TWI577483B - Laser processing machine, laser processing machine workpiece skew correction method - Google Patents

Laser processing machine, laser processing machine workpiece skew correction method Download PDF

Info

Publication number
TWI577483B
TWI577483B TW104111256A TW104111256A TWI577483B TW I577483 B TWI577483 B TW I577483B TW 104111256 A TW104111256 A TW 104111256A TW 104111256 A TW104111256 A TW 104111256A TW I577483 B TWI577483 B TW I577483B
Authority
TW
Taiwan
Prior art keywords
error
laser light
workpiece
laser
irradiation
Prior art date
Application number
TW104111256A
Other languages
Chinese (zh)
Other versions
TW201611931A (en
Inventor
Masami Suzuki
Junichi Matsumoto
Yuki Norita
Masaharu Kamiya
Satoshi Tokuoka
Original Assignee
Kataoka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kataoka Corp filed Critical Kataoka Corp
Publication of TW201611931A publication Critical patent/TW201611931A/en
Application granted granted Critical
Publication of TWI577483B publication Critical patent/TWI577483B/en

Links

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Description

雷射加工機、雷射加工機之工件歪斜補正方法 Workpiece skew correction method for laser processing machine and laser processing machine

本發明係關於將雷射光照射至被加工物(工件)之任意處而施予加工的雷射加工機及雷射加工機之使用方法。 The present invention relates to a laser processing machine and a laser processing machine for applying laser light to any part of a workpiece (workpiece).

近日,廣泛利用觸控面板裝置以作為輸入裝置。觸控面板裝置被安裝於內置有液晶顯示器或有機EL顯示器等之顯示裝置的機器,成為相對於該機器的直觀的輸入手段。 Recently, a touch panel device has been widely used as an input device. The touch panel device is mounted on a device in which a display device such as a liquid crystal display or an organic EL display is incorporated, and is an intuitive input means for the device.

觸控面板裝置包含觸控面板感測器、得知觸控面板上之接觸裝置的控制電路、配線及可撓性印刷基板。觸控面板感測器中之與顯式裝置之畫像顯示區域重疊之區域成為透明,構成在該區域可檢測出對象物之接觸位置的主動區域。 The touch panel device includes a touch panel sensor, a control circuit for understanding a contact device on the touch panel, a wiring, and a flexible printed substrate. The area of the touch panel sensor that overlaps with the image display area of the explicit device becomes transparent, and constitutes an active area in which the contact position of the object can be detected.

投影型電容耦合方式之觸控感測器係以介電體,和以互相不同之圖案形成在其介電體之兩側的第一感測電極及第二感測電極為要素。第一感測電極及第二感測電極係經支撐該些感測電極的基材中被鋪設在主動區域外 之區域的取出配線(取出用之導電體)而連接於外部之控制電路。 The projection type capacitive coupling type touch sensor is characterized by a dielectric body and a first sensing electrode and a second sensing electrode formed on both sides of the dielectric body in mutually different patterns. The first sensing electrode and the second sensing electrode are laid outside the active area through the substrate supporting the sensing electrodes The extraction wiring (the conductor for extraction) in the region is connected to an external control circuit.

被鋪設在主動區域之第一感測電極及第二感測電極雖然使用透明導電材料,但是被鋪設在非主動區域之取出配線不一定要透明。以往在基材上網版印刷由具有高導電率之金屬等之導電性材料所構成的配線圖案(以上,參照下述專利文獻1)。 Although the first sensing electrode and the second sensing electrode laid in the active region use a transparent conductive material, the taken-out wiring laid in the inactive region does not have to be transparent. Conventionally, a wiring pattern composed of a conductive material such as a metal having a high electrical conductivity has been printed on a substrate (see Patent Document 1 below).

過去,以又擴大顯示裝置之畫像顯示區域,及/或更進一步提升設計性為目的,要求使包圍畫像顯示區域之周為的所謂”框架”區域(邊框)予以窄小化。為了實現框架區域之窄小化,需要使觸控面板感測器中之非主動區域予以小面積化。 In the past, in order to further enlarge the image display area of the display device and/or to further improve the design, it is required to narrow the so-called "frame" region (frame) surrounding the image display area. In order to achieve narrowing of the frame area, it is necessary to make the inactive area in the touch panel sensor small in area.

若使被鋪設在非主動區域之取出配線充分地高精細化時,則可以縮小非主動區域及框架區域。但是,在現狀之網版印刷法中,難以形成高精細之配線圖案。 When the take-out wiring laid in the inactive area is sufficiently high-definition, the inactive area and the frame area can be reduced. However, in the current screen printing method, it is difficult to form a high-definition wiring pattern.

對此,若採用於在基材之表面製膜由導電材料所構成之導電層之後,藉由照射雷射光而切削該導電層,形成配線圖案之雷射加工法時,可以實現在網版印刷法中無法取得的高精細之取出配線。 In this case, when a conductive layer made of a conductive material is formed on the surface of the substrate, and the conductive layer is cut by irradiating the laser light to form a wiring pattern by laser processing, the screen printing can be realized. High-precision take-out wiring that cannot be obtained in the law.

於進行雷射加工之時,使用可將雷射光照射至被加工物之任意處的雷射加工機。就以該種雷射加工機之例而言,可舉出將能使雷射光軸之方向變化之電流計掃描器和聚光透鏡予以組合之裝置。 At the time of laser processing, a laser processing machine that irradiates laser light to any place of the workpiece is used. As an example of such a laser processing machine, a combination of a galvanometer scanner and a collecting lens that can change the direction of the laser optical axis can be cited.

在使雷射束之光軸移位之掃描中,由於電流 計掃描器之反射鏡之旋轉定位誤差或聚光透鏡之光學性歪斜等,產生了相對於平面座標系統的誤差。於實施雷射加工之時,必須事先去除該誤差。 In the scan that shifts the optical axis of the laser beam, due to the current The rotational positioning error of the mirror of the scanner or the optical skew of the concentrating lens produces an error with respect to the planar coordinate system. This error must be removed beforehand when performing laser processing.

從前,在試片雷射加工試驗用之圖案,並利用顯微鏡觀察此而測量理想之圖案和實際所形成之圖案的誤差,並藉由對電流計掃描器下達的指令值添加使降低其誤差之補正量,來校正(校準)雷射光之照射位置。使用如此之試片的校正因藉由專門的人手,故為麻煩,且非常費時。 In the past, in the test piece laser processing test pattern, and using the microscope to observe this, the ideal pattern and the actual formed pattern error were measured, and the error was reduced by adding the command value issued by the galvanometer scanner. Correct the amount to correct (calibrate) the position of the laser light. The correction using such a test piece is troublesome and time consuming due to the special hand.

近來,在加工機附設接受雷射光之照射而檢測出其照射位置之高解像度之檢測感測器(CCD、CMOS等),使自動地實行雷射光之目標照射位置和經該感測器而被檢測出之實際的照射位置之誤差的校正(以上,參照下述專利文獻2)。 Recently, a processing sensor (CCD, CMOS, etc.) that detects the high resolution of the irradiation position by receiving irradiation of laser light is attached to the processing machine, so that the target irradiation position of the laser light is automatically performed and the sensor is used. Correction of the error of the actual irradiation position detected (refer to Patent Document 2 below).

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2013-033558號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2013-033558

[專利文獻2]日本專利第5519123號公報 [Patent Document 2] Japanese Patent No. 5519123

於成為雷射加工之對象的被加工物為大片的 薄膜(例如,PET薄膜)或薄板等之時,有其一部分伸長或收縮而產生歪斜之情形。在被加工物之表面,於加工之前標示配線圖案之輪廓(導電層)或用以定位之對準標記之情形為多,但是在該些圖案之印刷後之乾燥工程中被加工物被加熱,為使被加工物歪斜的原因之一。 The workpiece to be processed for laser processing is large When a film (for example, a PET film) or a thin plate or the like is used, a part thereof is elongated or contracted to cause skew. On the surface of the workpiece, there are many cases where the contour of the wiring pattern (conductive layer) or the alignment mark for positioning is marked before processing, but the workpiece is heated in the drying process after printing of the patterns. One of the reasons for skewing the workpiece.

自以往進行參照被加工物之表面之對準標記,檢測出被加工物對雷射加工機的沿著水平方向的位置偏移,即是X軸、Y軸方向之偏倚及繞作為垂直軸之Z軸的旋轉量,且修正雷射光之目標照射位置(對準)。但是,可以說無進行由於被加工物之局部延伸或收縮所產生之歪斜的對策,雷射光之照射位置之精度進而雷射加工之精度有改善的空間。 Since the alignment mark of the surface of the workpiece is referenced in the past, the positional deviation of the workpiece from the horizontal direction of the laser processing machine is detected, that is, the X-axis and Y-axis directions are biased and the winding is taken as the vertical axis. The amount of rotation of the Z axis, and the target irradiation position (alignment) of the laser light is corrected. However, it can be said that there is no countermeasure against skew caused by local extension or contraction of the workpiece, and the accuracy of the irradiation position of the laser light and the precision of the laser processing are improved.

本發明係以實現更提升藉由雷射加工機所進行之加工的精度為期待目地。 The present invention is intended to achieve an improvement in the precision of processing by a laser processing machine.

在本發明中,為一種雷射加工機,其構成具備:支撐體,其係支撐被加工物;雷射光照射裝置,其係對被支撐於上述支撐體之被加工物照射雷射光;及控制部,其係參照藉由照相機感測器對被支撐於上述支撐體之被加工物進行攝像之畫像,檢測出被標示在被加工物上,且被分布配置在上述雷射光照射裝置所致之雷射光的照射可能範圍的至少十個對準標記的位置,得知各對準標記之原本應在的位置和實際檢測出之各對準標記之位置的X軸 方向誤差及Y軸方向誤差,並且使用各對準標記之位置之X軸方向誤差及Y軸方向誤差而分別生成表現在上述照射可能範圍內之任意處中之X軸方向誤差及Y軸方向誤差之分布的X軸方向誤差之近似式及Y軸方向誤差之近似式,並使用藉由該近似式所算出之任意處之X軸方向誤差及Y軸方向誤差決定於雷射加工時用以將雷射光照射至上述被加工物上之期待的目標照射位置之指令的補正量。 In the present invention, a laser processing machine includes: a support body that supports a workpiece; and a laser light irradiation device that irradiates the workpiece supported by the support body with laser light; and controls a portion that refers to an image of a workpiece supported by the support body by a camera sensor, detects that it is marked on the workpiece, and is distributed and disposed by the laser light irradiation device. The position of at least ten alignment marks of the range of possible exposure of the laser light, the X-axis of the position at which each alignment mark should be originally located and the position of each alignment mark actually detected The direction error and the Y-axis direction error, and the X-axis direction error and the Y-axis direction error of the position of each alignment mark are used to generate an X-axis direction error and a Y-axis direction error respectively appearing in any of the above-mentioned illumination possible ranges. The approximation of the X-axis direction error and the approximation of the Y-axis direction error, and the X-axis direction error and the Y-axis direction error calculated by the approximation formula are determined for laser processing. The amount of correction of the command of the desired target irradiation position on the workpiece is irradiated with the laser light.

以及,在本發明中,為一種雷射加工機,其構成具備:支撐體,其支撐被加工物;雷射光照射裝置,其係朝向被支撐於上述支撐體之被加工物照射雷射光;及控制部,其係參照藉由照相機感測器對被支撐於上述支撐體之被加工物進行攝像之畫像,檢測出被標示在被加工物的複數之對準標記之位置,得知各對準標記之原本應在的位置和實際檢測出之各對準標記之位置的誤差,並且使用各對準標記之位置之誤差而算出某對準標記和其他之對準標記之間之處的假設性位置之誤差,還根據於對上述雷射光照射裝置下達不添加補正量之照射位置之指令時的其指令照射位置與實際之雷射光之照射位置之誤差,加上與上述被加工物上之該指令照射位置對應之處的上述對準標記之位置之誤差而取得的誤差,決定於雷射加工時用以將雷射光照射至被加工物上之期待之目標照射位置的指令之補正量。 Further, in the present invention, a laser processing machine includes: a support body that supports a workpiece; and a laser light irradiation device that irradiates laser light toward a workpiece supported by the support; The control unit detects an image of the object to be processed supported by the support by the camera sensor, detects the position of the alignment mark indicated by the plurality of objects, and knows the alignment. The error between the position of the mark and the position of each of the alignment marks actually detected, and the assumption of the position between the alignment mark and the other alignment mark using the error of the position of each alignment mark The error of the position is further based on an error between the commanded irradiation position and the actual irradiation position of the laser light when the laser light irradiation device is commanded to give an irradiation position without adding a correction amount, and is added to the object to be processed. The error obtained by the error of the position of the alignment mark corresponding to the command irradiation position is determined by the expectation of irradiating the laser light onto the workpiece during laser processing. Command correction amount of the irradiation position of the mark.

上述雷射光照射裝置使用例如可以使雷射光之光軸的方向變化的電流計掃描器而構成。 The above-described laser light irradiation device is configured using, for example, a galvanometer scanner that can change the direction of the optical axis of the laser light.

再者,與本發明有關之雷射加工機之工件歪斜補正方法為使用雷射加工機之方法,該雷射加工機具備:支撐體,其係支撐被加工物;雷射光照射裝置,其係朝向被支撐於上述支撐體之被加工物照射雷射光;及控制部,其係根據對上述雷射光照射裝置下達不添加補正量之照射位置之指令時的其指令照射位置和實際之雷射光之照射位置之誤差,決定於雷射加工時用以將雷射光照射至上述被加工物上之期待之目標照射位置的指令之補正量,該方法之特徵在於:藉由照相機感測器對被支撐於上述支撐體之被加工物進行攝像,參照藉由上述照相機感測器進行攝像的畫像而檢測出被標示在被加工物之複數之對準標記之位置,得知各對準標記之原本應在的位置和實際被檢測出之各對準標記之位置的誤差,並且使用各對準標記之位置之誤差而算出某對準標記和其他之對準標記之間之處的假設性位置之誤差,還對上述控制部給予於對上述雷射光照射裝置下達不添加補正量之照射位置之指令時的其指令照射位置和實際之雷射光之照射位置之誤差,加上與上述被加工物上之該指令照射位置對應之處的上述對準標記之位置之誤差而取得之誤差,以決定上述補正量。 Furthermore, the workpiece skew correction method of the laser processing machine according to the present invention is a method using a laser processing machine, the laser processing machine includes: a support body that supports the workpiece; and a laser light irradiation device The laser beam is irradiated toward the workpiece supported by the support; and the control unit is configured to irradiate the position and the actual laser light according to an instruction to the laser light irradiation device to give an irradiation position without a correction amount. The error of the irradiation position is determined by the correction amount of the command for irradiating the laser light to the desired target irradiation position on the workpiece during laser processing, and the method is characterized in that it is supported by the camera sensor pair The object to be processed on the support is imaged, and the position of the alignment mark marked on the plurality of objects to be processed is detected by referring to the image captured by the camera sensor, and the original mark is determined to be The position of the position and the error of the position of each alignment mark actually detected, and the error of the position of each alignment mark is used to calculate an alignment mark and other Aligning the error of the hypothetical position between the marks, and also giving the control unit the commanded irradiation position and the actual laser light irradiation when the laser light irradiation device gives an instruction to irradiate the position without adding the correction amount. The error of the position is determined by an error obtained by an error of the position of the alignment mark corresponding to the irradiation position of the command on the workpiece to determine the correction amount.

若藉由本發明時,實現更提升藉由雷射加工機所進行之雷射加工的精度。 According to the present invention, the accuracy of the laser processing performed by the laser processing machine is further improved.

0‧‧‧雷射加工機 0‧‧‧Laser processing machine

1‧‧‧雷射光照射裝置 1‧‧‧Laser light irradiation device

11、12‧‧‧電流計掃描器 11, 12‧‧‧ galvanometer scanner

14‧‧‧照相機感測器 14‧‧‧Camera sensor

3‧‧‧驅動裝置 3‧‧‧ drive

5‧‧‧控制裝置 5‧‧‧Control device

9‧‧‧被加工物 9‧‧‧Processed objects

91、92‧‧‧對準標記 91, 92‧‧‧ alignment marks

L‧‧‧雷射束 L‧‧‧Laser beam

[圖1]為表示本發明之一實施型態之雷射加工機之概要的斜視圖。 Fig. 1 is a perspective view showing an outline of a laser processing machine according to an embodiment of the present invention.

[圖2]為表示同雷射加工機中之雷射光照射裝置之構成的斜視圖。 Fig. 2 is a perspective view showing the configuration of a laser beam irradiation apparatus in the same laser processing machine.

[圖3]為示意性表示同雷射加工機之雷射光照射裝置本身之特性的雷射光之照射位置之誤差的俯視圖。 Fig. 3 is a plan view schematically showing an error of an irradiation position of laser light with characteristics of a laser beam irradiation device itself of a laser processing machine.

[圖4]為表示同雷射加工機之硬體資源構成的圖示。 Fig. 4 is a view showing the configuration of a hardware resource of the laser processing machine.

[圖5]為同雷射加工機之功能區塊構成圖。 Fig. 5 is a block diagram showing the functional blocks of the same laser processing machine.

[圖6]為標示在表示被加工物之對準標記之一例的圖示。 Fig. 6 is a view showing an example of an alignment mark indicating a workpiece.

[圖7]為圖7之重要部位放大圖。 FIG. 7 is an enlarged view of an important part of FIG. 7. FIG.

[圖8]為表示同雷射加工機於校準時實行的處理之程序的流程圖。 Fig. 8 is a flow chart showing a procedure of processing performed at the time of calibration with the laser processing machine.

[圖9]為表示同雷射加工機於校準時實行的處理之程序的流程圖。 Fig. 9 is a flow chart showing a procedure of processing performed at the time of calibration with the laser processing machine.

[圖10]為表示同雷射加工機於雷射時實行的處理之程序的流程圖。 Fig. 10 is a flow chart showing a procedure of processing performed when the laser processing machine performs laser irradiation.

參照圖面說明本發明之一實施型態。如圖1所示般,本實施型態之雷射加工機0具備作為設置被加工物之支撐體的設置台4、朝向設置在設置台4之被加工物 照射雷射光L之雷射光照射裝置1,為可以對被加工物之任意處施予雷射加工的裝置。 An embodiment of the present invention will be described with reference to the drawings. As shown in Fig. 1, the laser processing machine 0 of the present embodiment is provided with a mounting table 4 as a support for setting a workpiece, and a workpiece to be placed on the mounting table 4. The laser light irradiation device 1 that irradiates the laser light L is a device that can apply laser processing to any part of the workpiece.

在本實施型態中,作為被加工物,假設為捲成滾筒之薄膜般之非常長的物品,或是大型物品。而且,例如一面從一方之滾筒送出被加工物,並由另一方之滾筒捲取,一面在被加工物之寬廣範圍施予雷射加工。因此,在本實施型態之雷射加工機0中,可使雷射光照射裝置1在前後左右移動,並且可使從雷射光照射裝置1射出之雷射光L之光軸在前後左右移位。 In the present embodiment, as the workpiece, it is assumed that the article is a very long article wound into a film of a drum, or a large article. Further, for example, laser processing is performed on a wide range of the workpiece while the workpiece is fed from one of the rollers and taken up by the other roller. Therefore, in the laser processing machine 0 of the present embodiment, the laser beam irradiation device 1 can be moved back and forth, left and right, and the optical axis of the laser beam L emitted from the laser beam irradiation device 1 can be shifted forward and backward.

雷射光照射裝置1係藉由驅動裝置(或是,XY平台)3,對設置台4略平行地移動。驅動裝置3係具備在前後方向延伸之Y軸軌道31、被Y軸軌道31引導而在前後方向行走,並且在左右方向擴張而在其上部設置有X軸軌道321之X軸單元32、被X軸軌道321引導而在左右方向行走之台車322而構成。X軸單元32、台車322皆為將線性伺服器轉子當作驅動源之線性馬達台車。雷射光照射裝置1被上述台車322支撐。 The laser light irradiation device 1 is moved slightly parallel to the installation table 4 by a driving device (or XY stage) 3. The drive device 3 includes a Y-axis rail 31 that extends in the front-rear direction, an X-axis unit 32 that is guided by the Y-axis rail 31 and that travels in the front-rear direction, and that is expanded in the left-right direction and has an X-axis rail 321 provided on the upper portion thereof. The shaft rail 321 is guided to guide the trolley 322 in the left-right direction. The X-axis unit 32 and the cart 322 are linear motor carts that use a linear servo rotor as a drive source. The laser light irradiation device 1 is supported by the above-described trolley 322.

驅動裝置3附帶線性標度(無圖示)。X軸線性標度為用以檢測出雷射光照射裝置1之左右方向,即是X軸方向之位置的位置檢測機構,Y軸線性標度為用以檢測出雷射光照射裝置1之前後方向,即是Y軸方向之位置的位置檢測機構。X軸線性標度係以例如設置在台車322之磁性感測頭,和設置在X軸單元32之以磁性格子花紋為刻度的磁性帶狀標度為要素。而且,藉由以磁性感 測頭讀取帶狀標度之刻度,檢測台車322進而雷射光照射裝置1之X軸方向位置而輸出表示其位置座標之訊號。同樣,Y軸線性標度也以設置在X軸單元32之磁性感測頭,和沿著Y軸軌道31設置之磁性帶狀標度為要素,檢測X軸單元32進而雷射光照射裝置1之Y軸方向位置而輸出表示其位置座標之訊號。 The drive unit 3 is provided with a linear scale (not shown). The X-axis linearity scale is a position detecting mechanism for detecting the left-right direction of the laser light irradiation device 1, that is, the position in the X-axis direction, and the Y-axis linearity scale is for detecting the front-rear direction of the laser light irradiation device 1, That is, the position detecting mechanism is the position in the Y-axis direction. The X-axis linearity scale is, for example, a magnetic sensory probe provided on the carriage 322, and a magnetic strip scale set on the magnetic grid pattern of the X-axis unit 32 as an element. And by magnetically sexy The probe reads the scale of the strip scale, and detects the position of the trolley 322 and the laser light irradiation device 1 in the X-axis direction and outputs a signal indicating the position coordinate. Similarly, the Y-axis linearity scale also detects the X-axis unit 32 and the laser light irradiation device 1 by using the magnetic sensor head disposed on the X-axis unit 32 and the magnetic strip scale provided along the Y-axis track 31 as an element. The Y-axis direction position outputs a signal indicating the position coordinate.

即是,驅動裝置3可以將雷射光照射裝置1定位在任意之XY座標。 That is, the driving device 3 can position the laser light irradiation device 1 at an arbitrary XY coordinate.

如圖2所示般,雷射光照射裝置1具有作為雷射光L之供給源的雷射振盪器(無圖示),和掃描從雷射振盪器被振盪出之雷射光L的電流計掃描器11、12,和使其雷射光L聚光之聚光透鏡13。 As shown in FIG. 2, the laser light irradiation device 1 has a laser oscillator (not shown) as a supply source of the laser light L, and a galvanometer scanner that scans the laser light L that is oscillated from the laser oscillator. 11, 12, and a collecting lens 13 for collecting the laser light L.

電流計掃描器11、12為以伺服馬達、步進馬達等111、121使用以使雷射光L反射之反射光112、122轉動,可以使光L之光軸變化。在本實施型態中,具備使光L之光軸變化至X軸方向之X軸電流計掃描器11,和使光L之光軸變化至Y軸方向之Y軸電流計掃描器12,可以將光L之照射位置控制在XY二次元方向。聚光透鏡13例如係設為Fθ透鏡。 The galvanometer scanners 11 and 12 are used by servo motors, stepping motors, and the like 111 and 121 to rotate the reflected light 112 and 122 reflected by the laser light L, and the optical axis of the light L can be changed. In the present embodiment, the X-axis galvanometer scanner 11 that changes the optical axis of the light L to the X-axis direction and the Y-axis galvanometer scanner 12 that changes the optical axis of the light L to the Y-axis direction are provided. The irradiation position of the light L is controlled in the XY secondary direction. The condensing lens 13 is, for example, an Fθ lens.

從雷射光照射裝置1被射出之雷射光L之照射位置受到電流計掃描器11、12之馬達111、112之旋轉定位誤差之影響。除此之外,也產生由於聚光透鏡13所產生之光學性歪斜。由於該些要因所產生之雷射光L之照射位置的誤差,即是雷射光照射裝置1本身以特性所具有 之誤差,有隨著離電流計掃描器11、12之掃描範圍之中央距離遠變大之傾向。圖2及圖3係示意性表示其誤差A之樣子。在圖3中,以虛線所描繪之框線B為理想之雷射光L之照射位置及照射範圍。另一方面,變形成以鏈線所描繪之桶型的框線A係將(不添加誤差校正用之補正量)目標照射位置之XY座標(x,y)單純地供給至電流計掃描器11、12之時的雷射光L之照射位置及照射範圍。 The irradiation position of the laser light L emitted from the laser beam irradiation device 1 is affected by the rotational positioning error of the motors 111 and 112 of the galvanomirror scanners 11, 12. In addition to this, an optical skew due to the condensing lens 13 is also generated. Due to the error of the irradiation position of the laser light L generated by the factors, the laser light irradiation device 1 itself has characteristics The error tends to become larger as the distance from the center of the scanning range of the galvanometer scanners 11, 12 becomes larger. 2 and 3 schematically show the error A. In FIG. 3, the frame line B drawn by the broken line is an irradiation position and an irradiation range of the ideal laser light L. On the other hand, the frame type A of the barrel type which is formed by the chain line is changed, and the XY coordinates (x, y) of the target irradiation position (without adding the correction amount for error correction) are simply supplied to the galvanometer scanner 11 At the time of 12, the irradiation position and the irradiation range of the laser light L.

為了實施使用雷射加工機0之加工,必須先進行校正上述照射位置之誤差的校準。照射位置之校正係通過對射束檢測檢測器2照射雷射光L而進行。 In order to carry out the processing using the laser processing machine 0, it is necessary to perform calibration for correcting the error of the above irradiation position. The correction of the irradiation position is performed by irradiating the beam detecting detector 2 with the laser light L.

在本實施型態中,假設被加工物為長條或大型物品,如此之被加工物附蓋設置台4之略全區域。因此,在本實施型態中,在無藉由被加工物覆蓋之設置台4附近之部位,配置有射束檢測器2。射束檢測感測器2係接受雷射光L之照射而檢測出其照射位置之高解像度之檢測感測器。典型上為CCD感測器或CMOS感測器。設置台4及射束檢測感測器2在雷射加工中或校正中不移動。於校正時,經驅動裝置3使雷射光照射裝置1移動至射束檢測感測器2之上方之位置。 In the present embodiment, it is assumed that the workpiece is a long or large article, and such a workpiece is attached to a slightly full area of the setting table 4. Therefore, in the present embodiment, the beam detector 2 is disposed in a portion where there is no vicinity of the installation table 4 covered by the workpiece. The beam detecting sensor 2 is a detecting sensor that detects the high resolution of the irradiation position by receiving the irradiation of the laser light L. Typically it is a CCD sensor or a CMOS sensor. The setting table 4 and the beam detecting sensor 2 do not move during laser processing or correction. At the time of correction, the laser light irradiation device 1 is moved by the driving device 3 to a position above the beam detecting sensor 2.

於校正雷射光照射裝置1本身特性之照射位置之誤差之時,以被設定在射束檢測感測器2上之XY平面座標系統之複數點(xi,yi)為目標,射出雷射光L,其結果取得與射束檢測感測器2所感測到之實際的雷射光L之照射位置(xi’,yi’)的誤差(△xi,△yi)=(xi-xi’, yi-yi’)。在此,下標i係指複數點中之任一個而予以特定的識別碼。而且,根據所檢測出之每個點i之誤差(△xi,△yi),決定為了補償該誤差所需之每個點i之補正量。在該誤差之校正中,進行數百點至數千點之誤差(△xi,△yi)之檢測及補正量之決定。 When the error of the irradiation position of the characteristic of the laser light irradiation device 1 is corrected, the laser beam is emitted with the target point (x i , y i ) of the XY plane coordinate system set on the beam detecting sensor 2 as the target. L, the result obtains an error (Δx i , Δy i )=(x i -) with the irradiation position (x i ', y i ') of the actual laser light L sensed by the beam detecting sensor 2. x i ', y i -y i '). Here, the subscript i refers to any one of the plural points and is given a specific identification code. Further, based on the detected error (Δx i , Δy i ) of each point i, the correction amount of each point i required to compensate the error is determined. In the correction of the error, the detection of the error (Δx i , Δy i ) from hundreds of points to several thousand points and the determination of the correction amount are performed.

雷射加工之精度,換言之是否可以將雷射光L照射至被加工物上之期待位置,不僅取決於雷射光照射裝置1本身之雷射光L之照射精度。成為使被加工物設置在設置台4上之時的對雷射加工機0的定位誤差,還有雷射加工之精度惡化之主要原因。即是,就以被加工物對雷射加工機0沿著水平方向之位置偏移而言,存在X軸方向之偏倚及Y軸方向之偏倚。除此之外,被加工物也有繞屬於對X軸及Y軸正交之垂直軸的Z軸旋轉之情形。 The accuracy of the laser processing, in other words, whether or not the laser light L can be irradiated onto the desired position on the workpiece depends not only on the irradiation precision of the laser light L of the laser light irradiation apparatus 1 itself. The positioning error of the laser processing machine 0 when the workpiece is placed on the installation table 4 is also a factor that deteriorates the accuracy of the laser processing. That is, there is a bias in the X-axis direction and a bias in the Y-axis direction with respect to the positional shift of the workpiece to the laser processing machine 0 in the horizontal direction. In addition to this, the workpiece also has a Z-axis rotation about a vertical axis orthogonal to the X-axis and the Y-axis.

該些被加工物之定位誤差之補正係通過以附設在雷射光照射裝置1之照相機感測器14對標示在被加工物之表面的對準標記91、92進行攝像。 The correction of the positioning errors of the workpieces is performed by the camera sensors 14 attached to the laser beam irradiation device 1 to image the alignment marks 91 and 92 indicated on the surface of the workpiece.

圖6表示被加工物9及被標示在被加工物9之對準標記91、92之例。對準標記91、92係被標示在被加工物9之角落(尤其,對角)之附近,或被標示在被加工物9所含之每個單元。於被加工物9為觸控裝置之時,一個單元對應於一個製品。在各單元之周緣部,設置有將具有高導電率之金屬等(例如,銀膏)之導電性材料塗佈成三側框或四側框而構成之薄膜層93。於形成製品所需之配線圖案之時,對其薄膜層93照射雷射光L而除去不 需要之部分,僅殘留成為配線之部分。此時之被加工物9之基材為PET其他樹脂製薄膜,對準標記91、92事先被印刷在該樹脂製薄膜。並且,也有以相同工程藉由遮罩印刷或網版印刷等進行對準標記91、92之印刷,和薄膜層93之塗佈的情形。 FIG. 6 shows an example of the workpiece 9 and the alignment marks 91 and 92 indicated on the workpiece 9. The alignment marks 91, 92 are marked in the vicinity of the corners (particularly diagonal) of the workpiece 9, or are indicated in each unit included in the workpiece 9. When the workpiece 9 is a touch device, one unit corresponds to one article. A film layer 93 formed by coating a conductive material such as a metal having a high electrical conductivity (for example, silver paste) into a three-sided frame or a four-sided frame is provided at a peripheral portion of each unit. When the wiring pattern required for the product is formed, the thin film layer 93 is irradiated with the laser light L to remove the The part that is needed is only left as part of the wiring. The base material of the workpiece 9 at this time is a film made of PET other resin, and the alignment marks 91 and 92 are printed on the resin film in advance. Further, there are cases where the alignment marks 91 and 92 are printed by mask printing or screen printing or the like, and the film layer 93 is applied in the same manner.

以往之雷射加工機中用以吸收被加工物對加工機的定位之誤差之對準,係使用附屬在雷射光照射裝置1之照相機感測器14而攝影標示在被加工物9之對準標記91、92,檢測出其攝影畫像中之對準標記91、92之位置座標,得知被加工物9或被加工物9所包含之各單元(之切削對象的薄膜層93)沿著X軸方向及Y軸方向分別僅偏倚多少,以及僅繞Z軸旋轉多少。並且,以抵銷該偏倚量及/或旋轉量之方式,補正供給至電流計掃描器11、12之雷射光L之目標照射位置(x,y),或是修正雷射光照射裝置1對設置在設置台4之被加工物的相對性位置。並且,雖然本實施型態之雷射加工機0之設置台4無法移動,但是於支撐被加工物之設置台可沿著X軸方向及Y軸方向移動及/或可繞Z軸轉動之時,藉由使該設置台對雷射光照射裝置1移動及/或轉動,可以抵銷上述偏倚量及/或旋轉量。 In the conventional laser processing machine, the alignment of the error in locating the position of the workpiece to the processing machine is performed by using the camera sensor 14 attached to the laser light irradiation device 1 to align the alignment of the workpiece 9. The marks 91 and 92 detect the position coordinates of the alignment marks 91 and 92 in the photographic image, and the respective elements (the film layer 93 of the object to be cut) included in the workpiece 9 or the workpiece 9 are found along the X. The axial direction and the Y-axis direction are only slightly biased, and only how much is rotated about the Z-axis. Further, the target irradiation position (x, y) supplied to the laser light L of the galvanometer scanners 11, 12 or the corrected laser light irradiation device 1 pair setting is corrected so as to offset the amount of deflection and/or the amount of rotation. The relative position of the workpiece of the table 4 is set. Further, although the setting table 4 of the laser processing machine 0 of the present embodiment cannot move, the setting table for supporting the workpiece can be moved in the X-axis direction and the Y-axis direction and/or can be rotated around the Z-axis. By shifting and/or rotating the setting light to the laser light irradiation device 1, the amount of deflection and/or the amount of rotation can be offset.

樹脂製薄膜般之被加工物,有其一部分伸長,或收縮而在被加工物上產生歪斜之情形。尤其,在樹脂製薄膜之基材印刷對準標記91、92,或塗佈導電性材料93之後,在使此乾燥之工程中,對該薄膜施加熱有引 起局部伸長或收縮之可能性。再者,為了搬運,給予捲取該薄膜之滾筒或送出該薄膜之滾筒等的張力也有助於被加工物之局部歪斜之產生。 A workpiece such as a resin film is stretched or shrunk to cause skew on the workpiece. In particular, after the alignment marks 91, 92 are printed on the substrate of the resin film or the conductive material 93 is applied, heat is applied to the film in the process of drying the film. The possibility of partial elongation or contraction. Further, for handling, the tension applied to the roller for winding the film or the roller for feeding the film also contributes to the local skew of the workpiece.

但是,在以往之雷射加工機中之對準無考慮到如被加工物之一部分之伸長或收縮的局部性歪斜。因此,有在被加工物之期待位置,例如在薄膜層93中應被切削除去之適當位置,無法精確地照射雷射光L之情形,雷射加工結果殘留改善之空間。 However, the alignment in the conventional laser processing machine does not take into account the local skew such as elongation or contraction of a part of the workpiece. Therefore, there is a space where the desired position of the workpiece, for example, the film layer 93 should be cut and removed, and the laser beam L cannot be accurately irradiated, and the laser processing result remains improved.

於是,在本實施型態中,除了被加工物對雷射加工機0之XY方向之偏移及繞Z軸之旋轉外,在對準之方法加上改良,使也可以應付被加工物之局部性歪斜。 Therefore, in the present embodiment, in addition to the offset of the workpiece to the XY direction of the laser processing machine 0 and the rotation about the Z axis, the alignment method is modified to make it possible to cope with the workpiece. Localized skew.

本實施型態之雷射加工機0中,控制驅動裝置3及電流計掃描器11、12之控制部5係如圖4所示般,具有處理器5a、主記憶體5b、輔助記憶裝置5c、I/O介面5d等,該些係藉由控制器5e(系統控制器或I/O控制器等)而被控制進行聯合動作。輔助記憶裝置5c為快閃記憶體、硬碟驅動器、其他。I/O介面5d包含伺服驅動器(伺服控制器)。再者,控制部5有使用泛用型之個人電腦、伺服電腦、工作站等而構成之情形。 In the laser processing machine 0 of the present embodiment, the control unit 5 for controlling the driving device 3 and the galvanometer scanners 11, 12 has a processor 5a, a main memory 5b, and an auxiliary memory device 5c as shown in Fig. 4 . The I/O interface 5d and the like are controlled to perform a joint operation by the controller 5e (system controller, I/O controller, etc.). The auxiliary memory device 5c is a flash memory, a hard disk drive, or the like. The I/O interface 5d includes a servo driver (servo controller). Further, the control unit 5 is configured to use a general-purpose personal computer, a servo computer, a workstation, or the like.

控制部5應實行之程式被記憶於輔助記憶裝置5c,於程式實行之時,被讀入至主記憶體5b,藉由處理器5a被解讀。而且,控制部5按照程式,發光當作圖5所示之照射位置指令部51、裝置位置指令部52、校正用位置資料記憶部53、校正用誤差取得部54、對準標記 位置資料記憶部55、對準用誤差取得部56、加工用位置資料記憶部57及加工時控制部58之功能。 The program to be executed by the control unit 5 is stored in the auxiliary memory device 5c, and is read into the main memory 5b when the program is executed, and is interpreted by the processor 5a. Further, the control unit 5 emits light as the irradiation position command unit 51, the device position command unit 52, the correction position data storage unit 53, the correction error acquiring unit 54, and the alignment mark shown in Fig. 5 in accordance with the program. The functions of the position data storage unit 55, the alignment error acquisition unit 56, the machining position data storage unit 57, and the machining time control unit 58.

照射位置指令部51係對雷射光照射裝置1,進行用以將雷射光L照射至目標照射位置之指令。具體而言,為了將雷射光L照射至表示目標照射位置之XY座標(x,y),對電流計掃描器11、12輸入與該座標(x,y)對應之控制訊號,操作反射鏡112、122之角度。 The irradiation position command unit 51 instructs the laser light irradiation device 1 to irradiate the laser light L to the target irradiation position. Specifically, in order to irradiate the laser light L to the XY coordinate (x, y) indicating the target irradiation position, a control signal corresponding to the coordinate (x, y) is input to the galvanometer scanners 11, 12, and the operation mirror 112 is operated. , 122 angle.

裝置位置指令部52係對驅動裝置3,進行用以使雷射光照射裝置1移動至目標照射位置之附近的指令。具體而言,為了將雷射光照射裝置1定位在表示雷射光照射裝置1之移動目的地,對驅動裝置3輸入與該XY座標對應之控制訊號而操作X軸單元32及台車322之位置。 The device position command unit 52 instructs the drive device 3 to move the laser light irradiation device 1 to the vicinity of the target irradiation position. Specifically, in order to position the laser light irradiation device 1 at a destination indicating the laser light irradiation device 1, a control signal corresponding to the XY coordinates is input to the drive device 3, and the positions of the X-axis unit 32 and the carriage 322 are operated.

校正用位置資料記憶部53係利用主記憶體5b或輔助記憶裝置5c所需要的記憶區域,記憶校正用之位置資料。如先前所述般,在本實施型態中,為了校正當作雷射光照射裝置1本身特性之照射位置之誤差,進行對XY平面座標系之複數點(xi,yi)照射雷射光L,檢測出每個點i之照射位置之誤差(△xi,△yi)的校正作業。通常,因進行數百至數千點之誤差(△xi,△yi)之檢測,故記憶其數百點至數千點之XY座標(xi,yi)以作為校正用位置資料。 The calibration position data storage unit 53 stores the position data for correction by using the memory area required by the main memory 5b or the auxiliary memory device 5c. As described above, in the present embodiment, in order to correct the error of the irradiation position which is the characteristic of the laser light irradiation apparatus 1, the laser beam L is irradiated to the complex point (x i , y i ) of the XY plane coordinate system. A correction operation for detecting an error (Δx i , Δy i ) of the irradiation position of each point i is detected. Usually, since the error of several hundred to several thousand points (Δx i , Δy i ) is detected, the XY coordinates (x i , y i ) of hundreds of thousands to thousands of points are memorized as the positional data for correction. .

校正用誤差取得部54取得雷射光L之照射位置之誤差(△xi,△yi)。即是,取得上述校正用位置資料 所含之各點i之XY座標(xi,yi),和藉由以其XY座標為目標照射雷射光L之結果射束檢測感測器2而被檢測出之實際的照射位置之XY座標(xi’,yi’)的誤差(△xi,△yi)。而且,使每個點i之誤差(△xi,△yi)與目標XY座標(xi,yi)賦予關連性,記憶於主記憶體5b或輔助記憶裝置5c所需要之記憶區域。 The correction error acquiring unit 54 obtains an error (Δx i , Δy i ) of the irradiation position of the laser light L. That is, the XY coordinates (x i , y i ) of the points i included in the calibration position data are obtained, and the beam detecting sensor 2 is irradiated with the laser light L as the target of the XY coordinates. The error (Δx i , Δy i ) of the XY coordinate (x i ', y i ') of the actual irradiation position is detected. Further, the error (Δx i , Δy i ) of each point i is associated with the target XY coordinate (x i , y i ), and is stored in the memory area required by the main memory 5b or the auxiliary memory device 5c.

圖8表示校正雷射光L之照射位置之校準時,控制部5實行之處理的程序例。控制部5係讀出所記憶之校正用記憶資料所含之XY座標(xi,yi)(步驟S1),為了將所讀出之座標(xi,yi)當作目標照射位置而照射雷射光L,操作電流計掃描器11、12而調節雷射光L之光軸(步驟S2)。 FIG. 8 shows an example of a procedure executed by the control unit 5 when the calibration of the irradiation position of the laser light L is corrected. The control unit 5 reads the XY coordinates (x i , y i ) included in the stored correction memory data (step S1), in order to use the read coordinates (x i , y i ) as the target irradiation position. The laser light L is irradiated, and the galvanometer scanners 11, 12 are operated to adjust the optical axis of the laser light L (step S2).

以及,相繼於步驟S2,以經電流計掃描器11、12而朝向目標照射位置座標(xi,yi)之雷射光L之光軸射在被設定在射束檢測檢測器2上之照準位置之方式,操作驅動裝置3而調節雷射光照射裝置1之位置(步驟S3)。當更具體說明時,以雷射光照射裝置1之垂直下方為目標照射位置而射出雷射光L之時的該目標照射位置之座標為(0,0),藉由校正用位置資料而被指示(而且,對電流計掃描器11、12下達指令)的目標照射位置之座標為(xi,yi)之時,使雷射光照射裝置1從射束檢測感測器2中之照準位置之正上方沿著X軸方向移動至僅偏倚-xi,並且沿著Y軸方向僅偏倚-yi的位置。依此,若不存在照射位置之誤差,從雷射光照射裝置1射出之雷射 光L被照射在射束檢測感測器2上之照準位置(0,0)。即是,在校正作業中,從雷射光照射位置1射出之雷射光L之光軸時指向射束檢測感測器2上之照準位置(0,0)。 And, in step S2, the optical axis of the laser light L directed toward the target illumination position coordinate (x i , y i ) via the galvanometer scanners 11 and 12 is incident on the beam detection detector 2 In the position, the driving device 3 is operated to adjust the position of the laser light irradiation device 1 (step S3). More specifically, the coordinates of the target irradiation position when the laser beam L is emitted from the vertical lower side of the laser light irradiation device 1 as the target irradiation position are (0, 0), and are indicated by the correction position data ( Further, when the coordinates of the target irradiation position of the galvanometer scanners 11 and 12 are (x i , y i ), the position of the laser light irradiation device 1 from the beam detecting sensor 2 is positive. The upper direction moves along the X-axis direction to bias only -x i , and only the position of -y i is biased along the Y-axis direction. Accordingly, if there is no error in the irradiation position, the laser light L emitted from the laser beam irradiation device 1 is irradiated to the sighting position (0, 0) on the beam detecting sensor 2. That is, in the correction operation, the optical axis of the laser light L emitted from the laser light irradiation position 1 is directed to the collimation position (0, 0) on the beam detecting sensor 2.

並且,實際上從雷射光照射裝置1照射雷射光L(步驟S4),取得射束檢測感測器2上之照準位置,和射束檢測感測器2實際上感測雷射光L之位置之XY座標的X軸方向誤差及Y軸方向誤差(步驟S5)。該誤差係指雷射光L之目標照射位置(xi,yi)和實際的照射位置(xi’,yi’)之誤差(△xi,△yi)。 Further, the laser light irradiation device 1 is actually irradiated with the laser light L (step S4), the sighting position on the beam detecting sensor 2 is obtained, and the beam detecting sensor 2 actually senses the position of the laser light L. The X-axis direction error of the XY coordinates and the Y-axis direction error (step S5). The mean error of the laser light L irradiating the target position (x i, y i) and the actual irradiation position (x i ', y i' ) of the error (△ x i, △ y i ).

然後,控制部5記憶所取得之誤差(△xi,△yi)和目標照射位置(xi,yi)之組(步驟S6)。控制部5係將上述步驟S1至S7反覆至針對校正用位置資料所含之全部目標照射位置i取得誤差(△xi,△yi)為止(步驟S7)。 Then, the control unit 5 memorizes the acquired error (Δx i , Δy i ) and the target irradiation position (x i , y i ) (step S6). The control unit 5 repeats the above-described steps S1 to S7 until the error (Δx i , Δy i ) is obtained for all the target irradiation positions i included in the calibration position data (step S7).

於校準完成後,或雷射加工時,經驅動裝置3使雷射光照射位置1復原至設置被加工物之設置台4之上方的位置。 After the completion of the calibration or during the laser processing, the laser light irradiation position 1 is restored by the driving device 3 to a position above the setting table 4 on which the workpiece is placed.

對準用位置資料記憶部55係利用主記憶體5b或輔助記憶裝置5c所需要的記憶區域,記憶對準用之位置資料。對準用之位置資料係以雷射加工之對象事先被標示在被設置在設置台4之被加工物,為表示複數之對準標記91、92之原本應有的位置之XY座標(xMn,yMn)的集合。在此,下標n係指被加工物上之複數之對準標記 91、92中之任一個而予以特定的識別碼。成為對準用位置資料之要素的座標(xMn,yMn)及其個數係依存於被加工物之品種或個體,能依被加工物之品種或每固體而變動。即是,各位置座標(xMn,yMn)有以被加工物之邊緣(邊端)或隅角為基點之相對性的位置座標的情形。 The alignment position data storage unit 55 uses the memory area required by the main memory 5b or the auxiliary storage device 5c to memorize the position data for alignment. The position data for alignment is marked in advance by the object to be processed placed on the setting table 4, and is an XY coordinate (x Mn , which is the original position of the alignment marks 91 and 92 indicating the plural number. a collection of y Mn ). Here, the subscript n is an identification code that is specified by any one of the plurality of alignment marks 91 and 92 on the workpiece. The coordinates (x Mn , y Mn ) which are the elements of the alignment position data and the number thereof depend on the type or individual of the workpiece, and can vary depending on the type of the workpiece or the solid. That is, each position coordinate (x Mn , y Mn ) has a relative positional coordinate based on the edge (edge) or the corner of the workpiece.

對準用誤差取得部56係對藉由附設在雷射光照射裝置1之照相機感測器14攝像被設置在設置台4之被加工物之表面而所取得之攝影畫像進行解析,而檢測出被標示在被加工物之表面的複數對準標記91、92,而得知該些對準標記91、92之實際位置之XY座標(xMn’,yMn’)。而且,在每個對準標記n,取得其實際之位置(xMn’,yMn’)和該對準標記91、92之原本應有的位置(xMn,yMn)的誤差(△xMn,△yMn)=(xMn-xMn’,yMn-yMn’)。誤差(△xMn,△yMn)係表示被設置在設置台4之被加工物對雷射加工機0的位置偏移,即是X軸、Y軸方向之偏倚及繞Z軸旋轉之量,以及被加工物之局部歪斜。假設,皆無被加工物對雷射加工機0的位置偏移,也無被加工物局部伸長或收縮之情形,針對各對準標記n之誤差(△xMn,△yMn)中之任一者應皆成為0。 The alignment error acquisition unit 56 analyzes the captured image obtained by imaging the surface of the workpiece provided on the installation table 4 by the camera sensor 14 attached to the laser light irradiation device 1, and detects that the image is captured. The XY coordinates (x Mn ', y Mn ') of the actual positions of the alignment marks 91, 92 are obtained by aligning the marks 91, 92 on the surface of the workpiece. Further, at each alignment mark n, an error (x Mn , y Mn ') of the actual position (x Mn ', y Mn ') and the original position (x Mn , y Mn ) of the alignment marks 91, 92 is obtained (Δx) Mn , Δy Mn ) = (x Mn - x Mn ', y Mn - y Mn '). The error (Δx Mn , Δy Mn ) indicates the positional deviation of the workpiece placed on the setting table 4 from the laser processing machine 0, that is, the deviation in the X-axis and Y-axis directions and the amount of rotation around the Z-axis. And the local skew of the workpiece. It is assumed that there is no positional deviation of the workpiece from the laser processing machine 0, and there is no local elongation or contraction of the workpiece, and any error (Δx Mn , Δy Mn ) for each alignment mark n is used. Should be 0.

而且,對準用誤差取得部56係以每個對準標記n之誤差(△xMn,△yMn)為基準,推算XY平面座標系之座標(xi,yi)中之因被加工物之位置偏移及歪斜所引起之誤差(△xMi,△yMi)。 Further, the alignment error acquiring unit 56 estimates the cause of the object in the coordinates (x i , y i ) of the XY plane coordinate system based on the error (Δx Mn , Δy Mn ) of each alignment mark n. The error caused by the positional deviation and skew (Δx Mi , Δy Mi ).

圖7係假設性地以白圈描繪用以校正雷射光 照射裝置1本身之雷射光L之照射位置之誤差的校正點94之位置(xi,yi)。如圖7所示般,該些校正點94之XY座標(xi,yi),被加工物之位置偏移及用以排除局部性歪斜之影響的對準標記91、92之XY座標(xMn,yMn)不一定會一致。倒不如說兩者不一致之地方比較多。原本被標示在被加工物之對準標記91、92之個數比校正點94之個數少,對準標記91、92之密度也比校正點94之密度疏。因此,無法從藉由照相機感測器14所攝像到之被加工物之攝影畫像,直接求出座標(xi,yi)中之誤差(△xMi,△yMi)。 Fig. 7 is a hypothetical representation of the position (x i , y i ) of the correction point 94 for correcting the error of the irradiation position of the laser light L of the laser light irradiation apparatus 1 itself in a white circle. As shown in FIG. 7, the XY coordinates (x i , y i ) of the correction points 94, the positional deviation of the workpiece, and the XY coordinates of the alignment marks 91, 92 for eliminating the influence of local skew ( x Mn , y Mn ) does not necessarily coincide. It is better to say that there are more inconsistencies between the two. The number of alignment marks 91, 92 originally indicated on the workpiece is smaller than the number of correction points 94, and the density of the alignment marks 91, 92 is also less than the density of the correction point 94. Therefore, the error (Δx Mi , Δy Mi ) in the coordinates (x i , y i ) cannot be directly obtained from the photographic image of the workpiece imaged by the camera sensor 14 .

依此,在本實施型態中,從被分布配置在藉由雷射光照射裝置1所產生的雷射光L之照射可能範圍,即是電流計掃描器11、12之掃描範圍的至少十個對準標記91、92之位置之X軸方向誤差△xMn及Y軸方向誤差△yMn,分別生成同掃描範圍內之任意XY座標(x,y)中表示X軸方向誤差△xM的近似式F1(x,y),及表示Y軸方向誤差△yM的近似式F2(x,y)。 Accordingly, in the present embodiment, the possible range of illumination from the laser light L distributed by the laser light irradiation device 1 is at least ten pairs of the scanning ranges of the galvanometer scanners 11, 12. The X-axis direction error Δx Mn and the Y-axis direction error Δy Mn at the positions of the quasi-marks 91 and 92 respectively generate an approximation of the X-axis direction error Δx M among any XY coordinates (x, y) in the same scanning range. Equation F 1 (x, y), and an approximate expression F 2 (x, y) indicating the Y-axis direction error Δy M .

屬於XY座標(x,y)之函數的F1(x,y)及F2(x,y)分別可以從針對各對準標記n所測量到的誤差(△xMn,△yMn)之集合,使用最大概度估計法及其他已知之手法來推定。例如,函數F1(x,y)之推定係可以藉由在X軸、Y軸及F1軸被展開的三次元空間座標系中,推定對應於各對準標記n之理想位置(xMn,yMn)之誤差△xMn和函數值F1(xMn,yMn)近似之曲面F1(若為藉由 最小二乘法時,則以誤差△xMn和F1之殘像的平方和成為最小之方式,決定函數F1的係數)來執行。同樣,函數F2(x,y)之推定係可以藉由在X軸、Y軸及F2軸被展開的三次元空間座標系中,推定對應於各對準標記n之理想位置(xMn,yMn)之誤差△yMn和函數值F2(xMn,yMn)近似之曲面F2(若為藉由最小二乘法時,則以誤差△yMn和F2之殘像的平方和成為最小之方式,決定函數F2的係數)來執行。若使用如此所推定之近似式F1及F2時,則可推算座標(xi,yi)中之誤差(△xMi,△yMi)。即是,為△xMi=F1(xi,yi),△yMi=F2(xi,yi)。 F 1 (x, y) and F 2 (x, y) belonging to the function of the XY coordinates (x, y) can respectively be derived from the errors (Δx Mn , Δy Mn ) measured for the respective alignment marks n. The collection is estimated using the most approximate estimation method and other known methods. For example, the estimation of the function F 1 (x, y) can be estimated by the three-dimensional space coordinate system developed in the X-axis, the Y-axis, and the F 1 axis, and the ideal position corresponding to each alignment mark n (x Mn , y Mn ) error Δx Mn and the function value F 1 (x Mn , y Mn ) approximate the curved surface F 1 (if by the least squares method, the square of the residual image of the errors Δx Mn and F 1 And the way to be the smallest, the coefficient of the function F 1 is determined to be executed. Similarly, the estimation of the function F 2 (x, y) can be estimated by the ideal position of each alignment mark n by the three-dimensional space coordinate system developed in the X-axis, the Y-axis and the F 2 axis (x Mn , y Mn ) error Δy Mn and function value F 2 (x Mn , y Mn ) approximate curved surface F 2 (if by least squares method, the square of the residual image with errors Δy Mn and F 2 And the smallest way, the coefficient of the function F 2 is determined to be executed. When the approximate expressions F 1 and F 2 thus estimated are used, the errors (Δx Mi , Δy Mi ) in the coordinates (x i , y i ) can be estimated. That is, Δx Mi = F 1 (x i , y i ), Δy Mi = F 2 (x i , y i ).

並且,為了求出座標(xi,yi)中之誤差(△xMi,△yMi),即使藉由與接近於座標(xi,yi)之複數的對準標記(xMn,yMn)有關之誤差(△xMi,△yMi)之內插,算出X軸方向誤差△xMi及Y軸方向誤差△yMi亦可。例如,在XY平面座標系中,選出離座標(xi,yi)最近的三個對準標記(xMn,yMn)。而且,若將三個對準標記91、92之X軸座標xMn及Y軸座標yMn以及與該對準標記91、92對應的誤差△xMn描繪成藉由X軸、Y軸及△xM軸所展開的三次元空間時,可以假設通過三點的平面,並能算出與該平面上之座標(xi,yi)對應的誤差△xMi。同樣,若將三個對準標記91、92之X軸座標xMn及Y軸座標yMn以及與該對準標記91、92對應的誤差△yMn描繪成藉由X軸、Y軸及△yM軸所展開的三次元空間時,可以假設通過三點的平面,並能算出與該平面上之 座標(xi,yi)對應的誤差△yMiFurther, in order to obtain the coordinate (x i, y i) of the error (△ x Mi, △ y Mi ), even close to the complex by coordinate (x i, y i) of the alignment mark (x Mn, y Mn ) Interpolation of the error (Δx Mi , Δy Mi ) may be performed to calculate the X-axis direction error Δx Mi and the Y-axis direction error Δy Mi. For example, in the XY plane coordinate system, three alignment marks (x Mn , y Mn ) closest to the coordinates (x i , y i ) are selected. Further, the X-axis coordinate x Mn and the Y-axis coordinate y Mn of the three alignment marks 91 and 92 and the error Δx Mn corresponding to the alignment marks 91 and 92 are drawn by the X-axis, the Y-axis, and Δ. When the x-dimensional space is expanded by the x M axis, it is assumed that the plane passing through the three points can be calculated, and the error Δx Mi corresponding to the coordinates (x i , y i ) on the plane can be calculated. Similarly, if the X-axis coordinate x Mn and the Y-axis coordinate y Mn of the three alignment marks 91, 92 and the error Δy Mn corresponding to the alignment marks 91, 92 are drawn by the X-axis, the Y-axis, and △ when y M axis expanded three-dimensional space can be assumed that a plane passing through the three points, and can be calculated with the coordinates (x i, y i) on the plane corresponding to the error △ y Mi.

而且,使每個點i之誤差(△xMi,△yMi)與目標XY座標(xi,yi)賦予關連性,記憶於主記憶體5b或輔助記憶裝置5c所需要之記憶區域。 Further, the error (Δx Mi , Δy Mi ) of each point i is associated with the target XY coordinate (x i , y i ), and is stored in the memory area required by the main memory 5b or the auxiliary memory device 5c.

圖9表示測量被加工物之位置偏移及局部歪斜之對準時控制部5實行之處理的程序例。控制部5係藉由附設在雷射光照射裝置1之照相機感測器14對被設置在設置台4之被加工物進行攝像(步驟S8),檢測出攝影畫像中之各對準標記91、92之位置而取得其XY座標(xMn’,yMn’)(步驟S9)。而且,對每個對準標記n,算出其實際之位置之XY座標(xMn’,yMn’)和理想位置之XY座標(xMn,yMn)之X軸方向誤差△xMn及Y軸方向誤差△yMn(步驟S10)。 FIG. 9 shows an example of a procedure executed by the control unit 5 when measuring the positional deviation of the workpiece and the alignment of the local skew. The control unit 5 images the workpiece placed on the installation table 4 by the camera sensor 14 attached to the laser beam irradiation device 1 (step S8), and detects each of the alignment marks 91 and 92 in the photographic image. The XY coordinates (x Mn ', y Mn ') are obtained at the position (step S9). Further, for each alignment mark n, the XY coordinates (x Mn ', y Mn ') of the actual position and the X-axis direction errors Δx Mn and Y of the XY coordinates (x Mn , y Mn ) of the ideal position are calculated. The axial direction error Δy Mn (step S10).

然後,從各對準標記n之位置(xMn,yMn)及與此對應之誤差(△xMn,△yMn),推算各校正點i之XY座標(xi,yi)中之誤差(△xMi,△yMi)(步驟S11),並記憶所推算的誤差(△xMi,△yMi)和目標照射位置(xi,yi)之組(步驟S12)。控制部5係將上述步驟S11至S12反覆至針對校正用位置資料所含之全部目標照射位置i取得誤差(△xMi,△yMi)為止(步驟S13)。 Then, from the positions (x Mn , y Mn ) of the respective alignment marks n and the corresponding errors (Δx Mn , Δy Mn ), the XY coordinates (x i , y i ) of the respective correction points i are estimated. The error (Δx Mi , Δy Mi ) (step S11), and the set of the estimated error (Δx Mi , Δy Mi ) and the target irradiation position (x i , y i ) are memorized (step S12). The control unit 5 repeats the above-described steps S11 to S12 until the error (Δx Mi , Δy Mi ) is acquired for all the target irradiation positions i included in the calibration position data (step S13).

加工用位置資料記憶部57係利用主記憶體5b或輔助記憶裝置5c所需要的記憶區域,記憶雷射加工用之位置資料。加工用位置資料記憶部56係將規定雷射光L要照射至被加工物之哪部位的CAD資料等,或是於加 工時照射雷射光L之複數點的XY座標當作加工用座標位置資料而予以記憶。 The processing position data storage unit 57 stores the position data for laser processing using the memory area required by the main memory 5b or the auxiliary memory device 5c. The processing position data storage unit 56 sets a CAD data or the like for specifying which portion of the workpiece to be irradiated by the laser light L, or The XY coordinates of the complex point of the laser beam L during working hours are memorized as processing coordinate position data.

加工時控制部58為了將雷射光L照射至以上述加工用位置資料所規定之照射位置,控制雷射光照射裝置1。具體而言,讀出加工用位置資料而得知雷射光L之目標照射位置之XY座標(xT,yT)。而且,根據校準之誤差(△xi,△yi)及校準之誤差(△xMi,△yMi)算出用以將雷射光L精確照射至該目標照射位置座標(xT,yT)所需的補正量。 The machining time control unit 58 controls the laser light irradiation device 1 in order to irradiate the laser light L to the irradiation position specified by the processing position data. Specifically, the XY coordinates (x T , y T ) of the target irradiation position of the laser light L are obtained by reading the processing position data. Moreover, according to the calibration error (Δx i , Δy i ) and the calibration error (Δx Mi , Δy Mi ), the laser light L is accurately irradiated to the target illumination position coordinate (x T , y T ). The amount of correction required.

目標照射位置之座標(xT,yT)與複數之校正點i中之任一座標(xi,yi)相等之時,讀出與該座標(xi,yi)具有關連性而記憶的誤差(△xi,△yi)及誤差(△xMi,△yMi),取得合計兩者的誤差(△xT,△yT)=(△xi+△xMi,△yi+△yMi)。該誤差(△xT,△yT)可以說係當將目標照射位置(xT,yT)如此地供給至電流計掃描器11、12之時,雷射光L實際被照射之被加工物上之位置,和原本所期待之目標照射位置(xT,yT)之誤差。 Coordinates (x T, y T) when the calibration points i and a plurality of the sum of any of a standard (x i, y i) are equal, the readout irradiation position of the targets with related rather to the coordinate (x i, y i) Memory error (Δx i , Δy i ) and error (Δx Mi , Δy Mi ), the total error (Δx T , Δy T ) = (Δx i + Δx Mi , △ y i +Δy Mi ). The error (Δx T , Δy T ) can be said to be the processed object to which the laser light L is actually irradiated when the target irradiation position (x T , y T ) is supplied to the galvanometer scanners 11 and 12 as such. The position of the upper position and the expected target irradiation position (x T , y T ).

於目標照射位置之座標(xT,yT)也不等於複數之校正點i中之任一座標(xi,yi)之時,以每個校正點i之誤差(△xi+△xMi,△yi+△yMi)為基礎,推算目標座標(xT,yT)中之誤差(△xT,△yT)。其推算之方法因可以與從每個對準標記n之誤差(△xMn,△yMn)推算座標(xi,yi)中之誤差(△xMi,△yMi)的方法相同,故在此省略說明。 When the coordinates (x T , y T ) of the target illumination position are not equal to any of the complex correction points i (x i , y i ), the error of each correction point i (Δx i + △ x Mi, △ y i + △ y Mi) , based on the estimated target coordinates (x T, y T) of the error (△ x T, △ y T ). The method of the calculation is the same as the method of estimating the error (Δx Mi , Δy Mi ) in the coordinates (x i , y i ) from the error (Δx Mn , Δy Mn ) of each alignment mark n. Therefore, the description is omitted here.

而且,加工時控制部58將原本之目標照射位置之X軸座標xT、Y軸座標yT、X軸方向誤差△xT及Y軸方向誤差△yT代入至特定之函數式,而算出X軸方向補正量xA及Y軸方向補正量yA。藉由該補正量(xA,yA),可以抵銷雷射光照射裝置1本身之雷射光L之照射位置之誤差,還有被加工物對雷射加工機0之相對性的位置偏移及被加工物之局部歪斜。而且,經照射位置指令部51,將與在目標照射位置之XY座標(xT,yT)添加補正量(xA,yA)之座標(xT+xA,yT+yA)對應的控制訊號輸入至電流計掃描器11、12。其結果,雷射光L被正確地照射至被加工物上之目標照射位置。 Further, the machining time control unit 58 substitutes the X-axis coordinate x T , the Y-axis coordinate y T , the X-axis direction error Δx T , and the Y-axis direction error Δy T of the original target irradiation position into a specific functional formula, and calculates The X-axis direction correction amount x A and the Y-axis direction correction amount y A . By the correction amount (x A , y A ), the error of the irradiation position of the laser light L of the laser light irradiation device 1 itself can be offset, and the relative position of the workpiece to the laser processing machine 0 can be offset. And the partial deviation of the workpiece. Further, the irradiation position command unit 51 adds a coordinate (x T + x A , y T + y A ) of the correction amount (x A , y A ) to the XY coordinate (x T , y T ) at the target irradiation position. Corresponding control signals are input to the galvanometer scanners 11, 12. As a result, the laser light L is correctly irradiated to the target irradiation position on the workpiece.

圖10表示於加工時控制部5所實行之處理的程序例。控制部5係讀出以所記憶之加工用位置資料規定的目標照射位置之XY座標(xT,yT)(步驟S14),算出於對其XY座標(xT,yT)照射雷射光L之時的電流計掃描器11、12所下達之指令的補正量(xA,yA)(步驟S15)。 FIG. 10 shows an example of a program executed by the control unit 5 during processing. The control unit 5 reads the XY coordinates (x T , y T ) of the target irradiation position specified by the stored processing position data (step S14), and calculates that the XY coordinates (x T , y T ) are irradiated with the laser light. The correction amount (x A , y A ) of the command issued by the galvanometer scanners 11 and 12 at the time of L (step S15).

接著,將與在目標照射位置之座標(xT,yT)添加補正量(xA,yA)之XY座標(xT+xA,yT+yA)對應的控制訊號輸入至電流計掃描器11、12,並操作電流計掃描器11、12(步驟S16)。而且,照射雷射光L(步驟S17)。控制部5係使上述步驟S4至S17,反覆至針對被加工用位置資料規定之所需的目標照射位置之全部施予雷射加工為止(步驟S18)。 Next, a control signal corresponding to the XY coordinate (x T + x A , y T + y A ) of the correction amount (x A , y A ) added to the coordinate (x T , y T ) of the target irradiation position is input to the current. The scanners 11, 12 are counted, and the galvanometer scanners 11, 12 are operated (step S16). Further, the laser light L is irradiated (step S17). The control unit 5 repeats the above-described steps S4 to S17 until the laser irradiation processing is performed on all of the target irradiation positions required for the processing position data (step S18).

在本實施型態中,構成具備下述構件的雷射加工機0:支撐體4,其係支撐被加工物;雷射光照射裝置1,其係朝向被上述支撐體4支撐之被加工物照射雷射光L;及控制部5,其係參照藉由照相機感測器14對被支撐於上述支撐體4之被加工物進行攝像之畫像,檢測出被標示在被加工物的複數之對準標記91、92之位置(xMn’,yMn’),得知各對準標記91、92之原本應有的位置(xMn,yMn)和實際檢測出之各對準標記91、92之位置(xMn’,yMn’)的誤差(△xMn,△yMn),並且使用各對準標記91、92之位置之誤差(△xMn,△yMn)而算出某對準標記91、92和其他之對準標記91、92之間之處(xi,yi)的假設性位置之誤差(△xMi,△yMi),並且根據位置之誤差(△xMi,△yMi),決定於雷射加工時為了對上述被加工物上之期待照射位置(xT,yT)照射雷射光L,應給予上述雷射光照射裝置1之指令的補正量(xA,yA)。 In the present embodiment, a laser processing machine 0 including a support body 4 that supports a workpiece, and a laser beam irradiation device 1 that illuminates a workpiece supported by the support body 4 are formed. The laser light L; and the control unit 5 refer to the image of the workpiece supported by the support body 4 by the camera sensor 14, and detect the alignment mark of the plurality of objects to be processed. 91, 92 position (x Mn ', y Mn '), the original position (x Mn , y Mn ) of each of the alignment marks 91, 92 and the actually detected alignment marks 91, 92 are known. Error (Δx Mn , Δy Mn ) at position (x Mn ', y Mn '), and an alignment mark is calculated using the error (Δx Mn , Δy Mn ) of the position of each alignment mark 91, 92 The error of the hypothetical position (Δx Mi , Δy Mi ) between 91, 92 and other alignment marks 91, 92 (x i , y i ), and according to the position error (Δx Mi , △ when y Mi), determined by laser processing in order to expect the irradiation position (x T, y T) irradiating the laser beam L, the above-described laser beam irradiation apparatus 1 should be given on the above-described workpiece Command correction amount (x A, y A).

以及,在本實施型態中,於使用具備下述構件之雷射加工機0之時,支撐體4,其係支撐被加工物;雷射光照射裝置1,其係朝向被上述支撐體4支撐之被加工物照射雷射光L;及控制部5,其根據於對上述雷射光照射裝置1下達不添加補正量的照射位置(xi,yi)之指令時的其指令照射位置(xi,yi)和實際之雷射光L之照射位置(xi’,yi’)之誤差(△xi,△yi),決定於雷射加工時用以將雷射光L照射至上述被加工物上之期待之目標照射位置(xT,yT)的指令之補正量(xA,yA)。藉由照相 機14對被支撐於上述支撐體4之被加工物進行攝像,參照藉由上述照相機感測器14所攝像到的畫像而檢測出被標示在被加工物之複數之對準標記91、92之位置(xMn’,yMn’),得知各對準標記91、92之原本應有的位置(xMn,yMn)和實際被檢測出之各對準標記91、92之位置(xMn’,yMn’)的誤差(△xMn,△yMn),並且使用各對準標記91、92之位置之誤差(△xMn,△yMn)而算出某對準標記91、92和其他之對準標記91、92之間之處(xi,yi)的假設性位置之誤差(△xMi,△yMi),並且對上述控制部5,給予在對上述雷射光照射裝置1下達不添加補正量之照射位置(xi,yi)之指令時的其指令照射位置(xi,yi)和實際之雷射光L之照射位置(xi’,yi’)之誤差(△xi,△yi),加上與上述被加工物上之該指令照射位置對應之處(xi,yi)的上述對準標記91、92位置之誤差(△xMi,△yMi)而所取得之誤差(△xi+△xMi,△yi+△yMi),以決定上述補正量(xA,yA)。 Further, in the present embodiment, when the laser processing machine 0 having the following members is used, the support body 4 supports the workpiece; the laser light irradiation device 1 is supported by the support body 4 The workpiece is irradiated with the laser beam L; and the control unit 5 is based on the command irradiation position (x i ) when the laser light irradiation device 1 is commanded to emit the irradiation position (x i , y i ) without adding the correction amount. , y i ) and the error (Δx i , Δy i ) of the irradiation position (x i ', y i ') of the actual laser light L are determined to be used to irradiate the laser light L to the above-mentioned quilt during laser processing. The correction amount (x A , y A ) of the command of the target irradiation position (x T , y T ) expected on the workpiece. The camera 14 images the workpiece supported by the support body 4, and refers to the image captured by the camera sensor 14 to detect the alignment mark 91 marked on the plurality of workpieces, The position of 92 (x Mn ', y Mn '), the original position (x Mn , y Mn ) of each of the alignment marks 91, 92 and the position of each of the alignment marks 91, 92 actually detected are known. (x Mn ', y Mn ') error (Δx Mn , Δy Mn ), and an alignment mark 91 is calculated using the errors (Δx Mn , Δy Mn ) of the positions of the alignment marks 91 and 92. , the error of the hypothetical position (Δx Mi , Δy Mi ) between (92, 92) and the other alignment marks 91, 92 (x i , y i ), and given to the above-mentioned control unit 5 the instruction irradiation position (x i, y i) when the emitted light irradiation device 1 issued without adding the irradiation position correction amounts of (x i, y i) of the instruction and the real of the irradiation position of the laser beam L of (x i ', yi' The error (Δx i , Δy i ) plus the error of the position of the alignment marks 91, 92 corresponding to the position (x i , y i ) corresponding to the command illumination position on the workpiece (Δx) Mi , Δy Mi ) and the obtained error (Δx i + Δx Mi , Δy i + Δy Mi ) to determine the above correction amount (x A , y A ).

若藉由本實施型態時,可使雷射光L對被加工物之照射位置更接近期待之目標照射位置,達到更進一步提升雷射加工之精度及被加工之製品的品質。 According to this embodiment, the irradiation position of the laser light L to the workpiece can be made closer to the intended target irradiation position, thereby further improving the precision of the laser processing and the quality of the processed product.

上述雷射光照射裝置1因具有掃描從雷射振盪器被振盪之雷射光L的電流計掃描器11、12,和使其雷射光L聚光的聚光透鏡13,故可以轉用既有的雷射加工機0中之該些。 The above-described laser beam irradiation device 1 has a galvanometer scanner 11 and 12 that scans the laser light L that is oscillated from the laser oscillator, and a condensing lens 13 that condenses the laser light L, so that it can be switched to the existing one. Some of these in the laser processing machine 0.

並且,本發明並不限定於上述詳述之實施型 態。例如,在上述實施型態中,於雷射加工時,藉由對電流計掃描器11、12,輸入與在目標照射位置(xT,yT)添加補正量(xA,yA)之XY座標(xT+xA,yT+yA)對應的控制訊號,補正從雷射光照射裝置1射出之雷射光L之光軸的方向。 Further, the present invention is not limited to the embodiment described in detail above. For example, in the above embodiment, at the time of laser processing, by inputting and correcting the amount (x A , y A ) at the target irradiation position (x T , y T ) to the galvanometer scanners 11 and 12 The control signal corresponding to the XY coordinates (x T + x A , y T + y A ) corrects the direction of the optical axis of the laser light L emitted from the laser light irradiation device 1.

取而代之,即使藉由對驅動裝置3,輸入與為了正確將雷射光L照射至目標照射位置(xT,yT)所需之補正量(xA,yA)對應的控制訊號,使雷射光照射裝置1移動至抵銷照射位置之誤差(△xT,△yT)之方向,並且從該雷射光照射裝置1對被加工物照射雷射光L亦可。此時,控制部5之加工時控制部58係根據誤差(△xi+△xMi,△yi+△yMi),決定加工時為了將雷射光L照射至目標照射位置(xT,yT)應給予至驅動裝置3之指令的補正量(xA,yA)。於支撐被加工物之支撐體4可移動至XY方向之時,亦可以使該支撐體4移動至抵銷照射位置之誤差(△xT,△yT)之方向。 Instead, the laser light is input to the driving device 3 by inputting a control signal corresponding to the correction amount (x A , y A ) required to properly irradiate the laser light L to the target irradiation position (x T , y T ). The irradiation device 1 is moved to the direction of the error (Δx T , Δy T ) of the offset irradiation position, and the laser light L may be irradiated from the laser light irradiation device 1 to the workpiece. At this time, the machining time control unit 58 of the control unit 5 determines the irradiation of the laser light L to the target irradiation position (x T , in accordance with the error (Δx i + Δx Mi , Δy i + Δy Mi ). y T ) The amount of correction (x A , y A ) to which the command to the drive unit 3 should be given. When the support body 4 supporting the workpiece can be moved to the XY direction, the support body 4 can be moved to the direction of the error (Δx T , Δy T ) of the offset irradiation position.

在雷射光照射裝置1中,使雷射光L之光軸變化之具體手段並不限定於電流計掃描器11、12。例如,即使藉由伺服馬達等控制被安裝於引導從雷射振盪器被振盪之雷射光L之光纖之終端的雷射光束射出噴嘴之角度亦可。 In the laser light irradiation device 1, the specific means for changing the optical axis of the laser light L is not limited to the galvanometer scanners 11, 12. For example, the angle of the laser beam that is attached to the end of the optical fiber that guides the laser light L that is oscillated from the laser oscillator can be controlled by a servo motor or the like.

其他各部之具體構成只要在不脫離本發明之主旨之範圍下可做各種變形。 The specific constitution of the other parts can be variously modified without departing from the spirit and scope of the invention.

[產業上之利用可能性] [Industry use possibility]

本發明可以適用於對被加工物之任意處照射雷射光而施予加工的雷射加工機。 The present invention can be applied to a laser processing machine that applies laser light to any part of a workpiece to be irradiated.

9‧‧‧被加工物 9‧‧‧Processed objects

91‧‧‧對準標記 91‧‧‧ alignment mark

92‧‧‧對準標記 92‧‧‧ alignment mark

93‧‧‧薄膜層 93‧‧‧film layer

94‧‧‧校正點 94‧‧‧ calibration point

Claims (2)

一種雷射加工機,具備:支撐體,其係支撐被加工物;雷射光照射裝置,其係使用可以使雷射光之光軸之方向變化的電流計掃描器,朝向被支撐於上述支撐體之被加工物照射雷射光;控制部,其係參照藉由照相機感測器對被支撐於上述支撐體之被加工物進行攝像之畫像,檢測出被標示在被加工物的複數之對準標記之位置(xMn’,yMn’),得知各對準標記之原本應在的位置(xMn,yMn)和實際檢測出之各對準標記之位置(xMn’,yMn’)的誤差(△xMn,△yMn),並且使用各對準標記之位置之誤差(△xMn,△yMn)而算出某對準標記和其他之對準標記之間之處(xi,yi)的假設性位置之誤差(△xMi,△yMi),還根據於對上述雷射光照射裝置下達不添加補正量之照射位置(xi,yi)之指令時的其指令照射位置(xi,yi)與實際之雷射光之照射位置(xi’,yi’)之誤差(△xi,△yi),加上與上述被加工物上之該指令照射位置對應之處(xi,yi)的上述對準標記之位置之誤差(△xMi,△yMi)而取得的誤差(△xi+△xMi,△yi+△yMi),決定於雷射加工時用以將雷射光照射至被加工物上之期待之目標照射位置的指令之補正量。 A laser processing machine comprising: a support body for supporting a workpiece; and a laser light irradiation device that uses a galvanometer scanner that can change a direction of an optical axis of the laser light, and is supported by the support body The workpiece is irradiated with the laser beam; the control unit detects the image of the object supported by the support by the camera sensor, and detects the alignment mark of the plurality of objects to be processed. Position (x Mn ', y Mn '), knowing where the alignment marks should be (x Mn , y Mn ) and the positions of the actually detected alignment marks (x Mn ', y Mn ') Error (Δx Mn , Δy Mn ), and using the position error (Δx Mn , Δy Mn ) of each alignment mark to calculate the position between an alignment mark and other alignment marks (x i The error of the hypothetical position (Δx Mi , Δy Mi ) of y i ) is also based on the instruction when the above-mentioned laser light irradiation device gives an instruction to irradiate the position (x i , y i ) without adding a correction amount The error between the illumination position (x i , y i ) and the actual laser light irradiation position (xi', y i ') (Δx i , Δy i ), an error obtained by adding an error (Δx Mi , Δy Mi ) of the position of the alignment mark corresponding to the irradiation position of the command (x i , y i ) on the workpiece (Δx i + Δx Mi , Δy i + Δy Mi ) is determined as the correction amount of the command for irradiating the laser light to the desired target irradiation position on the workpiece during laser processing. 一種雷射加工機之工件歪斜補正方法,為使用雷射加工機之方法,該雷射加工機具備:支撐體,其係支撐被加工物;雷射光照射裝置,其係使用可以使雷射光之光軸 之方向變化的電流計掃描器,朝向被支撐於上述支撐體之被加工物照射雷射光;及控制部,其係根據對上述雷射光照射裝置下達不添加補正量之照射位置(xi,yi)之指令時的其指令照射位置(xi,yi)和實際之雷射光之照射位置(xi’,yi’)之誤差(△xi,△yi),決定於雷射加工時用以將雷射光照射至上述被加工物上之期待之目標照射位置的指令之補正量,該方法之特徵在於:藉由照相機感測器對被支撐於上述支撐體之被加工物進行攝像,參照藉由上述照相機感測器進行攝像的畫像而檢測出被標示在被加工物之複數之對準標記之位置(xMn’,yMn’),得知各對準標記之原本應在的位置(xMn,yMn)和實際被檢測出之各對準標記之位置(xMn’,yMn’)的誤差(△xMn,△yMn),並且使用各對準標記之位置之誤差(△xMn,△yMn)而算出某對準標記和其他之對準標記之間之處(xi,yi)的假設性位置之誤差(△xMi,△yMi),還對上述控制部給予於對上述雷射光照射裝置下達不添加補正量之照射位置(xi,yi)之指令時的其指令照射位置(xi,yi)和實際之雷射光之照射位置(xi’,yi’)之誤差(△xi,△yi),加上與上述被加工物上之該指令照射位置對應之處(xi,yi)的上述對準標記之位置之誤差(△xMi,△yMi)而取得之誤差(△xi+△xMi,△yi+△yMi),以決定上述補正量。 A method for correcting a workpiece skew of a laser processing machine, which is a method for using a laser processing machine, the laser processing machine comprises: a support body for supporting a workpiece; and a laser light irradiation device, which is used for making a laser light The galvanometer scanner that changes the direction of the optical axis illuminates the laser beam toward the workpiece supported by the support; and the control unit that emits an illumination position without adding a correction amount to the laser light irradiation device (x i , the irradiation position of the instruction irradiation position (x i, y i) when y i) of the instruction and the real of the laser light of (x i ', y i' ) of the error (△ x i, △ y i ), determined by a correction amount of a command for irradiating laser light onto a desired target irradiation position on the workpiece during laser processing, the method being characterized in that the pair of cameras supported by the support body are processed When the object is imaged, the position of the alignment mark (x Mn ', y Mn ') indicated by the plurality of objects to be processed is detected by referring to the image captured by the camera sensor, and each alignment mark is known. Originally at the location (x Mn , y Mn ) and the error (Δx Mn , Δy Mn ) of the position (x Mn ', y Mn ') of each of the alignment marks actually detected, and the error of the position of each alignment mark (Δx Mn , Δy Mn ) and calculate the error of the hypothetical position (Δx Mi , Δy Mi ) between the alignment mark and the other alignment mark (x i , y i ), and also give the control unit the instruction irradiation position (x i, y i) the time of the irradiation laser beam means released without adding the correction amount of the irradiation position (x i, y i) of the command and the irradiation position of the actual of laser light of (x i ', y The error of i ') (Δx i , Δy i ), plus the error of the position of the above-mentioned alignment mark (Δx) corresponding to the irradiation position of the command on the workpiece (x i , y i ) mi, △ y mi) of the acquired error (△ x i + △ x mi , △ yi + △ y mi), in determining the correction amount.
TW104111256A 2014-09-30 2015-04-08 Laser processing machine, laser processing machine workpiece skew correction method TWI577483B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201939A JP5952875B2 (en) 2014-09-30 2014-09-30 Laser processing machine, work distortion correction method for laser processing machine

Publications (2)

Publication Number Publication Date
TW201611931A TW201611931A (en) 2016-04-01
TWI577483B true TWI577483B (en) 2017-04-11

Family

ID=55789828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104111256A TWI577483B (en) 2014-09-30 2015-04-08 Laser processing machine, laser processing machine workpiece skew correction method

Country Status (4)

Country Link
JP (1) JP5952875B2 (en)
KR (1) KR101698269B1 (en)
CN (1) CN106181075B (en)
TW (1) TWI577483B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174636B2 (en) * 2015-07-24 2017-08-02 ファナック株式会社 Work positioning device for positioning work
WO2018012199A1 (en) * 2016-07-14 2018-01-18 三菱電機株式会社 Substrate measurement device and laser processing system
KR101938812B1 (en) * 2016-11-29 2019-01-15 주식회사 알이디테크놀로지 Laser engraving machine with auto feeding and focusing function
KR102230321B1 (en) * 2017-05-25 2021-03-19 미쓰비시덴키 가부시키가이샤 Laser processing equipment
JP6422622B1 (en) * 2017-05-25 2018-11-14 三菱電機株式会社 Laser processing equipment
BE1025292B1 (en) * 2017-06-06 2019-01-15 Layerwise N.V. APPARATUS FOR ADDITIVELY MANUFACTURING A PRODUCT WITH A CALIBRATION DEVICE AND METHOD FOR CALIBRATING SUCH A DEVICE
CN107649543B (en) * 2017-10-26 2023-09-29 郑州万达重工股份有限公司 Intelligent gun barrel correction system
CN108391847A (en) * 2018-03-16 2018-08-14 山西大学 A kind of cigarette laser marking system and method based on image procossing
CN110340936B (en) * 2018-04-03 2024-01-30 泰科电子(上海)有限公司 Calibration method and calibration system
CN108489592A (en) * 2018-04-13 2018-09-04 东莞市鸿博电子有限公司 A kind of automatic quadrangle output error update the system of parallel beam load cell
JP6574915B1 (en) * 2018-05-15 2019-09-11 東芝機械株式会社 Workpiece processing method and work piece processing machine
JP7117903B2 (en) * 2018-06-11 2022-08-15 住友重機械工業株式会社 Processing method and processing equipment
CN111515523B (en) * 2019-01-17 2022-01-28 深圳市创客工场科技有限公司 Laser processing method and device, laser processing equipment and storage medium
CN113348133A (en) * 2019-01-21 2021-09-03 完美天空Jsat株式会社 Spacecraft and control system
JP7396851B2 (en) * 2019-10-18 2023-12-12 ファナック株式会社 Control device, control system, and program
CN111275667B (en) * 2020-01-13 2024-05-24 武汉科技大学 Machining error detection method, device and machining method
CN111157533B (en) * 2020-01-16 2022-07-08 东莞市兆丰精密仪器有限公司 Constant-speed three-dimensional continuous interpolation laser detection method
CN114918195B (en) * 2022-05-31 2023-08-25 深圳吉阳智能科技有限公司 Laser cleaning control method, system and readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519123A (en) * 1978-07-26 1980-02-09 Eiichirou Tani Falling gear in case of emergency

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209078B2 (en) * 1996-03-18 2001-09-17 三菱電機株式会社 Laser processing equipment
JP2002160080A (en) * 2000-11-28 2002-06-04 Hitachi Via Mechanics Ltd Method and device for laser beam working
KR20020077589A (en) * 2001-04-02 2002-10-12 주식회사 애트랩 A method for controlling intensity of illumination of light image dectecting apparatus
JP2006136923A (en) * 2004-11-12 2006-06-01 Hitachi Via Mechanics Ltd Laser beam machine and laser beam machining method
JP4749092B2 (en) * 2005-02-28 2011-08-17 パナソニック電工Sunx株式会社 Laser processing method and laser processing apparatus
JP4297952B2 (en) * 2007-05-28 2009-07-15 三菱電機株式会社 Laser processing equipment
JP5519123B2 (en) 2008-06-10 2014-06-11 株式会社片岡製作所 Laser processing machine
JP5288987B2 (en) * 2008-10-21 2013-09-11 三菱電機株式会社 Laser processing equipment
JP4958020B2 (en) 2009-03-31 2012-06-20 大日本印刷株式会社 Touch panel sensor, laminate for manufacturing touch panel sensor, and method for manufacturing touch panel sensor
JP2010240694A (en) * 2009-04-07 2010-10-28 Panasonic Corp Laser beam machining method and laser beam machining device
JP2013086145A (en) 2011-10-19 2013-05-13 Toray Eng Co Ltd Apparatus and method for laser beam machining, and apparatus and method for manufacturing thin-film solar cell
JP5089827B1 (en) * 2012-02-01 2012-12-05 三菱電機株式会社 Laser processing method and laser processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519123A (en) * 1978-07-26 1980-02-09 Eiichirou Tani Falling gear in case of emergency

Also Published As

Publication number Publication date
TW201611931A (en) 2016-04-01
KR20160038712A (en) 2016-04-07
JP5952875B2 (en) 2016-07-13
KR101698269B1 (en) 2017-01-19
JP2016068133A (en) 2016-05-09
CN106181075A (en) 2016-12-07
CN106181075B (en) 2018-03-20

Similar Documents

Publication Publication Date Title
TWI577483B (en) Laser processing machine, laser processing machine workpiece skew correction method
US11465232B2 (en) Laser patterning skew correction
TWI415703B (en) Laser machining apparatus and method for detecting a substrate position
TWI633279B (en) Substrate measuring device and laser processing system
CN109580658B (en) Inspection method and inspection apparatus
TWI787595B (en) Laser processing apparatus, laser processing method and error adjusting method
JP2022069967A (en) Distortion aberration correction processing device, distortion aberration correction method, and program
JP6117594B2 (en) Drawing apparatus and drawing method
JP2007305696A (en) Accuracy measuring method of positioning apparatus
TWI511821B (en) Laser processing machine
TW202113346A (en) Pattern measurement device, inclination calculation method and pattern measurement method for pattern measurement device
JP2018097151A (en) Lithography device, production method for articles, and measurement device
JP2009074849A (en) Inspection method of line width measuring device
TW201940272A (en) Laser marking apparatus
JP2001330430A (en) Method and apparatus for measurement of flatness
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JP5762072B2 (en) Position detection method, pattern drawing method, pattern drawing apparatus, and computer program
CN111512240A (en) Method and apparatus for exposing at least one stored image on a photosensitive recording medium
US11709050B2 (en) Position measurement method using a calibration plate to correct a detection value from the position detector
JP2015106604A (en) Beam tilt measurement method, drawing method, drawing device and article manufacturing method
JP2024043357A (en) Drawing apparatus and drawing method
JP2022137849A (en) Exposure method, and exposure device
JP2022137850A (en) Exposure method, and exposure device
KR20120130124A (en) Light exposure device, light exposure method, and manufactuiring method of display panel substrate, and inspection method of light exposure device