JP2004296639A - 気相成長装置 - Google Patents

気相成長装置 Download PDF

Info

Publication number
JP2004296639A
JP2004296639A JP2003085154A JP2003085154A JP2004296639A JP 2004296639 A JP2004296639 A JP 2004296639A JP 2003085154 A JP2003085154 A JP 2003085154A JP 2003085154 A JP2003085154 A JP 2003085154A JP 2004296639 A JP2004296639 A JP 2004296639A
Authority
JP
Japan
Prior art keywords
gas supply
gas
substrate
supply pipe
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085154A
Other languages
English (en)
Other versions
JP4303016B2 (ja
Inventor
Haruo Sunakawa
晴夫 砂川
Kazuto Mita
一登 三田
Akira Usui
彰 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2003085154A priority Critical patent/JP4303016B2/ja
Publication of JP2004296639A publication Critical patent/JP2004296639A/ja
Application granted granted Critical
Publication of JP4303016B2 publication Critical patent/JP4303016B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】良好な膜質の半導体層を高い生産性で形成する成長装置を提供する。
【解決手段】III族原料ガス供給管12を、基板ホルダ18、19の中心に設けられた孔に嵌挿する。ウエハ41は、カバー21と固定部材22、23とにより各基板ホルダに取り付ける。基板ホルダ18、19および20は、固定部材22、23により連結する。モータ26により、基板ホルダ18、19および20の全体を、III族原料ガス供給管12を中心軸として回転運動させ、各基板ホルダに保持された各ウエハ41を、III族原料ガス供給管12の周囲に公転運動させる。III族原料ガス供給管12の側面にIII族原料ガスの噴出口25を設け、成長ガスを上下左右四方向へ放射状に供給する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、気相成長装置に関するものである。
【0002】
【従来の技術】
窒化ガリウム系半導体は、バンドギャップが大きく、またバンド間遷移が直接遷移型であることから、短波長発光素子や電子素子への展開が大いに期待されている。こうした素子を得るためには、基板上に窒化ガリウム系半導体をエピタキシャル成長させて素子構造を作成することが必要となる。ところが、窒化ガリウムと格子定数の整合する下地基板が存在しないことから、サファイアやSiCなどの異種基板上に、有機金属化学気相成長法(MOCVD)やハイドライド気相成長法(HVPE)等の気相成長法を用いて数μm〜数百μmの窒化ガリウム結晶を予め成長させ、この上にデバイス構造を作製することが行われている。
【0003】
こうした成長法のうち、特にHVPEは、成長速度が速く、窒化ガリウム系半導体層を厚膜に成長させたり、窒化ガリウム基板を作製したりするのに好適に用いられる。特許文献1には、HVPEによる窒化ガリウム系半導体の成長装置が記載されている。同文献に記載されたHVPE成長装置の構造を図11に示す。この結晶成長装置101は、外周に抵抗加熱ヒータ104を備え、フランジ110により密閉された結晶成長容器108と、HClガスを導入するための第1の導入管103と、NHガスを導入する第2の導入管102と、結晶成長容器108内に配置される基板保持具105とで構成される。なお、この結晶成長装置において、前記第1の導入管および前記第2の導入管並びに前記結晶成長容器の壁面等は石英を基材とした材料で形成されている。また、結晶成長容器108の側面にはガスの排気口107が穿設されており、第1の導入管103には原料載置部109が設けられこの部分にGa原料が配置されている。
【0004】
ところが、HVPE法では、目的とする基板上に均一性、再現性に優れた単結晶成長を行うことは容易ではなかった。例えば、窒化ガリウムは、HVPE法においては、NH+GaCl→GaN+H+HClなる反応で生成するが、NHとGaClとの混合が充分に行われず、また熱的に活性化されて分解したNHが基板上に供給されないと、膜厚の成長速度が小さく、また、成長装置内において分布が生じると、得られる窒化ガリウムの膜厚が不均一となるという問題があった。
【0005】
また、従来のHVPE成長装置は、生産性の点で改善の余地を有していた。図11は典型的なHVPE成長装置の例であるが、この種の装置では、内部に一枚のウエハまたはせいぜい2〜3枚のウエハが設置されるのみであり、充分に高い生産効率を得ることが困難であった。
【0006】
一方、特許文献2には、図12に示す構造のMOCVD成長装置が記載されている。この装置は、以下の構成を有している。筐体202の底部にリング状の固定板203を固定し、その上にベアリング204を介して円周方向に回転自由のリング状のターンテーブル205を乗せる。ターンテーブル205の内側円周面には公転ギヤが刻まれており、これに噛合する歯車205aがモータ206により回転すると、矢印Aの方向に回転する。ターンテーブル205には複数の回転軸207が等間隔で垂直に配列され回転自由に取り付けられており、これらはターンテーブル205の回転とともに、矢印Aの方向に移動、すなわち公転する。一方、回転軸207の下部の先端に取り付けられた歯車207aが固定板203の上に固定された自転ギヤ203aと噛合してターンテーブル205の回転とともに回転し、回転軸207が矢印Bの方向に自転する。
【0007】
反応ガスは吸入口212より吸入されてダウンフローする。反応ガスの供給先には、上端に富士山状の突起を備えたスタンド210が設けられ、ウエハはその周囲に配置される構造となっている。供給ガスは、突起211aにより矢印Cの方向に向かい、自公転するウエハ209の表面をフローして反応、蒸着する。
【0008】
ところがこの装置は、上記のようにガスの流れ方向を制御している関係上、ウエハを水平状態に保ちつつ同一平面内に配置することが必要となる。このように基板の配置方法に制約が加わる結果、ウエハ設置枚数の増加による生産効率向上にも制限が加わることとなる。また、窒化ガリウム系半導体の成長装置として適用する場合、MOCVDでは充分に大きい成長速度を得ることが困難であった。
【0009】
【特許文献1】
特開2002−305155号公報
【特許文献2】
特開昭63−250135号公報
【0010】
【発明が解決しようとする課題】
本発明はこうした事情に鑑みなされたものであって、その目的とするところは、基板表面での反応が効率良く進行するような流動状態で反応ガスを供給し良好な膜質の半導体層を形成する成長装置を提供することにある。特にハイドライド気相成長による成長を行う装置において、基板表面への原料ガスの供給を円滑に行い、高い成長速度を実現することを目的とする。
【0011】
また本発明の別の目的は、複数の基板に対して一度に処理を行い、高い生産性で成長を行う成長装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明によれば、成長室と、前記成長室内に設けられ、第一の反応ガスを供給するガス供給管と、前記第一の反応ガスと反応する第二の反応ガスを前記成長室内に供給するガス供給部と、前記ガス供給管の周囲に複数の基板を配置する基板保持部材と、前記基板保持部材および前記ガス供給管のうちの一方を他方に対して相対回転させることにより前記ガス供給管の周囲に前記複数の基板を公転させる回転駆動部と、を備え、前記ガス供給管は、その側壁に前記第一の反応ガスを供給するガス供給口を有し、前記ガス供給口から前記基板の表面に向けて前記第一の反応ガスが放射状に供給されるようにしたことを特徴とする気相成長装置が提供される。
【0013】
この気相成長装置は、複数の基板をガス供給管の周囲に配置し、ガス供給口から前記基板の表面に向けて前記第一の反応ガスが放射状に供給されるようにしている。このため、基板表面において、第一および第二の反応ガスの反応を促進するガス流動状態が実現され、この結果、良好な品質の半導体層を得ることができる。
【0014】
また、ガス供給管の周囲に配置する構成を有するため、基板の配置方法に関する自由度が大きくなる。前述の特許文献2に開示されている従来のMOCVD装置では、ガス供給口近くのガス流整流部材の周辺に、各基板を水平状態に保ちつつ同一平面内に配置する必要があり、基板設置枚数の増加に限界があった。この点、本発明の装置は複数の基板をガス供給管の周囲に配置するので、基板配置に関する自由度が大きく、たとえば、ガス供給管周辺に密に基板を配置したり、ガス供給管の延長方向に沿って複数の基板を配置したりする等、装置の大型化を回避しつつ基板枚数を増加させ生産効率を向上させることが可能となる。
【0015】
本発明の気相成長装置において、前記基板保持部材は、中心部に嵌挿孔を有する基板保持台を含み、前記ガス供給管は、前記基板保持台の前記嵌挿孔に嵌挿されており、前記回転駆動部は、前記ガス供給管を中心軸として前記基板保持台を回転駆動する構成とすることができる。
【0016】
このような構成を採用すれば、ガス供給管を中心軸として基板保持台を回転させることで、その基板保持台に保持された基板を公転させることができる。このため、複数の基板をガス供給管周りに公転させる構造を比較的簡便な機構で実現することができる。また、基板保持台上を中心部から外方向へ向かう層流を安定的に形成することができ、良好な品質の半導体層を得ることが可能となる。
【0017】
この気相成長装置において、前記基板保持台は、その表面および裏面にそれぞれ基板を保持できるように構成されており、前記ガス供給管は、前記基板保持台の一方の面に保持された基板の表面に第一の反応ガスを供給するガス供給口と、前記基板保持台の裏面に保持された基板の表面に第一の反応ガスを供給するガス供給口とを具備する構成とすることができる。ここで、基板保持台は、前記ガス供給管に対して略垂直に設けてもよいし、斜めに設けてもよい。さらに、基板保持台が、ガス供給管に対する設置角度の異なる複数の面を有する構成としてもよい。
【0018】
さらに、上記気相成長装置において、前記ガス供給管の延長方向に沿って複数の前記基板保持台が配置され、この複数の前記基板保持台の嵌挿孔に前記ガス供給管が嵌挿されており、前記ガス供給管は複数のガス供給口を具備し、各基板保持台に保持された基板の表面に対し、いずれかのガス供給口から第一の反応ガスが供給されるようにした構成とすることができる。このようにすれば、多数の基板を同時に処理し、高い生産性を実現することができる。
【0019】
本発明の気相成長装置において、基板保持台は、ガス供給管周りに離間して配置された複数の基板保持部により構成することができる。このようにすれば、基板保持部間の間隙部を介して原料ガスが流通するようになっている。このため、ガス供給管の延長方向に沿って基板保持台を複数列配置した構成において、基板ホルダに対する原料ガスの供給状態を良好にすることができる。基板保持台を構成する基板保持部の数は任意に設定することができる。また、各基板保持部を基板の公転面に対して傾斜させてもよい。
【0020】
本発明の気相成長装置において、基板保持部材は、ガス供給管の延長方向に沿って配置された複数の基板保持台と、該基板保持台を連結する連結部材とを具備し、当該基板保持部材がガス供給管の周囲に複数配置されている構成としてもよい。さらに、この構成において、回転駆動部により回転駆動される太陽歯車と、複数の基板保持部材にそれぞれ設けられ太陽歯車に噛合する遊星歯車とからなる遊星歯車機構をさらに備え、該遊星歯車機構により、ガス供給管の周囲を基板保持台が自公転運動するように構成することができる。これにより、簡便な機構で基板を自公転させながら成長を行うことができる。
【0021】
本発明の気相成長装置において、成長室は、仕切り部材により、第一の室と該第一の室に連通する第二の室とに区画されており、第一の室に基板保持部材が配置され、第二の室に、第二の反応ガスを供給するガス供給部が設けられた構成とすることができる。これにより、基板処理を行う室と第二の反応ガスが導入される室とを独立に温度制御することができるため、充分に加熱して熱的に活性化した第二の反応ガスを基板処理室に導入し、効率の良い成長を実現することができる。
【0022】
本発明の気相成長装置は、ハイドライド気相成長による成長を行う装置に適用した場合、最も効果的である。この場合、第一の反応ガスがIII族元素のハロゲン化物を含み、第二の反応ガスがV族原料ガスを含むものとする。MOCVD装置では、通常、ダウンフロー方式により原料ガスが供給される。そして、ウエハの載置台にヒータを設置し、基板が局所的に加熱する方式が採用される。これに対してHVPE装置では、V族原料ガスが満たされた反応管内に、Ga等のIII族原料の加熱蒸気とハロゲンガスを反応させて得られるIII族原料ガスを導入し、成長を行う。このため、通常HVPE法ではヒータにより反応管全体を加熱する方式が採用される。
【0023】
また、MOCVD装置を用いて窒化ガリウムの成長を行う場合、V族原料ガスとIII族原料ガスとを基板表面近傍まで導き、基板表面において両者を反応させ、成長を行う。この方式ではV族原料の分解効率があまり高くなく、高い成長速度を得るには一定の限界があった。一方、HVPEによれば、反応装置内に充填されたV族原料が装置内で滞留している間に分解が進み、高い成長速度を実現することが可能となる。本発明をHVPE成長装置に適用した場合、V族原料の分解物の存在下、ガス供給管の側壁に設けられたガス供給口から良好なガス流動状態にてIII族元素のハロゲン化物が供給される結果、基板表面で効率良く反応が進行し、良好な半導体層を高い生産性で得ることができる。
【0024】
こうしたHVPE成長装置においては、成長室の周囲に加熱手段が設け、ガス供給部から供給された第二の反応ガスが加熱手段により加熱されるように構成するとよい。この場合、第一の反応ガスがIII族元素のハロゲン化物を含み、第二の反応ガスが水素化窒素ガスを含むものとする。この構成を採用した場合、本発明の効果がより顕著に発揮される。ハイドライド気相成長により良質な膜を高い生産性で形成するためには、水素化窒素ガスの分解効率を高めることが重要である。上記構成によれば、水素化窒素ガスは成長室内に滞在する間に加熱手段によって充分に加熱され分解する。分解したガスは、ガス供給口から供給されたIII族元素のハロゲン化物と反応し、反応生成物が基板上に堆積する。こうした成長方式は、基板付近に供給口を有するガス供給管によって、2種類のガスを基板表面に供給するダウンフロー型のMOCVD装置とは原理的に相違する。HVPE成長装置にダウンフロー型の原料ガス供給方式を採用した場合、水素化窒素ガスの分解効率を充分に高くすることが困難である。
【0025】
【発明の実施の形態】
以下、本発明の好ましい実施形態について、実施例に基づいて説明する。
【0026】
実施例1
本実施例に係るHVPE成長装置を図1および図2に示す。図1および図2に示す成長装置は、成長の行われる反応管11と、反応管11にV族原料ガスを供給するV族原料ガス導入管28と、III族原料ガスを生成するハロゲン化物生成室36と、生成したIII族原料ガス(ハロゲン化ガス)を反応管11に供給するIII族原料ガス供給管12と、反応管11の内部に配置され被処理基板を保持する基板ホルダ20とを備えている。反応管11の直径は160mmである。
【0027】
ハロゲン化物生成室36は塩化ガリウムを生成し、これを、III族原料ガス供給管12を介して基板ホルダ20上のウエハ41表面に供給する。ハロゲン化物生成室36は、ハロゲンガス供給管29およびドーピングガス供給管30を備えるとともに、Ga原料14を収容するソースボート15を含んでいる。ハロゲンガス供給管29の供給口は、III族原料ガス供給管12内の上流側に配置され、供給された塩素ガスはIII族原料ガス供給管12内で滞留するようになっている。これにより、ハロゲンガスと揮発したGaとが接触する時間を長く確保できるようになっている。このため、Gaの塩化反応が促進され、塩素ガスの流量を増大させた場合でも、塩化ガリウムの生成効率は低下しない。導入された塩素の大部分は塩化ガリウムになり、未反応塩素の残存は微量にとどまる。
【0028】
反応管11は遮蔽板31により2つの室に区画されている。図中左側に位置する室では、V族原料ガス導入管28から供給されたアンモニアが滞留し、分解が促進される。この室の周囲には電気炉16が配置され、室内はたとえば800〜900℃程度の温度に維持される。図中右側に位置する成長領域13には、ウエハ41を保持する基板ホルダが配置され、この室内でGaNの成長が行われる。この室の周囲には電気炉17が配置され、室内はたとえば1000〜1200℃程度の温度に維持される。遮蔽板31は、成長領域13の高温度領域からハロゲン化物生成室36の配置された領域へ熱が拡散することを抑制する。本装置では、このような割型炉とすることにより昇温および降温速度を迅速に行うことを可能としている。この成長装置では、ハロゲン化物生成室36の配置された領域の温度は±1℃以下に制御され、成長領域13は0〜±5℃/cmの温度勾配で制御できる構造となっている。
【0029】
V族原料ガス導入管28から供給されたアンモニアは、図中左側の室で滞留し分解した後、遮蔽板31の間隙を介して図中右側の室に流入する。この室内に配置されたウエハ41表面において、アンモニア分解物と塩化ガリウムとが反応し、ウエハ41表面にGaNが堆積する。
【0030】
AA断面図に示すように、III族原料ガス供給管12は、基板ホルダ18、19の中心に設けられた孔に嵌挿されている。ウエハ41は、カバー21と固定部材22、23とにより各基板ホルダに取り付けられる。本装置では、基板ホルダ18の裏面に3枚、基板ホルダ19の両面に6枚、および基板ホルダ20の表面に3枚が取り付けられるようになっている。
【0031】
基板ホルダ18、19および20は、固定部材22、23により連結されている。基板ホルダ20は、回転軸24を介してモータ26と連結しており、モータ26により、基板ホルダ18、19および20の全体が、III族原料ガス供給管12を中心軸として回転運動するようになっている。この回転運動により、基板ホルダ18、19および20に保持された各ウエハ41は、III族原料ガス供給管12の周囲を公転運動する。このようにウエハ41を公転させながら成長ガスを供給することにより、基板面内におけるGaN層の膜質および厚みの均一化を図ることができる。なお、GaN層中に不純物を導入する場合は、ドーピングガス供給管30により適宜ドーピングガスを供給する。
【0032】
III族原料ガス供給管12の側面には、III族原料ガスの噴出口25が設けられている。この装置では、供給管の周囲に90度おきに4カ所の噴出口25を設け、ガスが上下左右四方向へ放射状に供給されるようにした。噴出口の数は単数でも複数でもよく、目的に応じて適宜に設計される。噴出口25の位置は、基板ホルダ18と基板ホルダ19の間、および、基板ホルダ19と基板ホルダ20の間とした。
【0033】
V族原料ガスは、V族原料ガス導入管28より供給され、反応管11全体に行き渡り、電気炉16によって充分に加熱され活性化された後、成長領域13に導入される。
【0034】
III族原料ガスおよびV族原料ガスの輸送のためのキャリアガスとしては、水素(H)ガス、窒素(N)ガス、HとNの混合ガスを用いる。ドーピングガスは、ドーピングガス供給管30より導入される。キャリアガス、III族原料ガス、および、V族原料ガス、ドーピングガスは排気口32より排出される。
【0035】
以上の構成を有する装置において、成長領域13に供給された塩化ガリウムおよびアンモニアの分解物が反応することで、III−V族化合物半導体42をウエハ41表面にHVPE成長させることができる。
【0036】
この気相成長装置は、III族原料ガス供給管12の周囲に複数の基板を配置し、噴出口25から基板の表面に向けて塩化ガリウムが放射状に供給されるようにしている。このため、アンモニアの分解物および塩化ガリウムの基板表面における反応を促進するガスの流動状態が実現され、良好な品質のGaN層を得ることができる。
【0037】
また本装置は、ガス供給管の周囲に基板を配置する構成を有するため、基板の配置方法に関する自由度が大きく、従来に比し処理基板枚数を大幅に増加することができる。また、本実施例では3つの基板ホルダ18、19、および20を有する構造としたが、成長領域の大きさ等に応じて基板ホルダの個数を増減できる。
【0038】
この装置を用いることで、In1−XGaN膜(0≦X≦1)、Al1−XGaN膜(0≦X≦1)、In1−XGaAs膜(0≦X≦1)、Al1−XGaAs膜(0≦X≦1)、In1−XGaP膜(0≦X≦1)、Al −XGaP膜(0≦X≦1)、GaAs1−X膜(0≦X≦1)等の成長を行うことができる。
【0039】
こうした膜を成長させるにあたり、III族原料ガスとして、ガリウム(Ga)と塩化水素の反応性生物である塩化ガリウム(GaCl)、三塩化ガリウム(GaCl)、トリメチルガリウム(TMG)と塩化水素の反応生成物であるGaCl、インジウム(In)と塩化水素の反応性生物である塩化インジウム(InCl)、InCl、およびアルミニウム(Al)と塩化水素の反応性生物である塩化アルミニウム(AlCl)、三塩化アルミニウム(AlCl)等が用いることができる。また、V族原料として、アンモニア(NH)、アルシン(AsH)、ホスフィン(PH)、ターシャルブチルアルシン(TBAs)等の有機砒素、および、ターシャルブチルホスフィン(TBP)等の有機リンを用いることができる。
【0040】
実施例2
本実施例に係るHVPE成長装置を図2に示す。この装置は、第一の実施例で説明した装置を縦型にしたものである。図3において、図1および図2と共通する部分については同じ符号を付してある。この装置は、図1および図2に示す装置と、装置が縦型である点、これにともないソースボート15の配置が変更された点のみ異なっており、その他は同様の構造を有している。したがって、本実施例では、各部の詳細な構造の説明は省略する。
【0041】
本実施例の装置は、基板ホルダ18、19、20が縦に一列に並ぶ配置となっており、基板ホルダの面は水平方向に位置している。このため、回転軸24およびモータ26にかかる負荷を低減できる。
【0042】
実施例3
本実施例では、図1および図2の成長装置を用いて窒化ガリウムをHVPE成長させた例を説明する。以下、図4を参照して説明する。まず、図4(a)のように、2インチ(1000)面のサファイア基板43上に低温GaNバッファー層を介して2μmの厚さのGaN膜44を成長した。GaN膜44表面にSiO膜(マスク)45を形成し、フォトリソグラフィにより、ストライプ状の開口部46を形成した。開口部はGaN膜44の<11−20>方向に10μm巾で形成され、マスク45巾は4μmとし、14μmピッチでGaN膜44表面全体にストライプパターンを形成した。
【0043】
GaN膜47の成長には、図1および図2に示した横型の成長装置を用いた。III族原料に、ガリウム(Ga)と塩化水素(HCl)ガスの反応物である塩化ガリウム(GaCl)を用い、V族原料にアンモニア(NH)ガスを用いた。原料ガスの輸送に用いるキャリアガスにはHとN混合ガスを用いた。Ga原料14をハロゲン化物生成室36内のソースボート15にセットした。
【0044】
成長手順は以下のようにした。まず、有機溶剤を用いてサファイア基板43を超音波洗浄し、さらに、80℃の硝酸に浸した後、純水で流水洗浄した。洗浄したサファイア基板43を図1および図2の成長装置の基板ホルダ18、19、及び20に12枚取り付け、成長領域13にセットし、基板ホルダを50rpmで回転させた。III族原料ガス供給管12から2000cc/minでNガスを供給した。V族原料ガス導入管28からNガスとHガスをそれぞれ5000cc/min、1000cc/min供給した。反応管11内を電気炉16と17により昇温し、成長領域13が600℃の温度に上昇したところで1500cc/minのNHガスを供給し、GaN膜44表面の分解を抑えた。
【0045】
次いでソースボート15の温度を850℃とし、成長領域13の温度を1040℃とした。温度が安定してから、Ga原料14上にHClガスを供給し、反応生成物の塩化ガリウム(GaCl)を成長領域13に供給した。HClガスの供給量は、200cc/minとした。成長領域13でGaClガスとNHガスが反応して、図4(b)に示したようにサファイア基板43上の開口部46に露出したGaN膜44表面からGaN膜47の成長が始まる。3時間の成長を行った後、HClガスの供給を停止し、電気炉16および17の電源を切断し、反応管11全体を降温した。NHガスは、成長領域13が500℃の温度に下がるまで供給した。基板を反応管11から取り出し、基板ホルダ18、19、および20から外した。
【0046】
成長したGaN膜47を評価したところ、12枚全ての表面は鏡面で平坦な膜が得られた。また、膜厚の均一性を調べた結果、中心値が550μmで、12枚全てのサファイア基板上で±5%以下と、良好な膜厚均一性を示した。
【0047】
実施例では、図1および図2に示した横型のHVPE装置を用いて、GaN膜を成長したが、図2に示す縦型のHVPE成長装置を用いても同様の膜が得られる。
【0048】
実施例4
本実施例では、GaAs基板上にGaAs膜をHVPE成長させる例について説明する。用いた成長装置は、図2の縦型のHVPE装置である。III族原料にガリウム(Ga)と塩化水素(HCl)の反応による塩化ガリウム(GaCl)を用い、V族原料にアルシン(AsH)ガスを用いた。キャリアガスに水素(H)ガスを用いた。
【0049】
まず、GaAsからなるウエハ41を有機洗浄した後、80℃の水+硫酸+過酸化水素水混合液を用いて表面エッチングを行い、その後純水で流水洗浄する。次に、図2の成長装置の基板ホルダ18、19、および20にウエハ41を12枚取り付け、成長領域13にセットした。基板ホルダは、80rpmで回転させた。反応管11内をNガスで置換してから、ハロゲンガス供給管29からIII族原料ガス供給管12へ2500cc/minのHガスを供給した。一方、V族原料ガス導入管28から5000cc/minのHガスを供給した。反応管11内のソースボート15領域と成長領域13を電気炉16と17で昇温する。GaAsからなるウエハ41のセットされた成長領域13の温度が600℃に上昇したところで80cc/minのAsHガスを供給してGaAsウエハ41表面の分解を抑えた。
【0050】
次いでGa原料14の温度を800℃、成長領域13の温度を750℃に昇温した。温度が安定してから、Ga原料14上に5cc/minでHClガスを供給して、GaAs膜の成長を開始した。成長時間を2時間とした。GaAs膜の成長後、Ga原料14上に供給したHClガスの供給を停止し、電気炉16、および17の電源を切断して、反応管11を降温した。成長領域13の温度が500℃の温度に下がるまでAsHガスの供給した。温度が常温まで下がってから成長結晶を反応管11より取り出し、基板ホルダ18、19および20から外した。
【0051】
成長したGaAs膜を評価したところ、膜厚は6μmであり、鏡面で平坦な表面が得られた。また、ホール測定により室温のキャリア濃度を測定したところ、n型の導電性を示し、2×1015/cm−3、移動度は、7600cm/V・sの値を示した。
【0052】
また、この成長したGaAs膜の膜厚の均一性を調べたところ、成長した12枚で、±7%以下となり、膜厚均一性の良い膜が得られた。
実施例5
本実施例に係るHVPE成長装置を図5に示す。図5(b)は断面図、図5(a)はB−B断面図である。この装置は、図1および図2に示した装置と基板ホルダの構造のみが異なっており、その他の構造は図1および図2の装置と同様である。
【0053】
遮蔽板59は、キャリアガスや、V族原料ガスやIII族原料ガスの逆流を防止するとともに、熱を遮断することにより遮蔽板59によって区画された2つの室の温度を独立に制御できるようにしている。
【0054】
ウエハ57は、カバー56を用いて基板ホルダ55に固定される。それぞれのホルダ対は、その中心部に孔を有しており、この孔をIII族原料ガス供給管52が嵌挿している。
【0055】
各基板ホルダ55は固定軸58で連結されている。基板ホルダ55および固定軸58からなる基板保持部材は、不図示のモータと接続した回転軸54に連結され、III族原料ガス供給管52を中心軸として0〜100rpmで回転する構造となっている。これにより、各ウエハ57は、III族原料ガス供給管52の周囲を公転運動するようになっている。
【0056】
III族原料ガス供給管52の側面に設けられたガスの噴出口53は、反応管51の成長領域にある基板ホルダ55の中心部から反応管51管壁方向に向かってIII族原料ガスを噴出する。V族原料ガスはIII族原料ガス供給管52と反応管51の間から供給される。
【0057】
基板ホルダ55は、それぞれ半円形状を有し、III族原料ガス供給管52に対し異なる設置角度で設けられている。これらは、いずれもウエハの公転面に対して斜めに傾斜した状態で設置されている。ここでは、基板ホルダの公転面に対して10度程度傾斜させている。こうした半円形状の基板ホルダ55が2個組み合わさって一対のホルダ対を構成する。このホルダ対は、V族原料ガスの供給元から見ると図5(a)に示すように円形形状となっている。図5の装置では、このホルダ対が2組設けられている。
【0058】
本実施例の装置は、上記した構成を有するため、各基板ホルダ55が回転するとV族原料ガスが外周から内方向に引き込まれ、ウエハ57表面へ充分な量のV族原料ガスを供給できるようになっている。また、上流側の基板ホルダ55から下流側の基板ホルダ55へ、V族原料ガスが順次送出され、下流側に位置する基板ホルダにも上流側の基板ホルダと同様にV族原料ガスが安定的に供給されるようになっている。すなわち、本実施例によれば、生産性向上のために基板ホルダを複数列配置した構成において、どの基板ホルダに対しても充分にV族原料ガスを供給することが可能となる。
【0059】
本実施例では、4個の半円状の基板ホルダを用いた構造例を示したが、さらにガス下流方向に複数の基板ホルダを設置することができる。また、基板ホルダの設置角度は、膜厚や組成の均一性を高めるために最適な角度で傾斜させることができる。
【0060】
実施例6
本実施例に係るHVPE成長装置を図6に示す。図6(b)は装置断面図であり、図6(a)はC−C断面図である。この装置は、図1および図2に示した装置と基板ホルダの構造のみが異なっており、その他の構造は図1および図2の装置と同様である。
【0061】
ウエハ67は、カバー66を用いて基板ホルダ65に固定される。それぞれのホルダ対は、その中心部に孔を有しており、この孔をIII族原料ガス供給管62が嵌挿している。
【0062】
各基板ホルダ65は固定軸68で連結されている。基板ホルダ65および固定軸68からなる基板保持部材は、不図示のモータと接続した回転軸64に連結され、III族原料ガス供給管62を中心軸として0〜100rpmで回転する構造となっている。これにより、各ウエハ67は、III族原料ガス供給管62の周囲を公転運動するようになっている。
【0063】
III族原料ガス供給管62の側面に設けられたガスの噴出口63は、反応管61の成長領域にある基板ホルダ65の中心部から反応管61管壁方向に向かって放射状に噴出する構造になっている。一方、V族原料ガスはIII族原料ガス供給管62と反応管61の間から供給される。
【0064】
基板ホルダ65およびカバー66は、断面CCに示すように概ね扇形状をしており、固定軸68で固定されている。これらの基板ホルダ65は、III族原料ガス供給管62の延長方向に沿って所定の間隔をおいて10個設置されている。この装置では、扇形形状の各基板ホルダ65が4個組み合わさって一対のホルダ対を構成する。
【0065】
このホルダ対は、CC断面で見ると図6(a)に示すように円形形状となっている。一つの基板ホルダとこれに隣接する基板ホルダは、基板ホルダ全体の回転軸の回りに90度回転させた配置とした。図6(a)において、基板ホルダ65a、65cが同一平面上に形成され、その下流側(V族原料ガスの流れ方向に対する下流側。以下、同様。)に基板ホルダ65b、65dが同一平面上に形成されている。基板ホルダ65aの位置から図中反時計回りに90度回転した位置の下流側に基板ホルダbが配置されている。そして、基板ホルダbの位置から図中反時計回りに90度回転した位置の上流側に基板ホルダcが配置され、さらにその位置から図中反時計回りに90度回転した位置の下流側に基板ホルダdが配置されている。ウエハ67は、カバー66を用いて基板ホルダ65に固定される。
【0066】
遮蔽板69は、キャリアガスや、V族原料ガスやIII族原料ガスの逆流を防止するとともに、熱の遮断を行い遮蔽板69によって区画された2つの室の温度を独立に制御できるようにしている。
【0067】
本実施例の装置では、基板の公転軸、すなわちIII族原料ガス供給管62の延在方向に沿って、複数の基板ホルダ群が配置されている。各基板ホルダ群は、同一平面内で離間して配置された扇形状の2個の基板ホルダ65により構成され、隣接する2組のホルダ群が、図6(a)に示すような円形配置をとる。扇形状の2個の基板ホルダ65間の間隙部を介して、V族原料ガスが自由に流通するようになっている。また、一の基板ホルダ群の間隙部と、隣接する他の基板ホルダ群の間隙部が、基板ホルダの回転軸に対して90度回転した位置関係になっており、これにより、V族原料ガスが円滑に下流側に送出される。すなわち、本実施例によれば、生産性向上のために基板ホルダを複数列配置した構成において、どの基板ホルダに対してもV族原料ガスを良好に供給することができる。
【0068】
なお、基板ホルダの数は、上記の構成に限られず任意の数に設定することができる。また、基板ホルダを、基板の公転面に対して傾斜させてもよい。
【0069】
実施例7
本実施例に係るHVPE成長装置を図7に示す。図7(b)は、装置断面図、図7(a)はD−D断面図である。この装置は、図1および図2に示した装置と基板ホルダの構造およびホルダの回転駆動系が異なっており、その他の構造は図1および図2の装置と同様である。
【0070】
本実施例の装置では、III族原料ガス供給管72の周りに、円盤状の基板ホルダ74が複数配置されている。これらの基板ホルダ74は、それぞれIII族原料ガス供給管72の周りを自公転する。基板ホルダ74はIII族原料ガス供給管72の周りの同一平面上に4個配置されている。この4個のホルダからなるホルダ群が、公転軸に沿って複数設けられ、多数のウエハの処理を同時に行うことができるようになっている。
【0071】
各基板ホルダ74は固定軸79で連結されている。基板ホルダ74および固定軸79からなる基板保持部材は、遊星歯車77を具備する。この遊星歯車77は、装置内に固定された内歯車76、太陽歯車78とともに遊星歯車機構を構成する。
【0072】
この遊星歯車機構は、図10に示す構造を有している。太陽歯車78は不図示のモータによって回転し、遊星歯車77が自公転するようになっている。
【0073】
基板ホルダ74は、断面DDに示すように同一面内で4組配置され、さらに、ガスの流れ方向に3段が設置され、これらが自公転する構造となっている。
【0074】
ウエハ80は、カバー81により基板ホルダ74に固定する。遮蔽板75は、上記実施例と同様にキャリアガスや、V族原料ガス、III族原料ガスの逆流や、熱の遮断を行う。
【0075】
III族原料ガス供給管72の側面に設けられたガスの噴出口73は、反応管71の中心部から管壁方向に向かって放射状に噴出する構造になっている。
【0076】
本実施例によれば、III族原料ガス供給管72の周囲に複数のウエハを配置し、これらを自公転させながらウエハ表面にIII族原料ガスが放射状に供給される。このため、良好な膜質のGaN系半導体層を高い生産性で得ることができる。
【0077】
実施例8
本実施例では、III族原料ガス供給管の他の構造例を示す。図8は本実施例に係るIII族原料ガス供給管の構造例である。この構造では、二種類のIII族原料を収容できる。例えば、III族原料としてガリウム(Ga)、他のIII族原料としてアルミニウム(Al)を置くことができる。その上流の導入管82、85からキャリアガスとともに塩化水素(HCl)ガスを導入する。HClガスはGa、Alと反応して、それぞれGaCl、およびAlCl、AlClを発生させる。特にAl系の場合には、AlClの状態で成長領域に輸送する方が好ましい。そのために通常はキャリアガスとして窒素(N)ガスなどの不活性ガスを用いる。水素(H)キャリアガスを用いると、AlClが安定となり、また用いる石英反応管と反応してAlが成長領域の前でAlとなって析出するからである。
【0078】
また、Alを用いた場合には固体のままの方が好ましく、その融点が659℃のために、Alソースボートをこの温度より低い温度領域に置く。あまり温度が低いとHClガスとの反応性が低くなるために、温度は500〜650℃にすることが好ましい。
【0079】
この原料ガス供給管では、二種類のIII族原料ガスを供給できるために成長領域において、AlGaNのような三元混晶を成長させることができる。
【0080】
AlとGaの他に、例えば、Inなどを置くことができる。さらに、III族原料ガス供給管の3つの部屋に仕切ることによって、Al、Ga、Inと三種類のIII族原料を置くことができる。これによりAlInGaNなどの四元混晶を成長させることができる。
【0081】
実施例9
本実施例は、図1および図2の成長装置のIII族原料ガス供給管12を図8に示したIII族原料ガス供給管に置き換えた装置を用い、AlGaN半導体結晶膜の成長を行った。
【0082】
先ず、図9のように、2インチ(1000)面のサファイア基板91上に低温GaNバッファー層を介して2μmの厚さのGaN膜92を形成した。この基板結晶を成長装置にセットして、基板ホルダを50rpmで回転させた。導入管82、導入管85からNガスを500cc/minづつ、V族原料ガス導入管28からNガスを6000cc/min供給した。反応管11内を電気炉16と17により昇温し、成長領域13が600℃の温度になってから1500cc/minの流量のNHガスをV族原料ガス導入管28より供給し、GaN膜92表面の分解を抑えた。その後、以下のようにしてGaN膜92上にAlGaN膜93を形成した。
【0083】
Alソースボート86と、Gaソースボート83領域の温度をそれぞれ600℃、800℃として、成長領域13の温度を1060℃とした。温度が安定してから、Ga原料84、Alソース87上にNキャリアガスとともにHClガスを供給し、反応生成物の塩化ガリウム(GaCl)と、三塩化アルミニウム(AlCl)とを成長領域13に供給した。HClガスの供給量は、Gaソースに対して200cc/min、Alソースに対して100cc/minである。成長領域13でGaCl、AlClとNHガスが反応して、GaN膜92の上にAlGaN膜93が成長した。約2時間の成長を行った後、HClガスの供給を停止し、電気炉16、および17の電源を切断し、反応管11全体を降温した。NHガスは、成長領域13が500℃の温度に下がるまで供給した。成長結晶を反応管11から取り出し、基板ホルダ20、21、22から外した。
成長したAlGaN膜93を評価したところ、12枚全ての表面は鏡面で平坦な膜が得られた。また、X線ロッキングカーブによってAlの組成を調べた結果、約20%のAlが含まれていることがわかった。組成の均一性を調べた結果、12枚全てのウエファで±4%以下であり、良好な組成均一性を示した。
【0084】
実施例では、図1および図2に示した横型のHVPE装置を用いた成長例を示したが、図2に示す縦型のHVPE成長装置を用いても同様な効果が得られる。
【0085】
実施例10
本実施例は、本発明をMOCVD装置に適用した例である。MOCVD装置では、III族原料としてトリメチルガリウム等の有機化合物を用いることから、この化合物の分解を抑制するため、装置全体を加熱せず基板を局所的に加熱する方式をとることが必要となる。このため、前述したHVPE成長装置とは基板加熱手段が相違する。また、HVPE成長装置では、III族原料として塩化ガリウム等のハロゲン化物を用いる関係上、ハロゲン化物生成室36を設けていたが、MOCVD装置ではこの室が存在しない。
【0086】
以下、本実施例に係る装置およびこの装置を用いた成長方法について、図13を参照し、サファイア基板上のGaN膜の成長を例に挙げて説明する。まず2インチ(0001)面サファイア基板117を有機洗浄した後、100℃のリン酸と硫酸の混合液に30分間浸してエッチングを行い、流水洗浄して成長表面処理を行う。つづいて、洗浄したサファイア基板117を反応管111内の基板ホルダ115の表面と裏面に合計8枚取り付けた。
【0087】
基板ホルダ115は保持具118により回転軸124に取り付けられており、回転導入機120により回転できるようになっている。成長中、この基板ホルダを回転導入機120により100rpm程度で回転させた。成長中は、冷却のため、断熱板123に設けられた冷却管および回転軸124に設けられた冷却管125に、それぞれ2000cc/minの冷却水を供給した。反応管111内をNガスで置換してから、導入管112と113よりNガスとHガスを供給した。ガス流量は、それぞれの導入管において、1500cc/min、および6000cc/minである。
【0088】
高周波発振器に接続された誘導コイル121により基板ホルダ115、カバー116を加熱した。基板ホルダ115はカーボン製であり、誘導コイル121により局所的に加熱される。これにより、1100℃の温度で10分間サファイア基板117の表面処理を行った。なお、サファイア基板117の温度は、パイロメータ122によりモニターした。
【0089】
次に、サファイア基板117の温度を500℃に降温した。温度が安定してから、導入管113から3000cc/minのNガスとHガス、および8000cc/minのNHガスを供給し、導入管112から1500cc/minのNガスとHガス、および10μmol/minの割合でトリメチルガリウム(TMG)を供給した。なお、成膜室内に導入されたガスは排気口126より排出される。
【0090】
導入管112より供給したキャリアガスやTMGは、吹出口114より反応管111の管壁方向に吹出してサファイア基板117上に供給され、導入管113より供給したキャリアガスやNHガスは、基板ホルダ115と反応管111の隙間からサファイア基板117上に供給され、両者が基板上で反応することでGaN膜が成長する。7分間の成長で、サファイア基板117上に30nmの厚さのGaN膜が成長した。
【0091】
次に、TMGガスの供給を停止し、NHガスを供給しながらサファイア基板117を、約12分間で1070℃の温度に昇温した。温度が安定してから導入管112より100μmol/minの流量のTMGを供給しGaN膜を60分間成長した。
【0092】
サファイア基板117上に成長したGaN膜は平坦な表面であった。また、厚さは2μmで、膜厚の均一性を調べた結果、8枚全てにおいて±3%以下であり、良好な均一性が得られた。
【0093】
本実施例では、GaN膜の例を示したが、トリメチルアルミニウム(TMA)やトリメチルインジウム(TMI)等を用いることで、Al1−XGaN(0≦X≦1)膜、In1−XGaN(0≦X≦1)膜が成長できる。また、アルシン(AsH)やホスフィン(PH)等を用いることで、Al1−XGaAs(0≦X≦1)膜、In1−XGaAs(0≦X≦1)膜、Al1−XGaP(0≦X≦1)膜がIn1−XGaP(0≦X≦1)膜が形成できる。
【0094】
以上、本発明を実施例をもとに説明した。この実施例は例示であり、様々な変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【0095】
たとえば、被処理基板のサイズは、上記実施例では2インチ径(直径)のものを使用したが、たとえば4インチ径の大口径基板を用いることもできる。
【0096】
【発明の効果】
以上説明したように本発明によれば、基板表面での反応が効率良く進行するような流動状態で反応ガスを供給し良好な膜質の半導体成長層を形成する成長装置が提供される。また、従来にない高い生産性を有する成長装置が提供される。
【図面の簡単な説明】
【図1】実施の形態に係るHVPE成長装置の概略図である。
【図2】図1に示したHVPE成長装置のAA断面図である。
【図3】実施の形態に係るHVPE成長装置の概略図である。
【図4】窒化ガリウムをHVPE成長させる工程を説明する工程断面図である。
【図5】実施の形態に係るHVPE成長装置の概略図である。
【図6】実施の形態に係るHVPE成長装置の概略図である。
【図7】実施の形態に係るHVPE成長装置の概略図である。
【図8】III族原料ガス供給管の構造の一例を示す図である。
【図9】窒化ガリウムをHVPE成長させる工程を説明する工程断面図である。
【図10】図7の成長装置を回転駆動する遊星歯車の構造を示す図である。
【図11】従来のHVPE成長装置の概略図である。
【図12】従来のMOCVD成長装置の概略図である。
【図13】実施の形態に係るMOCVD成長装置の概略図である。
【符号の説明】
11 反応管
12 III族原料ガス供給管
13 成長領域
14 Ga原料
15 ソースボート
16 電気炉
17 電気炉
18 基板ホルダ
19 基板ホルダ
20 基板ホルダ
21 カバー
22 固定部材
23 固定部材
24 回転軸
25 噴出口
26 モータ
28 V族原料ガス導入管
29 ハロゲンガス供給管
30 ドーピングガス供給管
31 遮蔽板
32 排気口
36 ハロゲン化物生成室
41 ウエハ
42 III族化合物半導体
43 サファイア基板
44 GaN膜
45 マスク
46 開口部
47 GaN膜
51 反応管
52 III族原料ガス供給管
53 噴出口
54 回転軸
55 基板ホルダ
56 カバー
57 ウエハ
58 固定軸
59 遮蔽板
61 反応管
62 III族原料ガス供給管
63 噴出口
64 回転軸
65 基板ホルダ
65a 基板ホルダ
65b 基板ホルダ
65a 基板ホルダ
66 カバー
67 ウエハ
68 固定軸
69 遮蔽板
71 反応管
72 III族原料ガス供給管
73 噴出口
74 基板ホルダ
75 遮蔽板
76 内歯車
77 遊星歯車
78 太陽歯車
79 固定軸
80 ウエハ
81 カバー
82 導入管
83 ソースボート
84 Ga原料
85 導入管
86 ソースボート
87 Alソース
91 サファイア基板
92 GaN膜
93 AlGaN膜
36 ハロゲン化物生成室
111 反応管
112 導入管
113 導入管
114 吹出口
115 基板ホルダ
116 カバー
117 サファイア基板
118 保持具
120 回転導入機
121 誘導コイル
122 パイロメータ
123 断熱板
124 回転軸
125 冷却管
126 排出口

Claims (12)

  1. 成長室と、
    前記成長室内に設けられ、第一の反応ガスを供給するガス供給管と、
    前記第一の反応ガスと反応する第二の反応ガスを前記成長室内に供給するガス供給部と、
    前記ガス供給管の周囲に複数の基板を配置する基板保持部材と、
    前記基板保持部材および前記ガス供給管のうちの一方を他方に対して相対回転させることにより前記ガス供給管の周囲に前記複数の基板を公転させる回転駆動部と、
    を備え、
    前記ガス供給管は、その側壁に前記第一の反応ガスを供給するガス供給口を有し、前記ガス供給口から前記基板の表面に向けて前記第一の反応ガスが放射状に供給されるようにしたことを特徴とする気相成長装置。
  2. 請求項1に記載の気相成長装置において、
    前記基板保持部材は、中心部に嵌挿孔を有する基板保持台を含み、
    前記ガス供給管は、前記基板保持台の前記嵌挿孔に嵌挿されており、
    前記回転駆動部は、前記ガス供給管を中心軸として前記基板保持台を回転駆動することを特徴とする気相成長装置。
  3. 請求項2に記載の気相成長装置において、
    前記基板保持台は、その表面および裏面にそれぞれ基板を保持できるように構成されており、
    前記ガス供給管は、前記基板保持台の一方の面に保持された基板の表面に第一の反応ガスを供給するガス供給口と、前記基板保持台の裏面に保持された基板の表面に第一の反応ガスを供給するガス供給口とを具備することを特徴とする気相成長装置。
  4. 請求項2または3に記載の気相成長装置において、
    前記基板保持台は、前記ガス供給管に対して略垂直に設けられていることを特徴とする気相成長装置。
  5. 請求項2または3に記載の気相成長装置において、
    前記基板保持台は、前記ガス供給管に対する設置角度の異なる複数の面を有することを特徴とする気相成長装置。
  6. 請求項2乃至5いずれかに記載の気相成長装置において、
    前記ガス供給管の延長方向に沿って複数の前記基板保持台が配置され、この複数の前記基板保持台の嵌挿孔に前記ガス供給管が嵌挿されており、前記ガス供給管は複数のガス供給口を具備し、各基板保持台に保持された基板の表面に対し、いずれかのガス供給口から第一の反応ガスが供給されるようにしたことを特徴とする気相成長装置。
  7. 請求項2乃至6いずれかに記載の気相成長装置において、
    前記基板保持台は、前記ガス供給管周りに離間して配置された複数の基板保持部により構成されることを特徴とする気相成長装置。
  8. 請求項1に記載の気相成長装置において、
    前記基板保持部材は、前記ガス供給管の延長方向に沿って配置された複数の基板保持台と、該基板保持台を連結する連結部材とを具備し、当該基板保持部材が前記ガス供給管の周囲に複数配置されていることを特徴とする気相成長装置。
  9. 請求項8に記載の気相成長装置において、
    前記回転駆動部により回転駆動される太陽歯車と、前記複数の基板保持部材にそれぞれ設けられ前記太陽歯車に噛合する遊星歯車とからなる遊星歯車機構をさらに備え、該遊星歯車機構により、前記ガス供給管の周囲を前記基板保持台が自公転運動するように構成されたことを特徴とする気相成長装置。
  10. 請求項1乃至9いずれかに記載の気相成長装置において、
    前記成長室は、仕切り部材により、第一の室と該第一の室に連通する第二の室とに区画されており、前記第一の室に前記基板保持部材が配置され、前記第二の室に、第二の反応ガスを供給する前記ガス供給部が設けられたことを特徴とする気相成長装置。
  11. 請求項1乃至10いずれかに記載の気相成長装置において、
    当該装置はハイドライド気相成長による成長を行う装置であって、前記第一の反応ガスがIII族元素のハロゲン化物を含み、前記第二の反応ガスがV族原料ガスを含むことを特徴とする気相成長装置。
  12. 請求項11に記載の気相成長装置において、
    前記成長室の周囲に加熱手段が設けられ、前記ガス供給部から供給された前記第二の反応ガスが前記加熱手段により加熱されるように構成されており、
    前記第一の反応ガスがIII族元素のハロゲン化物を含み、前記第二の反応ガスが水素化窒素ガスを含むことを特徴とする気相成長装置。
JP2003085154A 2003-03-26 2003-03-26 気相成長装置 Expired - Fee Related JP4303016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085154A JP4303016B2 (ja) 2003-03-26 2003-03-26 気相成長装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085154A JP4303016B2 (ja) 2003-03-26 2003-03-26 気相成長装置

Publications (2)

Publication Number Publication Date
JP2004296639A true JP2004296639A (ja) 2004-10-21
JP4303016B2 JP4303016B2 (ja) 2009-07-29

Family

ID=33400145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085154A Expired - Fee Related JP4303016B2 (ja) 2003-03-26 2003-03-26 気相成長装置

Country Status (1)

Country Link
JP (1) JP4303016B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010588A (ja) * 2008-06-30 2010-01-14 Stanley Electric Co Ltd 素子の製造方法および成膜装置
JP2011049480A (ja) * 2009-08-28 2011-03-10 Kokusai Electric Semiconductor Service Inc 基板処理装置及び基板処理方法
JP2013058741A (ja) * 2011-08-17 2013-03-28 Hitachi Cable Ltd 金属塩化物ガス発生装置、ハイドライド気相成長装置、及び窒化物半導体テンプレート
CN103320763A (zh) * 2012-03-21 2013-09-25 日立电线株式会社 金属氯化物气体产生装置、氢化物气相沉积装置以及氮化物半导体模板的制造方法
JP2017118129A (ja) * 2012-03-21 2017-06-29 住友化学株式会社 窒化物半導体自立基板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010588A (ja) * 2008-06-30 2010-01-14 Stanley Electric Co Ltd 素子の製造方法および成膜装置
JP2011049480A (ja) * 2009-08-28 2011-03-10 Kokusai Electric Semiconductor Service Inc 基板処理装置及び基板処理方法
JP2013058741A (ja) * 2011-08-17 2013-03-28 Hitachi Cable Ltd 金属塩化物ガス発生装置、ハイドライド気相成長装置、及び窒化物半導体テンプレート
US9236252B2 (en) 2011-08-17 2016-01-12 Sciocs Company Limited Metal chloride gas generator, hydride vapor phase epitaxy growth apparatus, and nitride semiconductor template
US10418241B2 (en) 2011-08-17 2019-09-17 Sumitomo Chemical Company, Limited Metal chloride gas generator, hydride vapor phase epitaxy growth apparatus, and nitride semiconductor template
CN103320763A (zh) * 2012-03-21 2013-09-25 日立电线株式会社 金属氯化物气体产生装置、氢化物气相沉积装置以及氮化物半导体模板的制造方法
JP2013225648A (ja) * 2012-03-21 2013-10-31 Hitachi Cable Ltd 金属塩化物ガス発生装置、ハイドライド気相成長装置及び窒化物半導体テンプレートの製造方法
JP2017118129A (ja) * 2012-03-21 2017-06-29 住友化学株式会社 窒化物半導体自立基板の製造方法

Also Published As

Publication number Publication date
JP4303016B2 (ja) 2009-07-29

Similar Documents

Publication Publication Date Title
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US20140326186A1 (en) Metal-organic vapor phase epitaxy system and process
JP7029522B2 (ja) 一体化されたエピタキシと予洗浄システム
WO2010118293A2 (en) Hvpe chamber hardware
JP2011181580A (ja) 気相成長装置
JP3553583B2 (ja) 窒化物の気相成長装置
JP4303016B2 (ja) 気相成長装置
JP2005223243A (ja) Iii族窒化物系半導体結晶の製造方法及びハイドライド気相成長装置
CN111349908A (zh) SiC化学气相沉积装置
JP2010153483A (ja) 成膜装置、及び、成膜方法
JP5496721B2 (ja) 成膜装置および成膜方法
JP4365259B2 (ja) 気相成長装置
JP2007109685A (ja) 化合物半導体製造装置および化合物半導体製造方法
JP2008294217A (ja) 気相成長装置及び気相成長方法
JP2007042846A (ja) ハイドライド気相成長装置、iii族窒化物半導体基板の製造方法及びiii族窒化物半導体基板
TW201319306A (zh) 氣相成長裝置之構成零件之洗淨裝置及洗淨方法
JP2013070016A (ja) 窒化物半導体結晶成長装置およびその成長方法
JP4075385B2 (ja) 窒化ガリウム単結晶の種結晶およびその成長方法
JP2006287256A (ja) 化学気相成長装置
JP2007042899A (ja) 気相成長装置
JP2004165445A (ja) 半導体製造装置
JP2016096178A (ja) 成膜方法、半導体素子の製造方法、および自立基板の製造方法
JP2010219116A (ja) 気相成長装置、ガス供給部材および半導体製造方法
JPH1050615A (ja) 枚葉式気相成長装置
JP2005228757A (ja) 気相成長装置及び気相成長方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080424

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees