TWI556375B - Comeposite heat spreader and thermoelectric device thereof - Google Patents

Comeposite heat spreader and thermoelectric device thereof Download PDF

Info

Publication number
TWI556375B
TWI556375B TW102117828A TW102117828A TWI556375B TW I556375 B TWI556375 B TW I556375B TW 102117828 A TW102117828 A TW 102117828A TW 102117828 A TW102117828 A TW 102117828A TW I556375 B TWI556375 B TW I556375B
Authority
TW
Taiwan
Prior art keywords
substrate
heat
heat sink
composite
heat dissipation
Prior art date
Application number
TW102117828A
Other languages
Chinese (zh)
Other versions
TW201445684A (en
Inventor
蔡承恩
Original Assignee
蔡承恩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡承恩 filed Critical 蔡承恩
Priority to TW102117828A priority Critical patent/TWI556375B/en
Publication of TW201445684A publication Critical patent/TW201445684A/en
Application granted granted Critical
Publication of TWI556375B publication Critical patent/TWI556375B/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

複合式散熱片及其熱電裝置 Composite heat sink and thermoelectric device

本發明係有關於一種散熱元件,特別是指一種兼具熱傳導和熱輻射功能之複合式散熱片及其熱電裝置。 The invention relates to a heat dissipating component, in particular to a composite heat sink having both heat conduction and heat radiation functions and a thermoelectric device thereof.

近年來,電子裝置例如超薄筆記型電腦(Ultrabook)、平板電腦及智慧型手機等對運算效能的要求愈來愈高,導致電子元件的發熱量(Power Dissipation)和相對熱流量(Heat Flux)亦愈來愈高;電子裝置同時也朝向輕薄短小的設計趨勢,而這種極度壓縮空間之設計方向往往造成散熱的困難,故散熱問題變成電子產業首要克服的問題之一。 In recent years, electronic devices such as ultra-thin notebooks (Ultrabooks), tablets, and smart phones have become more and more demanding, resulting in power dissipation and relative heat flow (Heat Flux) of electronic components. It is also getting higher and higher; electronic devices are also facing a light, thin and short design trend, and the design direction of such extreme compression space often causes difficulty in heat dissipation, so the heat dissipation problem has become one of the first problems overcome by the electronics industry.

舉例來說,在傳統的電路板的構造中,由於電子元件數量及消耗功率低,電子元件所產生的熱量可經由銅箔層傳導出來,並直接將熱量散逸至環境空氣中。現今電路板上所佈設的電子元件的數量多且功率又高,伴隨而來的問題是,隨著電流增加、電功率的消耗增加,所產生的局部熱量過度升高,故利用電子元件接觸腳(pin)排熱的方式已經無法將大部份的熱量散出,使得電子元件及電路板無法維持在正常工作溫度,導致電子元件的物理特性改變,從而無法達到預定的工作效能。對使用者而言,很可能因局部高溫而造成燙傷之危安情事。 For example, in the construction of a conventional circuit board, since the number of electronic components and power consumption are low, heat generated by the electronic components can be conducted through the copper foil layer and directly dissipate heat into the ambient air. Nowadays, the number of electronic components disposed on the circuit board is large and the power is high. The problem is that as the current increases and the power consumption increases, the local heat generated excessively rises, so the electronic component contacts the foot ( The heat removal method has been unable to dissipate most of the heat, so that the electronic components and the circuit board cannot be maintained at the normal operating temperature, resulting in a change in the physical characteristics of the electronic components, thereby failing to achieve the predetermined working efficiency. For the user, it is very likely that the local high temperature will cause burns.

先前技藝中解決的方法有在熱源附近安裝風扇,利用風扇加速空氣之熱對流以將熱量排除,此種散熱方式的缺點在於,風扇 會在電子裝置中占據一定空間,影響電子裝置之微型化。 A method solved in the prior art is to install a fan near the heat source, and use a fan to accelerate the heat convection of the air to remove heat. The disadvantage of this heat dissipation method is that the fan It will occupy a certain space in the electronic device and affect the miniaturization of the electronic device.

另外,先前技藝中還有把散熱鰭片以面接觸的方式裝設在會產生高熱量的電子元件上,透過散熱鰭片之高表面積將熱量逸散到空氣環境中。惟,散熱鰭片的表面因製程之限制無法如預期般平整,因而散熱鰭片與電子元件之間會存在有間隙,使得散熱效能大幅降低(因空氣的導熱係數較差)。 In addition, in the prior art, the heat dissipating fins are mounted in surface contact on electronic components that generate high heat, and the high surface area of the heat dissipating fins dissipates heat into the air environment. However, the surface of the heat sink fin cannot be flattened as expected due to process limitations, so there is a gap between the heat sink fin and the electronic component, so that the heat dissipation performance is greatly reduced (due to the poor thermal conductivity of air).

雖然,在散熱鰭片與電子元件之間填充軟性導熱介質材料(Thermal Interface Material)例如導熱膏、導熱膠等可解決上述之問題。但是,所述軟性導熱介質材料本身會根據溫度變化而有所改變(因高溫而蒸發,以及因低溫而固化收縮),導致無法滿足產品的耐久性需求。 Although a thermal interface material such as a thermal conductive paste or a thermal conductive paste is filled between the heat dissipation fin and the electronic component, the above problem can be solved. However, the soft thermal conductive material itself varies depending on temperature changes (evaporation due to high temperature, and curing shrinkage due to low temperature), resulting in failure to meet the durability requirements of the product.

本發明針對散熱片結構進行改良,通過結構性的改變並搭配散熱孔的佈局設計,可有效排除薄型電子裝置於運作時產生的熱量,進而可解決局部高溫的問題,以提升薄型電子裝置的適用性及可靠度。 The invention improves the structure of the heat sink, and the structural change and the layout design of the heat dissipation hole can effectively eliminate the heat generated by the thin electronic device during operation, thereby solving the problem of local high temperature, thereby improving the application of the thin electronic device. Sex and reliability.

根據本發明之一實施例,所述複合式散熱片包括一第一基板、一熱擴散輻射層及一第二基板,該熱擴散輻射層係設置於該第一基板上且包含碳複合材料,第二基板係設置於該熱擴散輻射層上,其中,該第一基板及該第二基板的其中之一上開設有複數個散熱孔。 According to an embodiment of the present invention, the composite heat sink includes a first substrate, a thermal diffusion radiation layer, and a second substrate. The thermal diffusion radiation layer is disposed on the first substrate and includes a carbon composite material. The second substrate is disposed on the thermal diffusion radiation layer, wherein a plurality of heat dissipation holes are formed in one of the first substrate and the second substrate.

在一變化實施例中,該第二基板具有一接觸區域及兩分別位於該接觸區域之相對二側的散熱區域,該些散熱孔分布於該第二基板之散熱區域。 In a variant embodiment, the second substrate has a contact area and two heat dissipation regions respectively located on opposite sides of the contact area, and the heat dissipation holes are distributed in the heat dissipation area of the second substrate.

在一變化實施例中,該第一基板具有一中央區域及兩分別位於該中央區域之相對二側的散熱區域,該中央區域係位於該接觸區域之相對處,該些散熱孔進一步分布於該第一基板之散熱區域。 在一變化實施例中,遠離該第二基板之接觸區域之散熱孔的密度高於鄰近該第二基板之接觸區域之散熱孔的密度,且遠離該第一基板之中央區域之散熱孔的密度高於鄰近該第一基板之接觸區域之散熱孔的密度。 In a variant embodiment, the first substrate has a central region and two heat dissipating regions respectively located on opposite sides of the central region, wherein the central region is located at an opposite side of the contact region, and the heat dissipation holes are further distributed in the The heat dissipation area of the first substrate. In a variant embodiment, the density of the heat dissipation holes away from the contact area of the second substrate is higher than the density of the heat dissipation holes adjacent to the contact area of the second substrate, and the density of the heat dissipation holes away from the central area of the first substrate A density higher than a heat dissipation hole adjacent to a contact area of the first substrate.

在一變化實施例中,該熱擴散輻射層以100份重量比為基準包含30至70重量份之樹脂材料及25至50重量份之碳複合材料。 In a variant embodiment, the heat diffusion radiation layer comprises 30 to 70 parts by weight of the resin material and 25 to 50 parts by weight of the carbon composite based on 100 parts by weight.

在一變化實施例中,該碳複合材料為鑽石、人造石墨、石墨烯、奈米碳管、碳黑及碳纖維所組成群組中的其中一種。 In a variant embodiment, the carbon composite is one of a group consisting of diamond, artificial graphite, graphene, carbon nanotubes, carbon black and carbon fibers.

在一變化實施例中,該碳複合材料之平均外徑為10nm~20μm。 In a variant embodiment, the carbon composite has an average outer diameter of from 10 nm to 20 μm.

在一變化實施例中,更包含5至20重量份之輻射粒子。 In a variant embodiment, more than 5 to 20 parts by weight of the radiation particles are contained.

在一變化實施例中,該輻射粒子為金屬顆粒、氧化物顆粒或氮化物顆粒,該輻射粒子之平均粒徑為3μm~20μm。 In a variant embodiment, the radiant particles are metal particles, oxide particles or nitride particles, the radiant particles having an average particle size of from 3 μm to 20 μm.

在一變化實施例中,該第一基板、該熱擴散輻射層及該第二基板之厚度比為1:0.05~0.2:1。 In a variant embodiment, the first substrate, the thermally diffused radiation layer and the second substrate have a thickness ratio of 1:0.05 to 0.2:1.

根據上述複合式散熱片,本發明另提供一種熱電裝置,包括一上述之複合式散熱片、一熱源體、一熱電元件及一供電元件,其中該熱源體係連接於該複合式散熱片之第二基板,該熱電元件係連接於該複合式散熱片之第一基板,該供電元件係電連接於該熱電元件。 According to the above composite heat sink, the present invention further provides a thermoelectric device comprising the above composite heat sink, a heat source body, a thermoelectric element and a power supply component, wherein the heat source system is connected to the second heat sink The substrate is connected to the first substrate of the composite heat sink, and the power supply element is electrically connected to the thermoelectric element.

在一變化實施例中,該熱電元件具有一吸熱端、一放電端及複數個位於該吸熱端與該放熱端之間的熱電耦對,該吸熱端連接於該複合式散熱片之第一基板,該放電端電連接於該供電元件。 In a variant embodiment, the thermoelectric element has a heat absorbing end, a discharge end and a plurality of thermocouple pairs between the heat absorbing end and the heat absorbing end, the heat absorbing end being connected to the first substrate of the composite heat sink The discharge end is electrically connected to the power supply element.

在一變化實施例中,該些熱電耦對各包括一p型半導體元件及一n型半導體元件。 In a variant embodiment, the thermocouple pairs each comprise a p-type semiconductor component and an n-type semiconductor component.

本發明至少具有以下有益效果:本發明之複合式散熱片通過將熱擴散輻射層(薄膜)夾置於兩金屬基板間之結構性設計,在與一熱源體接觸時可利用熱傳導的方式把熱源體的熱量導出,並從局 部區域向周緣二側均勻擴散,以及利用熱輻射的方式通過散熱孔把熱量移除至環境,達到快速散熱之功效。 The present invention has at least the following beneficial effects: the composite heat sink of the present invention can utilize a thermal diffusion layer (film) sandwiched between two metal substrates to form a heat source by utilizing heat conduction when in contact with a heat source body. Body heat is derived and from the bureau The area is uniformly diffused to the two sides of the circumference, and heat is radiated to the environment through the heat dissipation holes to achieve rapid heat dissipation.

本發明的其他目的和優點可以從本發明所揭露的技術特徵得到進一步的了解。為了讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式作詳細說明如下。 Other objects and advantages of the present invention will be further understood from the technical features disclosed herein. The above and other objects, features, and advantages of the present invention will be apparent from

100a‧‧‧行動裝置 100a‧‧‧ mobile device

100b‧‧‧熱電裝置 100b‧‧‧ thermoelectric device

1‧‧‧複合式散熱片 1‧‧‧Composite heat sink

10‧‧‧第一基板 10‧‧‧First substrate

10a‧‧‧中央區域 10a‧‧‧Central area

10b‧‧‧第一散熱區域 10b‧‧‧First heat sink area

101‧‧‧散熱孔 101‧‧‧ vents

11‧‧‧熱擴散輻射層 11‧‧‧ Thermal diffusion layer

111‧‧‧樹脂材料 111‧‧‧Resin materials

112‧‧‧碳複合材料 112‧‧‧Carbon composites

12‧‧‧第二基板 12‧‧‧second substrate

12a‧‧‧接觸區域 12a‧‧‧Contact area

12b‧‧‧第二散熱區域 12b‧‧‧second heat dissipation area

121‧‧‧散熱孔 121‧‧‧ vents

13‧‧‧貼合層 13‧‧‧Fitting layer

14‧‧‧輻射粒子 14‧‧‧radiation particles

2‧‧‧熱源體 2‧‧‧heat source

3‧‧‧殼體 3‧‧‧Shell

4‧‧‧熱電元件 4‧‧‧Thermal components

41‧‧‧吸熱端 41‧‧‧heat end

42‧‧‧放電端 42‧‧‧Discharge end

43‧‧‧熱電耦對 43‧‧‧Thermal coupler pair

431‧‧‧p型半導體元件 431‧‧‧p-type semiconductor components

432‧‧‧n型半導體元件 432‧‧‧n type semiconductor components

5‧‧‧供電元件 5‧‧‧Power supply components

圖1為本發明之第一實施例之複合式散熱片之剖視圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a composite heat sink according to a first embodiment of the present invention.

圖2A為本發明之一變化實施例之複合式散熱片之剖視圖。 2A is a cross-sectional view of a composite heat sink according to a variation of the present invention.

圖2B為本發明之另一變化實施例之複合式散熱片之剖視圖。 2B is a cross-sectional view of a composite heat sink according to another variation of the present invention.

圖2C為本發明之又一變化實施例之複合式散熱片之剖視圖。 2C is a cross-sectional view of a composite heat sink according to still another variation of the present invention.

圖3為應用本發明之複合式散熱片之行動裝置之剖視圖。 Figure 3 is a cross-sectional view of a mobile device to which the composite heat sink of the present invention is applied.

圖4為應用本發明之複合式散熱片之行動裝置之上視圖。 Figure 4 is a top plan view of a mobile device to which the composite heat sink of the present invention is applied.

圖5為應用本發明之複合式散熱片之熱電裝置之上視圖。 Figure 5 is a top plan view of a thermoelectric device to which the composite heat sink of the present invention is applied.

本發明提供一種應用於薄型電子裝置上的複合式散熱片,所述薄型電子裝置例如是行動裝置、平板電腦或筆記型電腦,但不限於此。根據本發明之實施例,所述複合式散熱片在與主要熱源的表面相接觸時,能有效地將熱從熱源導出,均勻擴散到整體後再輻射出去,以達到快速且均勻散熱之目的。 The invention provides a composite heat sink applied to a thin electronic device, such as a mobile device, a tablet computer or a notebook computer, but is not limited thereto. According to the embodiment of the present invention, when the composite heat sink is in contact with the surface of the main heat source, the heat can be effectively extracted from the heat source, uniformly diffused to the whole and then radiated out, so as to achieve rapid and uniform heat dissipation.

[第一實施例] [First Embodiment]

請參考圖1,為本發明第一實施例之複合式散熱片之剖視圖。本實施例之複合式散熱片1包括一第一基板10、一熱擴散輻射層11及一第二基板12。在本實施例中,熱擴散輻射層11係藉由貼合層13結合於第一基板10與第二基板12之間,貼合層13之材質例如是雙面膠、導熱膠或滲透劑;較佳地,第一基板10、熱擴散輻射層11及第二基板12之厚度比約為1:0.05~0.2:1。據此,熱 擴散輻射層11可分別與第一基板10和第二基板12保持有良好的接觸性,使得複合式散熱片1之散熱效果更好。 1 is a cross-sectional view of a composite heat sink according to a first embodiment of the present invention. The composite heat sink 1 of the present embodiment includes a first substrate 10, a heat diffusion radiation layer 11 and a second substrate 12. In this embodiment, the thermal diffusion radiation layer 11 is bonded between the first substrate 10 and the second substrate 12 by the bonding layer 13, and the material of the bonding layer 13 is, for example, a double-sided tape, a thermal adhesive or a penetrating agent; Preferably, the first substrate 10, the thermally diffused radiation layer 11 and the second substrate 12 have a thickness ratio of about 1:0.05 to 0.2:1. According to this, heat The diffusion radiation layer 11 can maintain good contact with the first substrate 10 and the second substrate 12, respectively, so that the heat dissipation effect of the composite heat sink 1 is better.

具體而言,第一基板10和第二基板12可為金屬基板,例如(但不限於)鋁、鐵或銅基板,然本發明非以此為限。熱擴散輻射層11包含樹脂材料111與碳複合材料112,若以100份重量比為基準,本實施例之熱擴散輻射層11的組成成份約包含30至70重量份之樹脂材料111與25至50重量份之碳複合材料112;而形成方式為,於樹脂材料111內添加具導熱及熱輻射能力的碳複合材料112,經混合、固化後即形成熱擴散輻射層11。 Specifically, the first substrate 10 and the second substrate 12 may be metal substrates, such as, but not limited to, aluminum, iron, or copper substrates, but the invention is not limited thereto. The heat diffusion radiation layer 11 comprises a resin material 111 and a carbon composite material 112. The composition of the heat diffusion radiation layer 11 of the present embodiment comprises about 30 to 70 parts by weight of the resin materials 111 and 25 to 100 parts by weight. 50 parts by weight of the carbon composite material 112; in a manner that a carbon composite material 112 having heat conduction and heat radiation capability is added to the resin material 111, and after being mixed and solidified, the heat diffusion radiation layer 11 is formed.

在本實施例中,樹脂材料111可為(但不限於)環氧樹脂、丙烯酸系樹脂、胺基甲酸酯系樹脂、矽橡膠系樹脂、聚對環二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺樹脂所組成群組的其中一種。碳複合材料112可為(但不限於)鑽石顆粒、人造石墨顆粒、碳黑顆粒、碳纖維顆粒、石墨烯片及奈米碳管所組成群組的其中一種;較佳地,碳複合材料112的平均外徑約介於10μm~20μm之間。 In the present embodiment, the resin material 111 may be, but not limited to, an epoxy resin, an acrylic resin, a urethane resin, a ruthenium rubber resin, a polyparaxylene resin, and a double malayan One of a group consisting of an amine resin and a polyimide resin. The carbon composite material 112 may be, but not limited to, one of a group consisting of diamond particles, artificial graphite particles, carbon black particles, carbon fiber particles, graphene sheets, and carbon nanotubes; preferably, the carbon composite material 112 The average outer diameter is between about 10 μm and 20 μm.

再者,為使熱擴散輻射層11具有更好的熱輻射能力,本實施例之熱擴散輻射層11可進一步包含一種或一種以上的輻射粒子14,其添加量約為5至20重量份。進一步言之,本實施例之輻射粒子14可為(但不限於)金屬顆粒、氧化物顆粒或氮化物顆粒。其中,金屬顆粒可為(但不限於)金、銀、銅、鎳或鋁顆粒,氧化物顆粒可為(但不限於)氧化鋁或氧化鋅顆粒,氮化物顆粒可為(但不限於)氮化硼或氮化鋁顆粒;較佳地,輻射粒子14之平均粒徑約介於3μm~20μm之間。 Furthermore, in order to provide the thermal diffusion radiation layer 11 with better heat radiation capability, the thermal diffusion radiation layer 11 of the present embodiment may further comprise one or more kinds of radiation particles 14 added in an amount of about 5 to 20 parts by weight. Further, the radiation particles 14 of the present embodiment may be, but are not limited to, metal particles, oxide particles or nitride particles. Wherein, the metal particles may be, but are not limited to, gold, silver, copper, nickel or aluminum particles, the oxide particles may be (but not limited to) aluminum oxide or zinc oxide particles, and the nitride particles may be, but are not limited to, nitrogen. Boron or aluminum nitride particles; preferably, the average particle size of the radiation particles 14 is between about 3 μm and 20 μm.

如上所述,本發明之複合式散熱片1在與一熱源體接觸時,可通過將兼具熱擴散及熱輻射功能之薄膜夾置於兩金屬基板間的結構性設計,先以熱傳導(heat conductive)的方式把熱源體產生的熱量從局部區域向周緣均勻擴散,再以熱輻射(heat radiation)的方式把熱量藉金屬基板移除至環境,達到大面積均勻散熱之功效。 As described above, when the composite heat sink 1 of the present invention is in contact with a heat source body, the heat transfer can be performed by sandwiching a film having both heat diffusion and heat radiation functions between the two metal substrates. The method of conductively spreads the heat generated by the heat source body from the local area to the periphery uniformly, and then removes the heat from the metal substrate to the environment by means of heat radiation to achieve a uniform heat dissipation effect over a large area.

請參考圖2A至2C,在一較佳實施例中,為能更快速地把熱量排除至環境,複合式散熱片1之第一基板10、第二基板12上可進一步開設有複數個散熱孔101、121。舉例來說,該些散熱孔101可開設於第一基板10上(如圖2B所示);詳細而言,第一基板10具有一中央區域10a及兩分別位於中央區域10a之相對二側的第一散熱區域10b,而該些散熱孔101分布於第一基板10之第一散熱區域10b。 Referring to FIG. 2A to FIG. 2C, in a preferred embodiment, in order to remove heat to the environment more quickly, a plurality of heat dissipation holes may be further formed on the first substrate 10 and the second substrate 12 of the composite heat sink 1. 101, 121. For example, the heat dissipation holes 101 can be formed on the first substrate 10 (as shown in FIG. 2B); in detail, the first substrate 10 has a central region 10a and two opposite sides of the central region 10a. The first heat dissipation region 10b is disposed on the first heat dissipation region 10b of the first substrate 10.

或者,該些散熱孔121可開設於第二基板12上(如圖2A所示);詳細而言,第二基板12具有一供熱源體接觸之接觸區域12a及兩分別位於接觸區域12a之相對二側的第二散熱區域12b,其中第一基板10之中央區域10a係與第二基板12之接觸區域12a相對應,而該些散熱孔121可分布於第二基板12之第二散熱區域12b。又或者,該些散熱孔101、121可分布於第一基板10之第一散熱區域10b和第二基板12之第二散熱區域12b(如圖2C所示)。值得注意的是,遠離第二基板12之接觸區域12a之散熱孔121的密度需高於鄰近第二基板12之接觸區域12a之散熱孔121的密度;同樣地,遠離第一基板10之中央區域10a之散熱孔101的密度需高於鄰近第一基板10之中央區域10a之散熱孔101的密度。以下,將藉複合式散熱片1應用於行動裝置為例作說明,本發明散熱孔101、121佈局設計的具體功效。 Alternatively, the heat dissipation holes 121 may be formed on the second substrate 12 (as shown in FIG. 2A); in detail, the second substrate 12 has a contact region 12a for contacting the heat source body and two opposite portions respectively located at the contact region 12a. The second heat dissipation region 12b on the two sides, wherein the central region 10a of the first substrate 10 corresponds to the contact region 12a of the second substrate 12, and the heat dissipation holes 121 are distributed in the second heat dissipation region 12b of the second substrate 12. . Alternatively, the heat dissipation holes 101 and 121 may be distributed on the first heat dissipation region 10b of the first substrate 10 and the second heat dissipation region 12b of the second substrate 12 (as shown in FIG. 2C). It should be noted that the density of the heat dissipation holes 121 away from the contact area 12a of the second substrate 12 needs to be higher than the density of the heat dissipation holes 121 adjacent to the contact area 12a of the second substrate 12; likewise, away from the central area of the first substrate 10. The density of the heat dissipation holes 101 of 10a needs to be higher than the density of the heat dissipation holes 101 adjacent to the central portion 10a of the first substrate 10. Hereinafter, the specific effect of the layout design of the heat dissipation holes 101 and 121 of the present invention will be described by taking the composite heat sink 1 applied to the mobile device as an example.

請參考圖3,為應用本實施例複合式散熱片之行動裝置之剖視圖;如圖所示,所述行動裝置100a依序包括一熱源體2、上述複合式散熱片1及一外殼體3。並請配合參考圖4,為應用本實施例複合式散熱片之行動裝置之上視圖。 Please refer to FIG. 3 , which is a cross-sectional view of a mobile device for applying the composite heat sink of the embodiment. As shown, the mobile device 100 a includes a heat source body 2 , the composite heat sink 1 , and an outer casing 3 . Please refer to FIG. 4 for a top view of the mobile device of the composite heat sink of the present embodiment.

熱源體2例如是中央處理器(CPU,一般來說係薄型電子裝置內之最大熱源),其可藉雙面膠、導熱膠或滲透劑(圖未顯示)全面性貼合於第二基板12之接觸區域12a,外殼3則覆蓋第一基板10。藉此,熱源體2在工作過程中所產生的熱量可經由第二基板12之 接觸區域12a導出至熱擴散輻射層11,從而熱擴散輻射層11可透過其夾置於第一基板10與第二基板12間之結構性設計,把熱量自局部區域向周緣二側均勻擴散,再分別通過第一基板10之第一散熱區域10b之散熱孔101和第二基板12之第二散熱區域12b之散熱孔121輻射到外部環境,使得熱源體2的熱量可以快速移除,避免因操作溫度過高造成熱源體2(中央處理器)無法運作,或因局部溫度過高造成燙傷之危安情事。 The heat source body 2 is, for example, a central processing unit (CPU, generally the largest heat source in a thin electronic device), which can be fully bonded to the second substrate 12 by a double-sided tape, a thermal conductive adhesive or a penetrating agent (not shown). The contact area 12a covers the first substrate 10 with the outer casing 3. Thereby, the heat generated by the heat source body 2 during operation can be via the second substrate 12 The contact region 12a is led out to the thermal diffusion radiation layer 11, so that the thermal diffusion radiation layer 11 can be uniformly disposed between the first substrate 10 and the second substrate 12, and the heat is uniformly diffused from the local region to the peripheral side. Then, the heat dissipation holes 101 of the first heat dissipation region 10b of the first substrate 10 and the heat dissipation holes 121 of the second heat dissipation region 12b of the second substrate 12 are respectively radiated to the external environment, so that the heat of the heat source body 2 can be quickly removed, thereby avoiding If the operating temperature is too high, the heat source body 2 (central processing unit) may not operate, or the local temperature may be too high to cause burns.

進一步言之,由於散熱孔101、121密度高之區域的散熱效果較散熱孔101、121密度低之區域為佳,因此本發明透過散熱孔101、121之特殊佈局設計(即愈靠近第一基板、第二基板周緣二側之散熱孔的密度愈高),當熱量在由熱擴散輻射層11之局部區域朝周緣二側均勻擴散的過程中,少部分的熱量可先通過靠近中央區域10a、接觸區域12a的散熱孔101、121輻射到外部環境,使得大部分的熱量可持續朝周緣二側擴散,並通過遠離中央區域10a、接觸區域12a的散熱孔101、121輻射到外部環境,達到大面積全面散熱之功效。 Further, since the heat dissipation effect of the heat dissipation holes 101 and 121 is higher than that of the heat dissipation holes 101 and 121, the special layout design of the heat dissipation holes 101 and 121 (ie, closer to the first substrate) is adopted. The density of the heat dissipation holes on the two sides of the circumference of the second substrate is higher. When heat is uniformly diffused from the partial region of the heat diffusion radiation layer 11 toward the two sides of the circumference, a small amount of heat may first pass through the central region 10a. The heat dissipation holes 101, 121 of the contact region 12a are radiated to the external environment, so that most of the heat can be diffused toward both sides of the circumference, and is radiated to the external environment through the heat dissipation holes 101, 121 away from the central portion 10a and the contact portion 12a. The effect of comprehensive heat dissipation.

[第二實施例] [Second embodiment]

請參考圖5,為結合上述複合式散熱片之熱電裝置之剖視圖。本實施例之熱電裝置100b包括上述複合式散熱片1、一熱源體2、熱電元件4及一供電元件5。 Please refer to FIG. 5, which is a cross-sectional view of the thermoelectric device incorporating the above composite heat sink. The thermoelectric device 100b of the present embodiment includes the above-described composite heat sink 1, a heat source body 2, a pyroelectric element 4, and a power supply element 5.

詳細而言,熱電元件4包含一吸熱端41、一放電端42及複數個位於吸熱端41與放電端42之間的熱電耦對43;其中每一熱電耦對43包含一p型半導體元件431及一n型半導體元件432,吸熱端41係連接於複合式散熱片1之第一基板10,放電端42則係電連接於供電元件5,所述電連接的方式可以是彼此連接或藉由導線連接,然本發明非以此為限。在本實施例中,所述熱源體2例如是一中央處理器,所述供電元件5例如是一電池,但不限於此。 In detail, the thermoelectric element 4 includes a heat absorbing end 41, a discharge end 42 and a plurality of thermocouple pairs 43 between the heat absorbing end 41 and the discharge end 42; wherein each thermocouple pair 43 comprises a p-type semiconductor element 431 And an n-type semiconductor device 432, the heat absorbing end 41 is connected to the first substrate 10 of the composite heat sink 1, and the discharge end 42 is electrically connected to the power supply element 5, and the electrical connection may be connected to each other or by Wire connection, but the invention is not limited thereto. In the present embodiment, the heat source body 2 is, for example, a central processing unit, and the power supply element 5 is, for example, a battery, but is not limited thereto.

因此,複合式散熱片1可將熱源體2於運作時所產生的熱量 快速傳遞至熱電元件4之吸熱端41,從而熱電元件4可將該熱量轉換成電能,並進一步經由放電端42對供電元件5實施充電;換言之,本實施例複合式散熱片1能夠增進熱電元件4之光電轉換效能,進而可維持熱電裝置之高工作效率。 Therefore, the composite heat sink 1 can heat the heat source body 2 during operation. Quickly transferred to the heat absorbing end 41 of the thermoelectric element 4, so that the thermoelectric element 4 can convert the heat into electrical energy, and further charge the power supply element 5 via the discharge end 42; in other words, the composite heat sink 1 of the present embodiment can enhance the thermoelectric element The photoelectric conversion efficiency of 4 can further maintain the high working efficiency of the thermoelectric device.

[實施例功效] [Effect of the embodiment]

1.本發明之熱擴散輻射層係由樹脂材料與碳複合材料混合所製成,其中碳複合材料為鑽石顆粒、人造石墨顆粒、碳黑顆粒、碳纖維顆粒、石墨烯片、奈米碳管或其群組,因而熱擴散輻射層可具有導熱及熱輻射的能力。再者,上述熱擴散輻射層還可混入一種或一種以上的輻射粒子,其為金屬粒子、氧化物粒子、氮化物粒子或其群組,以進一步增進熱擴散輻射層表面熱輻射能力。 1. The thermal diffusion radiation layer of the present invention is made by mixing a resin material with a carbon composite material, wherein the carbon composite material is diamond particles, artificial graphite particles, carbon black particles, carbon fiber particles, graphene sheets, carbon nanotubes or The group, and thus the thermally diffused radiation layer, can have the ability to conduct heat and heat radiation. Furthermore, the thermal diffusion radiation layer may further incorporate one or more kinds of radiation particles, which are metal particles, oxide particles, nitride particles or a group thereof, to further enhance the surface heat radiation capability of the heat diffusion radiation layer.

2.本發明之複合式散熱片通過將熱擴散輻射層(薄膜)夾置於兩金屬基板間之結構性設計,在與一熱源體接觸時可利用熱傳導的方式把熱源體的熱量導出,並從局部區域向周緣二側均勻擴散,以及利用熱輻射的方式把熱量移除至環境,達到快速散熱之功效。 2. The composite heat sink of the present invention adopts a structural design in which a thermal diffusion radiation layer (film) is sandwiched between two metal substrates, and heat of the heat source body can be derived by heat conduction when in contact with a heat source body, and It spreads uniformly from the local area to the two sides of the circumference, and uses heat radiation to remove heat to the environment for rapid heat dissipation.

3.上述複合式散熱片可進一步透過於金屬基板上開設特殊分布設計之散熱孔(越靠近第一基板、第二基板之周緣二側之區域的散熱孔密度越高),當熱量在從熱擴散輻射層之局部區域往周緣二側擴散的過程中,由於靠近中央區域、接觸區域之散熱孔僅能供少量輻射熱通過,使得大部分熱量仍持續朝周緣二側擴散,從而通過遠離中央區域、接觸區域的散熱孔輻射到外部環境,達到大面積全面散熱之功效。 3. The composite heat sink can be further provided with a specially distributed heat dissipation hole on the metal substrate (the density of the heat dissipation holes is higher in the region on the two sides of the circumference of the first substrate and the second substrate), when the heat is in heat During the process of diffusing a local area of the diffused radiation layer to the two sides of the circumference, since the heat dissipation holes near the central area and the contact area can only pass a small amount of radiant heat, most of the heat continues to diffuse toward the two sides of the circumference, thereby moving away from the central area. The vent hole of the contact area radiates to the external environment to achieve a large-area total heat dissipation effect.

4.上述複合式散熱片可應用於熱電裝置上,將熱源體在工作過程中所產生的熱量更快速地傳遞至熱電元件,以增進熱電元件的光電轉換效能,進而可維持熱電裝置之高工作效率。 4. The above composite heat sink can be applied to a thermoelectric device, and the heat generated by the heat source body during the working process can be transferred to the thermoelectric element more quickly, so as to improve the photoelectric conversion efficiency of the thermoelectric element, thereby maintaining the high work of the thermoelectric device. effectiveness.

惟以上所述僅為本發明之較佳可行之實施例,非因此即侷限本發明之專利範圍,故舉凡運用本發明說明書及圖示內容所為之等效結構變化,均同理包含於本發明之範圍內,合予陳明。 However, the above description is only a preferred embodiment of the present invention, and thus the scope of the present invention is not limited thereto, and equivalent structural changes made by using the present specification and the illustrated contents are equally included in the present invention. Within the scope of the agreement, Chen Ming.

1‧‧‧複合式散熱片 1‧‧‧Composite heat sink

10‧‧‧第一基板 10‧‧‧First substrate

101‧‧‧散熱孔 101‧‧‧ vents

11‧‧‧熱擴散輻射層 11‧‧‧ Thermal diffusion layer

12‧‧‧第二基板 12‧‧‧second substrate

121‧‧‧散熱孔 121‧‧‧ vents

Claims (12)

一種複合式散熱片,包括:一第一基板;一熱擴散輻射層,係設置於該第一基板上且包含碳複合材料;以及一第二基板,係設置於該熱擴散輻射層上;其中,該第一基板及該第二基板的其中之一上開設有複數個散熱孔;其中,該第一基板、該熱擴散輻射層及該第二基板之厚度比為1:0.05~0.2:1。 A composite heat sink comprising: a first substrate; a thermal diffusion radiation layer disposed on the first substrate and comprising a carbon composite material; and a second substrate disposed on the thermal diffusion radiation layer; a plurality of heat dissipation holes are formed in one of the first substrate and the second substrate; wherein a thickness ratio of the first substrate, the heat diffusion radiation layer and the second substrate is 1:0.05~0.2:1 . 如請求項1該之複合式散熱片,其中該第二基板具有一接觸區域及兩分別位於該接觸區域之相對二側的散熱區域,該些散熱孔分布於該第二基板之散熱區域。 The composite heat sink of claim 1, wherein the second substrate has a contact area and two heat dissipation areas respectively located on opposite sides of the contact area, and the heat dissipation holes are distributed in the heat dissipation area of the second substrate. 如請求項2該之複合式散熱片,其中該第一基板具有一中央區域及兩分別位於該中央區域之相對二側的散熱區域,該中央區域係位於該接觸區域之相對處,該些散熱孔進一步分布於該第一基板之散熱區域。 The composite heat sink of claim 2, wherein the first substrate has a central region and two heat dissipation regions respectively located on opposite sides of the central region, the central region being located at an opposite portion of the contact region, the heat dissipation The holes are further distributed in the heat dissipation area of the first substrate. 如請求項3該之複合式散熱片,其中遠離該第二基板之接觸區域之散熱孔的密度高於鄰近該第二基板之接觸區域之散熱孔的密度,且遠離該第一基板之中央區域之散熱孔的密度高於鄰近該第一基板之接觸區域之散熱孔的密度。 The composite heat sink of claim 3, wherein a density of the heat dissipation holes away from the contact area of the second substrate is higher than a density of the heat dissipation holes adjacent to the contact area of the second substrate, and away from a central area of the first substrate The density of the louvers is higher than the density of the louvers adjacent to the contact area of the first substrate. 如請求項1該之複合式散熱片,其中該熱擴散輻射層以100份重量比為基準包含30至70重量份之樹脂材料及25至50重量份之碳複合材料。 The composite heat sink according to claim 1, wherein the heat diffusion radiation layer contains 30 to 70 parts by weight of the resin material and 25 to 50 parts by weight of the carbon composite based on 100 parts by weight. 如請求項5該之複合式散熱片,其中該碳複合材料為鑽石、人造石墨、石墨烯、奈米碳管、碳黑及碳纖維所組成群組中的其中一種。 The composite heat sink of claim 5, wherein the carbon composite material is one of a group consisting of diamond, artificial graphite, graphene, carbon nanotubes, carbon black, and carbon fiber. 如請求項6該之複合式散熱片,其中該碳複合材料之平均外徑 為10nm~20μm。 The composite heat sink of claim 6, wherein the average outer diameter of the carbon composite material It is 10 nm to 20 μm. 如請求項7該之複合式散熱片,更包含5至20重量份之輻射粒子。 The composite heat sink according to claim 7 further comprises 5 to 20 parts by weight of the radiation particles. 如請求項8該之複合式散熱片,其中該輻射粒子為金屬顆粒、氧化物顆粒或氮化物顆粒,該輻射粒子之平均粒徑為3μm~20μm。 The composite heat sink according to claim 8, wherein the radiation particles are metal particles, oxide particles or nitride particles, and the radiation particles have an average particle diameter of from 3 μm to 20 μm. 一種熱電裝置,包括:一如請求項1所述之複合式散熱片;一熱源體,係連接於該複合式散熱片之第二基板;一熱電元件,係連接於該複合式散熱片之第一基板;以及一供電元件,係電連接於該熱電元件。 A thermoelectric device comprising: the composite heat sink according to claim 1; a heat source body connected to the second substrate of the composite heat sink; and a thermoelectric element connected to the composite heat sink a substrate; and a power supply component electrically connected to the thermoelectric component. 如請求項10該之熱電裝置,其中該熱電元件具有一吸熱端、一放電端及複數個位於該吸熱端與該放熱端之間的熱電耦對,該吸熱端連接於該複合式散熱片之第一基板,該放電端電連接於該供電元件。 The thermoelectric device of claim 10, wherein the thermoelectric element has a heat absorbing end, a discharge end, and a plurality of thermocouple pairs between the heat absorbing end and the heat absorbing end, the heat absorbing end being connected to the composite heat sink The first substrate is electrically connected to the power supply element. 如請求項11該之熱電裝置,其中該些熱電耦對各包括一p型半導體元件及一n型半導體元件。 The thermoelectric device of claim 11, wherein the thermocouple pairs each comprise a p-type semiconductor element and an n-type semiconductor element.
TW102117828A 2013-05-21 2013-05-21 Comeposite heat spreader and thermoelectric device thereof TWI556375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102117828A TWI556375B (en) 2013-05-21 2013-05-21 Comeposite heat spreader and thermoelectric device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102117828A TWI556375B (en) 2013-05-21 2013-05-21 Comeposite heat spreader and thermoelectric device thereof

Publications (2)

Publication Number Publication Date
TW201445684A TW201445684A (en) 2014-12-01
TWI556375B true TWI556375B (en) 2016-11-01

Family

ID=52707173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117828A TWI556375B (en) 2013-05-21 2013-05-21 Comeposite heat spreader and thermoelectric device thereof

Country Status (1)

Country Link
TW (1) TWI556375B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507520B (en) * 2000-08-25 2002-10-21 Nft Nanofiltertechnik Gmbh Cooling device and method for its manufacture
US20090015134A1 (en) * 2007-07-13 2009-01-15 Kai-Yu Lin Heat dissipation arrangement of a light emitting module
CN101427095A (en) * 2006-01-06 2009-05-06 格拉弗技术国际控股有限公司 Microchannel heat sink manufactured from graphite materials
CN201829527U (en) * 2010-05-31 2011-05-11 景德镇正宇奈米科技有限公司 Light-emitting diode structure with honeycomb-shaped radiation and heat dissipation device
TWM468705U (en) * 2013-05-21 2013-12-21 Cheng-En Tsai Thin type heat dissipation board and thermoelectric device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507520B (en) * 2000-08-25 2002-10-21 Nft Nanofiltertechnik Gmbh Cooling device and method for its manufacture
CN101427095A (en) * 2006-01-06 2009-05-06 格拉弗技术国际控股有限公司 Microchannel heat sink manufactured from graphite materials
US20090015134A1 (en) * 2007-07-13 2009-01-15 Kai-Yu Lin Heat dissipation arrangement of a light emitting module
CN201829527U (en) * 2010-05-31 2011-05-11 景德镇正宇奈米科技有限公司 Light-emitting diode structure with honeycomb-shaped radiation and heat dissipation device
TWM468705U (en) * 2013-05-21 2013-12-21 Cheng-En Tsai Thin type heat dissipation board and thermoelectric device thereof

Also Published As

Publication number Publication date
TW201445684A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
CN205194687U (en) A heat conduction silica gel sheet for cell -phone
WO2018121162A1 (en) Chip packaging structure and manufacturing method therefor
US20130301221A1 (en) Thermal management system and method between heat generating chip and housing in electronic apparatus
WO2016192543A1 (en) Cpu heat dissipation structure and terminal
TW201528927A (en) New heat spreading packaging design
CN102881667A (en) Semiconductor packaging structure
TWM452595U (en) Thin-type heat dissipator and device structure using the same
CN203912425U (en) Thin type heat dissipating sheet and thermoelectricity device thereof
TWM626519U (en) Structure of temperature-homogenizing and heat-dissipating device
TWI519234B (en) Heat spreader and method for fabricating the same
JP3128948U (en) Electric circuit board structure with heat dissipation layer
US20150053462A1 (en) Wiring board structure
TWI556375B (en) Comeposite heat spreader and thermoelectric device thereof
TWM468705U (en) Thin type heat dissipation board and thermoelectric device thereof
TWM472182U (en) Thin type heat sink
JP4430451B2 (en) Semiconductor device heat dissipation device
US20220240418A1 (en) Thermal conductive structure and electronic device
TWM504439U (en) Heat dissipation assembly
CN204578942U (en) Radiating subassembly
TWM444701U (en) Nano carbon ball heat dissipation patch structure
TWM522552U (en) Handheld communication apparatus and thin heat sink thereof
CN213583756U (en) Electronic chip packaging structure
CN210176783U (en) Heat dissipation copper foil adhesive tape for mobile phone display screen
CN217306486U (en) Double-sided heat dissipation aluminum substrate
CN217336236U (en) Structure of uniform temperature heat sink

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees