TWI517962B - 使用在擠製數位製造系統之非柱狀帶材 - Google Patents

使用在擠製數位製造系統之非柱狀帶材 Download PDF

Info

Publication number
TWI517962B
TWI517962B TW099132073A TW99132073A TWI517962B TW I517962 B TWI517962 B TW I517962B TW 099132073 A TW099132073 A TW 099132073A TW 99132073 A TW99132073 A TW 99132073A TW I517962 B TWI517962 B TW I517962B
Authority
TW
Taiwan
Prior art keywords
strip
liquefier
columnar
layer
profile
Prior art date
Application number
TW099132073A
Other languages
English (en)
Other versions
TW201213095A (en
Inventor
山繆 巴卻爾德J
史瓦森威廉J
司考特 克拉姆普S
Original Assignee
史翠塔系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 史翠塔系統股份有限公司 filed Critical 史翠塔系統股份有限公司
Publication of TW201213095A publication Critical patent/TW201213095A/zh
Application granted granted Critical
Publication of TWI517962B publication Critical patent/TWI517962B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • B32B38/1841Positioning, e.g. registration or centering during laying up
    • B32B38/185Positioning, e.g. registration or centering during laying up combined with the cutting of one or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • B29K2509/04Carbides; Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/10Mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/007Narrow strips, e.g. ribbons, tapes, bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/045Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

使用在擠製數位製造系統之非柱狀帶材
本揭示內容係有關於用以建造三維(3D)模型的直接數位製造系統。特別是,本發明係有關於使用在擠製數位製造系統的耗材,例如成型與支撐材料。
利用擠製數位製造系統(如,Stratasys Inc.(位於Eden Prairie,MN)開發的融熔沉積成型系統)可以從一3D模型的數位表示來建構3D模型,此系統可擠製可流動的消耗性成型材料,並以一層一層堆積的方式成型。可透過擠製頭攜帶的擠製尖端來擠出上述成型材料,且可在一基材上的一x-y平面中將成型材料沉積成一系列路線(roads)。經擠出的成型材料會融熔至先前沉積的成型材料,且當溫度降低時,此材料會固化。之後,可沿著Z-軸(與該x-y平面垂直)增加擠製頭相對於該基材的位置,且之後重複上述處理,以形成可與上述數位表示相符的3D模型。
可在電腦控制下,根據可表示該3D模型之建構資料來進行擠製頭相對於基材的移動。可在最初將3D模型的數位表示切割成多個水平的切割層來取得建構資料。之後,對於每一切割層,該主機電腦會產生一建構路徑,其可用以沉積成型材料的路線以形成3D模型。
當藉由沉積多層成型材料來製造3D模型時,通常會在成型材料本身無法支承的懸空部分下方或在建造中物體的空腔中形成支撐層或結構。可利用與沉積該成型材料相同的沉積技術來建構支撐結構。主機電腦可產生額外的幾何形狀以作為正在形成之3D模型的懸空或空心部分的支撐結構。接著,可利用第二噴嘴根據在建構過程中產生的幾何形狀來沉積消耗性支撐材料。在製造過程中,上述支撐材料附著至成型材料,且當建構製程結束時,可由完成的3D模型移除此支撐材料。
本揭示內容的第一態樣係關於使用在擠製數位製造系統中的耗材。上述耗材包含一段,且該段之至少一部分的剖面外型為軸向不對稱。就具有相同熱限制之最大體積流量而言,和一柱狀液化器中之柱狀帶材可達成之回應時間相較之下,藉由上述剖面外型可使得該擠製數位製造系統的一非柱狀液化器之回應時間較快(如,至少快了50%)。
本揭示內容的另一態樣係關於使用在擠製數位製造系統中的耗材,其中該耗材包含一組成,此組成包含至少一種具有非晶型性質的材料。該耗材亦包含一非柱狀幾何形狀,其包含一段,且該段之至少一部分有一剖面外型。上述剖面外型可和該擠製數位製造系統的一非柱狀液化器相配,上述非柱狀液化器具有一入口剖面積A e 與一液壓直徑D h ,其中D h <0.95
本揭示內容另一態樣係關於用以製造使用在擠製數位製造系統中之耗材的方法。上述方法包含:提供一片材,其具有一片材厚度與一組成,組成包含至少一熱塑性材料。上述方法亦包含將該片材裁切成多個非柱狀帶材,其中該些非柱狀帶材其中至少一者具有一段,且該段之至少一部分有一剖面外型。上述剖面外型可和該擠製數位製造系統的一非柱狀液化器相配,上述非柱狀液化器具有一入口剖面積A e 與一液壓直徑D h ,其中D h <0.95。上述方法更包含以一種實質上平行的方式,將該些非柱狀帶材的至少一部分裝載至多個供應組件上。
本揭示內容係有關於使用在擠製數位製造系統中的成型與支撐材料的非柱狀帶材,以及用以製造該非柱狀帶材的方法與系統。如下文之討論,該非柱狀帶材是耗材,非柱狀液化器將此耗材熔化與擠出的回應時間較短(相較於由具有相同體積流量的柱狀液化器所來熔化與擠出柱狀帶材)。此一特徵有利於改良沉積的準確度且可降低建構時間,因而可增加建構3D模型與相應支撐結構的製程效率。
在本揭示內容中,「非柱狀帶材」一詞係指一種成型或支撐材料的帶材,其剖面外型為非柱狀(如,具有矩型剖面外型)。此一材料係相對於一「柱狀帶材」,其剖面外型為圓形。相對應地,在本揭示內容中,「非柱狀液化器」一詞係指一液化器,其用以接收非柱狀帶材之通道的剖面外型為非圓形(如,一矩型或拱型剖面外型)。此一結構係相對於「柱狀液化器」,其用以接收柱狀帶材之通道的剖面外型為圓形。
第1圖為系統10的前視圖,此系統是一種擠製數位製造系統,包含建構腔12、平臺14、高架16、擠製頭18與供應源20與22,其中在建構作業中,擠製頭18用以接收與熔化非柱狀帶材(第1圖中未繪示)的連續部分。可作為系統10之適當擠製數位製造系統包含融熔沉積成型系統(由位於Eden.Prairie,MN的Stratasys Inc.公司所開發)。
建構腔12為一封閉的環境,其含有平臺14、高架16、與擠製頭18,可用以建構一3D模型(稱為3D模型24)與一相應的支撐結構(稱為支撐結構26)。平臺14為一平台,以供於其上建構3D模型24與支撐結構26,並且可根據一電腦操作之控制器(稱為控制器28)提供之信號而沿著一垂直z-軸移動。高架16是一種導軌系統用以根據控制器28提供的信號,而在建構腔12內的一水平x-y平面中移動擠製頭18。上述水平的x-y平面係由一x-軸與一y-軸(第1圖未繪示)所界定的平面,其中x-軸、y-軸與z-軸彼此正交。在一替代性實施方式中,可使平臺14在上述建構腔12內的水平的x-y平面中移動,並可使擠製頭18沿著z-軸移動。亦可使用其他類似的配置方式,已使得平臺14與擠製頭18其中之一可相對於另一者移動。
利用高架16來支承擠製頭18,以根據控制器28提供之信號,在平臺14上以一層接一層的方式建構出3D模型24與支撐結構26。擠製頭18包含一對非柱狀液化器(第1圖未繪示),其中該第一非柱狀液化器係用以接收與熔化一非柱狀、成型材料帶材的多個連續部分,且該第二非柱狀液化器係用以接收與熔化一非柱狀、支撐材料帶材的多個連續部分。
可將該非柱狀、成型材料帶材由供應源20透過路徑30供應至擠製頭18。相似地,可將該非柱狀、支撐材料帶材由供應源22透過路徑32供應至擠製頭18。系統10亦可包含額外的驅動機制(圖中未繪式),用以協助將該非柱狀帶材由供應源20與22饋送至擠製頭18。供應源20與22為該非柱狀帶材的來源(如,捲筒狀容器)。且較佳係保持在建構腔12的遠端位置。適用於供應源20與22的組件包含以下文件中所揭露者:Swanson等人之美國專利U.S. 6,923,634、Comb等人之U.S. 7,122,246以及Taatjes等人之美國專利公開案US 2010/0096485與US 2010/0096489。
在一建構作業中,高架16可將擠製頭18在建構腔12內的水平的x-y平面中移動,而非柱狀帶材則饋送至擠製頭18。擠製頭18利用熱來融化所接收之成型材料帶材的多個連續部分,因而使得該熔融的材料能夠經擠製而建構3D模型24。相似地,擠製頭18利用熱來融化該支撐材料帶材的多個連續部分,因而使得該熔融的材料能夠經擠製而建構支撐結構26。該非柱狀帶材中位於上游的未熔融部分可分別作為能夠進行黏度-泵浦作用的活塞,以將該熔融的材料擠出擠製頭18的個別液化器。
利用層式的加成技術,將該擠製成型與支撐材料沉積於平臺14上,以建構3D模型24與支撐結構26。較理想地,可沉積支撐結構26以針對3D模型24層的懸空部分提供沿著z-軸的垂直支撐。當建構作業完成後,可自建構腔12移除所得到的3D模型24/支撐結構26,並可自3D模型24移除支撐結構26。
如下文所述,該非柱狀帶材與液化器的剖面外型能夠降低熔化並由擠製頭18擠製該非柱狀帶材所需的回應時間(和柱狀帶材與液化器相較之下)。這可以增加用以建構3D模型24與支撐結構26之系統10的處理效率。舉例來說,較短的回應時間可增加成型與支撐材料之沉積路線之起點與終點位置的精確性。在形成一3D模型(如,3D模型24)之一層的建構作業中,可在一水平的x-y平面中移動擠製頭(如,擠製頭18),並沉積一熔融的成型材料。在完成了一指定的沉積圖樣之後,該擠製頭會停止沉積該成型材料。可藉由停止將該帶材饋送至該擠製頭之液化器中來完成此一步驟,因而能夠停止該帶材的黏度-泵浦作用。
然而,當擠製頭停止饋送帶材至液化器以及當實際上停止由擠製頭擠出成型材料之間的回應時間並非一瞬間發生。反之,兩個時間點之間會有延遲,此一延遲取決於諸多因素,例如液化器的熱性質、帶材的組成以及帶材與液化器通道的剖面外型(如下文所述)。相似地,在由零流量狀態過渡到穩定流量狀態之間,亦會存在回應時間延遲。需要較長回應時間的液化器與帶材會增加上述的延遲,因而可能降低沉積的精確性。然而,降低回應時間能夠改善所得到之3D模型的美觀與結構特質,特別是在建構具有精細特徵的3D模型時。
舉例來說,對於回應時間較短的系統10,可以加速將高架16橋接於鄰近沉積起點與終點的適當位置。如此一來,可以增加隱藏每一層之接縫的能力,因而能夠提升部件的品質。此外,回應時間可以決定當架16沿著x-y平面的轉角移動時,高架16由一等切線速度偏位的距離有多遠。因此,較短的回應時間使得擠製頭18可達成較大的轉向加速度與減速度。這可以降低建構3D模型與支撐結構所需的製造時間,其概念類似賽車的轉向能力對於降低整體比賽時間的重要性。
為了方便討論,下文的說明係參照一具有矩型剖面外型的非柱狀帶材(稱為一條狀帶材)以及用以接收該條狀帶材的一種具有相應的矩型通道之非柱狀液化器。然而,本揭示內容同樣適用於具有各種不同剖面外型的非柱狀帶材,其回應時間短於柱狀帶材的回應時間。
第2圖為條狀帶材34的透視圖,其為一種具有矩型剖面外型的非柱狀帶材,並包含段36。段36為一連續的段,其可取決於供應源20或22(如第1圖所示)中剩餘的條狀帶材34之量而改變。條狀帶材34較理想為沿著段36的方向上具有可撓性,以使得可將條狀帶材34保持於供應源20與22中(如,可纏繞於捲筒上)並可透過系統10(如,透過路徑30與32)來饋送而不會發生塑性變形或破裂。舉例來說,在一實施方式中,條狀帶材34較理想地能夠承受大於t/r的彈性應變,其中「t」為條狀帶材34在彎曲平面中的剖面厚度(如,第3圖所示的厚度42)且「r」為彎曲半徑(如,供應源20或22的彎曲半徑和/或路徑30或32中的彎曲半徑)。
可由多種可擠製的成型與支撐材料來製造條狀帶材34,以分別用來建構3D模型24與支撐結構26(如第1圖所示)。適用於條狀帶材34的成型材料包含聚合物與金屬材料。在某些實施方式中,適當的成型材料包含具有非晶型性質的材料,例如熱塑性材料、非晶型金屬材料與上述之組合。適用於條狀帶材34之熱塑性材料的實施例包含丙烯腈-丁二烯-苯乙烯(acrylonitrile-butadiene-styrene,ABS)共聚物、聚碳酸酯(polycarbonates)、聚碸(polysulfones)、聚醚碸(polyethersulfones)、聚苯碸(polyphenylsulfones)、聚醚醯亞胺(polyetherimides)、非晶型聚醯胺(polyamides)、上述材料的改質變形物(如,ABS-M30共聚物)、聚苯乙烯(polystyrene)與上述材料的混合物。適當的非晶型金屬材料的實施例包含揭露於Batchelder之美國專利公開案U.S. 20090263582中的材料。
適當用於條狀帶材34的支撐材料包含具有非晶型性質的材料(如,熱塑性材料),且較理想地係可在建構完3D模型24與支撐結構26之後自相應的成型材料上移除的材料。適用於條狀帶材34的支撐材料包含可商業取得之水溶性支撐材料(如,位於Eden Prairie,MN之Stratasys Inc.生產的「WATERWORKS」與「SOLUBLE SUPPORTS」);可商業取得之可脫離支撐材料(如,位於Eden Prairie,MN之Stratasys Inc.生產的「BASS」,以及揭露於以下文獻中的材料:Crump等人之美國專利U.S. 5,503,785、Lombardi等人之美國專利U.S. 6,070,107與6,228,923、Priedeman等人之美國專利U.S. 6,790,403以及Hopkins等人之美國專利公開案U.S. 2010/0096072)。
條狀帶材34之組成亦可包含額外的添加物,例如塑化劑、流變改質劑、惰性填料、顏料、安定劑與上述之組合。適用於支撐材料中的額外塑化劑的實施例包含酞酸二烷基酯(dialkyl phthalates)、酞酸環烷基酯(cycloalkyl phthalates)、酞酸苄基酯與酞酸芳基酯(benzyl and aryl phthalates)、酞酸烷氧基酯(alkoxy phthalates)、烷基/芳基磷酸酯(alkyl/aryl phosphates)、聚乙二醇酯(polyglycol esters)、己二酸酯(adipate esters)、檸檬酸酯(citrate esters)、甘油的酯類(esters of glycerin)與上述的組合。適當的惰性填料之實施例包含碳酸鈣、碳酸鎂、玻璃球、石墨、碳黑、碳纖維、玻璃纖維、滑石粉、偏矽酸鈣、雲母、氧化鋁、氧化矽、高嶺土(kaolin)、碳化矽、複合材料(如,球狀與帶狀複合材料)以及上述的組合。在某些實施方式中,當所用的該組成包含額外添加物時,這些額外添加物在該組成中的總重量百分比為約1%至約10%,其中較適當的重量百分比為約1%至約5%,以上比例係基於該組合物的總重而論。
條狀帶材34亦可較佳地具有某些物理性質,以使得可將條狀帶材34用作為系統10中的耗材。在一實施方式中,條狀帶材34之組成沿著其長度的方向實質上是均質的。此外,條狀帶材34之組成較理想地可具有適用於建構腔12中的玻璃轉化溫度。在常壓條件下,適當的條狀帶材34之組成的的玻璃轉化溫度包含約80℃或以上的溫度。在某些實施方式中,適當的玻璃轉化溫度包含約100℃或以上的溫度。在額外的實施方式中,適當的玻璃轉化溫度包含約120℃或以上的溫度。
條狀帶材34較理想地亦可具備低壓縮性,而使得其軸向壓縮不會使得條狀帶材34被困在液化器中。對於條狀帶材34之聚合物組成,適當的楊氏係數值的實施例包含約0.2千兆帕(GPa)(約30,000每平方吋磅(psi))或更大的係數值,上述楊氏係數值係根據ASTM D638-08標準所測得。在某些實施方式中,適當的楊氏係數範圍係從約1.0 GPa(約145,000 psi)至約5.0 GPa(約725,000 psi)。在額外的實施方式中,適當的楊氏係數值範圍係從約1.5 GPa(約200,000 psi)至約3.0 GPa(約440,000 psi)。
在某些實施方式中,如下文所述,條狀帶材34可為一多層帶材。舉例來說,條狀帶材34可包含一中央層設置於不同材料形成的多個外層之間。這使得條狀帶材34可以具備多種物理與美觀特性。在額外的實施方式中,條狀帶材34在沿著段36的各個位置上可具有多種外形表面圖樣。舉例來說,條狀帶材34可包含以下文獻中揭示的外形表面圖樣:Batchelder等人之美國專利臨時申請案U.S. 61/247,078;以及Batchelder等人之美國專利申請案U.S. 12/612,342,發明名稱為「Cosumable Materials Having Topographical Surface Pattern For Use In Extrusion-Based Digital Manufacturing Systems」。
第3圖為沿著第2圖之3-3剖面線所得之剖面圖式,其繪示了條狀帶材34的外型38。外型38是一種軸向不對稱的條狀帶材34之剖面外型,其位在沿著段36之一位置上。在所示的實施方式中,條狀帶材34在沿著段36方向具有實質上相同的外型38,因而使得可在建構作業中使用整個段36。或者是,段36的一或多個部分(如,該尾端區段)可能是無法使用的。
在所示的實施方式中,條狀帶材34有一剖面寬度40與一剖面厚度42。寬度40與厚度42的適當尺吋較理想可使得條狀帶材34與擠製頭18之矩型液化器相配,且亦易較理想地可提供一種剖面深寬比,其可降低該擠製材料的回應時間(相較於在具有相同體積流量之柱狀液化器中的柱狀帶材)。
適當的寬度40尺寸之實施例為約1.0公釐(約0.04英吋)至約10.2公釐(約0.40英吋),而較具體的適當寬度為約2.5公釐(約0.10英吋)至約7.6公釐(約0.30英吋),且更具體的適當寬度為約3.0公釐(約0.12英吋)至約5.1公釐(約0.20英吋)。
較理想地,厚度42的厚度應足使條狀帶材34具有適當的結構完整性,因而可降低當將條狀帶材34留存於供應源20或22中以及透過系統10(如,透過路徑30或32)來饋送時,發生破裂或斷裂的風險。適當之厚度42的尺寸為約0.08公釐(約0.003英吋)至約1.5公釐(約0.06英吋),而較具體的適當厚度為約0.38公釐(約0.015英吋)至約1.3公釐(約0.05英吋),且更具體的適當厚度為約0.51公釐(約0.02英吋)至約1.0公釐(約0.04英吋)。
如下文所述,可選擇寬度40與厚度42的深寬比以及矩型液化器的相應深寬比,以有效地移除該與具有圓形剖面之柱狀帶材相關的一芯部。這使得可以在較短的回應時間中,在矩型液化器中熔化與擠製條狀帶材34。
第4圖為次組件44的放大透視圖,此一次組件為適用於可使用條狀帶材34的擠製頭18(如第1圖所示)的次組件。次組件44包含驅動機制46、液化器48與熱區塊50。驅動機制46是一種帶材驅動機制,其可將條狀帶材34的多個連續部分由路徑30(如第1圖所示)饋送至液化器48。根據需要,驅動機制46和控制器28(如第1圖所示)信號連接,因而使得控制器28可指示該驅動機制46將條狀帶材34饋送至液化器48的速率。雖然圖中繪示了一對驅動輪,驅動機制46可包含多種不同的驅動機制以將條狀帶材34饋送至液化器48。適用於驅動機制46的帶材驅動機制的實施例包含揭露於以下文件中的機制:Batchelder等人之美國專利公開案U.S. 2009/0274540與U.S. 2009/0273122。
液化器48是一種非柱狀液化器,其包含延伸於頂端54與底端56之間的通道52。頂端54與底端56為液化器48沿著縱軸58上的相對端。通道52是一種矩型槽,可於其中接收與熔化條狀帶材34。相對應地,根據需要,通道52在頂端54的進口有一尺寸,可允許條狀帶材34與通道52相配。這使得條狀帶材34可滑入通道52中而不會產生不合理的摩擦阻抗。根據需要,通道52的剖面外型實質上和在頂端54與底端56之間沿著沿著縱軸58方向的剖面外型相同。然而,在替代性實施方式中,通道52的剖面外型可漸細因而在底端56具有較小的剖面積。
液化器48亦包含擠製尖端60,此為一直徑較小的尖端並位於底端56,可用以擠出條狀帶材34的熔融材料並使其有一所欲的路線寬度。適用於擠製尖端60之內部尖端直徑的實施例為約125微米(約0.005英吋)至約510微米(約0.020英吋)。
熱區塊50是一種導熱元件,其沿著液化器48之至少一部分延伸,且可用以將熱傳導至液化器48與所接收之條狀帶材34。適用於熱區塊50之導熱元件的實施例包含以下文件中所揭露者:Swanson等人之美國專利U.S. 6,004,124;Comb之,美國專利U.S. 6,547,995;LaBossiere等人之美國專利公開案U.S. 2007/0228590;以及Batchelder等人之美國專利公開案U.S. 2009/0273122。在替代性實施方式中,可利用多種不同的導熱元件來取代熱區塊50,這些元件可以產生和/或傳導熱能給液化器48,因而在液化器48內沿著縱軸58方向形成一熱梯度。
在於系統10中進行一建構作業時(如第1圖所示),條狀帶材34可和驅動機制46接合,並裝載至液化器48的通道52中。之後,控制器28指示驅動機制46以驅動條狀帶材34的多個連續部分通過液化器48。當條狀帶材34通過液化器48時,熱區塊50所產生的熱梯度可熔化液化器48內之條狀帶材34的材料。正由驅動機制46驅動的位於上游之條狀帶材34的未熔融部分可作為活塞,其可對位於未熔融部分與液化器48之壁之間的熔融的材料上進行黏度泵浦作用,因而可將熔融的材料由擠製尖端60擠出。之後可將擠製材料沉積成路線,而利用一種一層接一層的方式來形成3D模型24。
如上所述,與利用具有相同體積流量之柱狀液化器來熔化與擠製的柱狀帶材相較之下,能夠在較短的回應時間內,由液化器48熔化與擠製條狀帶材34。對於柱狀液化器,此一回應係由似RC的集合參數所主導。如此一來,柱狀液化器的回應時間係指1/e時間,此一時間為流率由穩定狀態值的0%改變至約63%以內所需的時間。相較之下,對於非柱狀液化器(例如液化器48),回應時係由傳輸線參數所主導。因此,非柱狀液化器(例如液化器48)的回應時間係指在約10%至約90%流率改變之間的時間。
舉例來說,次組件44的回應時間是位於擠製尖端60之熔融的材料的流率能回應驅動機制46施加於條狀帶材34上之驅動壓力(由於來自控制器28的指令)所需的時間。低回應時間有助於改善所得3D模型的美觀與結構品質,特別是當所建構之3D模型含有精細結構時。更明確地說,低回應時間為在高速下建構3D模型所必須的條件,因為其可決定一高架(如,高架16)減速並進入一轉角的程度,以及當高架離開該轉角時接著的加速程度。
「體積流量」係指能夠留經一液化器之受到熱限制的最大體積流量,其為利用液化器將一材料液化至可擠出狀態以及之後將其擠出時的最大體積流量。對於柱狀液化器,可根據方程式1來決定受到熱限制的最大體積流量Q max,c
Q max,c =2πκL p,c
其中K為柱狀帶材之材料的熱擴散係數,且L p,c 為含有熔融材料之柱狀液化器的長度。因此,單單基於以上特徵,可以藉由僅改變含有熔融材料之柱狀液化器的長度來增加體積流量Q max,c
然而,在具有特定直徑的柱狀液化器中,增加流率Q max,c 也會增加流動阻力,這又會相應地增加回應時間。可利用一集合式、隨壓力改變的時間常數τ c 來表示回應時間,此常數為柱狀液化器與帶材材料之流動阻力與流動容積的乘積。可根據方程式2來決定在單位每秒容積中的壓力(pressure per(volume per second))柱狀液化器之流動阻力FR c
其中η為該柱狀帶材之材料的動態黏度,而d c 為柱狀液化器的內直徑。可根據方程式3來決定柱狀液化器的流動容積FC c
其中B為帶材材料之總體彈性率(即,該材料對於均勻壓縮之阻抗)。
藉由結合柱狀液化器的流動阻力與流動容積,可根據方程式4決定柱狀液化器的回應時間,上述時間係基於可利用一集合式、隨壓力改變的時間常數τ c 來表示回應時間:
結合方程式1與4可以看出時間常數τ c 與柱狀液化器的體積流量Q max,c 之間成正比關係,如方程式5所示:
如方程式5所示,增加材料的該體積流量會相應地增加回應時間,因而不理想地增加位於一擠製尖端之熔融的材料的壓力回應柱狀帶材之驅動壓力的改變所需的時間。
要降低回應時間的一種可能技術是增加柱狀帶材與液化器的直徑。然而,在一擠製數位製造系統中較難處理與管理直徑大於約2.5公釐(約0.1英吋)的柱狀帶材。因此,對於一柱狀液化器中的特定體積,增加該材料的體積流量會不理想地增加回應時間,且反之亦然。這些競爭因素有效地限制了該柱狀液化器可達成的回應時間與體積流量。
第5A與5B圖分別為沿著第4圖之5A-5A與5B-5B線段所得之剖面圖,圖中繪示了正在液化器48中熔化的條狀帶材34。如第5A圖所示,熱區塊50係圍繞並加熱液化器48之該段的一部分(稱為加熱段62)。適用於液化器48之加熱段62長度的實施例為約13公釐(約0.5英吋)至約130公釐(約5.0英吋),而較具體的段62之長度為約25公釐(約1.0英吋)至約51公釐(約2.0英吋)。
當將條狀帶材34驅動進入液化器48之通道52中時,條狀帶材34的多個連續部分會熔化而變成至少一種可擠出狀態,以在通道52中形成該熔融的材料之熔化集合體64。如圖所示,熔化集合體64可沿著軸58在底端56與彎液面66之間延伸。相對應地,液化器48中含有熔化集合體64的那一段(稱為段68)則沿著軸58在底端56與彎液面66之間延伸。彎液面66在液化器48內的位置可取決於可諸多因素而改變,例如沿著液化器48的熱分佈特性、液化器48的尺寸、條狀帶材34之材料、條狀帶材34的驅動速率等等。然而,在穩定狀態擠製過程中,可將彎液面66保持在一實質上不變的高度,而使得熔化集合體64的段68通常小於加熱段62。
在第5A與5B圖中分別繪示出,液化器48的通道52有一剖面寬度(稱為寬度70)與一剖面厚度(稱為厚度72),其中寬度70大於厚度72。第5C圖進一步繪示了此一情形,圖中呈現了通道52的進口剖面外型(稱為通道外型74)。如上所述,較理想地,適當的寬度70與厚度72尺寸可允許條狀帶材34與通道52相配。同樣地,如上所述,較理想地,通道外型74的在沿著液化器48之加熱段62(如第5A與5B圖所示)的方向具有實質上相同的尺寸相同。然而,在替代性實施方式中,通道外型74可逐漸變細,因而在鄰近液化器48之底端56(如第4、5A與5B圖所示)具有較小的剖面積。在額外的替代性實施方式中,通道外型74可逐漸變粗成一較大的剖面積,以使得彎液面的位置較為穩定。
在通道外型74之寬度70與厚度72的適當尺寸包含適當寬度,其可允許條狀帶材34在沒有過度摩擦下與通道52相配。寬度70之適當尺寸的實施例為約1.0公釐(約0.04英吋)至約12.7公釐(約0.50英吋),且較具體的適當寬度為約3.0公釐(約0.12英吋)至約10.1公釐(約0.40英吋),而更具體的適當寬度為約3.8公釐(約0.15英吋)至約6.4公釐(約0.25英吋)。
厚度72之適當尺寸的實施例為約約0.25公釐(約0.01英吋)至約2.5公釐(約0.10英吋),且較具體的適當厚度為約0.51公釐(約0.02英吋)至約2.0公釐(約0.08英吋),而更具體的適當厚度為約0.76公釐(約0.03英吋)至約1.8公釐(約0.07英吋)。
在不受限於特定理論的前提下,發明人認為通道外型74的深寬比可有效地移除與具有圓形剖面之柱狀帶材相關的芯部。這使得液化器48可達成較短的回應時間(相較於具有相同潤濕通道容積(如,通道52的容積,其通道外型74沿著段68所得之區域,如第5A與5B圖所示)之柱狀液化器)。忽略條狀帶材34之邊緣的熱擴散,並假設寬度70大於厚度72,可利用方程式6來表示條狀帶材34之隨著時間改變的溫度分佈:
其中Temp a 為條狀帶材34經液化器48加熱之前的初始溫度、Temp f 為液化器48溫度、T f 為條狀帶材34之厚度(即,厚度42),其中-T f <2x<T f 與其中erfc為方程式7中所示的互補誤差函數:
上述互補誤差函數具有一漸進展開式,如方程式8所示:
由方程式8可以得到特徵的最低階時間常數,可由方程式9表示之:
帶入方程式8之漸進展開式的前一百項,其中熱擴散係數κ為8.13公釐/平方秒(0.320英吋/平方秒)(ABS材料的適當熱擴散係數)、條狀帶材34之厚度T f (即,厚度42)為0.76公釐(0.03英吋)、初始溫度Temp a 為80℃以及液化器48的壁溫度Temp f 為320℃,使平均溫度移動到漸進溫度之二分之一的合理時間(可由最低階時間常數τ f 來表示)約為0.24秒。相對應地,加熱條狀帶材34所需的一合理估計值約為最低階時間常數τ f 的4倍(即,4τ f )。因此,此一處理在4τ f 秒中產生的熔融的材料容積可由方程式10來表示:
Q(4τ f )=(W r )(T r )(L p,r )
其中W r 為通道52之寬度(即,寬度70)、T r 為通道52之厚度(即,厚度72)且L p,r 為通道52中含有熔融材料之段(即,段68)。
相對應地,對於矩型液化器(如,液化器48),可根據方程式11來決定受到熱限制的體積流量Q max,r
如方程式11中所示,受到熱限制的最大體積流量Q max,r 係受控於液化器48中含有該熔融的材料之該段(即,段68)。因此,此操作段為條狀帶材34的加熱段而非液化器的加熱段(如,加熱段62)。
如上所述,對於柱狀液化器,矩型液化器(如,液化器48)之回應時間亦為亦矩型液化器與條狀帶材材料之流動阻力與流動容積的乘積。可根據方程式12來決定矩型液化器之流動阻力FR r
可根據方程式13來決定矩型液化器之流動容積FC r
藉由結合流動阻力與矩型液化器之流動容積,可根據方程式14來決定矩型液化器的回應時間τ r
結合方程式11與14可以看出矩型液化器之回應時間τ r 與體積流量Q max,r 之間成正比關係,如方程式15所示:
比較方程式5與15可以看出來,對於相同的受到熱限制的最大體積流量(即,Q max,c =Q max,r ),當條狀帶材34之寬度40條狀帶材34帶之厚度42時,用以控制液化器48中之條狀帶材34的該擠製之回應時間小於柱狀液化器中之柱狀帶材的回應時間。對於相同的受到熱限制的最大體積流量(即,Q max,c =Q max,r ),較理想地,條狀帶材34之外型38與通道52之外型74的深寬比所提供之回應時間比具有圓形剖面外型之柱狀液化器的回應時間快了至少1.5倍。更理想地,此回應時間快了至少兩倍,且又更理想地,至少快了三倍。相對應地,寬度40比厚度42的適當的深寬比包含大於等於約2:1的深寬比,而較具體的適當深寬比為約2.5:1至約20:1,且更具體的適當深寬比為約3:1至約10:1且又更具體的適當的深寬比為約3:1至約8:1。
可藉由將多個柱狀液化器以陣列的形式疊加而形成一個可與通道52之通道外型74(如第6圖所示)相比擬的槽,以實際看出方程式5與15的異同。上述排置可使得柱狀液化器(稱為柱狀液化器76)與通道外型74具有相同的剖面面積(不計柱狀液化器76之間的空隙空間)。相對應地,在本實施例中,每一柱狀液化器76之直徑皆與厚度72相同。此處亦假設每一柱狀液化器76中含有熔融的材料的該些段和熔化集合體64所在之該段68相同。如此一來,多個柱狀液化器76加總之潤濕的容積和液化器48的潤濕的容積相同。
柱狀液化器之回應時間與液化器48之回應時間的比例τ c r 可由方程式16來表示:
因此,如方程式16所示,對於相同的受到熱限制的最大體積流量(即,Q max,c =Q max,r ),柱狀液化器之回應時間與液化器48之回應時間的比例正比於柱狀液化器之直徑的平方除以通道52之厚度72的平方。舉例來說,柱狀液化器的直徑為1.78公釐(0.070英吋),而液化器48的寬度70為3.05公釐(0.120英吋)且厚度72為0.813公釐(0.032英吋)(即,一深寬比約4:1),則此柱狀液化器與液化器48具有實質上相同的剖面面積。因此,基於這些剖面面積與相同的熔化集合體段(如,段68)以及Q max,c =Q max, r,根據方程式16,回應時間比τ r c =0.32。換句話說,使用條狀帶材34之液化器48的回應時間比起柱狀帶材之柱狀液化器可達成的回應時間快了約3倍。
在另一實施例中,柱狀液化器的直徑為1.78公釐(0.070英吋),而液化器48的寬度70為4.19公釐(0.165英吋)且厚度72為0.584公釐(0.023英吋)(即,一深寬比約7:1),則柱狀液化器與液化器48亦具有實質上相同的剖面面積。因此,基於這些剖面面積與相同的熔融段以及Q max,c =Q max,r ,根據方程式16,回應時間比為τ r c =0.167。換句話說,在本實施例中,使用條狀帶材34之液化器48的回應時間比起柱狀帶材之柱狀液化器可達成的回應時間快了約6倍。這顯示出隨著條狀帶材34與通道52之深寬比增加,回應時間也會增加。
此處同樣不希望受限於任何理論,但發明人相信此種回應時間的縮短係肇因於柱狀液化器的陣列含有額外的壁部分,這可有效地增加矩型液化器48之剖面區域中的網,因而增加摩擦阻抗。在通道外型74中並未發現此種阻抗增加的情形。因此,對於一特定之受到熱限制的最大體積流量,液化器48能夠在較短的回應時間中接收、熔化與擠出條狀帶材34(相較於柱狀液化器與柱狀帶材)。
上述實施方式係有關於具有矩型剖面外型之非柱狀帶材(即,條狀帶材34)以及具有相應的矩型通道之非柱狀液化器(即,液化器48)。利用剖面寬度比厚度的深寬比(如,條狀帶材34之寬度40比厚度42以及通道52之寬度70比厚度72),可以適當地界定這些實施方式的剖面外型。然而,許多非柱狀帶材與液化器的剖面外型可能無法適當地利用寬度比厚度的剖面深寬比來加以定義。因此,可利用液壓直徑D h 作為適當界定非柱狀帶材與液化器之剖面外型的替代性方式,如方程式17所示:
其中A e 為在液化器通道之入口的剖面外型之面積,且U為液化器通道之潤濕週長。
對於柱狀液化器,可將方程式17簡化為D h =D c 。對於矩型液化器,如液化器48,其中通道52實質上充滿了熔融的材料,則A e =W r T r 且U=2(W r +T r ),並可利用方程式18來表示液壓直徑D h
相對應地,適用於本揭示內容之非柱狀帶材與液化器的剖面外型較理想的具有可利用方程式19來表示的液壓直徑D h
其中P 1為百分數,以使得D h 小於百分數P 1的乘積。適當之百分數P 1的數值之實施例包含約0.95(即,D h <0.95),具體的適當百分數P 1的數值包含約0.90(即,D h <0.90)且更具體的適當百分數P 1的數值包含約0.87(即,D h <0.87)。
方程式19闡明了本揭示內容之非柱狀帶材與液化器的液壓直徑D h 之適當的上限。相對應地,較理想地,本揭示內容之非柱狀帶材與液化器的適當剖面外型亦具有可由方程式20表示的液壓直徑D h
其中P 2為一百分數數值,以使得D h 大於百分數P 2的乘積。適當之百分數P 2的數值之實施例包含約0.40(即,D h >0.40),具體的適當百分數P 2的數值包含約0.55(即,D h >0.55)且更具體的適當百分數P 2的數值包含約0.70(即,D h >0.70)。因此,本揭示內容之非柱狀帶材與液化器的液壓直徑D h 較理想可符合方程式19的限制,較理想可符合方程式20的限制,甚且更理想可符合方程式19與方程式20的限制。這些限制與矩型液化器例如液化器48之上述適當的剖面深寬比相對應。相較之下,柱狀帶材與液化器所需的P 1P 2分別為約2.25。
第7-11圖闡明了在將非柱狀帶材(例如條狀帶材34(如第2-4圖所示))用於擠製數位製造系統(如,系統10,如第1圖所示)之前,用以製造此非柱狀帶材的適當實施方式。第7圖為方法78的流程圖,此方法為用以製造非柱狀帶材(例如條狀帶材34)的適當方法的實施例。如圖所示,方法78包含步驟80-88,且一開始係將一進料材料供應至一片材擠製系統(步驟80)。可將進料材料形成多種不同的介質(如團粒、桿料、粉末、顆粒、塊料、錠料及與其相似者)以供應至生產系統。進料材料的適當組成包含上文所述適用於條狀帶材34之成型與支撐材料。
當將進料材料送入片材擠製系統之後,可將進料材料熔化與擠製以產出進料材料的擠製片材(步驟82)。如下文所述,接著可使用擠製片材與將其區分成多個個別的條狀帶材,其中該擠製片材在固體狀態下的厚度較理想地應與條狀帶材之每一者的厚度相匹配。在擠製完成後,依需求冷卻該擠製片材,以能夠至少部分固化擠製片材(步驟84)。在某些實施方式中,如下文所述,亦可將該片材與不同材料製成的額外片材疊層,以形成一多層片材。
在本處裡的此一階段,可儲存片材(如,纏繞於一收片捲筒上)以供後續分離或直接將其饋送至片材裁切裝置,例如在一連續處理中。在片材裁切裝置處,可縱向地將片材裁切成多個條狀帶材,其中該條狀帶材中至少一者之剖面外型依需求可用以和一非柱狀液化器(如,液化器48)相配,如上所述(步驟86)。更理想地,由該擠製片材所裁切出的每一條狀帶材可用以和一非柱狀液化器(如,液化器48)相匹配。
在經過裁切後,接著可將條狀帶材裝載至供應組件上(步驟88)。在一實施方式中,可利用一實質上平行的形式來進行該些條狀帶材的裝載處理,其中當由該擠製片材裁切出多個條狀帶材之後,以一種實質上連續的方式將其饋送至多個收片捲筒上。之後可將該供應組件可用於一或多擠製數位製造系統(如,系統10)中,以供建構3D模型與支撐結構。
第8圖為片材90之透視圖,片材90為一擠製片材的實施例,其係根據方法78之步驟80、82與84(如第7圖所示)所製成。如第8圖所示,可將片材90裁切成多個條狀帶材92,其中每一條狀帶材92依需求對應至條狀帶材34(如第2-4圖所示)。由單一片材90可製得之條狀帶材92的數目依片材90之寬度(稱為片材寬度94)而異。可由一單一片材90擠製之條狀帶材92的適當數目之實施例為約5至約100,而具體的適當的數目為約10至約50。
較理想地,片材90之片材寬度94應將浪費之材料的數量降至最低。因此,裁切之條狀帶材92較理想地應延伸過整個片材寬度94。然而,在替代性實施方式中,可以捨棄或回收片材90中沿著該片材寬度94的一或多個部分。舉例來說,可視需求捨棄或回收片材90之寬度的側邊部分。片材寬度94的適當尺寸之實施例為約0.3公尺(約1.0呎)至約1.2公尺(約4.0呎),而較具體的適當寬度為約0.46公尺(約1.5呎)至約0.91公尺(約3.0呎)。
額外地,較理想地,片材90在固態狀態下的片材厚度(稱為片材厚度96)與所欲之條狀帶材92的厚度(如,條狀帶材34之厚度42)實質上相同。片材厚度96的適當尺寸之實施例為約0.08公釐(約0.003英吋)至約1.5公釐(約0.06英吋),而較具體的適當厚度為約0.38公釐(約0.015英吋)至約1.3公釐(約0.05英吋)且更具體的適當厚度為約0.51公釐(約0.02英吋)至約1.0公釐(約0.04英吋)。
在經過擠製與至少部分固化後,可根據方法78之步驟86將片材90裁切成條狀帶材92。在第8圖中以介於每一條狀帶材92之間的裁切線98來表示此一步驟。當由擠製片材90裁切出每一條狀帶材92之後,接著可根據方法78之步驟88將其裝載至一供應組件(如,一捲筒)。此步驟使得可由一單一擠製片材90製得多個條狀帶材92,而不需利用額外的重調大小步驟以得到所欲之條狀帶材92厚度。因此相對應地使得本方法可達成較高的產率。
第9圖為片材擠製系統100的概要圖式,此系統為適用以根據方法78來製造擠製片材(如,第8圖所示之片材90)的系統之實施例。如圖所示,系統100包含擠製組件102、冷卻滾筒104與106、滑輪108與110以及收片捲筒112。擠製組件102用以接收與擠製所欲之成型和/或支撐材料之進料材料(圖中以介質114來表示),以製造片材90。擠製組件102包含進料斗116、熱套管118、傳動螺桿120與擠製出口122。雖然圖中示出了一垂直方位配置,亦可替代地將擠製組件102(與系統100)配置於不同的方位中(如,一水平方位)。在作業過程中,傳動螺桿120將介質114的多個連續部分由進料斗116饋送至熱套管118所界定的擠製軸(稱為擠製軸124)。當將介質114饋送至擠製軸124中的時候,熱套管118將熱能傳遞予介質114,因而可熔化介質114並將其擠出擠製出口122以製得片材90。
之後,片材90可接觸冷卻滾筒104與106,以界定片材90之厚度(即,片材厚度96)。冷卻滾筒104與106為柱狀的滾筒,其較佳地可維持在較低的溫度以便在當片材90於夾持線126處與冷卻滾筒104與106接觸時,即可冷卻片材90。適用於冷卻滾筒104與106的上述較低溫度係取決於諸多因素,片材90的線路速度、片材90的組成與尺寸及與其相似者。適用於冷卻滾筒104與106的溫度之實施例為約40℃至約60℃。這使得當片材90通過夾持線126之後,片材90可至少部分固化成固體狀態,同時可以保持片材厚度96。
相對應地,較理想地,冷卻滾筒104在夾持線126處應自冷卻滾筒106偏移一距離,以設定片材90之片材厚度96。因此,片材90之多個連續部分的厚度可和將自片材90裁切出之每一條狀帶材92的所欲厚度相匹配。這使得每一條狀帶材92之後都可與一相應的非柱狀液化器(如,液化器48)相配,以達到較短的回應時間,如上所述。在一實施方式中,系統100亦可包含一感應器組件(圖中未繪式)用以即時偵測與測量片材90之片材厚度,且用以調整一或多處理參數以達成所欲的片材厚度(如,調整線路速度、夾持線尺寸及與其相似者)。
在一實施方式中,可在片材90中形成外形表面圖樣,以使得條狀帶材92具有揭示於以下文獻中之外形表面圖樣:Batchelder等人之美國專利臨時申請案U.S. 61/247,078;以及Batchelder等人之美國專利申請案U.S. 12/612,342(發明名稱為「Consumable Materials Having Topographical Surface Patterns For Use In Extrusion-Based Digital Manufacturing Systems」)。在本實施方式中,冷卻滾筒104與106兩者或其中之一可具有具紋路的外表面,以當片材90通過時於片材90中形成外形表面圖樣。這有利於在片材90完全固化前形成外形表面圖樣。或者是,可利用表面具有紋路的額外滾子在片材90中形成圖樣,其中該額外滾子可位於冷卻滾筒104與106的上游或下游。
在一額外實施方式中,系統100可包含一或多塗覆單元(圖中未繪式)以施覆一塗層於片材90的一或二個主要表面上。舉例來說,系統100可包含一電暈放電單元(圖中未繪式),用以沉積一材料之薄塗層於片材90的一或二個主要表面上。這使得可在片材90上沉積多種塗覆材料,例如低表面能材料。低表面能材料有利於降低當將條狀帶材92送入擠製數位製造系統(如,系統10)之矩型液化器(如,液化器48)中時的摩擦阻力。
接著可將片材90捲繞於滑輪108與110,且可捲繞於收片捲筒112上,其中冷卻滾筒104與106、滑輪108與110以及收片捲筒112其中一或多者可為電動機驅動,以提供適用以形成片材90的線路速度。適用以形成片材90的線路速度的實施例為約1公尺/分鐘至約20公尺/分鐘,而較具體的適當的線路速度為約5公尺/分鐘至約15公尺/分鐘。在替代性實施方式中,可利用更多數目的滑輪將片材90導引至收片捲筒112。當將片材90的一適當的段捲繞於收片捲筒112上之後,可分離片材90且可儲存或放置收片捲筒112以供後續處理,以將片材90裁切成分離的條狀帶材92,如下文所述。在一替代性實施方式中,可直接將片材90饋送至一裁切單元以將片材90裁切成分離的條狀帶材92。在本實施方式中,可省略收片捲筒112,且可利用與擠製以及形成片材90之多個連續部分等步驟連續的製程,將片材90裁切成條狀帶材92。
第10圖為帶材製造系統128的概要圖式,此系統適用以由片材形成條狀帶材。系統128包含裁切滾子130、貼合滾子132、惰滑輪134與收片捲筒136a-136d。如圖所示,可由一收片捲筒(如,收片捲筒112)或在連續製程中以直接進料之形式由系統100將片材90供應至裁切滾子130與貼合滾子132之間的夾持線交線。
裁切滾子130為第一滾子,其包含一柱狀表面具有多個平行的薄刀片用以將片材90的多個連續部分裁切成分離的條狀帶材(稱為條狀帶材92a-92d)。相對應地,較理想地,裁切滾子130的這些平行刀片應以間隙隔開,此間隙負責控制條狀帶材92的寬度(如,第3圖所示之條狀帶材34之寬度40)。較理想地,裁切滾子130亦為電動機所驅動,以便在裁切作業中將片材90拉到裁切滾子130與貼合滾子132之間。貼合滾子132為第二滾子,其與裁切滾子130間隔一適當的距離,以使得片材90可通過裁切滾子130與貼合滾子132之間,且可和裁切滾子130的刀片表面接觸。
較佳地,在由片材90裁切出每一條狀帶材92(如,條狀帶材92a-92d)之後,將其饋送至收片捲筒136a-136d中分離的捲筒。收片捲筒136a-136d為適用於供應捲筒20和/或供應捲筒22(如第1圖所示)之供應組件的實施例。可利用惰滑輪134將條狀帶材92a-92d導向至個別的收片捲筒136a-136d。如圖所示,惰滑輪134經放置可允許條狀帶材92a-92d在不同的徑向位置上離開貼合滾子132。這可以降低當將條狀帶材92a-92d裝載至收片捲筒136a-136d上時,各條狀帶材92a-92d彼此糾結的風險。
每一收片捲筒136a-136d亦可為電動機所驅動,以分別捲繞起由木材90所裁切出的條狀帶材92a-92d。雖然圖中所示的系統128具有4個條狀帶材92與4個收片捲筒136,裁切滾子130可根據片材90與條狀帶材92的寬度,將片材90裁切成任何適當數目的條狀帶材92。之後可將裁切出的條狀帶材92以一種實質上平行的形式裝載至個別的收片捲筒136上。
雖然圖中繪示的系統128具有單一對裁切滾子130/貼合滾子132,在替代性實施方式中,系統128可包含多對裁切滾子/貼合滾子。舉例來說,系統128可包含一對起始裁切滾子130與貼合滾子132,其可將片材90裁切成多個區段,其中每一區段的寬度包含了多個條狀帶材92。之後,裁切出來的每一區段可通過一對額外的裁切滾子130與貼合滾子132,其可將該指定的區段裁切成獨立的條狀帶材92。之後可將該獨立的條狀帶材92裝載至獨立的收片捲筒136上,如上所述。因此,可在一單一裁切步驟或多個接續的裁切步驟中,將片材90裁切成條狀帶材92。
較理想地,片材擠製系統100與帶材製造系統128分別設置於一外殼(圖中未繪式)中,以提供一乾燥的環境。舉例來說,系統100與128可分別包含一乾燥空氣循環機和/或除濕包,以維持低水氣含量。此外,收片捲筒112與136亦可分別包含除濕包以使得能在儲存與後續使用過程中,將所接收之片材90/條狀帶材92保持乾燥。用以在系統100與128以及收片捲筒112與136內維持乾燥環境的適當技術包含揭示於以下文件中的技術:Swanson等人之美國專利U.S.6,923,634;Comb等人之美國專利U.S.7,122,246;以及Taatjes等人之美國專利公開案U.S.2010/0096485與U.S.2010/0096489。
第11-13圖為沿著第2圖之3-3線段所得之替代性剖面圖式,這些圖式闡明了本揭示內容之多層條狀帶材。如第11圖所示,條狀帶材200的剖面外型與條狀帶材34(如第2圖所示)相似。然而,在本實施方式中,條狀帶材200包含基座部分202與層204,其中基座部分202包含上表面206與下表面208,且其中層204係形成於上表面206上。條狀帶材200之適當尺寸包含上文參照條狀帶材34所述者。相對應地,條狀帶材200的適當寬度(稱為寬度210)包含上文參照條狀帶材34所述的。基座部分202與層204的加總厚度(稱為厚度212)之適當實施例包含上文參照條狀帶材34之厚度42所述者。
適用於基座部分202的材料包含上文所述之適用於條狀帶材34的成型與支撐材料。然而,層204,可包含與基座部分202不同的材料,此不同的材料有利於系統10(如第1圖所示)中之建構作業。舉例來說,許多水溶性支撐材料的組成相對易碎,這可能會使得在饋送帶材通過一擠製數位製造系統(如,系統10)時,帶材產生破裂。為了降低易碎性,可利用非易碎且至少部分溶於水的材料,以薄塗覆層的方式在上表面206上形成層204。這也使得可饋送條狀帶材200通過系統10而不會破裂或斷裂,因而增加系統10的可靠度。相較於基座部分202的整體材料,薄塗覆之層204提供了少量的非易碎材料。如此一來,即便該非易碎材料的水溶性較低,支撐結構26的整體組成的水溶性仍然近乎於用以形成基座部分202的整體材料,因而使得條狀帶材200之材料仍可作為一適當的水溶性支撐材料。
第12與13圖闡明了條狀帶材300與400,其為條狀帶材200的替代品,且其中所用的元件符號分別增加了「100」與「200」。如第12圖所示,條狀帶材300亦包含形成於下表面308上的層314,因而將基座部分302放置於層304與層314之間。如第13圖所示,條狀帶材400亦包含設於上表面406與層404之間的層416,以及設於下表面408與層414之間的層418。相對應地,本揭示內容條狀帶材可包含多層,其中該些層的每一層可包含相同或不同的材料,其係取決於所欲的層之性質以及用以形成該特定層之製程。
一般來說,可分別利用與上述用以形成條狀帶材92相似的方法來形成條狀帶材200、300與400,此方法一開始係涉及利用系統100來擠製一基底片材(如,片材90),其中較理想地,該基底片材之片材厚度與基座部分(如,基座部分202、302與402)(如第9圖所示)之厚度相同。之後可利用各種塗覆技術,在該基底片材的一(或多)表面上形成一或多層。較理想地,形成該(些)層的製程係在將該基底片材裁切成多個條狀帶材(如,利用系統128)之前。
在一實施方式中,可藉由起初形成一開一額外擠製片材來製成每一層,該額外擠製片材的片材厚度與該指定層之厚度相應。之後可將該(些)額外擠製片材疊層於該基底片材上,並在滾子之間進行熱壓,以將該些層固定於該基座部分上。在本實施方式中,可利用條狀帶材400之層416與418作為連結層,以分別將層404與414固定至基座部分402。可在將片材纏繞至收片捲筒(如,收片捲筒112)之前進行該疊層處理;或者是,可將該基底片材可捲繞於一收片捲筒上,且之後將其解開以進行疊層製程。
在一替代性實施方式中,可藉由在一(或多)片材表面上沉積或以其他方式施覆一塗覆層以形成每一層。舉例來說,可利用一電暈放電單元來沉積每一塗覆層,如上所述。或者,可利用一或多傳統塗覆製程來形成每一塗覆層,例如刮刀塗覆製程與滾子塗覆製程。
在一額外的替代性實施方式中,可利用共擠製的方式,在擠製基底片材時一併擠製每一層的片材,以形成每一層。這可以排除了使用獨立的疊層或塗覆步驟以形成該(些)層的步驟,且使得可利用系統100(如,於夾持線126處)來界定該多層片材的尺寸。
在疊層和/或塗覆製成完成之後,接著可利用系統128將該多層片材裁切成獨立的條狀帶材(如,條狀帶材200、300與400)。所得到之每一層的厚度係取決於該所欲之該特定層的性質以及所用的疊層或塗覆製程。條狀帶材200、300與400之各層的加總厚度的適當實施例為包含至多該條狀帶材之厚度(即,厚度212、312或412)的約50%,而較具體的適當加總厚度為該條狀帶材之厚度的約1%至約25%,且更具體的適當加總厚度為該條狀帶材之厚度的約5%至約25%。
條狀帶材200、300與400闡明了多層條狀帶材的適當實施例,這些帶材可利用系統100與128來製造,且可用於系統10中,以在較短的回應時間內建構3D模型和/或支撐結構。條狀帶材200、300與400的多層本質亦使得可由擠製片材(如,片材90)來形成條狀帶材,並可得到多種不同的物理與美觀性質。
在本揭示內容之額外的實施方式中,上述柱狀與非柱狀帶材亦可為中空的。由於塑膠材料的該剖面積會因為沒有芯部而變小,施加於中空帶材的液壓直徑亦可小於實際直徑。相對應地,適用於本揭示內容之中空帶材的液壓直徑之實施例可包含上文所述者。此外,液化器亦可包含與中空帶材相配的芯部,而使得可在內部與外部加熱擠出物。
中空帶材之一可能的額外優點在於當利用快速擠製由混練機來製造中空帶材時,較理想地可在將其保持於一供應組件上(如,捲繞)之前將其快速冷卻。此一快速冷卻處理可誘使一原本為固體之帶材中的直徑沿著沿著其各段而改變。相較之下,若將一中空帶材快速冷卻,該中空帶材的內表面之直徑會不同,使得外表面更為一致。
柱狀外殼形式的中空帶材的另一種可能的額外優點在於其可順應帶材驅動機制。固體帶材可能近乎不可壓縮,因而當帶材的直徑略小或略大時,會使得驅動滾子或驅動齒可能得到過少或過多的牽引力。然而,中空帶材具有順應性,因而可藉由對中空帶材之壓縮量的變異,來補償帶材直徑的微小變異。
中空帶材的另一種可能的額外優點在於其在液化器之進口中的熱傳導較短。當一固體帶材固定不動時,熱能可緩慢地由該帶材的中央部位向上傳導至該液化器之加熱部分以上的區域,而其中該壁的溫度相對較低。若帶材在該處熔化,會因為接觸到較冷的壁而易於固化,因而有可能造成一大的軸向力而使得帶材重新開始移動。然而,由於中空帶材不具有芯部,熱能沿著中空帶材向上傳導速率比起固體帶材向上傳導的速率來得慢。
雖然已參照較佳實施方式來描述本揭示內容,本領域通常知識者當可理解,可對其無形與細節進行修飾,而不致悖離本發明之精神與範圍。
10...系統
12...建構腔
14...平臺
16...高架
18...擠製頭
22、20...供應源
24...3D模型
26...支撐結構
28...控制器
30、32...路徑
34...耗材
36...段
38...剖面外型
40...剖面寬度
42...剖面厚度
44...次組件
46...驅動機制
48...非柱狀液化器
50...熱區塊
52...通道
54...頂端
56...底端
58...縱軸
60...擠製尖端
62...加熱段
64...熔化集合體
66...彎液面
68...段
70...剖面寬度
72...剖面厚度
74...通道外型
76...柱狀液化器
78...方法
80-88...步驟
90...片材
92、92a-d...條狀帶材
94...片材寬度
96...片材厚度
98...裁切線
100...片材擠製系統
102...擠製組件
104、106...冷卻滾筒
108、110...滑輪
112...收片捲筒
114...介質
116...進料斗
118...熱套管
120...傳動螺桿
122...擠製出口
124...擠製軸
126...夾持線
128...帶材製造系統
130...裁切滾子
132...貼合滾子
134...惰滑輪
136a-136d...收片捲筒
200、300、400...條狀帶材
202、302、402...基座部分
204、304、404...與層
206、306、406...上表面
208、308、408...下表面
210、310、410...寬度
212、312、412...厚度
414、416、418...層
第1圖為擠製數位製造系統的前視圖,此系統可利用成型與支撐材料的非柱狀帶材來建構3D模型與支撐結構。
第2圖為條狀帶材的一透視圖,此條狀帶材是一種具有矩型外型的非柱狀帶材。
第3圖為沿著第2圖的3-3剖面線所得之剖面圖,圖中示出條狀帶材的剖面外型。
第4圖為放大透視圖,闡明了和一條狀帶材一起使用的擠製數位製造系統之擠製頭次組件,其中該擠製頭次組件包含一矩型液化器。
第5A圖為沿著第4圖的5A-5A剖面線所得之剖面圖,圖中示出正由該矩型液化器擠出該條狀帶材。
第5B圖為沿著第4圖的5B-5B剖面線所得之剖面圖,圖中進一步示出正由該矩型液化器擠出該條狀帶材。
第5C圖為沿著第4圖的5C-5C剖面線所得之剖面圖,圖中示出該矩型液化器之一進口剖面外型。
第6圖為概要圖式,闡明將多個柱狀液化器重疊於一矩型液化器之上。
第7圖為流程圖,闡明形成條狀帶材之方法。
第8圖為透視圖,示出用以形成條狀帶材。
第9圖為概要圖式,闡明用以形成該擠製片材的片材擠製系統。
第10圖為概要圖式,闡明用以由擠製片材形成條狀帶材的帶材製造系統。
第11圖為沿著第2圖的3-3剖面線所得之替代性剖面圖,圖中示出一第一替代性條狀帶材,其具有一單一疊層表面。
第12圖為沿著第2圖的3-3剖面線所得之另一替代性剖面圖,圖中示出一第二替代性條狀帶材,其具有二疊層表面。
第13圖為沿著第2圖的3-3剖面線所得之又一替代性剖面圖,圖中示出一第三替代性條狀帶材,其具有二疊層表面與複數層。
34...耗材
36...段

Claims (17)

  1. 一種包含一擠製數位製造系統與一耗材的系統,該耗材包含一條狀帶材,該條狀帶材包含一基座部分,該基座部分具有一第一表面與一第二表面,且一第一層設置在該基座部分的該第一表面上,其中該基座部分與該第一層衍生自不同材料,該條狀帶材具有一段,且該段之至少一部分的一剖面外型為非柱狀,其中該剖面外型包含一矩型幾何形狀且該矩型幾何形狀的一寬度對厚度的剖面深寬比係約2:1或更大,及對於一具有相同熱限制之最大體積流率而言,該剖面外型係設以和該擠製數位製造系統的一非柱狀液化器相配,該非柱狀液化器具有一入口剖面積A e 與一液壓直徑D h ,其中D h <0.95,使得該非柱狀液化器提供的一回應時間比起一柱狀液化器中之一柱狀帶材達成的一回應時間快了至少50%。
  2. 如申請專利範圍第1項所述的系統,其中該剖面外型的寬度介於約1.0公釐至約10.2公釐。
  3. 如申請專利範圍第1項所述的系統,其中該第一層包含一至少部分溶於水的非易碎材料。
  4. 如申請專利範圍第1項所述的系統,其中該第一層包含 一低表面能材料,該低表面能材料係設以降低當將該條狀帶材送入該非柱狀液化器中時的摩擦阻力。
  5. 如申請專利範圍第1項所述的系統,其中該耗材更包含一第二層,該第二層設置在該基座部分的該第二表面上,及其中該基座部分與該第二層衍生自不同材料。
  6. 如申請專利範圍第5項所述的系統,其中該第二層的材料與該第一層的材料相同。
  7. 如申請專利範圍第5項所述的系統,更包含一第一連結層與一第二連結層,該第一連結層設置在該第一層與該基座層的該第一表面之間,該第二連結層設置在該第二層與該基座層的該第二表面之間,其中該第一與第二連結層分別將該第一與第二層固定至該基座層。
  8. 如申請專利範圍第1項所述的系統,其中該條狀帶材係設以承受一彈性應變,該彈性應變大於該帶材的剖面厚度除以該條狀帶材的彎曲半徑的比例。
  9. 如申請專利範圍第1至8項中任一項所述的系統,其中D h <0.90
  10. 一種用以在一擠製數位製造系統中建立三維模型的方法,該方法包含下列步驟:將一耗材的條狀帶材饋送至由該擠製數位製造系統保持的一非柱狀液化器,該條狀帶材具有一段,且該段之至少一部分的一剖面外型為非柱狀,其中該非柱狀液化器具有一入口剖面積A e 與一液壓直徑D h ,其中D h <0.95,其中該耗材包含一基座部分,該基座部分具有一第一表面與一第二表面,且一第一層設置在該基座部分的該第一表面上,及其中該基座部分與該第一層衍生自不同材料;在該非柱狀液化器中熔化該條狀帶材,以提供一熔化的耗材;從該非柱狀液化器擠製該熔化的耗材;以一層接著一層的方式沉積該擠製的耗材,以形成該三維模型的至少一部分;改變用以將該條狀帶材饋送至該非柱狀液化器的一驅動壓力,使得對於一具有相同熱限制之最大體積流率而言,該液化器呈現的一回應時間比起一柱狀液化器中之一柱狀帶材達成的一回應時間快了至少50%;同時擠製該熔化的耗材、以部分基於該呈現的回應時間的速率來移動該非柱狀液化器。
  11. 如申請專利範圍第10項所述的方法,其中從該非柱狀液化器擠製該熔化的耗材的回應時間比起該柱狀液化器中之該柱狀帶材的該回應時間快了至少約兩倍。
  12. 如申請專利範圍第10或11項所述的方法,其中從該非柱狀液化器擠製該熔化的耗材的回應時間比起該柱狀液化器中之該柱狀帶材的該回應時間快了至少約三倍。
  13. 如申請專利範圍第10項所述的方法,其中該條狀帶材與該非柱狀液化器的剖面外型各包含一矩型幾何形狀。
  14. 如申請專利範圍第13項所述的方法,其中該條狀帶材的剖面外型之寬度對厚度的一剖面深寬比介於約2.5:1至約20:1。
  15. 如申請專利範圍第13項所述的方法,其中該條狀帶材的剖面外型的寬度介於約1.0公釐至約10.2公釐。
  16. 如申請專利範圍第10項所述的方法,其中D h <0.90
  17. 如申請專利範圍第10所述的方法,其中該非柱狀液化器 包含一具有拱型剖面外型的通道。
TW099132073A 2009-09-30 2010-09-21 使用在擠製數位製造系統之非柱狀帶材 TWI517962B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24706709P 2009-09-30 2009-09-30
US12/612,333 US8221669B2 (en) 2009-09-30 2009-11-04 Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments

Publications (2)

Publication Number Publication Date
TW201213095A TW201213095A (en) 2012-04-01
TWI517962B true TWI517962B (zh) 2016-01-21

Family

ID=43780707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099132073A TWI517962B (zh) 2009-09-30 2010-09-21 使用在擠製數位製造系統之非柱狀帶材

Country Status (10)

Country Link
US (4) US8221669B2 (zh)
EP (1) EP2483060B1 (zh)
JP (1) JP5701302B2 (zh)
KR (1) KR101380112B1 (zh)
CN (1) CN102548737B (zh)
CA (1) CA2775076C (zh)
ES (1) ES2627566T3 (zh)
RU (1) RU2514831C2 (zh)
TW (1) TWI517962B (zh)
WO (1) WO2011041166A1 (zh)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596543B (zh) * 2009-06-23 2014-09-17 斯特拉塔西斯公司 具有自定义特征的消耗材料
WO2010151767A1 (en) 2009-06-25 2010-12-29 3D Biotek Llc Methods and apparatus for fabricating porous three-dimensional tubular scaffolds
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8439665B2 (en) 2009-09-30 2013-05-14 Stratasys, Inc. Ribbon liquefier for use in extrusion-based digital manufacturing systems
WO2011063216A2 (en) 2009-11-19 2011-05-26 Stratasys, Inc. Encoded consumable materials and sensor assemblies for use in additive manufacturing systems
US8479795B2 (en) * 2010-09-17 2013-07-09 Synerdyne Corporation System and method for rapid fabrication of arbitrary three-dimensional objects
US8801990B2 (en) * 2010-09-17 2014-08-12 Stratasys, Inc. Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments
US8920697B2 (en) * 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8647098B2 (en) 2010-09-22 2014-02-11 Stratasys, Inc. Liquefier assembly for use in extrusion-based additive manufacturing systems
US8815141B2 (en) 2010-09-22 2014-08-26 Stratasys, Inc. Method for building three-dimensional models with extrusion-based additive manufacturing systems
US9238329B2 (en) 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
EP2655046B1 (en) 2010-12-22 2019-05-22 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8465111B2 (en) 2010-12-22 2013-06-18 Stratasys, Inc. Print head for use in fused deposition modeling system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8512024B2 (en) * 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
US8986767B2 (en) 2011-03-30 2015-03-24 Stratsys, Inc. Additive manufacturing system and method with interchangeable cartridges for printing customized chocolate confections
EP2690966B8 (en) 2011-03-30 2023-11-08 Barry Callebaut AG Additive manufacturing system and method for printing customized chocolate confections
US8883064B2 (en) 2011-06-02 2014-11-11 A. Raymond & Cie Method of making printed fastener
US8916085B2 (en) 2011-06-02 2014-12-23 A. Raymond Et Cie Process of making a component with a passageway
WO2012166552A1 (en) 2011-06-02 2012-12-06 A. Raymond Et Cie Fasteners manufactured by three-dimensional printing
US8818544B2 (en) 2011-09-13 2014-08-26 Stratasys, Inc. Solid identification grid engine for calculating support material volumes, and methods of use
US9108360B2 (en) 2011-09-23 2015-08-18 Stratasys, Inc. Gantry assembly for use in additive manufacturing system
US9321608B2 (en) 2011-12-22 2016-04-26 Stratasys, Inc. Spool assembly with locking mechanism for additive manufacturing system, and methods of use thereof
US8985497B2 (en) 2011-12-22 2015-03-24 Stratasys, Inc. Consumable assembly with payout tube for additive manufacturing system
US9073263B2 (en) 2011-12-22 2015-07-07 Stratasys, Inc. Spool assembly for additive manufacturing system, and methods of manufacture and use thereof
US9050788B2 (en) 2011-12-22 2015-06-09 Stratasys, Inc. Universal adapter for consumable assembly used with additive manufacturing system
US9205690B2 (en) 2012-03-16 2015-12-08 Stratasys, Inc. Automated calibration method for additive manufacturing system, and method of use thereof
US9050753B2 (en) 2012-03-16 2015-06-09 Stratasys, Inc. Liquefier assembly having inlet liner for use in additive manufacturing system
US9172829B2 (en) * 2012-07-31 2015-10-27 Makerbot Industries, Llc Three-dimensional printer with laser line scanner
CN103568323A (zh) * 2012-08-09 2014-02-12 上海科斗电子科技有限公司 光固化三维打印机及其打印方法
US9174388B2 (en) 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US9636868B2 (en) 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US11020899B2 (en) 2012-08-16 2021-06-01 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
CN104781063B (zh) * 2012-11-09 2018-02-27 赢创罗姆有限公司 用于挤出式3d打印法的经涂布长丝的用途和制备
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9102098B2 (en) 2012-12-05 2015-08-11 Wobbleworks, Inc. Hand-held three-dimensional drawing device
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US9090428B2 (en) 2012-12-07 2015-07-28 Stratasys, Inc. Coil assembly having permeable hub
US9321609B2 (en) 2012-12-07 2016-04-26 Stratasys, Inc. Filament drive mechanism for use in additive manufacturing system
US8961167B2 (en) 2012-12-21 2015-02-24 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9216544B2 (en) 2012-12-21 2015-12-22 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US10562226B1 (en) * 2013-03-15 2020-02-18 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive, and magnetic materials
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
CN107187022B (zh) 2013-03-22 2020-08-11 格雷戈里·托马斯·马克 三维打印
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
EP3004435B1 (en) 2013-06-05 2018-08-08 Markforged, Inc. Methods for fiber reinforced additive manufacturing
EP3838593A1 (en) 2013-07-11 2021-06-23 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US9912001B2 (en) * 2013-08-07 2018-03-06 Massachusetts Institute Of Technology Extruder feed system
KR102208200B1 (ko) * 2013-08-09 2021-01-27 킴벌리-클라크 월드와이드, 인크. 3차원 인쇄용 중합체 물질
CN203680854U (zh) * 2013-08-16 2014-07-02 深圳维示泰克技术有限公司 一种可组装拆卸的材料加工装置
US9950474B2 (en) 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US10201931B2 (en) 2013-10-04 2019-02-12 Stratasys, Inc. Additive manufacturing system and process with material flow feedback control
US10131131B2 (en) * 2013-10-04 2018-11-20 Stratasys, Inc. Liquefier assembly with multiple-zone plate heater assembly
US9327447B2 (en) 2013-10-04 2016-05-03 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
US10086564B2 (en) 2013-10-04 2018-10-02 Stratsys, Inc. Additive manufacturing process with dynamic heat flow control
WO2015050958A2 (en) 2013-10-04 2015-04-09 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
EP3055122B1 (en) 2013-10-08 2023-11-29 Stratasys, Inc. Method for extrusion-based additive manufacturing using consumable filaments having reversible reinforcement
ITAN20130201A1 (it) * 2013-11-02 2015-05-03 Stefano Corinaldesi Metodo di alimentazione di una stampante di oggetti tridimensionali ed elemento di adduzione di materiale di formatura
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
US20150183159A1 (en) * 2013-12-30 2015-07-02 Chad E. Duty Large scale room temperature polymer advanced manufacturing
WO2015156877A2 (en) 2014-01-17 2015-10-15 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US9636872B2 (en) 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
TW201538304A (zh) * 2014-03-24 2015-10-16 Dws有限責任公司 產生三度空間物體的數字表示的方法及設備,該數字表示係適合使用於藉由光固化製造該三度空間物體
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
US10675853B2 (en) 2014-05-16 2020-06-09 Stratasys, Inc. High-temperature soluble support material for additive manufacturing
EP3172038B1 (en) 2014-07-22 2020-03-04 Stratasys, Inc. Gear-based liquefier assembly for additive manufacturing system, and methods of use thereof
US10500830B2 (en) 2014-07-29 2019-12-10 Nscrypt, Inc. Method and apparatus for 3D fabrication
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
IL282056B (en) 2014-08-21 2022-09-01 Mosaic Mfg Ltd Multi-material extrusion technology enabled serially
EP3197680B1 (en) 2014-09-26 2020-07-01 Stratasys, Inc. Liquefier assembly for additive manufacturing system, and method of use thereof
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
DE102014118577A1 (de) * 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel
US9694545B2 (en) 2014-12-18 2017-07-04 Stratasys, Inc. Remotely-adjustable purge station for use in additive manufacturing systems
US10040235B2 (en) 2014-12-30 2018-08-07 Wobbleworks, Inc. Extrusion device for three-dimensional drawing
US9610733B2 (en) 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
US10426917B2 (en) 2015-04-16 2019-10-01 Stryker Corporation System and method for manufacturing variable stiffness catheters
WO2016165140A1 (en) 2015-04-17 2016-10-20 Wobbleworks,Inc. Distribution of driving pressure about filament's circumference in extrusion device
JP6616134B2 (ja) * 2015-09-08 2019-12-04 東洋リビング株式会社 3dプリンタ用防湿庫
DE112016004933T5 (de) 2015-10-30 2018-08-16 Stratasys, Inc. Trägerplattenausbau für ein additives Fertigungssystem
US10583646B2 (en) 2015-10-30 2020-03-10 Stratasys, Inc. Starter piece and printing methods for additive manufacturing system
US10399326B2 (en) 2015-10-30 2019-09-03 Stratasys, Inc. In-situ part position measurement
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
US10421268B2 (en) 2015-11-18 2019-09-24 Stratasys, Inc. Filament feeding device having a capacitive filament displacement sensor for use in additive manufacturing system
US10518472B2 (en) * 2015-12-08 2019-12-31 Stratasys, Inc. Thermal drying system for additive manufacturing device
WO2017112687A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support material for high temperature additive manufacturing applications
WO2017112689A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support materials for high temperature additive manufacturing applications
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US10232551B2 (en) 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
CA3038750C (en) 2016-08-22 2021-07-13 Stratasys, Inc. Multiple axis robotic additive manufacturing system and methods
US20180065307A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Systems and methods for controlling additive manufacturing
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US20180065317A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-situ fiber splicing
US10766595B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US20210094230A9 (en) 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
EP4234849A3 (en) * 2017-01-12 2023-10-18 Keystone Tower Systems, Inc. Cylindrical tube formation
US10940638B2 (en) 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US20180229092A1 (en) 2017-02-13 2018-08-16 Cc3D Llc Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
USD888115S1 (en) 2017-03-16 2020-06-23 Stratasys, Inc. Nozzle
US10906240B2 (en) 2017-06-29 2021-02-02 Continuous Composites Inc. Print head for additive manufacturing system
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
EP3664990A1 (en) * 2017-08-07 2020-06-17 Teva Pharmaceutical Industries Ltd. Method and an apparatus for feeding a filament and use of the apparatus for production of a pharmaceutical dosage form
US11485088B2 (en) 2017-10-03 2022-11-01 Jabil Inc. Apparatus, system and method of process monitoring and control in an additive manufacturing environment
US10919221B2 (en) 2017-10-03 2021-02-16 Jabil Inc. Apparatus, system and method for an additive manufacturing print head
US11584078B2 (en) 2017-10-03 2023-02-21 Jabil Inc. Apparatus, system and method of operating an additive manufacturing nozzle
CN109840338B (zh) * 2017-11-28 2023-04-25 南京国图信息产业有限公司 一种应用于三维不动产信息管理的三维楼盘模型构建方法
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10449719B2 (en) * 2017-12-01 2019-10-22 Bulent Besim System for feeding filament to a nozzle in an additive manufacturing machine
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN209869406U (zh) 2017-12-29 2019-12-31 斯特塔思有限公司 具有扩展的打印体积的增材制造系统
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN112188952B (zh) * 2018-03-21 2023-10-03 埃森提姆公司 高速挤出3-d打印系统
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11130284B2 (en) 2018-04-12 2021-09-28 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11491702B2 (en) * 2018-08-08 2022-11-08 New Jersey Institute Of Technology Additive manufacturing of channels
US11806444B2 (en) * 2019-08-06 2023-11-07 New Jersey Institute Of Technology Additive manufacturing of cell-laden functional hydrogel and live cell constructs
US11192298B2 (en) 2018-08-17 2021-12-07 Stratasys, Inc. Laser preheating in three-dimensional printing
US11203156B2 (en) 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
US11247387B2 (en) 2018-08-30 2022-02-15 Stratasys, Inc. Additive manufacturing system with platen having vacuum and air bearing
US20200086563A1 (en) 2018-09-13 2020-03-19 Cc3D Llc System and head for continuously manufacturing composite structure
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11511480B2 (en) 2018-10-26 2022-11-29 Continuous Composites Inc. System for additive manufacturing
IL282910B1 (en) 2018-11-09 2024-04-01 Nexa3D Inc 3D printing system
US11338514B2 (en) 2018-11-09 2022-05-24 Stratasys, Inc. Protective filament guide tube for additive manufacturing system
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
WO2020109280A1 (de) * 2018-11-29 2020-06-04 Covestro Deutschland Ag Additive fertigung 3-dimensionaler formkörper mittels filamenten mit hohem aspektverhältnis
US20200238603A1 (en) 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
EP3941714B1 (en) 2019-03-18 2023-03-08 Nexa3D Inc. Method and system for additive manufacturing
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
EP3888879A1 (en) 2020-04-02 2021-10-06 Universitat de Girona An extrusion head and a method for continuous fused filament fabrication
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
USD995629S1 (en) 2021-01-29 2023-08-15 Wobble Works, Inc. Drawing tool
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system
US20220396028A1 (en) * 2021-06-13 2022-12-15 Sergey Julius Glimis Elongated Nozzle FDM 3D printer

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE553136A (zh) 1955-12-08
GB1176357A (en) * 1967-04-01 1970-01-01 Barmag Barmer Maschf Improvements in the Conversion of Films into Separate Oriented Filaments
US4113935A (en) * 1973-06-06 1978-09-12 Barmag Barmer Maschinenfabrik Ag Process for producing low shrinkage film bands
NZ210504A (en) * 1983-12-22 1987-03-31 Bostik New Zealand Ltd Hot melt dispenser:spring urges hot melt material out of melt chamber when not dispensing
US4749347A (en) * 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
US4797313A (en) * 1985-11-08 1989-01-10 Monsanto Company Non-metallic polymeric twist tie
GB2229702B (en) * 1989-02-04 1992-09-30 Draftex Ind Ltd Strip handling apparatus
JP2813994B2 (ja) * 1989-10-06 1998-10-22 株式会社 共和 無芯ツイストタイおよびその製造方法
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5312224A (en) * 1993-03-12 1994-05-17 International Business Machines Corporation Conical logarithmic spiral viscosity pump
US5424119A (en) * 1994-02-04 1995-06-13 Flex Products, Inc. Polymeric sheet having oriented multilayer interference thin film flakes therein, product using the same and method
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JPH0825451A (ja) 1994-07-11 1996-01-30 Shinko Sellbick:Kk 流動性材料の供給方法および供給装置
US5764521A (en) * 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6085957A (en) 1996-04-08 2000-07-11 Stratasys, Inc. Volumetric feed control for flexible filament
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5578227A (en) * 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
US6070107A (en) * 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6067480A (en) * 1997-04-02 2000-05-23 Stratasys, Inc. Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) * 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5968561A (en) * 1998-01-26 1999-10-19 Stratasys, Inc. High performance rapid prototyping system
US6004124A (en) * 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
US6022207A (en) * 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US5939008A (en) * 1998-01-26 1999-08-17 Stratasys, Inc. Rapid prototyping apparatus
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6054077A (en) * 1999-01-11 2000-04-25 Stratasys, Inc. Velocity profiling in an extrusion apparatus
CN1320992C (zh) * 1999-04-20 2007-06-13 斯特拉塔西斯公司 可溶材料和三维模型的加工方法
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US6645412B2 (en) * 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6257517B1 (en) * 1999-08-10 2001-07-10 Sandvik Steel Co. Method and apparatus for feeding welding wire
US6302309B1 (en) * 2000-06-16 2001-10-16 Clarence H. Drader Forwarding a rod for use in welding by high pressure injection
US6730252B1 (en) * 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6480740B2 (en) * 2000-12-26 2002-11-12 Cardiac Pacemakers, Inc. Safety pacing in multi-site CRM devices
US6684633B2 (en) * 2001-04-27 2004-02-03 Marion Barney Jett Exhaust device for two-stroke internal combustion engine
US6749414B1 (en) * 2001-04-30 2004-06-15 Stratasys, Inc. Extrusion apparatus for three-dimensional modeling
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US6547995B1 (en) * 2001-09-21 2003-04-15 Stratasys, Inc. Melt flow compensation in an extrusion apparatus
US6814907B1 (en) * 2001-12-18 2004-11-09 Stratasys, Inc. Liquifier pump control in an extrusion apparatus
AU2003291228A1 (en) * 2002-11-02 2004-06-07 Ambec, Inc. Apparatus for diverting successive articles in a single lane to plural lanes
US6869559B2 (en) * 2003-05-05 2005-03-22 Stratasys, Inc. Material and method for three-dimensional modeling
US20050046065A1 (en) * 2003-08-30 2005-03-03 Cowan Martin E. Thermoplastic fibers exhibiting durable high color strength characteristics
JP4564448B2 (ja) * 2003-10-14 2010-10-20 株式会社共和 ノンメタリックツイストタイ
US20050101684A1 (en) * 2003-11-06 2005-05-12 Xiaorong You Curable compositions and rapid prototyping process using the same
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
US7604470B2 (en) * 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7891964B2 (en) * 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US8215371B2 (en) * 2008-04-18 2012-07-10 Stratasys, Inc. Digital manufacturing with amorphous metallic alloys
US7896209B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Filament drive mechanism for use in extrusion-based digital manufacturing systems
US7897074B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Liquefier assembly for use in extrusion-based digital manufacturing systems
US8246888B2 (en) 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US7938356B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament spool
US7938351B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament guide mechanism for filament spool container
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8236227B2 (en) 2009-09-30 2012-08-07 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments

Also Published As

Publication number Publication date
US10272665B2 (en) 2019-04-30
RU2514831C2 (ru) 2014-05-10
CN102548737B (zh) 2015-03-11
US8221669B2 (en) 2012-07-17
EP2483060B1 (en) 2017-03-08
EP2483060A1 (en) 2012-08-08
US20170136691A1 (en) 2017-05-18
US20110076496A1 (en) 2011-03-31
TW201213095A (en) 2012-04-01
CN102548737A (zh) 2012-07-04
JP2013506580A (ja) 2013-02-28
US10759107B2 (en) 2020-09-01
ES2627566T3 (es) 2017-07-28
CA2775076C (en) 2015-01-06
KR20120063538A (ko) 2012-06-15
CA2775076A1 (en) 2011-04-07
JP5701302B2 (ja) 2015-04-15
WO2011041166A1 (en) 2011-04-07
US9586357B2 (en) 2017-03-07
KR101380112B1 (ko) 2014-04-01
RU2012117834A (ru) 2013-11-10
US20120258190A1 (en) 2012-10-11
US20190240970A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
TWI517962B (zh) 使用在擠製數位製造系統之非柱狀帶材
US8236227B2 (en) Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments
KR101413485B1 (ko) 압출가공 기반 디지털 제조 시스템용 리본 액화기
US20100327479A1 (en) Consumable materials having customized characteristics
WO2009134300A2 (en) Liquefier assembly for use in extrusion-based digital manufacturing systems