.9mL之經培養基交換之RD細胞,使終濃度成為30或100nM。
添加後,培養一夜。將細胞用PBS(日水公司製,以下相同)洗淨2次後,將250μL之ISOGEN(Nippon Gene公司製)添加於細胞,放置於室溫數分鐘,使細胞溶解,將該溶解物回收 於埃彭道夫管(Eppendorf tube)中。依照ISOGEN所附之規程,萃取全部RNA。所萃取之全部RNA之濃度,係使用NanoDrop ND-1000(L‧M‧S公司製)測定。
對於400ng之所萃取的全部RNA,使用QIAGEN OneStep RT-PCR套組進行RT-PCR。依照套組中所附之規程,調製反應液。熱循環儀(Thermal cycler)係使用PTC-100(MJ Research公司製)。所使用之RT-PCR之程序係如以下所示。
50℃,30分鐘:逆轉錄反應
95℃,15分鐘:熱變性
[94℃,30秒;60℃,30秒;72℃,1分鐘]×35循環:PCR擴增72℃,10分鐘:。
使用於RT-PCR之前置引子(forward primer)及反置引子(reverse primer)之鹼基序列係如以下所示。
前置引子:5’-GCTCAGGTCGGATTGACATT-3’(序列編號36)
反置引子:5’-GGGCAACTCTTCCACCAGTA-3’(序列編號37)。
使用Bioanalyzer(Agilent公司製)解析1μL之上述PCR之反應產物。
測定外顯子45被跳過之帶之聚核苷酸量「A」及外顯子45未跳過帶之聚核苷酸量「B」。根據此等「A」及「B」之測定值,依照以下之式,求取跳過效率。
跳過效率(%)=A/(A+B)×100
實驗結果
將結果示於第1、2圖。由本實驗可判定:在針對從人類肌營養蛋白基因之第45號外顯子之5’末端算起第1至25 號或第6至30號來設計反意義寡聚物時,與針對從第45號外顯子之5’末端算起第7至31號來設計反意義寡聚物之情形下相比,係以較高效率跳過外顯子45。
[試驗例2] 試管檢定
對3.5×105個RD細胞(人類橫紋肌腫瘤細胞株)使用Amaxa細胞株核轉染套組L(Amaxa Cell Line Nucleofector Kit L),藉由Nucleofector II(Lonza)導入PMO.1至5號及8至10號之本發明之寡聚物以及PMO.6及7號之反意義寡聚物各1、3、10μM。程式係使用T-030。
導入後,將細胞在2mL之含有10%胎牛血清(FCS)(Introgen公司製)之之伊格氏最低必需培養基(EMEM)(Sigma公司製,以下相同)中,於37℃、5%CO2之條件下培養3日。將細胞用PBS(日水公司製,以下相同)洗淨2次後,將500μL之ISOGEN(Nippon Gene公司製)添加於細胞,於室溫放置數分鐘,使細胞溶解,將該溶解物回收於埃彭道夫管中。依照隨附於ISOGEN之規程,萃取全部RNA。所萃取之全部RNA之濃度係使用NanoDrop ND-1000(L‧M‧S公司製)來測定。
對於400 ng之所萃取之全部RNA,使用QIAGEN OneStep RT-PCR套組(Qiagen公司製)進行RT-PCR。依照隨附於套組之規程調製反應液。熱循環儀係使用PTC-100(MJ Research公司製)。所使用之RT-PCR之程序係如以下所示。
50℃,30分鐘:逆轉錄反應
95℃,15分鐘:熱變性
[94℃,30秒;60℃,30秒;72℃、1分鐘]x 35循環:PCR擴增72℃、10分鐘:。
RT-PCR所使用之前置引子及反置引子之鹼基序列係如以下所示。
前置引子:5’-GCTCAGGTCGGATTGACATT-3’(序列編號36)
反置引子:5’-GGGCAACTCTTCCACCAGTA-3’(序列編號37)。
使用Bioanalyzer(Agilent公司製)解析1μL之上述PCR之反應產物。
測定外顯子45跳過帶之聚核苷酸量「A」及外顯子45未跳過帶之聚核苷酸量「B」。根據此等「A」及「B」之測定值,依照以下之式,求取跳過效率。
跳過效率(%)=A/(A+B)×100
實驗結果
將結果示於第3圖、第4圖、第14圖及第15圖。由本實驗可判定:在RD細胞中,PMO.1、3號之本發明之寡聚物,係以與PMO.6號之反意義寡聚物同等之效率跳過外顯子45(第3圖、第4圖)。又,判定在RD細胞中,PMO.1、2、3號之本發明之寡聚物,與PMO.7號之反意義寡聚物相比,係以較高效率跳過外顯子45(第14圖)。再者,判定PMO.3號與末端構造相異之PMO.10號相比,係以較高效率跳過外顯子45(第15圖)。
[試驗例3] 使用人類纖維母細胞之試管檢定
藉由ZsGreen1共表現反轉錄病毒載體(ZsGreen1 coexpression retroviral vector),將人類MyoD基因(序列編號38)導 入至GM05017細胞(來自人類DMD患者之纖維母細胞,Coriell Institute for Medical Research)中。
培育4至5日後,藉由FACS回收ZsGreen陽性之MyoD轉換纖維母細胞,並以成為5×104個/cm2之方式接種於12孔培養盤。增殖培養基係使用1mL之含有10%FCS及1%盤尼西林/鏈黴素(P/S)(Sigma Aldrich公司)之Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12(DMEM‧F-12)(Introgen公司)。
24小時後用分化培養基(含有2%馬血清(Introgen公司)、1%P/S及ITS液體培養基補充物(ITS Liquid Media Supplement(Sigma公司))之DMEM/F-12)交換。每2、3日進行培養基交換,並培育12至14日,使之分化為肌管(myotube細胞。
然後,將分化培養基交換為含有6μM之Endo-Porter(Gene Tools公司)之分化培養基,以使終濃度成為10μM之方式添加嗎啉寡聚物。培育48小時後,藉由TRIzol(Introgen公司製),從細胞萃取全部RNA。對於50ng之所萃取之全部RNA,使用QIAGEN OneStep RT-PCR套組進行RT-PCR。依照隨附之規程調製反應液。熱循環儀係使用iCycler(Bio-Rad公司製)。所使用之RT-PCR之程式係如以下所示。
50℃,30分鐘:逆轉錄反應
95℃,15分鐘:熱變性
[94℃,1分鐘;60℃、1分鐘;72℃、1分鐘]x 35循環:PCR擴增
72℃、7分鐘:聚合酶之熱失活。
引子係使用hDMD44F及hDMD46R。
hDMD44F:5’-CCTGAGAATTGGGAACATGC-3’(序列編號39)
hDMD46R:5’-TTGCTGCTCTTTTCCAGGTT-3’(序列編號40)
將上述RT-PCR反應之反應產物藉由2%瓊脂糖凝膠(agarose gel)電泳分離,並藉由GeneFlash(Syngene公司)拍攝凝膠照片。使用Image J(美國國立衛生研究所製)測定外顯子45跳過帶之聚核苷酸量「A」及外顯子45未跳過帶之聚核苷酸量「B」。根據此等「A」及「B」之測定值,依照以下之式求取跳過效率。
跳過效率(%)=A/(A+B)×100
實驗結果
將結果示於第5圖。由本實驗可判定:在GM05017細胞中,PMO.3號之本發明之寡聚物係以高效率跳過外顯子45。
關於外顯子55
依照以下實施例9至19之記載,合成表11 PMO.11至14號及16至22號所示之各種PMO。將所合成之PMO溶解於注射用水(大塚製藥工場公司製)中。又,PMO.15號係購自GeneTools公司。
[實施例9] PMO.11號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6807.8測定值:6807.0
[實施例10] PMO.12號
依照與實施例1相同的方法製造標題化合物。但是使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6822.8測定值:6822.5
[實施例11] PMO.13號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6837.8測定值:6837.3
[實施例12] PMO.14號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6861.8測定值:6861.4
[實施例13] PMO.16號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6812.8測定值:6812.7
[實施例14] PMO.17號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6852.8測定值:6852.7
[實施例15] PMO.18號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6901.8測定值:6901.5
[實施例16] PMO.19號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6901.8測定值:6901.7
[實施例17] PMO.20號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6522.5測定值:6522.0
[實施例18] PMO.21號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6546.5測定值:6546.0
[實施例19] PMO.22號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之1,12-二側氧基-1-(4-三苯甲基哌-1-基)-2,5,8,11-四氧雜-15-十五烷酸(參考例5)作為起始原料。
ESI-TOF-MS計算值:7213.1測定值:7212.5
[試驗例4] 試管檢定
使用序列編號49至68中記載之2’-O-甲氧基-硫代磷酸酯體(2’-OMe-S-RNA)作為反意義寡聚物來進行實驗。檢定所使用之各種反意義寡聚物係購自日本Bioservice公司。以下表示各種反意義寡聚物之序列。
除了使用以下之引子實施RT-PCR外,以與外顯子 45(試驗例1)相同的條件/順序進行。
前置引子:5’-CATGGAAGGAGGGTCCCTAT-3’(序列編號69)
反置引子:5’-CTGCCGGCTTAATTCATCAT-3’(序列編號70)。
實驗結果
將結果示於第6、7圖。由本實驗可判定:在針對從人類肌營養蛋白基因之第55號外顯子之5’末端算起第1至21號或第11至31號來設計反意義寡聚物時,與針對從第55號外顯子之5’末端算起第104至123號來設計反意義寡聚物之情形下相比,係以更高效率跳過外顯子55。
[試驗例5] 試管檢定
除了使用以下之引子實施RT-PCR外,以與外顯子45(試驗例2)相同的條件/順序進行。
前置引子:5’-CATGGAAGGAGGGTCCCTAT-3’(序列編號69)
反置引子:5’-CTGCCGGCTTAATTCATCAT-3’(序列編號70)。
實驗結果
將結果示於第8、16及17圖。由本實驗可判定:在RD細胞中,PMO.12、13、14號(H55_8-28(OH)、H55_11-31(OH)及H55_14-34(OH))之本發明之寡聚物係以高效率跳過外顯子55(第8圖)。又,判定在RD細胞中,PMO.14、16、17、18、19號(H55_14-34(OH)、H55_12-32(OH)、H55_13-33(OH)、H55_15-35(OH)及H55_16-36(OH))之本發明寡聚物,與PMO.15號(H55_139-156(GT))之反意義寡聚物相比,係以明顯較高地效率跳過外顯子55(第16圖)。判定PMO.14號之本發明寡聚物及將鏈長縮短1鹼基之 PMO.21號(H55_15-34(OH)),係以同等效率跳過外顯子55(第17圖)。又,PMO.14號之本發明寡聚物,與末端構造相異之PMO.22號(H55_14-34(TEG))相比,係以同等效率跳過外顯子55(第17圖)。
關於外顯子44
依照在以下之實施例20至29中之記載,合成下述表之PMO.23至29號及31至33號所示之各種PMO。將所合成之PMO溶解於注射用水(大塚製藥工場公司製)。又,PMO.30號係購自GeneTools公司。
[實施例20] PMO.23號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6918.9測定值:6918.3
[實施例21] PMO.24號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6903.9測定值:6904.2
[實施例22] PMO.25號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6912.9測定值:6912.4
[實施例23] PMO.26號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6903.9測定值:6904.2
[實施例24] PMO.27號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6927.9測定值:6927.4
[實施例25] PMO.28號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6942.9測定值:6942.3
[實施例26] PMO.29號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧 基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6917.9測定值:6918.3
[實施例27] PMO.31號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6573.6測定值:6572.4
[實施例28] PMO.32號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6588.6測定值:6588.3
[實施例29] PMO.33號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之1,12-二側氧基-1-(4-三苯甲基哌-1-基)-2,5,8,11-四氧雜-15-十五烷酸(參考例5)作為起始原料。
ESI-TOF-MS計算值:7255.2測定值:7254.7
[試驗例6] 試管檢定
使用序列編號82至95及序列編號109至118中所記載之2’-O-甲氧基-硫代磷酸酯體(2’-OMe-S-RNA)作為反意義寡聚物來進行實驗。使用於檢定之各種反意義寡聚物係購自日本Bioservice公司。各種反意義寡聚物之序列如以下所示。
以與外顯子45(試驗例1)相同的條件/順序進行。
實驗結果
將結果示於第9、10圖。由本實驗可判定:針對從人類肌營養蛋白基因之第44號外顯子之5’末端算起第11至32號或第26至47號來設計反意義寡聚物時,係以與針對從第44號外顯子之5’末端算起第62至81號來設計反意義寡聚物時同等之效率跳過外顯子44。
[試驗例7] 試管檢定
以與外顯子45(試驗例2)相同的條件/順序進行。
實驗結果
將結果示於第11、12及18圖。由本實驗可判定:PMO.24、26號(H44_25-45(OH)、H44_27-47(OH))之本發明之寡聚物,在RD細胞中,以與PMO.30號(H44_10-39(OH))之反意義寡聚物同等之效率跳過外顯子44(第11、12圖)。並判定PMO.26號之本發明寡聚物與鏈長縮短1鹼基之PMO.31號(H44_27-46(OH))以同等效率跳過外顯子44(第18圖)。再者,判定PMO.26號之本發明寡聚物,與末端構造相異之PMO.33號(H44_27-47(TEG))相比,係以同等效率跳過外顯子44(第18圖)。
關於外顯子50
依照以下實施例30至39之記載,合成在表15 PMO.34至38號及41至45號中所示之各種PMO。將所合成之PMO溶解於注射用水(大塚製藥工場公司製)。又,PMO.39、40號係購自GeneTools公司。
[實施例30] PMO.34號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6861.8測定值:6861.8
[實施例31] PMO.35號
依照與實施例1相同的方法製造標題化合物。但係 使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6885.8測定值:6885.9
[實施例32] PMO.36號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6925.9測定值:6925.9
[實施例33] PMO.37號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6950.9測定值:6950.9
[實施例34] PMO.38號
依照與實施例1相同的方法製造標題化合物。但係 使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6990.9測定值:6991.0
[實施例35] PMO.41號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6635.6測定值:6635.0
[實施例36] PMO.42號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯樹脂擔載之4-[[(2S,6R)-6-[6-(2-氰基乙氧基)-2-[(2-苯氧基乙醯基)胺基]嘌呤-9-基]-4-三苯甲基嗎啉-2-基]甲氧基]-4-側氧基-丁酸(參考例2)作為起始原料。
ESI-TOF-MS計算值:6635.6測定值:6634.9
[實施例37] PMO.43號
依照與實施例1相同的方法製造標題化合物。但係 使用由胺基聚苯乙烯樹脂擔載之4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基嗎啉-2-基)甲氧基)-4-側氧基丁酸(參考例3)作為起始原料。
ESI-TOF-MS計算值:6965.9測定值:6965.2
[實施例38] PMO.44號
依照與實施例1相同的方法製造標題化合物。但是使用由胺基聚苯乙烯樹脂擔載之4-{[(2S,6R)-6-(6-苯甲醯胺嘌呤-9-基)-4-三苯甲基嗎啉-2-基]甲氧基}-4-側氧基丁酸(參考例4)作為起始原料。
ESI-TOF-MS計算值:6949.9測定值:6949.2
[實施例39] PMO.45號
依照與實施例1相同的方法製造標題化合物。但係使用由胺基聚苯乙烯擔載之1,12-二側氧基-1-(4-三苯甲基哌-1-基)-2,5,8,11-四氧雜-15-十五烷酸(參考例5)作為起始原料。
ESI-TOF-MS計算值:7342.2測定值:7341.6
[試驗例8] 試管檢定
除了將濃度調成0.1、0.3、1μM,並用以下之引子實施RT-PCR外,以與外顯子45(試驗例2)相同的條件/順序進行。
前置引子:5’-AACAACCGGATGTGGAAGAG-3’(序列編號103)
反置引子:5’-TTGGAGATGGCAGTTTCCTT-3’(序列編號104)。
實驗結果
將結果示於第13、19圖。藉由本實驗,判定PMO.38號(H50_107-127(OH))之本發明之寡聚物,在RD細胞中,與PMO.39或40號(H50_90-114(GT)、H50_103-127(GT))之反意義寡聚物相比,係以較高效率跳過外顯子50。又,判定PMO.38號與末端構造相異之PMO.45號(H50_107-127(TEG))相比,係以較高效率跳過外顯子50(第19圖)。
外顯子44跳過檢討 使用人類纖維母細胞之試管檢定 [試驗例9]
使用GM05112細胞(來自外顯子45缺損之DMD患者之纖維母細胞,Coriell Institute for Medical Research)來檢討外顯子44跳過活性。增殖培養基係使用含有10%FCS及1%盤尼西林/鏈黴素(P/S)(Sigma Aldrich公司)之Dulbecco’s Modified Eagle Medium:Nutrient Mixture F-12(DMEM/F-12)(Introgen公司),在5% CO2存在下,於37℃培養。
細胞係於T225燒瓶中培養,於35mL之增殖培養基中,添加2.5mL之來自人類之MyoD(序列編號38)表現反轉錄病毒(ZsGreen1共表現)及終濃度8μg/mL之聚凝胺(Polybrene)(Sigma Aldrich公司)。於32℃培養2日後,以新鮮增殖培養基進行培養基交換,再於37℃培養3日。藉由BD FACSAria細胞篩選儀(bd facsaria cell sorter)(BD Bioscience公司)選擇ZsGreen1陽性細胞, 回收經MyoD轉形之纖維母細胞,以9×104細胞/孔之方式接種於經膠原塗覆之24-孔培養盤上。翌日,交換為分化培養基(含有2%馬血清(Introgen公司)、1%P/S及ITS液體培養基補充物(Sigma公司)之DMEM/F-12)。每2至3日進行培養基交換,同時進行培養,而誘導分化成肌管細胞。
交換為分化培養基後第7日,交換成以終濃度成為6μM之方式添加有Endo-Porter(Gene Tools公司)之分化培養基,並以使終濃度成為1、3、10μM之方式添加PMO.26及31號。培育7日後,回收細胞,並使用RNeasy迷你套組(RNeasy Mini Kit)(Qiagen公司)萃取全部RNA。對於50ng之所萃取之全部RNA,使用QIAGEN OneStep RT-PCR套組進行RT-PCR。依照隨附之規程調製反應液。熱循環儀係使用iCycler(Bio-Rad公司)。所使用之RT-PCR之程序係如以下所示。
50℃、30分鐘:逆轉錄反應
95℃、15分鐘:熱變性
[94℃、1分鐘;60℃、1分鐘;72℃、1分鐘]x 35循環:PCR擴增
72℃、7分鐘:最終伸長反應
使用於RT-PCR之前置引子及反置引子之鹼基序列係如以下所示。
前置引子:5’-GCTCAGGTCGGATTGACATT-3’(序列編號36)
反置引子:5’-GGGCAACTCTTCCACCAGTA-3’(序列編號37)。
將上述RT-PCR反應之反應產物藉由2%瓊脂糖凝膠電泳分離,藉由影像分析儀ImageQuant LAS 4000 mini(富士軟片公司)拍攝凝膠照片。藉由隨附之軟體,測定外顯子44跳過帶之聚 核苷酸量「A」及外顯子44未跳過帶之聚核苷酸量「B」。根據此等「A」及「B」之測定值,依照以下之式求取跳過效率。
跳過效率(%)=A/(A+B)×100
實驗結果
將結果示於第20圖。由本實驗可判定:在GM05112細胞中,PMO.26及31號之本發明之寡聚物係以高效率跳過外顯子44。
[試驗例10]
以與試驗例9相同的方式使用GM05112細胞,調製經MyoD轉形之纖維母細胞,並誘導分化成肌管細胞。交換成分化培養基,該分化培養基係以交換後第6日終濃度成為6μM之方式添加有Endo-Porter(Gene Tools公司)者,並以使終濃度成為10μM之方式添加PMO.26及31號。培育14日後,藉由添加有蛋白酶抑制劑混合物(protease inhibitor cocktail)Complete Mini(Roche公司)之細胞溶解緩衝液RIPA buffer(Pierce公司)以刮具(scraper)回收細胞。藉由超音波破碎機Bioruptor UCD-250(東湘電機公司)將細胞破碎,並回收離心後之上清液,形成細胞溶解物(cell lysate)。細胞溶解物之蛋白質濃度,係使用Pierce BCA蛋白質檢定套組(Pierce BCA protein assay kit)(Pierce公司)求得。波長544nm之吸光度係使用培養盤檢視器(plate reader)Thermo Appliskan Type2001(Thermo Electron公司)來測定。
將3μg之細胞溶解物使用3-8%聚丙烯醯胺凝膠NuPAGE Novex Tris-Acetate Gel(Introgen公司)進行電泳。電泳結束後,藉由半乾印漬法(semi-dry blotting)轉錄於Immobilon-P膜 (Millipore公司)。將轉錄之膜以含有0.1% Tween20之PBS(PBST)洗淨後,用含有5% Amersham ECL Prime封阻劑(GE Healthcare公司)之PBST,於冷藏室內進行封阻(blocking)一夜。將膜用PBST洗淨後,在將抗肌營養蛋白抗體(NCL-Dys1,Novocastra公司)以Can Get Signal1(TOYOBO)稀釋50倍之溶液中,於室溫培育1小時。用PBST洗淨後,在將經過氧化酶標識之山羊抗小鼠IgG抗體(170-6516、Bio-Rad公司)以Can Get Signal2(TOYOBO公司)稀釋2,500倍之溶液中,於室溫培育10分鐘。用PBST洗淨後,用ECL Plus西方印漬檢測系統(ECL Plus Western Blotting Detection System)(GE Healthcare公司)處理。藉由Lumino/影像分析儀ImageQuant LAS 4000 mini(富士軟片公司)檢測相當於外顯子44-45之部分所缺損的肌營養蛋白之化學發光。
實驗結果
將西方印漬法之結果示於第21圖。在第21圖中,箭號表示表現經確認之肌營養蛋白質之帶。藉由本實驗,判定在GM05112細胞中,PMO.26及31號之本發明之寡聚物會誘導肌營養蛋白質之表現。
外顯子50跳過檢討 使用人類纖維母細胞之試管檢定 [試驗例11]
與試驗例9同樣地使用GM05112細胞,調製經MyoD轉形之纖維母細胞,並誘導分化為肌管細胞。
在分化培養基交換後第12日,交換成以終濃度成為6μM之方式添加有Endo-Porter(Gene Tools公司)之分化培養基, 並以使終濃度成為0.1、0.3、1、3、10μM之方式添加PMO.38號。培育2日後,回收細胞。與試驗例9以相同方式萃取全部RNA後,實施RT-PCR,求取跳過效率。但是,使用於RT-PCR之前置引子及反置引子之鹼基序列係如以下所示。
前置引子:5’-AACAACCGGATGTGGAAGAG-3’(序列編號103)
反置引子:5’-TTGGAGATGGCAGTTTCCTT-3’(序列編號104)。
實驗結果
將RT-PCR之結果示於第22圖,將跳過效率示於第23圖。由本實驗可判定:在GM05112細胞中,PMO38號之本發明之寡聚物係以高效率跳過外顯子50,EC50值為1.3μM。
[試驗例12]
除了使用11-0627細胞(來自外顯子8-9重複之DMD患者之纖維母細胞,國立精神/神經醫療研究中心神經/肌肉疾病研究資源儲存庫),並將添加PMO.38號時之終濃度調為0.1、1、10μM之外,以與試驗例11相同的條件/順序進行跳過試驗。
實驗結果
將RT-PCR之結果示於第26圖,將跳過效率示於第27圖。由本實驗可判定:於11-0627細胞中,PMO.38號之本發明之寡聚物係以高效率使外顯子50被跳過。
[試驗例13] pLVX-MyoD-ZsGreen1慢病毒(lentivirus)之製作
在削除從pLVX-puro(8120 bp,Clontech公司)之多選殖位點(multi cloning site)內之XhoI(位置2816)至嘌呤黴素抗性基因(Puromycinresistance gene)編碼區域之3'末端附近(位置3890)為 止之1164bp而直鏈化之載體中,插入以人類MyoD基因、IRES序列、ZsGreen1基因之順序所編碼之序列(2272bp),而製作成慢病毒表現載體pLVX-MyoD-ZsGreen1(9210bp)。依照Lenti-X HTX組裝系統(Lenti-X HTX Packaging System)(Clontech公司)之規程,將Lenti-X 293T細胞接種於10cm塗覆有膠原之培養皿中。在對纖維母細胞之預定感染日之3日前,轉染慢病毒表現載體、組裝載體(packaging vector),4小時後交換培養基,之後於不交換培養基之方式培育3日。在預定感染日當日,回收培養上清液(每10cm培養皿約9mL)作為病毒液。將培養上清液以細胞篩網(cell strainer)(40μm)過濾,再將其以500 x g離心10分鐘。將該上清液依照Lenti-X濃縮器(Lenti-X Concentrator)(Clontech公司)之規程濃縮,最後,以使其成為剛回收後之10倍濃度之方式溶解於DMEM/F12培養基中。將該溶液作為病毒液使用。
病毒對纖維母細胞之感染
至預定感染日為止,GM04364細胞(來自外顯子51-55缺損之DMD患者之纖維母細胞,Coriell Institute for Medical Research)係以3x104/孔之密度接種於塗覆有膠原之24孔培養盤上。在預定感染日當日,在每1孔中添加400 uL之分化培養基、100 uL之病毒液、最終濃度8 ug/mL之聚凝胺。在感染次日,將含有病毒之培養基交換為500 uL之分化培養基。之後,每隔2至3日交換分化培養基,並培養12日,誘導分化成肌管細胞。
交換為分化培養基後第12日,交換為以終濃度成為6μM之方式添加有Endo-Porter(Gene Tools公司)之分化培養基,並以終濃度成為0.1、0.3、1、3、10μM之方式添加PMO.38號。 培育2日後,回收細胞。與試驗例11以相同方式求取跳過效率。但是,使用於RT-PCR之前置引子及反置引子之鹼基序列係如以下所示。
前置引子:5’-AACAACCGGATGTGGAAGAG-3’(序列編號103)
反置引子:5’-CTGCCGGCTTAATTCATCAT-3’(序列編號70)
實驗結果
將RT-PCR之結果示於第28圖,將跳過效率示於第29圖。由本實驗可判定:在GM04364細胞中,PMO.38號之本發明之寡聚物係以高效率跳過外顯子50。
外顯子55跳過檢討 使用人類纖維母細胞之試管檢定 [試驗例14]
除了使用PMO.14、21號,並用以下之引子實施RT-PCR外,以與試驗例11相同的條件/順序進行。
前置引子:5’-CATGGAAGGAGGGTCCCTAT-3’(序列編號69)
反置引子:5’-CTGCCGGCTTAATTCATCAT-3’(序列編號70)
實驗結果
將RT-PCR之結果示於第24圖中,將跳過效率示於第25圖。由本實驗可判定:在GM05112細胞中,PMO.14、21號之本發明之寡聚物係以高效率跳過外顯子55,EC50值分別為3.5μM、7.5μM。
[試驗例15]
除了細胞係使用04-035細胞(來自外顯子54單獨缺損之DMD患者之細胞,國立精神/神經醫療研究中心神經/肌肉疾 病研究資源儲存庫),以使終濃度為1、3、10μM之方式添加PMO.14、21號,並使用以下之引子實施RT-PCR之外,係以與試驗例13相同的條件/順序進行。
前置引子:5’-CATGGAAGGAGGGTCCCTAT-3’(序列編號69)
反置引子:5’-CTGCCGGCTTAATTCATCAT-3’(序列編號70)
實驗結果
將RT-PCR之結果示於第30圖中,將跳過效率示於第31圖。由本實驗可判定:在來自外顯子54單獨缺損DMD患者之細胞中,PMO14、21號之本發明之寡聚物係以高效率跳過外顯子55。
[產業上之可利用性]
由試驗例所示之實驗結果,揭示了在RD細胞及來自DMD患者之細胞這二種環境中,本發明之寡聚物係明顯地以高效率跳過標的外顯子(例如,外顯子55等)。
因此,本發明之寡聚物在DMD之治療方面非常有用。
序列表免費文本(free text)
序列編號9:合成核酸
序列編號10:合成核酸
序列編號11:合成核酸
序列編號12:合成核酸
序列編號13:合成核酸
序列編號14:合成核酸
序列編號15:合成核酸
序列編號16:合成核酸
序列編號17:合成核酸
序列編號18:合成核酸
序列編號19:合成核酸
序列編號20:合成核酸
序列編號21:合成核酸
序列編號22:合成核酸
序列編號23:合成核酸
序列編號24:合成核酸
序列編號25:合成核酸
序列編號26:合成核酸
序列編號27:合成核酸
序列編號28:合成核酸
序列編號29:合成核酸
序列編號30:合成核酸
序列編號31:合成核酸
序列編號32:合成核酸
序列編號33:合成核酸
序列編號34:合成核酸
序列編號35:合成核酸
序列編號36:合成核酸
序列編號37:合成核酸
序列編號38:合成核酸
序列編號39:合成核酸
序列編號40:合成核酸
序列編號41:合成核酸
序列編號42:合成核酸
序列編號43:合成核酸
序列編號45:合成核酸
序列編號46:合成核酸
序列編號47:合成核酸
序列編號48:合成核酸
序列編號49:合成核酸
序列編號50:合成核酸
序列編號51:合成核酸
序列編號52:合成核酸
序列編號53:合成核酸
序列編號54:合成核酸
序列編號55:合成核酸
序列編號56:合成核酸
序列編號57:合成核酸
序列編號58:合成核酸
序列編號59:合成核酸
序列編號60:合成核酸
序列編號61:合成核酸
序列編號62:合成核酸
序列編號63:合成核酸
序列編號64:合成核酸
序列編號65:合成核酸
序列編號66:合成核酸
序列編號67:合成核酸
序列編號68:合成核酸
序列編號69:合成核酸
序列編號70:合成核酸
序列編號71:合成核酸
序列編號72:合成核酸
序列編號73:合成核酸
序列編號74:合成核酸
序列編號75:合成核酸
序列編號76:合成核酸
序列編號77:合成核酸
序列編號78:合成核酸
序列編號79:合成核酸
序列編號80:合成核酸
序列編號81:合成核酸
序列編號82:合成核酸
序列編號83:合成核酸
序列編號84:合成核酸
序列編號85:合成核酸
序列編號86:合成核酸
序列編號87:合成核酸
序列編號88:合成核酸
序列編號89:合成核酸
序列編號90:合成核酸
序列編號91:合成核酸
序列編號92:合成核酸
序列編號93:合成核酸
序列編號94:合成核酸
序列編號95:合成核酸
序列編號96:合成核酸
序列編號97:合成核酸
序列編號98:合成核酸
序列編號99:合成核酸
序列編號100:合成核酸
序列編號101:合成核酸
序列編號102:合成核酸
序列編號103:合成核酸
序列編號104:合成核酸
序列編號105:合成核酸
序列編號106:合成核酸
序列編號107:合成核酸
序列編號108:合成核酸
序列編號109:合成核酸
序列編號110:合成核酸
序列編號111:合成核酸
序列編號112:合成核酸
序列編號113:合成核酸
序列編號114:合成核酸
序列編號115:合成核酸
序列編號116:合成核酸
序列編號117:合成核酸
序列編號118:合成核酸
序列編號119:合成核酸
序列編號120:合成核酸
序列編號121:合成核酸
序列編號122:合成核酸
<110> 日本新藥股份有限公司(NIPPON SHINYAKU CO.,LTD.) 獨立行政法人國立精神.神經醫療研究中心(NATIONAL CENTER OF NEUROLOGY AND PSYCHIATRY)
<120> 反意義核酸(ANTISENSE NUCLEIC ACID)
<130> PCT12-0051
<150> JP 2011-288040
<151> 2011-12-28
<150> JP 2012-043092
<151> 2012-02-29
<160> 122
<170> PatentIn version 3.5
<210> 1
<211> 192
<212> DNA
<213> 智人(Homo sapiens)
<400> 1
<210> 2
<211> 179
<212> DNA
<213> 智人
<400> 2
<210> 3
<211> 129
<212> DNA
<213> 智人
<400> 3
<210> 4
<211> 148
<212> DNA
<213> 智人
<400> 4
<210> 5
<211> 192
<212> DNA
<213> 智人
<400> 5
<210> 6
<211> 179
<212> DNA
<213> 智人
<400> 6
<210> 7
<211> 129
<212> DNA
<213> 智人
<400> 7
<210> 8
<211> 148
<212> DNA
<213> 智人
<400> 8
<210> 9
<211> 21
<212> DNA
<213> 人造(Artificial)
<220>
<223> 合成核酸(Synthetic Nucleic Acid)
<400> 9
<210> 10
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 10
<210> 11
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 11
<210> 12
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 12
<210> 13
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 13
<210> 14
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 14
<210> 15
<211> 30
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 15
<210> 16
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 16
<210> 17
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 17
<210> 18
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 18
<210> 19
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 19
<210> 20
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 20
<210> 21
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 21
<210> 22
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 22
<210> 23
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 23
<210> 24
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 24
<210> 25
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 25
<210> 26
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 26
<210> 27
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 27
<210> 28
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 28
<210> 29
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 29
<210> 30
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 30
<210> 31
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 31
<210> 32
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 32
<210> 33
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 33
<210> 34
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 34
<210> 35
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 35
<210> 36
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 36
<210> 37
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 37
<210> 38
<211> 963
<212> DNA
<213> 智人
<400> 38
<210> 39
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 39
<210> 40
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 40
<210> 41
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 41
<210> 42
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 42
<210> 43
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 43
<210> 44
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 44
<210> 45
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 45
<210> 46
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 46
<210> 47
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 47
<210> 48
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 48
<210> 49
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 49
<210> 50
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 50
<210> 51
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 51
<210> 52
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 52
<210> 53
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 53
<210> 54
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 54
<210> 55
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 55
<210> 56
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 56
<210> 57
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 57
<210> 58
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 58
<210> 59
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 59
<210> 60
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 60
<210> 61
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 61
<210> 62
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 62
<210> 63
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 63
<210> 64
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 64
<210> 65
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 65
<210> 66
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 66
<210> 67
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 67
<210> 68
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 68
<210> 69
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 69
<210> 70
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 70
<210> 71
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 71
<210> 72
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 72
<210> 73
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 73
<210> 74
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 74
<210> 75
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 75
<210> 76
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 76
<210> 77
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 77
<210> 78
<211> 30
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 78
<210> 79
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 79
<210> 80
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 80
<210> 81
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 81
<210> 82
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 82
<210> 83
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 83
<210> 84
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 84
<210> 85
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 85
<210> 86
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 86
<210> 87
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 87
<210> 88
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 88
<210> 89
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 89
<210> 90
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 90
<210> 91
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 91
<210> 92
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 92
<210> 93
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 93
<210> 94
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 94
<210> 95
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 95
<210> 96
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 96
<210> 97
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 97
<210> 98
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 98
<210> 99
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 99
<210> 100
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 100
<210> 101
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 101
<210> 102
<211> 25
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 102
<210> 103
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 103
<210> 104
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 104
<210> 105
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 105
<210> 106
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 106
<210> 107
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 107
<210> 108
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 108
<210> 109
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 109
<210> 110
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 110
<210> 111
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 111
<210> 112
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 112
<210> 113
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 113
<210> 114
<211> 22
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 114
<210> 115
<211> 18
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 115
<210> 116
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 116
<210> 117
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 117
<210> 118
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 118
<210> 119
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 119
<210> 120
<211> 20
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 120
<210> 121
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 121
<210> 122
<211> 21
<212> DNA
<213> 人造
<220>
<223> 合成核酸
<400> 122
本案圖式皆為跳過效率之圖,但本案申請專利範圍第1項為跳過人類肌營養蛋白基因之第55號外顯子之反意義寡聚物,故本案圖式皆不足以代表本案技術特徵。

Claims (9)

  1. 一種反意義寡聚物,其為可使人類肌營養蛋白基因之第50號外顯子被跳過之反意義寡聚物,該反意義寡聚物係由與序列編號3之第107至127號之核苷酸完全互補的鹼基序列所組成。
  2. 如申請專利範圍第1項所述之反意義寡聚物,其為寡核苷酸。
  3. 如申請專利範圍第2項所述之反意義寡聚物,其中,構成該寡核苷酸之至少一個核苷酸之糖部分及/或磷酸鍵部分係經過修飾。
  4. 如申請專利範圍第3項所述之反意義寡聚物,其中,構成前述寡核苷酸之至少一個核苷酸之糖部分,為2’位之-OH基被選自OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br及I所成群中之任一基置換之核糖,上述之R表示烷基或芳基,上述之R’表示伸烷基。
  5. 如申請專利範圍第3或4項所述之反意義寡聚物,其中,構成前述寡核苷酸之至少一個核苷酸之磷酸鍵部分為選自硫代磷酸鍵、二硫代磷酸鍵、烷基膦酸鍵、磷酸醯胺(phosphoramidate)鍵及硼烷磷酸(boranophosphate)鍵所成群中之任一者。
  6. 如申請專利範圍第1項所述之反意義寡聚物,其為嗎啉寡聚物。
  7. 如申請專利範圍第6項所述之反意義寡聚物,其為磷酸二醯胺嗎啉寡聚物(phosphorodiamidate morpholino oligomer)。
  8. 如申請專利範圍第6或7項所述之反意義寡聚物,其中,5’末端為下述化學式(1)至(3)之任一基:
  9. 一種肌肉失養症治療用醫藥組成物,其係包含申請專利範圍第1項所述之反意義寡聚物、其醫藥上可容許之鹽或水合物作為有效成分。
TW101150922A 2011-12-28 2012-12-28 反意義核酸 TWI606059B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011288040 2011-12-28
JP2012043092 2012-02-29

Publications (2)

Publication Number Publication Date
TW201336859A TW201336859A (zh) 2013-09-16
TWI606059B true TWI606059B (zh) 2017-11-21

Family

ID=48697653

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101150922A TWI606059B (zh) 2011-12-28 2012-12-28 反意義核酸

Country Status (12)

Country Link
US (4) US9512424B2 (zh)
EP (2) EP3594347A1 (zh)
JP (5) JP6141770B2 (zh)
KR (2) KR102071729B1 (zh)
CN (9) CN110055244A (zh)
AU (2) AU2012360702C1 (zh)
CA (2) CA2861247C (zh)
ES (1) ES2748868T3 (zh)
IN (1) IN2014DN06220A (zh)
RU (3) RU2619184C2 (zh)
TW (1) TWI606059B (zh)
WO (1) WO2013100190A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1766010T3 (da) 2004-06-28 2011-06-06 Univ Western Australia Antisense-oligonukleotider til induktion af exon-skipping og fremgangsmåder til anvendelse deraf
ES2852549T3 (es) 2005-02-09 2021-09-13 Sarepta Therapeutics Inc Composición antisentido para tratamiento de la atrofia muscular
HUE028662T2 (en) 2007-10-26 2016-12-28 Academisch Ziekenhuis Leiden Preparations and methods for controlling muscle disorders
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
TR201902952T4 (tr) 2008-10-24 2019-03-21 Sarepta Therapeutics Inc Dmd için ekson atlama bileşimleri.
KR102366851B1 (ko) 2009-11-12 2022-02-23 더 유니버시티 오브 웨스턴 오스트레일리아 안티센스 분자 및 이를 이용한 질환 치료방법
US20130085139A1 (en) 2011-10-04 2013-04-04 Royal Holloway And Bedford New College Oligomers
IN2014DN06220A (zh) * 2011-12-28 2015-10-23 Nippon Shinyaku Co Ltd
CA2862628C (en) 2012-01-27 2021-08-24 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
WO2014153220A2 (en) 2013-03-14 2014-09-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US20140329762A1 (en) 2013-03-15 2014-11-06 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
RU2702424C2 (ru) * 2014-03-12 2019-10-08 Ниппон Синяку Ко., Лтд. Антисмысловые нуклеиновые кислоты
WO2015178277A1 (ja) * 2014-05-19 2015-11-26 神戸天然物化学株式会社 CD44遺伝子のバリアントエクソンのスキッピングを誘導し、正常型CD44mRNAの発現を増加させる核酸医薬
TWI721461B (zh) 2014-06-17 2021-03-11 日商日本新藥股份有限公司 反義核酸
EP3208277A4 (en) * 2014-10-14 2018-06-13 Ajinomoto Co., Inc. Morpholino oligonucleotide manufacturing method
MA41795A (fr) 2015-03-18 2018-01-23 Sarepta Therapeutics Inc Exclusion d'un exon induite par des composés antisens dans la myostatine
MY185390A (en) 2015-09-15 2021-05-17 Nippon Shinyaku Co Ltd Antisense nucleic acids
EP3359668A4 (en) 2015-10-09 2019-06-05 Sarepta Therapeutics, Inc. COMPOSITIONS AND METHODS OF TREATING DUCHENNE MUSCLE DYSTROPHY AND ASSOCIATED ILLNESSES THEREOF
WO2017062862A2 (en) 2015-10-09 2017-04-13 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
DK3464306T3 (da) * 2016-05-24 2024-05-21 Sarepta Therapeutics Inc Fremgangsmåder til fremstilling af phosphorodiamidat-morpholino-oligomerer
CN109563114B (zh) * 2016-05-24 2022-08-12 萨勒普塔医疗公司 用于制备寡聚物的方法
CA3025575A1 (en) * 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
US20190364862A1 (en) * 2016-12-08 2019-12-05 The Board Of Regents Of The University Of Texas System Dmd reporter models containing humanized duchenne muscular dystrophy mutations
KR102639633B1 (ko) * 2016-12-19 2024-02-26 사렙타 쎄러퓨틱스 인코퍼레이티드 근육 이상증에 대한 엑손 스킵핑 올리고머 결합체
NZ755416A (en) 2016-12-19 2023-05-26 Sarepta Therapeutics Inc Exon skipping oligomer conjugates for muscular dystrophy
IL267246B2 (en) 2016-12-19 2023-03-01 Sarepta Therapeutics Inc Exon-skipping oligomer conjugates for muscular dystrophy
EA201991450A1 (ru) 2017-09-22 2019-12-30 Сарепта Терапьютикс, Инк. Конъюгаты олигомеров для пропуска экзона при мышечной дистрофии
WO2019067981A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. POLYTHERAPIES FOR TREATING MUSCLE DYSTROPHY
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
CA3108289A1 (en) 2018-08-02 2020-02-06 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
SG11202100934PA (en) 2018-08-02 2021-02-25 Dyne Therapeutics Inc Muscle targeting complexes and uses thereof for treating dystrophinopathies
EP3894558A1 (en) * 2018-12-13 2021-10-20 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US20220144902A1 (en) 2018-12-25 2022-05-12 National Center Of Neurology And Psychiatry Method for inducing muscular cells using cells in spot urine
IL293997A (en) 2019-12-19 2022-08-01 Nippon Shinyaku Co Ltd Antistrand nucleic acids that allow exon skipping
CN114901823A (zh) 2019-12-26 2022-08-12 日本新药株式会社 诱导外显子50的跳读的反义核酸
WO2022232478A1 (en) 2021-04-30 2022-11-03 Sarepta Therapeutics, Inc. Treatment methods for muscular dystrophy
JPWO2022239863A1 (zh) 2021-05-13 2022-11-17
TW202307208A (zh) 2021-06-23 2023-02-16 日商日本新藥股份有限公司 反義寡聚物之組合
AU2022306542A1 (en) 2021-07-08 2024-01-18 Nippon Shinyaku Co., Ltd. Precipitation suppressing agent
TW202308664A (zh) 2021-07-08 2023-03-01 日商日本新藥股份有限公司 腎毒性減輕劑
WO2023282345A1 (ja) 2021-07-08 2023-01-12 日本新薬株式会社 腎毒性軽減剤
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
KR20240032945A (ko) * 2021-07-09 2024-03-12 다인 세라퓨틱스, 인크. 근육 표적화 복합체 및 디스트로핀병증을 치료하기 위한 그의 용도
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
WO2023026994A1 (ja) 2021-08-21 2023-03-02 武田薬品工業株式会社 ヒトトランスフェリンレセプター結合ペプチド-薬物コンジュゲート
WO2023168427A1 (en) 2022-03-03 2023-09-07 Yale University Compositions and methods for delivering therapeutic polynucleotides for exon skipping
WO2023171820A1 (ja) * 2022-03-11 2023-09-14 日本新薬株式会社 キャリアペプチドが連結された核酸
WO2023178230A1 (en) 2022-03-17 2023-09-21 Sarepta Therapeutics, Inc. Phosphorodiamidate morpholino oligomer conjugates

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962463B1 (en) 1989-12-20 2002-07-10 Antivirals Inc. Uncharged morpholino-based polymers having phosphorus-containing chiral intersubunit linkages
JP2924179B2 (ja) 1993-02-19 1999-07-26 日本新薬株式会社 グリセロール誘導体,デバイス及び医薬組成物
DE69435108D1 (de) * 1993-07-13 2008-08-14 Centelion Defekte adenovirus-vektoren und deren verwendung in der gentherapie
US6727355B2 (en) * 2000-08-25 2004-04-27 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
EP1191097A1 (en) * 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
EP2530156B1 (en) * 2002-11-25 2015-11-18 Masafumi Matsuo ENA nucleic acid drugs modifying splicing in mRNA precursor
WO2004083432A1 (en) * 2003-03-21 2004-09-30 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
DK1766010T3 (da) 2004-06-28 2011-06-06 Univ Western Australia Antisense-oligonukleotider til induktion af exon-skipping og fremgangsmåder til anvendelse deraf
JPWO2006038608A1 (ja) 2004-10-05 2008-05-15 日本新薬株式会社 オリゴ二本鎖rna及び医薬組成物
JP2008538500A (ja) * 2005-04-22 2008-10-30 アカデミス ツィーケンホイス ライデン SRタンパク質の結合に対する干渉とRNA二次構造に対する干渉による、mRNA前駆体におけるエクソン認識の調節
EP1886688A4 (en) 2005-05-30 2013-01-09 Nippon Shinyaku Co Ltd METHOD FOR PRODUCING PREPARATION OF A NUCLEIC ACID-CONTAINING COMPLEX
US8067571B2 (en) * 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
EP1857548A1 (en) * 2006-05-19 2007-11-21 Academisch Ziekenhuis Leiden Means and method for inducing exon-skipping
JP5347510B2 (ja) 2007-02-05 2013-11-20 日本新薬株式会社 ポリエチレングリコール誘導体
HUE028662T2 (en) 2007-10-26 2016-12-28 Academisch Ziekenhuis Leiden Preparations and methods for controlling muscle disorders
CN101861318A (zh) 2007-11-15 2010-10-13 Avi生物制药公司 合成吗啉代低聚物的方法
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
US8084601B2 (en) 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
TR201902952T4 (tr) * 2008-10-24 2019-03-21 Sarepta Therapeutics Inc Dmd için ekson atlama bileşimleri.
ES2532634T5 (es) 2008-10-27 2018-04-30 Biomarin Technologies B.V. Procedimientos y medios para el salto eficiente del exón 45 en el pre-ARNm de la distrofia muscular de Duchenne
WO2010123369A1 (en) * 2009-04-24 2010-10-28 Prosensa Technologies B.V. Oligonucleotide comprising an inosine for treating dmd
US20120270930A1 (en) * 2009-10-29 2012-10-25 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Methods and compositions for dysferlin exon-skipping
KR102366851B1 (ko) * 2009-11-12 2022-02-23 더 유니버시티 오브 웨스턴 오스트레일리아 안티센스 분자 및 이를 이용한 질환 치료방법
NZ603606A (en) 2010-05-28 2015-06-26 Sarepta Therapeutics Inc Oligonucleotide analogues having modified intersubunit linkages and/or terminal groups
JP5593949B2 (ja) 2010-08-17 2014-09-24 横河電機株式会社 プログラマブルロジックコントローラ
IN2014DN06220A (zh) * 2011-12-28 2015-10-23 Nippon Shinyaku Co Ltd

Also Published As

Publication number Publication date
JP6141770B2 (ja) 2017-06-07
AU2012360702B2 (en) 2018-06-28
CN110055243A (zh) 2019-07-26
RU2651468C1 (ru) 2018-04-19
KR20200008663A (ko) 2020-01-28
TW201336859A (zh) 2013-09-16
CA2861247C (en) 2021-11-16
WO2013100190A1 (ja) 2013-07-04
RU2619184C2 (ru) 2017-05-12
CN107881175A (zh) 2018-04-06
CN108486116A (zh) 2018-09-04
CN104024414A (zh) 2014-09-03
CN110055244A (zh) 2019-07-26
AU2012360702C1 (en) 2018-09-20
EP3594347A1 (en) 2020-01-15
AU2018229530A1 (en) 2018-10-04
US20170067052A1 (en) 2017-03-09
US20210222169A1 (en) 2021-07-22
JP2020114215A (ja) 2020-07-30
JP6734222B2 (ja) 2020-08-05
JPWO2013100190A1 (ja) 2015-05-11
IN2014DN06220A (zh) 2015-10-23
CN110079525A (zh) 2019-08-02
KR20140108676A (ko) 2014-09-12
CN108588073A (zh) 2018-09-28
ES2748868T3 (es) 2020-03-18
EP2799548B1 (en) 2019-08-21
KR102240139B1 (ko) 2021-04-13
JP2022058379A (ja) 2022-04-12
EP2799548A4 (en) 2015-11-18
JP7038365B2 (ja) 2022-03-18
US9890381B2 (en) 2018-02-13
CA3132111A1 (en) 2013-07-04
EP2799548A1 (en) 2014-11-05
CN110055243B (zh) 2024-03-26
US20180142245A1 (en) 2018-05-24
CN117721110A (zh) 2024-03-19
CA2861247A1 (en) 2013-07-04
CN107881175B (zh) 2022-05-13
US20140343266A1 (en) 2014-11-20
RU2681470C1 (ru) 2019-03-06
JP2024038103A (ja) 2024-03-19
JP2017163994A (ja) 2017-09-21
US9512424B2 (en) 2016-12-06
RU2014130600A (ru) 2016-02-20
AU2012360702A1 (en) 2014-07-24
AU2018229530B2 (en) 2021-05-13
CN108611349A (zh) 2018-10-02
KR102071729B1 (ko) 2020-01-31
US10781448B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
TWI606059B (zh) 反意義核酸
JP6647430B2 (ja) アンチセンス核酸
JP6701139B2 (ja) アンチセンス核酸
RU2730681C2 (ru) Антисмысловые нуклеиновые кислоты
KR102473431B1 (ko) 안티센스 핵산
WO2017047741A1 (ja) 筋萎縮症治療用アンチセンス核酸