TWI570262B - 利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法 - Google Patents

利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法 Download PDF

Info

Publication number
TWI570262B
TWI570262B TW104106067A TW104106067A TWI570262B TW I570262 B TWI570262 B TW I570262B TW 104106067 A TW104106067 A TW 104106067A TW 104106067 A TW104106067 A TW 104106067A TW I570262 B TWI570262 B TW I570262B
Authority
TW
Taiwan
Prior art keywords
group
reaction
reactor
substrate holder
gas
Prior art date
Application number
TW104106067A
Other languages
English (en)
Other versions
TW201604307A (zh
Inventor
艾力克西 亞倫達倫柯
法拉利 布若賓
安德利 澤里夫
Original Assignee
艾力克西 亞倫達倫柯
法拉利 布若賓
安德利 澤里夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾力克西 亞倫達倫柯, 法拉利 布若賓, 安德利 澤里夫 filed Critical 艾力克西 亞倫達倫柯
Publication of TW201604307A publication Critical patent/TW201604307A/zh
Application granted granted Critical
Publication of TWI570262B publication Critical patent/TWI570262B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法
本發明有關微電子學領域,可用以藉由金屬-有機化合物及氫化物之化學氣相沉積產生III-V化合物半導體材料及II-VI化合物半導體材料的磊晶結構。
產生III-V磊晶結構的方法(以下稱為MOCVD)為Manasevit所提出(參見Manasevit H.M.Single-Crystal Gallium Arsenide on Insulating Substrates Appl.Phys.Lett.12,156(1968))。該方法在於第III族元素之金屬-有機化合物(MOC),即三甲基鎵,及第V族元素之氫化物(胂)藉氫流傳送至裝有熱表面的反應器內,該熱表面上配置有單晶基材,而砷化鎵磊晶層係生長於該熱表面上。
稍後,發現MOC與氫化物之間的反應不僅發生於熱 表面上,亦發生於氣相(均相反應)。為了抑制該等反應,使用其中MOC及氫化物是分別供應至生長區的裝置(參見例如美國專利申請案第2009/0229754號,其中使用具有"蓮蓬頭噴淋器"型之反應氣體導入系統的裝置)。然而,此等組份於生長區中混合,結果,無法完全避免其於氣相的彼此之間的反應。均相反應產物沈積於生長表面損害磊晶層的品質。就發展具有量子維度井洞之異質磊晶結構(HES)(尤其是用於LED之以GaAlN為主的HES)之技術的觀點而言,此項問題變得特別重要(尤其是用於LED之以GaAlN為主之HES)。
有一些已知解決方法(參見例如美國專利申請案第2010/0263588號),其中MOC與氫化物交替供應至反應器內,以避免均相反應。此可例如藉由提供氣體-蒸氣混合物(GVM)之移動使得先供應第III族組份,隨後吹離反應器,接著供應第V族組份,而之後再次吹離反應器等等,直至長得具有所需厚度的層。然而,在此情況下,製程持續時間因為依序將組份供應至反應器內而增加,發生不穩定之GVM流,即氣相中發生暫時性製程,該等製程視GVM流切換而定,故接著造成HES品質損失。此等方法通常用於在實驗室(研究)施行製造。
使用位在具有迴轉基材支架之反應器中的分隔壁以將反應器分成區段,將反應組份分別供應進入此等區段內(參見例如美國專利8043432),會在該等區段上造成不期望的反應產物沈積,且產生此等產物在其長晶期間粉碎 並落在磊晶層上的風險。
因此,目前尚無任何可消去均相反應且保證可大規模生產HES(例如一次多於40片基材)的解決方案。
本文中所使用對語辭、陳述及縮寫具有以下意義。
MOCVD(金屬有機化學氣相沉積)意指自含有金屬-有機化合物之蒸氣的氣相化學沈積的方法。
HES意指異質磊晶結構。
MOC意指金屬-有機化合物。
GVM意指氣體-蒸氣混合物,其係反應氣體,尤其是金屬-有機化合物之蒸氣於載體氣體中之混合物及/或元素週期表第V族氫化物與載體氣體之混合物。
分隔區段意指反應槽之想像部分(區域),其中載體氣體流沿反應槽徑向移動,與反應槽相鄰區段中之反應氣體流分離,尤其是MOC區段及氫化物區段。
TMA意指三甲基鋁。
TMG意指三甲基鎵。
TMI意指三甲基銦。
載體氣體意指用作載體之氣體,其不含任何可能沈積於該基材上的化合物。通常使用氫、氮或其混合物作為載體氣體。
其他語詞及陳述是使用熟習此技術者已知的一般意義。
本發明旨在提供一種MOCVD方法,其使半導體材料磊晶層不僅可以一般方式且亦可經由原子層沈積之兩種方式在連續反應氣體流(使得該方法效能較使用間斷供應反應氣體的方法增高)下長晶。
在經由金屬-有機化學氣相沉積法(MOCVD)於單晶基材上產生二元半導體材料的磊晶層之方法中,前述問題之解決方式係使用以下裝置措施:(A)反應器,其具有相對於垂直中心軸為圓形的反應槽;(B)基材支架,水平配置於反應槽中且配接成繞著該垂直中心軸迴轉;(C)圓形篩網,配置於反應槽中該基材支架上方距離15mm及40mm之間之處,該篩網的直徑大於該基材支架的直徑;其中(a)保持該基材支架於預定溫度;(b)使該基材支架繞著該垂直中心均勻地的迴轉;(c)將至少兩種反應氣體分別供應至該反應槽的不同徑向區段內;其中該氣體中之至少一者含有可分解以形成第III族或第II族元素的原子層的金屬-有機化合物(MOC),且該氣體中之至少另一者相應的含有第V族或第VI族元素的氫化物,該氫化物可相應的與該層中的第III族或第II族元素之原子反應;(d)該等反應氣體供應的順序為使得自該含有第III 族或第II族元素之MOC的反應氣體產生之層暴露於相應的含有該第V族或第VI族元素之氫化物的反應氣體之作用之下;(e)為避免反應氣體彼此混合,在位於該等反應氣體流之間的區段內供應載體氣體;(f)在該層生長的整段期間,連續不停的將反應氣體及載體氣體供應至該反應槽內;(g)該反應氣體及載體氣體的供應方式是使得其於該反應槽內每一區段相對於相同直徑的徑向移動速度皆均勻;(h)基材支架迴轉的圓周速度、反應氣體中MOC的濃度、及反應氣體消耗速率的供應方式為使得該基材支架完整迴轉一圈所沈積的層厚度是約單原子層厚度的0.6至1.0;(i)該反應氣體及載體氣體是經由直徑小於1mm且以5至20個開口/平方厘米的表面密度的開口群組以實質水平的方式供應,使得該基材支架上方的徑向氣體以層流的位移方式流動,且生長中之層的厚度d實質上等於k×a×n,其中k為正實數,為在該基材支架完整迴轉一圈所沈積者為該單原子層厚度的部份;a為正實數,為該生長中材料的晶格參數;n為正整數,為該基材支架完整迴轉之圈數。
前述方法提供改良之HES品質。
該改良是藉由以下裝置措施達成:(A)排除含有第III族(或第II族)元素之MOC的反應氣體滲入含有第V族(或第VI族)元素之化合物的反應氣體的區段,相反亦然;(B)提供反應氣體與載體氣體之混合物的層流;(C)排除氣流旋渦,以避免該氣流捕集顆粒,並再定位於HES生長區內;(D)消除可能出現再循環晶胞的條件;(E)提供GVM組份濃度沿HES生長區的穩定且單調之變化;(F)使用載體氣體的分離流而非介於區段間之分隔壁,以避免所沈積之反應產物自分隔壁進入長晶中的磊晶層上之風險,且避免氣流在該壁附近的減速及擾流。
熟習此技術者瞭解要長成具有所需組成之層要確認配置在反應器中迴轉基材支架上的基材對垂直中心軸成對稱,將基材加熱,連續地供應含有第III族(或第II族)元素MOC的反應氣體,連續地供應含有第V族(或第VI族)化合物的氣流,連續地供應載體氣體,層生長,及取出氣體反應產物,其中所有氣體供料,尤其是含有第III族(或第II族)元素MOC及第V族(或第VI族)化合物的反應氣體是以空間上分離且交錯的方式執行,使得載體氣體流分離含有第III族(或第II族)元素及第V族(或第VI族)元素的化合物之氣流,該層沈積是以循環方式執行,在每一循環生長具有單原子或近單原子厚度的 層部分。
用以生長該層的反應器是對垂直中心軸成對稱且其包含至少兩個區段,在生長磊晶層的整段時間皆連續地供應反應氣體進入其中,生長層之形成是經由藉著具有載體氣流的分離區,使安置在迴轉基材支架上的基材在含有第III族(或第II族)元素MOC之反應氣流區與含有第V族(或第VI族)元素化合物之反應氣流區之間交替地移動以依序地形成第III族(或第II族)元素之原子層且隨之形成第V族(或第VI族)元素之原子層而達成。
於該方法的具體實施態樣中,將含有至少兩種屬於元素週期表第III族(或第II族)之元素的化合物之反應氣體供應至其中一個反應器區段內,而含有至少一種屬於元素週期表第V族(或第VI族)之元素的氫化物之反應氣體對應地供應至該反應器之另一區段內。
在最佳具體實施態樣中之一者中,為了降低篩網表面沈積物的量且避免造成形成擾流的情況,保持該篩網的溫度相對於該基材支架之溫度的比例在0.6至0.9範圍內,以避免在反應槽中形成再循環。
在該方法的另一較佳具體實施態樣中,所使用之篩網在垂直中心軸與篩網表面之間呈具有一個角度的圓椎形,該角度介於90°至60°範圍中(參見圖1,位置11)。
反應氣體及載體氣體可經由反應器週邊部位供應至反應槽內且經由其中心部位移除,或反應氣體及載體氣體可經由反應器中心部位供應至反應槽內且經由其週邊部位移 除。
該方法之再另一較佳具體實施態樣中,配置於基材支架上的基材在該基材支架繞著垂直中心軸迴轉時與其同時進行迴轉。此法使得以有效消除組份濃度沿著反應槽徑向的降低。
所申請之方法可用以製造III-V化合物及II-VI化合物的磊晶結構。
1‧‧‧反應器
2‧‧‧垂直中心軸
3‧‧‧基座
4‧‧‧頂蓋
5‧‧‧石英罩
6‧‧‧凸緣
7‧‧‧墊片
8‧‧‧墊片
9‧‧‧夾鉗
10‧‧‧腔穴
11‧‧‧篩網
12‧‧‧凸緣
13‧‧‧區
14‧‧‧區
15‧‧‧區
16‧‧‧區
17‧‧‧中心部位
18‧‧‧裝置
19‧‧‧基材支架
20‧‧‧碟形部件
21‧‧‧基材
22‧‧‧圓筒
23‧‧‧內部磁鐵
24‧‧‧外部磁鐵
25‧‧‧主動小齒輪
26‧‧‧加熱裝置
27、28、29‧‧‧腔穴
30‧‧‧進料口
31‧‧‧進料口
32‧‧‧進料口
33‧‧‧內表面
34‧‧‧開口
35‧‧‧軸環
36‧‧‧重板
37‧‧‧進料口
38‧‧‧進料口
39‧‧‧進料口
圖1為用以執行本發明方法的反應器之一具體實施態樣的側視剖面圖。
圖2為圖1反應器之部分俯視圖。
圖3為反應器之示意俯視圖,便利地出示用以供應含有第III族及第V族元素之化合物的反應氣體之區段。
圖4為在圖1至圖3所示反應器中使用前文所述方法製得的一般磊晶結構的示意剖面圖。
如前文所述,所申請之方法是在一反應器中執行,該反應器包含對垂直中心軸成對稱的反應槽,在該槽中,GVM自中心向著圓周移動(或相反),其中迴轉基材支架、用以供應及移除氣體的裝置、及位在基材支架上方並與其共軸的篩網係配置於該槽內。為改善所製得的結構之品質,氣體供應分成至少兩個主要進料口及兩個附加(分 離)進料口(提供GVM移動跨越對應之區段)。GVM含第III族元素之化合物(即TMG、TMA等)經由一個主要區段移動,GVM含有第V族元素化合物(即,氨、胂等)經由另一個主要區段移動,且載體氣體經由分離區段移動。
前文所述方法的執行藉由圖1及圖2所示反應器的操作實施例進一步說明。
反應器(1)構成一個對垂直中心軸(2)成對稱的圓筒形框架。圓筒之比例,尤其是其直徑,是根據基材尺寸及其他因子定義。待加工之基材的尺寸可介於40mm及200mm之間。
反應器(1)包含基座(3)、頂蓋(4)、附接於頂蓋(4)且對垂直中心軸(2)成對稱的篩網(11)、配置於凸緣(6)上之石英罩(5)、及基材支架(19)。基座(3)、頂蓋(4)及凸緣(12)藉由供應至腔穴(10)內之水來冷卻。反應器裝置於重板(36)上以防止震動。反應器藉墊片(7)及(8)密封。
頂蓋(4)裝配用於升降的裝置,以在每一次磊晶結構長晶製程後裝載及卸除基材。夾鉗(9)及墊片(8)提供頂蓋(4)之密封。
反應器(1)包含區(13),於此區內供入含GVM之試劑,且區(14)、(15)、(16),在此對應地經由進料口(38)、(39)、(37)以氮、氫或其混合物將試劑吹離。在基材支架(19)形成之表面與篩網(11)表面之 間的距離為15至40mm(一般為22mm)。所有氣體及氣相中的反應產物之移除是經由中心部位(17)執行,且進一步經裝置(18)輸出。
反應器是設計成在區(13)內有10-3托耳至600托耳(1大氣壓)之壓力。
配置於反應器槽內之基材支架(19)裝配碟形部件(20),將基材(21)配置於其上(參見圖2)。碟形部件係配置成相對於其垂直軸迴轉。將基材支架(19)定位於圓筒(22)上,而圓筒(22)因內部磁鐵(23)和外部磁鐵(24)之間的磁耦合而繞著垂直中心軸(2)迴轉。主動小齒輪(driving pinion)(25)固定於罩(5)上,每一碟形部件(20)各具有位於其底側的從動小齒輪(driven pinion),在基材支架(19)迴轉時繞著主動小齒輪(25)迴旋,因而提供碟形部件繞其自身之軸的額外迴轉。
加熱該基材係藉由加熱裝置(26)執行,提供加熱且將基材溫度保持在400℃至1300℃範圍內。加熱裝置包含三個對垂直中心軸(2)成對稱的加熱場,因此可於該等碟形部件上形成均勻之溫度場。
將GVM輸入反應器之長晶區(區(13))是依以下方式執行:頂蓋(4)包含兩個用以供應GVM的腔穴(27、29),及兩個使用載體氣體用以吹離的腔穴(28)。含有第III族組份之GVM是經由進料口(30)供應至腔穴(27、29)內,而含有第V族組份之GVM是 經由進料口(31)供應,而吹離氣體係經由兩進料口(32)供應。
頂蓋(4)之內表面(33)包含直徑0.6mm之開口(34),均勻分布在整個表面(33)上,密度約10個開口/平方厘米,因而聯同軸環(35)且由於區(13)之形式,一起提供GVM層流。
分離供應GVM至長晶區內是由於反應器的對稱設計,其中GVM自反應器的週邊部位層狀流至反應器的中心,因此形成含第III族組份及對應之第V族組份的GVM區段(參見圖3),而均勻迴轉之基材支架(19)依序且均勻將基材(21)自一區段移至另一區段。為了更有效地分離第V族組份與第III族組份,在主要進料口之間配置額外進料口,經由該額外進料口來供應載體氣體(H2、N2或其混合物)。基材支架迴轉速度及MOC於GVM中之含量經決定以使其在通經第III族區段期間,在基材上沈積具有接近單原子的厚度之層(一般為10rpm)。該層生長速度可藉由改變基材支架迴轉速度於6rpm至15rpm而調整。摻雜組份視所需之生長層的導電類型而對應地供應至腔穴(27、29)的第III族區段或第VI族區段。於反應器生長該層的製程是連續地進行,且所有氣流在長晶期間皆穩定。
為了避免GVM在區(13)中的非層流,篩網(11)的溫度對碟形部件(20)之溫度的比例為0.6至0.9,此係藉由氮-氫混合物之組成、其用於吹離區(14)的體積 及頂蓋(4)之頂表面與篩網(11)表面之間的距離來確保。
氮-氫混合物一般會在總共30公升/分鐘之速率下供應至腔穴(27、28、29)(頂蓋(4)之內徑,由表面(33)所界定,是360mm)。
供應至腔穴(27、28、29)中任一者之氮-氫混合物的消耗速率與III、V、S區段中任一者中確定為GVM流的表面(33)部分之面積成比例(參見圖3)。所考慮之反應器中,此等面積的比例為30/58/(6×2)。是故,不同區之GVM流如下:腔穴(27)為9.0公升/分鐘,腔穴(29)為17.4公升/分鐘,而腔穴(28)為3.6公升/分鐘。
圖4顯示使用前述反應器製造之一般磊晶結構的示意剖面圖。磊晶結構是要用於製造具有綠光發射的LED。
下列者已用為該製程的起始組份:(A)第III族之試劑(三甲基鎵(TMG),三甲基銦(TMI),三甲基鋁(TMA));(B)第V族之試劑(氨(NH3));(C)摻雜組份(單矽烷(SiH4),在容器中之體積濃度10-3%,及鎂金屬-有機組成物(雙(環戊二烯基)鎂))。
模板,即藍寶石基材,帶有一層約4000nm厚度摻雜有3.0×1018cm-3濃度之矽的GaN,將其置入反應器。之後執行必要的吹離。之後,將基材加熱至400℃,且以0.35 莫耳/分鐘速率將NH3供應至反應器的區段V,保持加熱至達1050℃之溫度。
一旦達到1050℃之溫度,則將氨供應速率增至0.53莫耳/分鐘,將TMG以3.0×10-4莫耳/分鐘的速率及單矽烷且以1.0×10-7莫耳/分鐘的速率供應至反應器區段III。GaN層在3分鐘又52秒期間長成,之後,供應停止TMG及單矽烷,溫度降低至730℃。
此外,在反應器區段V中藉著將氨供應速率增至0.63莫耳/分鐘而生長供量子井(QW)系統所用的InGaN層,在1分鐘期間將速率0.375×10-4莫耳/分鐘之TMG及速率2.0×10-6莫耳/分鐘之TMI供應至反應器區段III中。在終止供應至反應器中之TMG及TMI後,溫度增至950℃。在此溫度下,藉著將速率2.0×10-6莫耳/分鐘之TMG供應至反應器區段III內,且將速率0.58莫耳/分鐘之氨供應至反應器區段V內,於1分鐘又30秒期間長成障壁GaN層。一旦障壁層之成長完成,停止供應TMG至反應器內,溫度再次降至730℃。
此外,生長用於QW系統的第二InGaN層,如同前文所述般的仍生長GaN之第二障壁層。因此,針對QW系統生長各5層之InGaN及GaN。
一旦最後GaN障壁層之生長完成,即終止TMG供應,溫度增至1050℃。此外,長成20-週期超晶格(SL),其中SL是由交互之GaN及AlGaN層構成。為達該目的,摻雜組份(雙(環戊二烯基)鎂)於速率 3.2×10-7莫耳/分鐘下添加至區段V內,氨之速率保持於0.58莫耳/分鐘,TMG以1.2×10-4莫耳/分鐘的速率及TMA以1.0×10-5莫耳/分鐘的速率供應至區段III內,在48秒後停止TMA供應至區段III內,在36秒後於上述特定速率下再重新開始。供應TMA48秒及停止TMA供應36秒之週期重複20次,因此長出20-週期SL之p-型Al0.20Ga0.80N/GaN。
在第20周期之供應TMA至反應器終止後,以3.2×10-7莫耳/分鐘的速率將摻雜組份(雙(環戊二烯基)鎂)供應至區段III內,於8分鐘期間生長GaN層(因此得到210nm厚之GaN層,p型載流子濃度為1.0×1018cm-3)。之後,停止供應送入反應器內的TMG及摻雜組份,關掉加熱,將送入區段V內之氨的供應減少至0.36莫耳/分鐘。一旦達到溫度400℃,即停止NH3的供應。隨後將反應器冷卻,以氮吹離,自反應器卸除所製得的結構。
所申請之方法容許在負載6至60個基材的情況下在工業反應器中生長HES,負載6至60片基材且提供高品質之HES層。
1‧‧‧反應器
2‧‧‧垂直中心軸
3‧‧‧基座
4‧‧‧頂蓋
5‧‧‧石英罩
6‧‧‧凸緣
7‧‧‧墊片
8‧‧‧墊片
9‧‧‧夾鉗
10‧‧‧腔穴
11‧‧‧篩網
12‧‧‧凸緣
13‧‧‧區
14‧‧‧區
15‧‧‧區
16‧‧‧區
17‧‧‧中心部位
18‧‧‧裝置
19‧‧‧基材支架
20‧‧‧碟形部件
21‧‧‧基材
22‧‧‧圓筒
23‧‧‧內部磁鐵
24‧‧‧外部磁鐵
25‧‧‧主動小齒輪
26‧‧‧加熱裝置
27、29‧‧‧腔穴
30、31‧‧‧進料口
33‧‧‧內表面
35‧‧‧軸環
36‧‧‧重板
37‧‧‧進料口
38‧‧‧進料口
39‧‧‧進料口

Claims (7)

  1. 一種經由金屬-有機化學氣相沉積法(MOCVD)於單晶基材上產生二元半導體材料的磊晶層之方法,其使用以下裝置措施:(A)反應器,其具有相對於垂直中心軸為圓形的反應槽;(B)基材支架,水平配置於反應槽中且配接成繞著該垂直中心軸迴轉;(C)圓形篩網,配置於反應槽中該基材支架上方距離15mm及40mm之間之處,該篩網的直徑大於該基材支架的直徑;(D)用於導入前驅物(反應氣體)之二個分離的通道,其係建構成在該基材支架上方形成分離的前驅物徑向層流,且在移動期間形成區段;及(E)用於導入載體氣體H2和/或N2之二個分離的通道,其係建構成位於該前驅物供應通道之間且在該基材支架上方以層流方式流動,以在移動期間在介於含有不同前驅物的區段之間形成區段,且將該含有不同前驅物的區段彼此分開;其中(a)保持該基材支架於預定溫度;(b)使該基材支架繞著該垂直中心軸均勻地迴轉;(c)將至少兩種反應氣體分別供應至該反應槽的不同徑向區段內;其中該氣體中之至少一者含有可分解以形 成第III族或第II族元素的原子層的金屬-有機化合物(MOC),且該氣體中之至少另一者相應地含有第V族或第VI族元素的氫化物,該氫化物可相應地與該層中的第III族或第II族元素之原子反應;(d)該等反應氣體供應的順序為使得自該含有第III族或第II族元素之MOC的反應氣體產生之層暴露於相應地含有該第V族或第VI族元素之氫化物的反應氣體之作用之下;(e)為避免反應氣體彼此混合,在位於該等反應氣體流之間的區段內供應載體氣體;(f)在該層生長的整段期間,連續不停地將反應氣體及載體氣體供應至該反應槽內;(g)該反應氣體及載體氣體的供應方式是使得其於該反應槽內每一區段相對於相同直徑的徑向移動速度皆均勻;(h)基材支架迴轉的圓周速度、反應氣體中MOC的濃度、及反應氣體消耗速率的供應方式為使得該基材支架完整迴轉一圈所沈積的層厚度是約單原子層厚度的0.6至1.0;(i)該反應氣體及載體氣體是經由直徑小於1mm且以5至20個開口/平方厘米的表面密度配置的開口群組以實質水平的方式供應,使得該基材支架上方的徑向氣體以層流的位移方式流動,且生長中之層的厚度d實質上等於k×a×n,其中 k為正實數,其為在該基材支架完整迴轉一圈所沈積之該單原子層厚度的部份;a為正實數,其為該生長中材料的基質參數;n為正整數,其為該基材支架完整迴轉之圈數。
  2. 如申請專利範圍第1項之方法,其中該篩網的溫度是保持在相對於該基材支架之溫度的比例在0.6至0.9範圍內,以避免在反應槽中形成重複循環。
  3. 如申請專利範圍第1項之方法,其中該篩網為在該垂直中心軸與該篩網表面之間呈具有一角度的圓椎形,該角度範圍是90°至60°。
  4. 如申請專利範圍第1項之方法,其中該反應氣體及載體氣體是經由反應器的週邊部位供應至反應槽內,且經由該反應器的中心部位移除。
  5. 如申請專利範圍第1項之方法,其中該反應氣體及載體氣體是經由反應器的中心部位供應至反應槽內,且經該反應器的週邊部位移除。
  6. 如申請專利範圍第1項之方法,其中配置於基材支架上的基材在該基材支架繞著垂直中心軸迴轉時與其同時進行迴轉。
  7. 如申請專利範圍第1項之方法,其中將含有至少兩種屬於元素週期表第III族或第II族之元素的化合物之反應氣體供應至其中一個反應器區段內,且含有至少一種屬於元素週期表第V族或第VI族之元素的氫化物之反應氣體供應至該反應器之另一區段內。
TW104106067A 2013-08-19 2015-02-25 利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法 TWI570262B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013138480/28A RU2548578C2 (ru) 2013-08-19 2013-08-19 Способ получения эпитаксиального слоя бинарного полупроводникового материала на монокристаллической подложке посредством металлоорганического химического осаждения из газовой фазы
PCT/RU2014/000538 WO2015026265A1 (en) 2013-08-19 2014-07-21 Method of producing epitaxial layer of binary semiconductor material

Publications (2)

Publication Number Publication Date
TW201604307A TW201604307A (zh) 2016-02-01
TWI570262B true TWI570262B (zh) 2017-02-11

Family

ID=52483949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104106067A TWI570262B (zh) 2013-08-19 2015-02-25 利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法

Country Status (5)

Country Link
EP (1) EP2984678B1 (zh)
CN (1) CN105493240B (zh)
RU (1) RU2548578C2 (zh)
TW (1) TWI570262B (zh)
WO (1) WO2015026265A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673515C2 (ru) * 2017-02-02 2018-11-27 Общество С Ограниченной Ответственностью "Монолюм" Способ подачи газов в реактор для выращивания эпитаксиальных структур на основе нитридов металлов iii группы и устройство для его осуществления
RU2658503C1 (ru) * 2017-06-14 2018-06-21 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ низкотемпературной плазмоактивированной гетероэпитаксии наноразмерных пленок нитридов металлов третьей группы таблицы Д.И. Менделеева
CN109208071A (zh) * 2018-10-25 2019-01-15 绵阳市伯夏科技有限公司 灯珠加工用旋转盘式反应室
CN113088934A (zh) * 2020-12-14 2021-07-09 芯三代半导体科技(苏州)有限公司 旋转装置
CN113699509B (zh) * 2021-10-27 2022-02-01 苏州长光华芯光电技术股份有限公司 一种半导体生长设备及其工作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263588A1 (en) * 2009-04-15 2010-10-21 Gan Zhiyin Methods and apparatus for epitaxial growth of semiconductor materials
CN103430285A (zh) * 2011-03-22 2013-12-04 应用材料公司 用于化学气相沉积腔室的衬里组件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
DE10015371A1 (de) * 2000-03-28 2001-10-18 Huga Optotech Inc Verfahren und Vorrichtung zur Herstellung epitaktischer Schichten mittels EGAS-Technik
RU2187172C1 (ru) * 2001-01-09 2002-08-10 Фонд поддержки науки и образования Способ получения эпитаксиального слоя полупроводника iii-нитрида на чужеродной подложке
JP2004014953A (ja) * 2002-06-10 2004-01-15 Tokyo Electron Ltd 処理装置および処理方法
US6818249B2 (en) * 2003-03-03 2004-11-16 Micron Technology, Inc. Reactors, systems with reaction chambers, and methods for depositing materials onto micro-device workpieces
EP1872383A2 (en) * 2005-02-28 2008-01-02 Epispeed S.A. System and process for high-density,low-energy plasma enhanced vapor phase epitaxy
RU2414549C2 (ru) * 2009-02-19 2011-03-20 Самсунг Лед Ко., Лтд. Способ выращивания слоя нитрида галлия и способ получения нитридного полупроводникового устройства
CN103132140A (zh) * 2011-11-23 2013-06-05 甘志银 氢化物气相外延装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263588A1 (en) * 2009-04-15 2010-10-21 Gan Zhiyin Methods and apparatus for epitaxial growth of semiconductor materials
CN103430285A (zh) * 2011-03-22 2013-12-04 应用材料公司 用于化学气相沉积腔室的衬里组件

Also Published As

Publication number Publication date
EP2984678B1 (en) 2017-09-06
EP2984678A1 (en) 2016-02-17
RU2548578C2 (ru) 2015-04-20
EP2984678A4 (en) 2016-06-15
WO2015026265A1 (en) 2015-02-26
RU2013138480A (ru) 2015-02-27
TW201604307A (zh) 2016-02-01
CN105493240B (zh) 2017-04-12
CN105493240A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
TWI570262B (zh) 利用金屬-有機化學氣相沈積法於單晶基材上產生二元半導體材料的磊晶層之方法
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP4958798B2 (ja) 化学気相成長リアクタ及び化学気相成長法
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
JP6386901B2 (ja) 気相成長装置及び気相成長方法
CN105441904A (zh) 气体喷淋装置、化学气相沉积装置和方法
CN201626981U (zh) 一种化学气相淀积外延设备用的进气装置
CN102108547B (zh) 一种多片大尺寸氢化物气相外延方法和装置
JP2011222592A (ja) 気相成長装置及び気相成長方法
TW201108305A (en) Gas phase growing apparatus for group III nitride semiconductor
JPH09293681A (ja) 気相成長装置
US20150000596A1 (en) Mocvd gas diffusion system with gas inlet baffles
CN111188027B (zh) 一种化学气相沉积设备和成膜方法
TWI490367B (zh) 金屬有機化合物化學氣相沉積方法及其裝置
CN101445955A (zh) 空间调制原子层化学气相淀积外延生长的装置及方法
JP2007109685A (ja) 化合物半導体製造装置および化合物半導体製造方法
JP3702403B2 (ja) 気相成長方法
JP2012084581A (ja) 気相成長装置
CN204138762U (zh) 一种hvpe的气体混合装置
JP2005303168A (ja) 気相成長装置
JP7495882B2 (ja) マルチゾーンインジェクターブロックを備える化学蒸着装置
CN216639708U (zh) 一种共用金属源的hvpe装置
JP2004296639A (ja) 気相成長装置
JP3472976B2 (ja) Iii族窒化物半導体の成膜方法およびその装置
JP7432465B2 (ja) 気相成長装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees