TWI590460B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI590460B
TWI590460B TW103112719A TW103112719A TWI590460B TW I590460 B TWI590460 B TW I590460B TW 103112719 A TW103112719 A TW 103112719A TW 103112719 A TW103112719 A TW 103112719A TW I590460 B TWI590460 B TW I590460B
Authority
TW
Taiwan
Prior art keywords
irradiation
electron beam
amount
manufacturing
semiconductor device
Prior art date
Application number
TW103112719A
Other languages
English (en)
Other versions
TW201511275A (zh
Inventor
新村康
Original Assignee
富士電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機股份有限公司 filed Critical 富士電機股份有限公司
Publication of TW201511275A publication Critical patent/TW201511275A/zh
Application granted granted Critical
Publication of TWI590460B publication Critical patent/TWI590460B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)

Description

半導體裝置及其製造方法
此發明是有關具有對半導體基板照射電子線的工程之半導體裝置的製造方法,及藉此方法製造而成的半導體裝置。
一般,少數載子成為導通載子的雙極型的功率半導體裝置是有p-i-n二極體,絕緣閘極型雙極電晶體(IGBT)等。雙極型的功率半導體裝置的定格電壓幅度寬,為600V~6500V程度。
另一方面,多數載子成為導通載子的是單極型的功率半導體裝置,其代表者為功率MOSFET(MOSFET:絕緣閘極型場效電晶體)。功率MOSFET是在順方向的導通時藉由多數載子(電子)來動作。另一方面,在逆偏壓時是由p型基極層與n型漂移層及n型汲極層所構成的寄生二極體會動作。亦即,少數載子(電洞)會從p型基極層注入至n型漂移層,具有逆導通特性。藉此,逆導通時的功率MOSFET是成為雙極動作。功率 MOSFET的定格電壓為數10V~1000V程度。
雙極型的功率半導體裝置的情況,在導通時 是將比漂移層的濃度更高數位數的濃度的載子(電子,電洞)蓄積於此漂移層,藉此實現低的電壓降下。另一方面,從導通狀態遷移至阻止狀態時,亦即切換時,此蓄積載子是若不全部掃出,則漂移層無法空乏化。為此,在切換時需要某程度的時間。因此,一面維持低的電壓降下,一面將蓄積載子快速掃出成以下,成為兼顧雙極型的功率半導體裝置的低損失特性及高速切換特性的關鍵。
作為將雙極型的功率半導體裝置設為高速切 換之手段,有電子線照射。藉由對功率半導體裝置照射電子線,將結晶缺陷廣泛(深)導入至半導體基板特別是漂移層,形成再結合中心。藉此,可縮短切換時間。一般性的電子線照射方法是將電子線的加速能量設為2MeV~5MeV程度,對單結晶晶圓進行電子線照射。並且,結晶缺陷濃度的控制是藉由電子線的照射線量來調整。然後,在200℃以上500℃以下進行預定的時間退火,藉此形成再結合中心,可使切換高速化。
在專利文獻1是記載將加速能量提高至 10MeV,藉此於複數片矽晶圓同時照射電子線,減少照射次數來謀求降低成本的方法。
在專利文獻2中記載有用以對複數片的晶圓照射電子線之晶圓堆疊的構造及堆疊的製造方法。
[先行技術文獻] [專利文獻]
[專利文獻1]日本特開2004-273863號公報
[專利文獻2]美國專利第6475432號說明書
在電子線照射中,1次可照射的照射線量,一般大概是10kGy程度。為了實現所望的高速切換特性,所必要的照射線量為100kGy時,需要10次的照射,每1次的偏差是就照射次數部分增加。將所被固定的照射線量足夠地照射複數次,就一般商用規格而言,每製品的照射量的細微的調整是成為成本高或處理能力降低的原因。因此,若重複10次程度照射,則在照射線量產生20%程度的偏差。此照射線量的偏差是成為半導體基板的結晶缺陷濃度的偏差,因此成為元件特性的偏差的原因。
例如專利文獻1所記載般,以1次的照射來對複數片照射時,從最接近電子線源的晶圓到最遠的晶圓,由於厚度數mm,因此照射線量的不同或偏差容易變大。
高速切換特性是與電子線的照射線量具有正的相關。因此,只要增多電子線照射的次數,便可縮短切換時間,可使高速切換特性提升。然而,如上述般,因為照射線量的偏差變多,產生結晶缺陷的偏差所造成的特性 的不均一。特別是在車載用途時,偏差的減低及管理被嚴格要求,需要可兼顧電子線照射的低成本化及特性的均一性提升之手段。
並且,在專利文獻2中,有關對晶圓堆疊照射電子線的方法未被記載。
此發明的目的是在於提供一種解決前述的課題,以低成本來實現特性均一化的電子線照射之半導體裝置的製造方法。
為了達成前述的目的,若根據申請專利範圍所記載的發明,則提供一種半導體裝置的製造方法,係從層疊2片以上半導體基板而成的晶圓堆疊的主面照射電子線之半導體裝置的製造方法,其特徵係具有:第1照射工程,其係從前述晶圓堆疊的一方的主面照射電子線;及第2照射工程,其係以和前述電子線的照射之加速能量相同的加速能量來從前述晶圓堆疊的另一方的主面照射電子線。
前述第2照射工程的照射線量亦可與前述第1照射工程的照射線量相同。
前述第1照射工程的次數與前述第2照射工程的次數亦可為相同。
前述第2照射工程的照射線量亦可與前述第1 照射工程的照射線量不同。
前述第1或第2照射工程的其中一方的照射工程的照射線量亦可為前述第1或第2照射工程的其中另一方的照射工程的照射線量的1%以上100%未滿的值。
亦可將前述第1照射工程及前述第2照射工程設為一對,重複複數次該一對的工程。
在前述晶圓堆疊內鄰接的半導體基板亦可以各自之第1主面彼此間或第2主面彼此間相對的方式層疊。
前述晶圓堆疊內的半導體基板的厚度的總厚亦可比前述電子線對前述半導體基板的飛程更薄。
前述晶圓堆疊內的半導體基板的厚度的總厚亦可比前述電子線對前述半導體基板的飛程的一半更薄。
前述第1照射工程的加速能量亦可為使得藉由前述第1照射工程來導入至前述2片以上的半導體基板之結晶缺陷的濃度分佈會從前述晶圓堆疊的一方的主面往另一方的主面增加的加速能量。
亦可包含:取得工程,其係預先對照射線量監視器照射電子線,取得從前述晶圓堆疊的一方的主面往另一方的主面之複數的半導體基板的照射線量資料;及算出工程,其係由在該取得工程取得的前述照射線量資料算出與照射於前述照射線量監視器時之加速能量相同之電子線的必要照射量及其照射次數, 以該必要照射量及其照射次數來進行前述第1照射工程及第2照射工程。
在前述取得工程中,將前述晶圓堆疊內的半導體基板中之,最接近照射前述電子線的電子線源的半導體基板的照射線量設為x,在前述取得工程中,將前述晶圓堆疊內的半導體基板中之,離照射前述電子線的電子線源最遠的半導體基板的照射線量設為y,在前述算出工程中,將半導體基板所必要的最低必要照射線量設為D,將合計前述第1照射工程及第2照射工程的電子線照射的次數設為2D/(x+y)。
在前述第2照射工程之後,亦可更包含進行熱處理的電子線照射後熱處理工程。
在前述電子線照射後熱處理工程的環境中亦可含有氫。
在前述電子線照射後熱處理工程之前,亦可更包含形成表面電極的工程。
在前述電子線照射後熱處理工程之後,亦可更包含形成表面電極的工程。
前述表面電極亦可含圍牆金屬。
設為藉由上述的製造方法來製造而成的半導體裝置。
此發明是可以低成本來成為特性被均一化的半導體裝置的製造方法。
10‧‧‧半導體晶圓
11‧‧‧表面
12‧‧‧背面
13‧‧‧第1照射線量分佈
14‧‧‧第2照射線量分佈
15‧‧‧總照射線量分佈
16‧‧‧表面部
20‧‧‧容器的反轉
31‧‧‧第一電子線照射
32‧‧‧第二電子線照射
41‧‧‧n型漂移層
42‧‧‧n型汲極層
43‧‧‧n型第1柱層
44‧‧‧p型第2柱層
45‧‧‧閘極絕緣膜
46‧‧‧閘極電極
47‧‧‧層間絕緣膜
48‧‧‧p型基極層
49‧‧‧n型源極層
50‧‧‧源極電極
51‧‧‧晶格缺陷
52‧‧‧研磨
53‧‧‧汲極電極
54‧‧‧n型接觸層
55‧‧‧並列pn構造
56‧‧‧半導體基板
60‧‧‧超接合型MOSFET
100‧‧‧晶圓堆疊
圖1是此發明的實施形態1的半導體裝置的製造方法的要部製造工程圖。
圖2是此發明的實施形態2的要部製造工程圖。
圖3是此發明的實施形態3的要部剖面構造圖。
圖4是此發明的實施形態4的要部剖面構造圖。
圖5是表示半導體晶圓的相對照射線量的分佈圖。
圖6是表示此發明的實施形態2的半導體晶圓的相對照射線量的分佈圖。
圖7是此發明的實施形態5的特性圖。
圖8是此發明的實施形態6的特性圖。
圖9是此發明的實施形態6的特性圖。
圖10是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖11是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖12是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖13是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖14是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖15是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖16是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖17是表示此發明的實施形態1的MOSFET的製造方法的製造工程的要部剖面圖。
圖18是表示此發明的實施形態1的半導體裝置的製造方法的製造工程流程圖。
圖19是表示此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。
圖20是表示此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。
圖21是表示此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。
圖22是表示此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。
圖23是表示此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。
圖24是表示此發明的實施形態7及8的半導體裝置的製造方法的製造工程流程圖。
圖25是表示此發明的實施形態7及8的半導體裝置的製造方法的其他的製造工程流程圖。
圖26是表示此發明的實施形態6的半導體晶圓的相對照射線量的分佈圖。
以下,說明有關本發明的實施形態。在以下的說明中是將從電子線照射裝置往被照射體(半導體晶圓等)照射的電子線的照射量(劑量等)設為電子線照射量。並且,將被照射電子線的被照射體之接受的線量設為照射線量。此照射線量是依據電子線的照射量及非照射體的組成(原子,分子的構成)等來決定的線量。
(實施形態1)
說明有關本發明的實施形態1的半導體裝置的製造方法。
圖1是此發明的一實施例的半導體裝置的製造方法,依工程順序顯示的要部製造工程圖。
例如,在表面11上使2片具有形成複數個縱型MOSFET的MOS閘極及源極電極等的表面部16之半導體晶圓10夾著高分子材的分離器(separator)而依序層疊,放入專用的高分子材的容器(case)。在此,形成於表面11的MOSFET的表面構造相對於半導體晶圓10的直徑為極微細的構造,因此表面構造的記述省略。半導體晶圓是有矽,SiC,GaN等。在本實施形態1中是使用矽。藉此,形成半導體晶圓10的晶圓堆疊100。半導體 晶圓10的每1片的厚度是例如200μm~1000μm程度。並且,第2片的半導體晶圓10的表面11是層疊成與第1片的半導體晶圓10的背面12相對。
其次,從晶圓堆疊100內的半導體晶圓10的表面側來進行第一電子線照射31。第一電子線照射31的加速能量是例如5MeV程度。1次的電子線照射量是設為20kGy,照射10次。至此的工程為圖1(a)所示的工程,作為第一電子線照射工程。
其次,使前述高分子材的容器的天地反轉(容器的反轉20),從晶圓堆疊100內的半導體晶圓10的背面12側來進行第二電子線照射32。照射的加速能量是與前工程相同,為5MeV。並且,將1次的電子線照射量設為20kGy,照射10次。藉此,全電子線照射量是成為與前工程相同的值。此工程為圖1(b)所示的工程,作為第二電子線照射工程。
之後,從晶圓堆疊抽出半導體晶圓10,將抽出後的半導體晶圓10熱處理。藉由此熱處理來使MOSFET的通道附近的缺陷恢復。熱處理的溫度是例如320℃~380℃程度。
熱處理工程之後是經由在半導體晶圓10的背面形成電極的工程來使晶圓製造製程完了。
其次,先說明電子線照射的前後的工程。圖10~17是表示更具體的半導體裝置的製造方法的剖面圖。在本實施形態1是將半導體裝置設為MOSFET,特別 是設為超接合型的MOSFET來進行說明。表面構造是由活性領域及電場緩和領域亦即接合終端領域的2個領域所構成,該活性領域是從半導體基板的表面往背面流動切換的電流(主電流),電場緩和領域是包圍活性領域,藉由擴展成關閉狀態的空乏層來使在活性領域的外周的表面增加的電場強度減低。在活性領域中並設有:流動主電流的源極電極,及對MOS閘極傳送訊號的閘極電極。另外,在圖10~圖17及以下的說明中,半導體晶圓10的剖面是上述晶圓堆疊的任意半導體晶圓的一片。並且,半導體是以矽為例,但即使是碳化矽(SiC),氮化鎵(GaN),砷化鎵(GaAs)等的化合物半導體也同樣可成立。
首先,如圖10所示般,形成半導體基板56。 例如將高濃度摻雜銻或砷等的n型雜質(摻雜劑)至成為過飽和的程度之CZ(Czochralski法)矽晶圓(n型高濃度基板)設為n型汲極層42。在n型汲極層42的一方的面(表面)上,使雜質濃度比n型汲極層42更低的n型漂移層41以預定的雜質濃度及厚度來磊晶成長。此時的摻雜劑是例如磷。接著,使預定的厚度的n型層磊晶成長後,在預定之處選擇性地以離子注入等來導入p型摻雜劑(例如硼)。重複複數次由此n型層的磊晶成長到p型摻雜劑的離子注入的工程之後,加上熱處理而使活化。藉此,並設有n型層及p型層的並列pn構造55,亦即並列形成有n型第1柱層43及p型第2柱層44的超接合漂移 構造會被形成於n型漂移層41的表面。n型第1柱層43的雜質濃度是亦可比n型漂移層41的雜質濃度高。n型漂移層41的厚度是亦可為0μm(亦即不形成)~30μm程度。n型第1柱層43及p型第2柱層44的厚度是亦可為20μm~60μm。
其次,在活性領域的周邊形成未圖示的保護環等的接合終端領域。接著,如圖11所示般,在活性領域,在n型第1柱層43及p型第2柱層44的表面選擇性形成閘極絕緣膜45及閘極電極46。在此閘極絕緣膜45及閘極電極46中以能夠自我整合的方式,以離子注入及熱處理來形成p型基極層48及n型源極層49。接著,以能夠覆蓋閘極電極46的方式,藉由周知的PSG膜,BPSG膜等來形成層間絕緣膜47,更選擇性地蝕刻層間絕緣膜47,露出p型基極層48及n型源極層49的表面,形成開口部。至此為止,在活性領域形成MOS閘極構造(表面構造)。
層間絕緣膜的退火後,藉由鋁.矽合金膜等來形成源極電極50,藉由熱處理來進行燒結。此時,亦可在前述鋁.矽合金膜等的形成前形成以鈦(Ti),鎢(W),鈷(Co)等作為含有金屬的圍牆金屬。藉由以上,形成表面電極(源極電極50),基本上完成MOSFET構造。另外,至此為止的加熱履歴是至層間絕緣膜47的退火為止例如900℃以上,源極電極的燒結例如為200~500℃程度。並且,在燒結後,亦可藉由聚醯亞胺膜 等來形成周知的表面保護膜(鈍化膜)。
其次,如圖12所示般,例如從晶圓的表面側,以預定的線量來進行第一電子線照射31。將電子線所照射的方向顯示成箭號。
接著,如圖13所示般,針對以第一電子線照射31來形成晶格缺陷51(主要點缺陷)的晶圓,如在圖1所說明般將晶圓容器反轉,從晶圓的背面側,以和第一電子線照射31同線量來進行第二電子線照射32。圖13中的×記號是模式性地表示晶格缺陷51的標記,不是嚴格地表示晶格缺陷51的位置及分佈狀態者。另外,在第二電子線照射32中,從線源往晶圓容器之電子線的照射方向是與第一電子線照射31相同。在第二電子線照射32中,藉由晶圓容器的反轉,從晶圓的另一方的主面(在圖13是背面側)進行電子線照射。亦即,在圖13中,使表示第二電子線照射的箭號與第一電子線照射31呈反轉,藉此表示進行圖1的容器的反轉20。
接著,如圖14所示般,針對在第一電子線照射31加上第二電子線照射32之下而晶格缺陷51增加的照射晶圓全部進行熱處理(電子線照射後熱處理)。電子線照射後熱處理的目的是在於將藉由第一電子線照射31及第二電子線照射32所導入的晶格缺陷51的缺陷密度降低至預定的值,藉此使內藏於MOSFET的內藏二極體(亦稱為寄生二極體,逆導通二極體)的逆恢復時間形成所望的值。內藏二極體是藉由MOSFET的p型基極層48- p型第2柱層44-n型第1柱層43-n型漂移層41-n型汲極層42所構成的二極體。並且,在進行電子線照射而不熱處理的狀態中,晶格缺陷51的密度會過多,逆導通時積蓄於並列pn構造55及n型漂移層41的載子濃度會變少,內藏二極體的順方向電壓降下的值會比所望的值更高。為此,藉由電子線照射後熱處理,亦具有使晶格缺陷51的密度降低,使順電壓降下的值降低至預定的值之效果。並且,形成有MOSFET的通道(在與p型基極層48的閘極絕緣膜的界面所形成的電子反轉層)之p型基極層48附近的缺陷恢復亦為目的。藉此,可抑制藉由電子線照射所產生的閘極臨界值的變動。
圖15是藉由電子線照射後熱處理來顯示晶格缺陷51的缺陷密度降低的狀態的模式圖。例如以取得均熱(一樣的溫度分佈)的電爐來進行此電子線照射後熱處理。藉此,照射電子線後的所有晶圓的晶格缺陷51的密度會一邊維持電子線的兩面照射之密度分佈的均一性,一邊一樣地降低,其結果,在全部的晶圓成為同程度的所望的晶格缺陷密度。
接著,如圖16所示般,對於位在晶圓的背面側的n型汲極層42(前述的n型高濃度基板)進行研磨52,藉此使晶圓的厚度薄板化。由於本案半導體裝置一般是經由焊錫來搭載於金屬性框,所以有因半導體裝置與金屬性框的熱膨脹係數的不同而產生的應力之緩和,作為此薄板化的目的。並且,藉由使電流的導通方向的厚度形成 薄,亦有降低MOSFET的導通時的電阻(ON電阻)之效果。而且,藉由薄板化,降低MOSFET的熱容量,使動作時的發熱容易從基板的兩面放掉,亦有降低MOSFET的動作溫度之效果。
最後,如圖17所示般,在晶圓的背面以n型來形成高濃度的n型接觸層54,形成汲極電極53。n型接觸層54是例如只要在背面離子注入磷之後,將注入面雷射退火,便可無表面電極的溶融或p型基極層,並列pn構造等的pn接合的形狀變化等這樣的熱性影響來形成低電阻的歐姆接觸。另外,在n型高濃度基板的摻雜劑使用砷時,n型接觸層54是亦可省略。因為砷的飽和濃度是比銻更高1位數以上,即使不形成n型接觸層54還是可形成與汲極電極53的歐姆接觸。藉由以上,可利用電子線照射的兩面照射來使完成具有均一的缺陷密度分佈之超接合型MOSFET60。
在圖18及圖19顯示上述的本發明的半導體裝置的形成流程。圖18是表示此發明的實施形態1的半導體裝置的製造方法的製造工程的流程圖。圖18是在至層間絕緣膜形成的表面構造形成工程(步驟S1)之後,進行源極電極等的表面電極形成工程(步驟S2)。接著,亦可進行耐濕性提升用的表面保護膜形成工程(步驟S3)。接著,以預定的線量從晶圓的表面進行第一電子線照射工程(步驟S4),使晶圓容器反轉,而從晶圓的背面進行與S4同線量的第二電子線照射工程(步驟S5)。 接著以預定的溫度及時間進行電子線照射後熱處理工程(步驟S6),使晶格缺陷的密度至所望的值為止一邊維持均一性一邊減低。然後,進行藉由研磨來弄薄晶圓的厚度之基板薄板化工程(步驟S7),且進行在研磨面形成高濃度的n型接觸層之背面接觸層形成工程(步驟S8),最後進行汲極電極的背面電極形成工程(步驟S9)。另外,n型背面接觸層形成工程S8是在n型高濃度基板的摻雜劑使用砷時亦可省略。
另外,亦可替換第一電子線照射工程(步驟S4)及第二電子線照射工程(步驟S5)。亦即,亦可最初從晶圓的背面側進行第二電子線照射工程(S5),接著使晶圓容器反轉,而從晶圓的表面側進行第一電子線照射工程(S4)。圖19是此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。如圖19所示般,進行步驟S5的工程的其次步驟S4的工程。
而且,亦可適當替換S4及S5以外的各工程(步驟)。例如,亦可在第一電子線照射工程S4或第二電子線照射工程S5之後進行表面保護膜形成工程S3。圖20是此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。像圖20那樣,亦可在第一電子線照射工程S4及第二電子線照射工程S5之後進行表面保護膜形成工程S3之後進行電子線照射後熱處理工程的步驟S6。
而且,亦可在電子線照射後熱處理工程S6之 後進行表面保護膜形成工程S3。圖21是此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。 如圖21所示般,亦可在電子線照射後熱處理工程S6之後進行表面保護膜形成工程S3。特別是利用聚醯亞胺的有機膜之表面保護膜的形成是與電子線照射後的熱處理溫度(例如300~350℃)同程度或更若干高(例如350~400℃),因此先進行各自之處理溫度高者即可。藉此,在電子線照射後熱處理工程S6將電子線照射之晶格缺陷的密度減低至所望的值,且在以後的工程的處理溫度可防止意想不到之晶格缺陷密度的降低。
又,亦可使第一電子線照射工程S4,第二電子線照射工程S5及電子線照射後熱處理S6在背面電極形成工程S9之後。圖22是此發明的實施形態1的半導體裝置的製造方法的其他的製造工程流程圖。像圖22那樣,使第一電子線照射工程S4,第二電子線照射工程S5及電子線照射後熱處理S6在背面電極形成工程S9之後也無妨。藉此,當背面接觸層形成或背面電極形成的處理溫度比電子線照射後熱處理工程S6的處理溫度更高時,可在電子線照射後熱處理工程S6將電子線照射之晶格缺陷的密度降低至所望的值。而且,在電子線照射後熱處理工程S6以後的工程的處理溫度,可防止意想不到之晶格缺陷密度的降低。
或,亦可在表面構造形成工程S1之後,表面電極形成工程S2之前進行。圖23是此發明的實施形態1 的半導體裝置的製造方法的其他的製造工程流程圖。像圖23那樣,在表面構造形成工程S1之後,進行第一電子線照射工程S4,第二電子線照射工程S5及電子線照射後熱處理S6。然後,亦可進行表面電極形成工程S2以後。另外,有關此圖23所示的工程的順序後述。並且,圖20~圖23的第一電子線照射工程S4及第二電子線照射工程S5是像前述的圖19那樣改換順序也無妨。
其次,說明有關電子線照射後熱處理與閘極臨界值的關係。閘極臨界值是藉由電子線照射要比不進行電子線照射的情況還降低。此閘極臨界值降低的對策是可預先變更p型基極層的雜質濃度或閘極絕緣膜的厚度來對應,但亦可使在與形成有通道(電子反轉層)的p型基極層的閘極絕緣膜的界面附近產生的晶格缺陷恢復來對應。因為藉由晶格缺陷而變動後的閘極臨界值是即使長期性也有變動的可能性,恐有使MOSFET的長期可靠度降低之虞。此閘極臨界值的降低是在電子線照射後熱處理可恢復,但此時將電子線照射後熱處理的環境設為含氫環境為佳。其理由是因為氫會終結上述的界面附近的晶格缺陷,特別是懸浮鍵(dangling bond),可降低缺陷對通道(電子反轉層)的影響。
另外,在電子線照射後熱處理的階段,若已在表面電極(源極電極)形成鈦(Ti)等的圍牆金屬,則閘極臨界值的恢復程度會變弱。於是,在形成有鈦等時,亦可預料閘極臨界值降低,使p型基極層形成的離子注入 量高濃度化等,像前述那樣預先進行臨界值的調整。或,如圖23所示般,亦可使含圍牆金屬的表面電極形成工程S2在電子線照射後熱處理工程S6之後。藉此,可不受圍牆金屬的影響,以氫來終結通道附近的懸浮鍵。此圖23所示的工程順序的情況是只要表面電極形成工程的處理溫度比電子線照射後熱處理工程S6的處理溫度(例如300~380℃)更降低(例如200~350℃)即可,只要進行圍牆金屬的低溫濺射等即可。藉此,在電子線照射後熱處理工程S6將電子線照射之晶格缺陷的密度降低至所望的值,且在以後的工程的處理溫度可防止意想不到之晶格缺陷密度的降低。
其次,說明有關本發明的技術的特徵。
圖5是表示從使任意厚度的半導體晶圓10(矽)層疊的晶圓堆疊100的一面側照射電子線時之,對於半導體晶圓10的累計厚度(總厚)之半導體晶圓10的相對照射線量的分佈圖。縱軸的相對照射線量(以下稱為相對線量)是以半導體晶圓10的電子線的照射面的照射線量所規格化的值。如以下所述般當半導體晶圓10為複數時的電子線的照射面是設為電子線最初射入之半導體晶圓10的入射面。電子線是按照半導體(矽)的電子阻止能及電子線的加速能量來使照射線量分佈產生於半導體中。此照射線量的分佈形狀是與藉由電子線照射來生成於半導體中的結晶缺陷的濃度分佈的形狀幾乎一致。亦即,結晶缺陷的濃度分佈是依據對半導體的照射線量而定,所 以一般接近高斯分佈。因此,像圖5那樣,一旦電子線的加速能量變高,則飛程Rp也變高。
實際,如圖5所示般,從半導體晶圓10的最表面到Rp的跟前(數mm程度),照射線量(或結晶缺陷濃度)分佈是可視為一次函數地單調增加。因此,在射入電子線的最表面的半導體晶圓10與接近Rp的半導體晶圓10是照射線量近40%不同。如此的照射線量的偏差會打亂半導體晶圓10間的結晶缺陷密度分佈的均一性,成為特性的偏差。若像本實施形態1那樣為功率MOSFET,則影響內藏二極體的導通損失(順電壓降下)及逆恢復特性(逆恢復時間或逆恢復最大電流等)的特性偏差。
為了迴避如此的晶圓堆疊100內的半導體晶圓10間的照射線量的偏差,而像上述那樣使高分子材的容器的天地反轉,以同照射條件來從晶圓堆疊100的背面側也照射電子線。以後將此照射方法稱為兩面照射。並且,為了區別兩面照射,而將以往只從一面的電子線照射方法稱為一面照射。
(實施形態2)
圖2是表示實施形態2的半導體裝置的製造工程的圖。與實施形態1的相異點是將半導體晶圓10重疊2片以上例如10片來形成晶圓堆疊100。
由圖5也可得知,晶圓堆疊100的半導體晶圓10的片數越多,一面照射之照射線量的偏差(不同) 越大。相對的,在進行由晶圓堆疊100的兩側來照射電子線的兩面照射之下,即使晶圓堆疊100內的片數變多,也可取得極高的照射線量(結晶缺陷密度分佈)的均一性。
本發明的兩面照射之缺陷密度分佈的均一化的效果是尤其晶圓堆疊100的片數越增加可越強。以下說明有關此作用效果。圖6是表示由晶圓堆疊100的表面側及背面側以同一條件(加速能量,電子線照射量)來兩面照射電子線時之相對性的照射線量分佈的分佈圖。與圖5同樣,縱軸的值是在晶圓堆疊100以最近電子線源的半導體晶圓10的最表面的照射線量來規格化。第一電子線照射工程S4之第1照射線量分佈13及第二電子線照射工程S5之第2照射線量分佈14是對於晶圓堆疊100的大致中間成為線對稱的分佈。第二電子線照射工程S5終了後之晶圓堆疊100內的半導體晶圓10的照射線量分佈是形成總照射線量分佈15那樣。比起第1照射線量分佈13成為最大值的飛程(Rp1)及第2照射線量分佈14的飛程(Rp2),在分別成為照射面側的領域A中,總照射線量分佈15是大致成為一定,可知均一性佳。特別是領域A的照射線量分佈的幅度(標準偏差)是大概0.5%,相較於一面照射的情況的偏差(40%前後),均一性極佳。
實際上,兩面照射之來自第1及第2的一面的照射時的電子線照射量是比只一面照射時電子線照射量更小,但即便如此,兩面照射時的缺陷密度分佈,可知均一性極高。另外,有關兩面照射之電子線照射量的算出方 法是在後述。
電子線的複數次的兩面照射是亦可將來自表面的照射1次及來自背面的照射1次設為一對,重複複數次此對。或,亦可最初進行複數次來自表面的照射,其次進行複數次來自背面的照射。工程的工數是後者少為佳,但須注意使來自表面側的照射次數與來自背面側的照射次數相同。
(實施形態3)
圖3是表示實施形態3的半導體裝置的製造工程的剖面圖。與實施形態1的相異點是將對向於第1片的半導體晶圓10的背面12之第2片的半導體晶圓10的面設為同背面12。進行兩面照射的優點是如圖6所示般提高照射線量(或結晶缺陷密度)分佈的均一性。在此,像本實施形態3那樣,在交替配置表面11及背面12之下,更可吸收晶圓間的偏差。藉此,更可提高元件特性的均一性。
(實施形態4)
圖4是表示實施形態4的半導體裝置的製造工程的剖面的圖。與實施形態2的相異點是使鄰接的半導體晶圓10彼此間相向的面,像實施形態3那樣表面11彼此間或背面12彼此間層疊,形成晶圓堆疊100。
將配置有複數縱型MOSFET的半導體晶圓10,例如10片(1片的厚度為200μm~1000μm程度), 如圖4所示般全部表面-背面,背面-表面,表面-背面重複重疊,放入專用的高分子材的容器。
其次,將加速能量設為10MeV,照射電子線。照射量是重複20次10kGy,計200kGy。就10MeV的加速能量而言,電子的飛程是約20mm,若為10片程度,則未達飛程,在疊合的半導體晶圓10的全部可充分的照射。但,如圖5所示般,從半導體晶圓10的最表面側到飛程為止,對半導體晶圓10的照射線量(或結晶缺陷密度)是增加,但飛程以後是急劇地減少。因此,需要飛程以下,作為半導體晶圓10的累計厚度的基準。一面照射時,照射線量是在照射電子線的最表面晶圓及其相反側的端的晶圓產生40%程度前後的偏差(不均一)。特別是半導體晶圓10片數越增加,累計厚度越增加,其照射線量及缺陷密度分佈的差變大,不均一性增加。於是,使晶圓堆疊100連同容器反轉,且以同量的電子線照射量來實施兩面照射之下,照射線量的增減會被相抵,可特性的均一化。
另外,像圖2那樣,1方向重疊半導體晶圓10,作業效率較佳,因此亦可以在1方向的疊合來實施,但偏差會若干(0.1%程度)變大。因此,需要更嚴密的偏差減低及管理時,形成像本實施形態4那樣即可。
(實施形態5)
圖7是表示實施形態5的半導體裝置的特性的圖。
依據發明者進行深入研究的結果可知,若將晶圓堆疊100的矽基板之電子線的飛程Rp(mm)設為y,且將電子線的加速能量E(MeV)設為x,則可以y=5.0×10-7x4-9.0×10-5x3+0.0046x2+2.2591x-0.3599的式子來記述。針對此式來形成圖表者為圖7。亦即,若將晶圓堆疊100的晶圓累計厚度設為W(mm),則將W設為電子線的飛程Rp的例如80%,利用上式來算出成為此0.8Rp的電子線的加速能量,進行電子線的兩面照射。藉此,將晶圓堆疊100內的複數片的半導體晶圓10一次(必要的照射量份量的照射次數)進行電子線照射,且可取得極均一性高的照射線量缺陷密度分佈。
或者,亦可在電子線照射裝置中由可能的加速能量E,利用上述式來算出飛程Rp,由此值來將晶圓累計厚度設為Rp以下例如0.8Rp的W。
更理想是若將晶圓累計厚度W設為飛程Rp的50%,則可更提高結晶缺陷密度的均一性。特別是從晶圓堆疊100的最表面晶圓側到數mm程度的累計厚度為止,缺陷密度分佈是大致一次函數性地增加。因此,比飛程更十分淺的領域,例如飛程為20mm時,例如,藉由使用10mm程度以下,可提升均一性。
(實施形態6)
說明有關前述的實施形態1及2的兩面照射的照射次數。
對於晶圓堆疊100,只以一面照射進行電子線照射,在半導體晶圓10導入缺陷時,最接近電子線源的晶圓是照射線量會變最低。電子線照射是以縮短逆恢復時間或切換時間之目的進行,因此需要在最接近電子線源的半導體晶圓10以能夠達成所望的特性之照射線量來進行電子線照射。例如,為了取得所望的特性,思考半導體晶圓10的每1片的必要照射線量為100kGy的情況。此時,如前述般,需要照射成在晶圓堆疊100之中最接近電子線源的晶圓的照射線量能夠成為100kGy。為此,例如在4MeV~10MeV的範圍,將電子線的加速能量固定於預定的加速能量。以此加速能量來對晶圓堆疊100的一方的主面側,重複10次每1次的電子線照射量為10kGy的電子線照射。於是,在晶圓堆疊之中離電子線源最遠的另一方的主面側的晶圓,電子線的照射線量是例如成為150kGy,成為50kGy過剩的照射線量。
為了減低上述的照射線量的不同,需要掌握晶圓堆疊內的照射線量分佈。有關照射線量的確認是可思考每次照射準備監視器用的線量測定晶片等,與晶圓一起裝入晶圓堆疊,照射電子線來評價其線量。然而,每次照射準備監視器會使作業效率降低。
於是,可事前以低的照射線量來對監視器照射電子線,藉此掌握照射線量的分佈比例。所謂低的照射線量是例如在電子線照射裝置中,可1次照射的電子線照射量的被照射體的照射線量等。若想像將加速能量或電子 線的照射劑量等的照射條件形成一定的情況,則照射線量對於晶圓堆疊的深度方向之分佈比例是無關照射劑量的大小,為一定。因此,例如在製造需要600kGy相當的照射線量的半導體裝置時也不需要600kGy那樣高的線量的監測,只要以10kGy程度來取得其分佈資料即可。往監視器的電子線照射量是例如設為照射裝置的最小照射單位亦可。
圖8是表示將晶圓堆疊100之最接近電子線源的半導體晶圓10的照射線量設為10kGy時之晶圓堆疊100內的半導體晶圓10的照射線量分佈的圖表。在此,所謂橫軸的「底側」是晶圓堆疊100內的半導體晶圓10之中,離電子線源最遠的半導體晶圓10。像圖8那樣,可知每個晶圓的照射線量是隨著遠離電子線源,大致線性地增加。
假設,將位於晶圓堆疊100的最表面(最接近電子線源)的半導體晶圓10的照射線量設為x,將最底面(離電子線源最遠)的晶圓的照射線量設為y。相對於來自電子線源的距離,當照射線量線性地增加時,其平均是大概(x+y)/2。於是,在x<y的條件下,將1次的電子線照射量設為前述的照射線量x,將所望的特性所必要的最低必要照射線量設為D。此時,若僅一面照射,則必要的電子線照射的照射次數是D/x次。另一方面,進行兩面照射時,兩面合計的照射次數是成為以前述的平均照射線量(x+y)/2除D的次數,因此成為2×D/(x+y) 次。亦即,相對於一面照射的次數,兩面照射的次數是僅2x/(x+y)<1的比例,少許即完成。因此,不僅上述那樣照射線量的晶圓間的均一性,還可因照射次數等的減低而低成本化。
<實施例>
說明本實施形態6的具體的實施例。以像圖8那樣取得的照射線量分佈為基礎,計算實際的照射量,算出所望的倍數的照射。在圖8所示的例子,照射線量的平均值(中心值)為(10kGy+15kGy)÷2=12.5kGy。這意味在兩面照射與在一面照射之往最表面晶圓的電子線照射量作比較,實質上以1次的照射所取得的線量為1.25倍。亦即,相較於以一面照射來實施同一的照射時,兩面照射是以80%的次數完成。
圖9是取得圖8的分佈資料之後,由該資料來設定電子線照射的次數,實際進行電子線照射時之晶圓堆疊內的晶圓的照射線量分佈。如圖9所示般,為了取得600kGy,就一面照射而言,需要將每1次往矽的電子線照射量設為20kGy,合計30次的照射。相對的,就兩面照射而言,在第一電子線照射工程S4中,將每1次的電子線照射量設為20kGy,照射12次。接著,使晶圓堆疊反轉,進行第二電子線照射工程S5。在第二電子線照射工程S5中,每1次的電子線照射量是與第一電子線照射工程S4相同,設為20kGy,實施12次。其結果,一面照射 時的最表面晶圓上的照射線量為480kGy(20kGy×12次)的照射量,可將堆疊全體照射線量形成600kGy。
同樣,每1片晶圓需要100kGy的照射線量,則只要將最表面晶圓的照射量設為80kGy份量的照射量,在第一電子線照射工程S4及第二電子線照射工程S5分別設為40kGy即可。又,若每1片晶圓需要1000kGy的照射線量,則只要將最表面晶圓的照射量設為800kGy份量的照射量,在第一電子線照射工程S4及第二電子線照射工程S5分別設為400kGy即可。
在此,只要第一電子線照射工程S4與第二電子線照射工程S5的照射線量的合計值之全體照射線量(亦稱總照射線量)相同,即使將第一電子線照射工程S4的照射線量(每1次的照射線量或其照射次數)設為與第二電子線照射工程S5的照射線量(每1次的照射線量或其照射次數)不同的值也無妨。其理由是因為照射線量對於矽厚度的偏差(不同)是在將電子線照射從只來自一面側的照射形成來自兩面的照射之下一定減少。作為簡化的假想性的例子,可思考從表面側以預定的加速能量,例如圖5那樣以10MeV,進行照射線量為100kGy的電子線照射,另一方面,從背面側是以來自表面側的100倍以上的加速能量之1GeV來進行電子線照射的情況。可想像1GeV的電子線照射的照射線量分佈對於10MeV的照射線量分佈,因為飛程十分長,所以幾乎平坦。即使將1GeV的電子線照射的照射線量設為來自表面側的照射線量的 10%之10kGy,照樣兩面照射後的照射線量分佈是平均成為110kGy的照射線量的分佈。只一面照射的情況,若來自表面側的10MeV的照射線量的相對線量的最大值為1.5,最小值為1.0,則相對線量的最大值與最小值的比是1.5。對於此,若從背面側以照射線量10kGy來照射電子線,則該部分的照射線量會上升,因此來自背面側的照射後之相對線量的最大值與最小值的比是成為(1.5+0.1)/(1.0+0.1)=1.45,偏差確實減少。
圖26是表示此發明的實施形態6的半導體晶圓的相對照射線量的分佈圖。長虛線是表示只從一面側(例如表面側)以10MeV來照射任意的照射線量a(單位是例如kGy)的電子線時的相對線量的分佈。相對於此,實線是表示從表面側以同加速能量,照射線量0.5a,從背面側也以照射線量0.5a來兩面照射時的相對線量的分佈。a單位係數是如前述般,以全體照射線量能夠形成與只一面照射的全體照射線量相同的方式進行補正。
在此,將來自一方的主面側(例如背面側)的電子線的照射線量除以來自另一方的主面側(例如表面側)的電子線的照射線量的值定義為線量比。以長虛線所示的情況的線量比是0.5a/0.5a=1.0。並且,有關線量比為1.0以上的值是只要取其倒數,便可與對調表面側與背面側的照射方向的情形等效。因此,線量比的範圍是設為大於0小於1。所謂線量比0是一面照射的情形。
圖26中的短虛線是表示從表面側以同照射線 量0.4a,從背面側以照射線量0.6a來兩面照射電子線時的相對線量的分佈。線量比是1.5。而且,一點虛線是表示從表面側以同照射線量0.66a,從背面側以照射線量0.33a來兩面照射電子線時的相對線量的分佈。線量比是0.5。相對於只一面照射的長虛線,相對線量分佈最接近平坦者是表面側與背面側的照射線量相同,亦即線量比為1.0者。另一方面,來自背面側的照射線量為來自表面側時的1.5及相同0.5,亦即照射線量自表面側及自背面側不同時,相對線量分佈與只一面照射作比較,最大值與最小值的比變小,可知相對線量分佈的偏差會被改善。如此,只要將電子線照射對於晶圓(堆疊)兩面照射,即使自表面側與自背面側的線量比不同,偏差還是可改善。
理論上,即使例如線量比為0.1或以下,如前述般,偏差還是可改善。另一方面,在實際的照射中,照射線量的比為0.1~1的範圍的值,甚至0.2~1的範圍,較理想是0.5~1的範圍的值,更理想是0.8~1的範圍的值,更佳理想是0.9~1的範圍的值即可。藉此,明顯相對線量的偏差的改善程度變小。其結果,可確實地反映在MOSFET的內藏二極體的逆恢復特性等的裝置的電氣特性的偏差減低。換言之,例如在複數的晶圓堆疊,即使來自一方的表面的照射線量與來自另一方的表面的照射線量為不同的條件,只要電子線的照射為兩面照射,各晶圓的電氣特性便可成為偏差十分小者。
(實施形態7)
實施形態7是將實施形態1的製造方法適用在IGBT的情況。圖24是表示此發明的實施形態7的半導體裝置的製造方法的製造工程流程圖。實施形態7的製造方法的工程流程是與實施形態1的圖18及圖19基本上相同,但有以下的不同。
第1,IGBT的情況是在半導體基板使用FZ(浮融區長晶法(Float zone))晶圓,CZ晶圓,MCZ(磁性CZ法)晶圓等高比電阻塊狀切出晶圓作為n型漂移層。又,第2,原則上步驟S1~S5是相同,但由於使用塊狀(bulk)晶圓,因此在第二電子線照射工程S5之後,將n型漂移層本身的背面研磨(基板薄板化工程S7)。第3,在基板薄板化工程S7之後,例如從研磨面之背面側以離子注入來導入n型的摻雜劑,形成n型場截止(Field Stop)層。n型摻雜劑是例如磷,氫等。然後,進行電子線照射後熱處理工程S6,n型場截止層也同時使活化。第4,在背面接觸層形成工程S8中,不是n型,而是將硼等的p型摻雜劑注入研磨面,例如進行雷射退火等來使活化,而形成p型集極層。藉此,完成IGBT。
其他,如圖25所示般,亦可在第二電子線照射工程S5後進行電子線照射後熱處理工程S6,在場截止層形成工程S10之後另外進行場截止層熱處理。圖25是表示此發明的實施形態7的半導體裝置的製造方法的其他的製造工程流程圖。雖工程增加,但可各自分別控制電子 線照射之晶格缺陷,及場截止層形成時的晶格缺陷。
另外,當然也可適用實施形態2~6的製造方法。並且,在n型場截止層的摻雜劑使用硒的情況也可能。此情況,第一電子線照射工程S4及第二電子線照射工程S5,及電子線照射後熱處理工程S6設為基板薄板化工程S7及往研磨面的硒導入及熱擴散之後。因為用以使硒擴散的擴散溫度為850~950℃的高溫。
藉由適用以上的製造方法,可提供一種在需要高速動作的IGBT中,具有極均一無偏差的晶格缺陷密度之高速IGBT。
(實施形態8)
實施形態8是將實施形態1的製造方法適用在p-i-n型二極體(以下簡稱二極體)的情況。顯示實施形態8的半導體裝置的製造方法的製造工程流程圖是與圖24相同。實施形態8的製造方法的工程流程是與實施形態1的圖18及圖19基本上相同,但有以下的不同。
第1,二極體的情況是在半導體基板使用FZ(浮融區長晶法(Float zone))晶圓,CZ晶圓,MCZ(磁性CZ法)晶圓等高比電阻塊狀切出晶圓作為n型漂移層。又,第2,原則上步驟S1~S5是相同,但由於使用塊狀晶圓,因此在第二電子線照射工程S5之後,將n型漂移層本身的背面研磨(基板薄板化工程S7)。第3,在基板薄板化工程S7之後,例如從研磨面之背面側以離 子注入來導入n型的摻雜劑,形成n型場截止層。n型摻雜劑是例如磷,氫等。然後,進行電子線照射後熱處理工程S6,n型場截止層也同時使活化。第4,在半導體基板的表面是不需要MOS閘極,例如形成p型的陽極層。藉此,完成二極體。
其他,與實施形態7同樣,如圖25所示般,亦可在第二電子線照射工程S5後進行電子線照射後熱處理工程S6,在場截止層形成工程S10之後另外進行場截止層熱處理。圖25是表示此發明的實施形態7的半導體裝置的製造方法的其他的製造工程流程圖。工程雖增加,但可各自分別控制電子線照射之晶格缺陷,及場截止層形成時的晶格缺陷。
另外,當然亦可適用實施形態2~6的製造方法。並且,亦可將硒使用在n型場截止層的摻雜劑。此情況,將第一電子線照射工程S4及第二電子線照射工程S5以及電子線照射後熱處理工程S6設為基板薄板化工程S7及往研磨面的硒導入以及熱擴散之後。因為用以使硒擴散的擴散溫度為850~950℃的高溫。
藉由適用以上的製造方法,可提供一種在需要高速逆恢復動作的二極體中,具有極均一無偏差的晶格缺陷密度之高速二極體。
在以上的實施形態1~8使用的半導體基板,即使是矽磊晶基板(在厚的n+汲極層或p+集極層上使n-漂移層磊晶成長的基板)也無妨。或,即使不是實施形態 1那樣的超接合型,而是以往的n型具有一樣的雜質濃度分佈的漂移層之功率MOSFET,本案發明同樣可適用。此以往漂移構造的功率MOSFET的情況,是有在被高濃度摻雜銻或砷的CZ或MCZ晶圓形成n型磊晶層的基板,作為半導體基板。或,亦可使用高比電阻的FZ,CZ,MCZ等的塊狀晶圓,具有被擴散形成於一方的主面的高濃度的磷擴散層之晶圓。無論使用那個半導體基板(晶圓),皆只要在使用此半導體基板時,由上述圖18~23中任一記載的表面構造形成工程S1來實施半導體裝置的製造即可。
並且,有關實施形態7的IGBT,實施形態8的二極體,亦可不是塊狀晶圓,作為半導體基板,而是使用在被高濃度摻雜銻或砷的CZ或MCZ晶圓形成n型磊晶層的基板。此情況也是只要由上述圖18~23中任一記載的表面構造形成工程S1來實施半導體裝置的製造即可。
又,可適用本發明的半導體裝置並非限於功率MOSFET,IGBT,p-i-n二極體等,亦可適用在有關雙極動作的特性的提升之所有的半導體裝置的製造方法。
10‧‧‧半導體晶圓
11‧‧‧表面
12‧‧‧背面
16‧‧‧表面部
20‧‧‧容器的反轉
31‧‧‧第一電子線照射
32‧‧‧第二電子線照射
100‧‧‧晶圓堆疊

Claims (18)

  1. 一種半導體裝置的製造方法,係從層疊2片以上半導體基板而成的晶圓堆疊的主面照射電子線之半導體裝置的製造方法,其特徵係具有:第1照射工程,其係從前述晶圓堆疊的一方的主面照射電子線;及第2照射工程,其係以和前述電子線的照射之加速能量相同的加速能量來從前述晶圓堆疊的另一方的主面照射電子線。
  2. 如申請專利範圍第1項之半導體裝置的製造方法,其中,前述第2照射工程的照射線量係與前述第1照射工程的照射線量相同。
  3. 如申請專利範圍第1項之半導體裝置的製造方法,其中,前述第1照射工程的次數與前述第2照射工程的次數相同。
  4. 如申請專利範圍第1項之半導體裝置的製造方法,其中,前述第2照射工程的照射線量係與前述第1照射工程的照射線量不同。
  5. 如申請專利範圍第1或2項之半導體裝置的製造方法,其中,前述第1或第2照射工程的其中一方的照射工程的照射線量為前述第1或第2照射工程的其中另一方的照射工程的照射線量的1%以上100%未滿的值。
  6. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,將前述第1照射工程及前述 第2照射工程設為一對,重複複數次該一對的工程。
  7. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,在前述晶圓堆疊內鄰接的半導體基板係以各自之第1主面彼此間或第2主面彼此間相對的方式層疊。
  8. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,前述晶圓堆疊內的半導體基板的厚度的總厚係比前述電子線對前述半導體基板的飛程更薄。
  9. 如申請專利範圍第8項之半導體裝置的製造方法,其中,前述晶圓堆疊內的半導體基板的厚度的總厚係比前述電子線對前述半導體基板的飛程的一半更薄。
  10. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,前述第1照射工程的加速能量係藉由前述第1照射工程來導入至前述2片以上的半導體基板之結晶缺陷的濃度分佈係使得從前述晶圓堆疊的一方的主面往另一方的主面增加的加速能量。
  11. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,包含:取得工程,其係預先對照射線量監視器照射電子線,取得從前述晶圓堆疊的一方的主面往另一方的主面之複數的半導體基板的照射線量資料;及算出工程,其係由在該取得工程取得的前述照射線量資料算出與照射於前述照射線量監視器時之加速能量相同 之電子線的必要照射量及其照射次數,以該必要照射量及其照射次數來進行前述第1照射工程及第2照射工程。
  12. 如申請專利範圍第11項之半導體裝置的製造方法,其中,在前述取得工程中,將前述晶圓堆疊內的半導體基板中之,最接近照射前述電子線的電子線源的半導體基板的照射線量設為x,在前述取得工程中,將前述晶圓堆疊內的半導體基板中之,離照射前述電子線的電子線源最遠的半導體基板的照射線量設為y,在前述算出工程中,將半導體基板所必要的最低必要照射線量設為D,將合計前述第1照射工程及第2照射工程的電子線照射的次數設為2D/(x+y)。
  13. 如申請專利範圍第1~4項中的任一項所記載之半導體裝置的製造方法,其中,在前述第2照射工程之後,更包含進行熱處理的電子線照射後熱處理工程。
  14. 如申請專利範圍第13項之半導體裝置的製造方法,其中,在前述電子線照射後熱處理工程的環境中係含有氫。
  15. 如申請專利範圍第13項之半導體裝置的製造方法,其中,在前述電子線照射後熱處理工程之前,更包含形成表面電極的工程。
  16. 如申請專利範圍第13項之半導體裝置的製造方 法,其中,在前述電子線照射後熱處理工程之後,更包含形成表面電極的工程。
  17. 如申請專利範圍第15項之半導體裝置的製造方法,其中,前述表面電極含圍牆金屬。
  18. 一種半導體裝置,其特徵係藉由如申請專利範圍第1~17項中的任一項所記載之製造方法來製造而成。
TW103112719A 2013-04-08 2014-04-07 半導體裝置及其製造方法 TWI590460B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013080337 2013-04-08
JP2013088295 2013-04-19
JP2014031306 2014-02-21

Publications (2)

Publication Number Publication Date
TW201511275A TW201511275A (zh) 2015-03-16
TWI590460B true TWI590460B (zh) 2017-07-01

Family

ID=51654722

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112719A TWI590460B (zh) 2013-04-08 2014-04-07 半導體裝置及其製造方法

Country Status (4)

Country Link
US (2) US9076725B2 (zh)
JP (1) JP6291981B2 (zh)
CN (1) CN104103501B (zh)
TW (1) TWI590460B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
JP6291981B2 (ja) * 2013-04-08 2018-03-14 富士電機株式会社 半導体装置の製造方法
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
EP3183754A4 (en) 2014-08-19 2018-05-02 Vishay-Siliconix Super-junction metal oxide semiconductor field effect transistor
JP6109432B2 (ja) * 2015-04-02 2017-04-05 三菱電機株式会社 電力用半導体装置の製造方法
JP6428945B2 (ja) 2015-09-16 2018-11-28 富士電機株式会社 半導体装置および半導体装置の製造方法
RU2606200C1 (ru) * 2015-09-29 2017-01-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРИЧЕСКИХ МИКРОНЕОДНОРОДНОСТЕЙ В ПОЛУПРОВОДНИКОВЫХ ГЕТЕРОСТРУКТУРАХ НА ОСНОВЕ InGaN/GaN
DE102015119648B4 (de) * 2015-11-13 2022-11-10 Infineon Technologies Ag Verfahren zum herstellen einer halbleitervorrichtung
JP6690198B2 (ja) * 2015-11-16 2020-04-28 富士電機株式会社 炭化珪素半導体装置の製造方法
JP6704057B2 (ja) 2016-09-20 2020-06-03 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6673125B2 (ja) * 2016-09-30 2020-03-25 豊田合成株式会社 半導体装置
US10186586B1 (en) * 2017-09-26 2019-01-22 Sanken Electric Co., Ltd. Semiconductor device and method for forming the semiconductor device
DE112019000094T5 (de) * 2018-03-19 2020-09-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen einerhalbleitervorrichtung
JP7222435B2 (ja) 2019-10-11 2023-02-15 富士電機株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348462A (ja) * 1989-04-06 1991-03-01 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタおよびその製造方法
JP4657394B2 (ja) * 1997-01-13 2011-03-23 シュルンベルジェ テクノロジーズ, インコーポレイテッド ウエハにおける欠陥を検知する方法及び装置
JP4093662B2 (ja) * 1999-01-04 2008-06-04 株式会社日立製作所 走査形電子顕微鏡
US6713773B1 (en) * 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
US6475432B2 (en) 2000-08-15 2002-11-05 Ion Beam Applications, Inc. Carrier and support for work pieces
US6683319B1 (en) * 2001-07-17 2004-01-27 Mitec Incorporated System and method for irradiation with improved dosage uniformity
DE10163545A1 (de) * 2001-12-21 2003-07-10 Tesa Ag Verfahren zur Vernetzung und Polymerisation von bahnförmigem Material mittels Elektronenstrahlen und/oder UV-Strahlen
JP2004273863A (ja) * 2003-03-10 2004-09-30 Sansha Electric Mfg Co Ltd 半導体ウエハの製造法
JP5087828B2 (ja) * 2005-08-26 2012-12-05 富士電機株式会社 半導体装置の製造方法
TWI397096B (zh) * 2006-01-25 2013-05-21 Ebara Corp 試料表面檢查方法及檢查裝置
JP4858527B2 (ja) * 2008-11-10 2012-01-18 トヨタ自動車株式会社 半導体装置の製造方法
JP5261324B2 (ja) * 2009-08-26 2013-08-14 トヨタ自動車株式会社 半導体装置とその製造方法
JP5672719B2 (ja) * 2010-03-03 2015-02-18 株式会社デンソー パワー素子を備えた半導体装置の製造方法
JP2012069861A (ja) * 2010-09-27 2012-04-05 Renesas Electronics Corp 半導体装置の製造方法
CN102707495B (zh) * 2011-03-28 2015-03-11 群创光电股份有限公司 液晶显示器的制造方法
JP6291981B2 (ja) * 2013-04-08 2018-03-14 富士電機株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP6291981B2 (ja) 2018-03-14
US20140302621A1 (en) 2014-10-09
US9076725B2 (en) 2015-07-07
US20150270157A1 (en) 2015-09-24
JP2015173238A (ja) 2015-10-01
CN104103501A (zh) 2014-10-15
CN104103501B (zh) 2019-01-01
TW201511275A (zh) 2015-03-16
US9431290B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
TWI590460B (zh) 半導體裝置及其製造方法
US11469297B2 (en) Semiconductor device and method for producing semiconductor device
US10566440B2 (en) Production method for semiconductor device
US9748102B2 (en) Semiconductor chip arrangement and method thereof
KR101825500B1 (ko) 반도체 장치 및 반도체 장치의 제조방법
US9530672B2 (en) Production method for a semiconductor device
EP2793267B1 (en) Semiconductor device and semiconductor device manufacturing method
WO2013147274A1 (ja) 半導体装置の製造方法
US9887125B2 (en) Method of manufacturing a semiconductor device comprising field stop zone
CN104054178A (zh) 半导体装置的制造方法
JPWO2013108911A1 (ja) 半導体装置およびその製造方法