ES2627566T3 - Sistema de fabricación digital basado en extrusión con un filamento de cinta - Google Patents

Sistema de fabricación digital basado en extrusión con un filamento de cinta Download PDF

Info

Publication number
ES2627566T3
ES2627566T3 ES10757920.3T ES10757920T ES2627566T3 ES 2627566 T3 ES2627566 T3 ES 2627566T3 ES 10757920 T ES10757920 T ES 10757920T ES 2627566 T3 ES2627566 T3 ES 2627566T3
Authority
ES
Spain
Prior art keywords
filament
tape
liquefactor
cylindrical
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10757920.3T
Other languages
English (en)
Inventor
J. Samuel Batchelder
William J. Swanson
S. Scott Crump
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratasys Inc
Original Assignee
Stratasys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stratasys Inc filed Critical Stratasys Inc
Application granted granted Critical
Publication of ES2627566T3 publication Critical patent/ES2627566T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • B32B38/1841Positioning, e.g. registration or centering during laying up
    • B32B38/185Positioning, e.g. registration or centering during laying up combined with the cutting of one or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • B29K2509/04Carbides; Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/10Mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/007Narrow strips, e.g. ribbons, tapes, bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/045Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Un sistema que comprende un sistema (10) de fabricación digital basado en extrusión y un material (34) consumible, comprendiendo el material (34) consumible un filamento de cinta, teniendo el filamento de cinta una longitud (36) y un perfil (38) de sección transversal que es no cilíndrico, en el que el perfil (38) de sección transversal comprende una geometría rectangular que tiene una relación de aspecto de sección transversal de ancho a espesor que es de aproximadamente 2:1 o mayor, en el que el perfil (38) de sección transversal se configura para coincidir con una geometría rectangular correspondiente de un licuefactor (48) no cilíndrico del sistema (10) de fabricación digital basado en extrusión, teniendo el licuefactor (48) un área Ae de sección transversal de entrada y un diámetro Dk hidráulico, en el que Dk < 0,95 Ae , para proporcionar un tiempo de respuesta con el licuefactor (48) no cilíndrico que sea al menos 1,5 veces más rápido que un tiempo de respuesta que pueda conseguirse con un filamento cilíndrico en un licuefactor cilíndrico para al mismo caudal volumétrico máximo, térmicamente limitado.

Description

5
10
15
20
25
30
35
40
45
50
55
DESCRIPCION
Sistema de fabricacion digital basado en extrusion con un filamento de cinta Antecedentes
La presente divulgacion se refiere a sistemas de fabricacion digital directa para la construccion de modelos tridimensionales (3D). En particular, la presente invencion se refiere a materiales consumibles, tales como materiales de modelado y soporte, para su uso en sistemas de fabricacion digital basados en extrusion.
Se usa un sistema de fabricacion digital basado en extrusion (por ejemplo, sistemas de modelado por deposicion fundida desarrollado por Stratasys, Inc., Eden Prairie, MN) para construir un modelo 3D a partir de una representacion digital del modelo 3d en un modo capa a capa mediante la extrusion de un material de modelado consumible fluido. El material de modelado se extrude a traves de una punta de extrusion transportada por un cabezal de extrusion, y se deposita en una secuencia de rutas sobre un sustrato en un plano x-y. El material de modelado extrudido se funde con un material de modelado previamente depositado, y se solidifica tras una cafda en la temperatura. Se incrementa entonces la posicion del cabezal de extrusion con relacion al sustrato a lo largo de un eje z (perpendicular al plano x-y), y el procedimiento se repite a continuacion para formar un modelo 3D que se asemeja a la representacion digital.
El movimiento del cabezal de extrusion con respecto al sustrato se realizaba bajo control por ordenador, de acuerdo con los datos de construccion que representan el modelo 3D. Los datos de construccion se obtienen inicialmente mediante el rebanado de la representacion digital del modelo 3D en multiples capas horizontalmente cortadas. A continuacion, para cada capa cortada, el ordenador central genera un recorrido de construccion para la deposicion de rutas del material de modelado para formar el modelo 3D.
En la fabricacion de modelos 3D mediante la deposicion de capas de material de modelado, las capas o estructuras de soporte se construyen tfpicamente por debajo de partes colgantes o en cavidades de objetos bajo construccion, que no estan soportadas por el material de modelado en sf. Puede construirse una estructura de soporte utilizando las mismas tecnicas de deposicion mediante las que se deposita el material de modelado. El ordenador central genera una geometna adicional que actua como una estructura de soporte para los segmentos colgantes o en el espacio libre del modelo 3D que se esta formando. Se deposita entonces material de soporte consumible desde una segunda boquilla siguiendo la geometna generada durante el procedimiento de construccion. El material de soporte se adhiere al material de modelado durante la fabricacion, y es extrafble a partir del modelo en 3D completado cuando se finaliza el procedimiento de construccion.
El documento WO 97/19798 A2 desvela un sistema de fabricacion basado en extrusion que usa obleas como material consumible.
Sumario
La presente invencion se dirige a un sistema de acuerdo con la reivindicacion 1 que comprende un sistema de fabricacion digital basado en extrusion y un filamento de cinta consumible y se dirige tambien a un procedimiento de acuerdo con la reivindicacion 7 para la construccion de un modelo tridimensional en un sistema de fabricacion digital basado en extrusion.
Un primer aspecto de la presente divulgacion se dirige a un material consumible para su uso en un sistema de fabricacion digital basado en la extrusion. El material consumible incluye una longitud y un perfil de seccion transversal de al menos una parte de la longitud que es axialmente asimetrica. El perfil de seccion transversal se configura para proporcionar un tiempo de respuesta con un licuefactor cilmdrico del sistema de fabricacion digital basado en la extrusion que es mas rapido (por ejemplo, al menos 50 % mas rapido) que un tiempo de respuesta que puede conseguirse con un filamento cilmdrico en un licuefactor cilmdrico para el mismo caudal volumetrico maximo, termicamente limitado.
Otro aspecto de la presente divulgacion se dirige a un material consumible para su uso en un sistema de fabricacion digital basado en extrusion, en el que el material consumible incluye una composicion que comprende al menos un material que tiene propiedades amorfas. El material consumible incluye tambien una geometna no cilmdrica que comprende una longitud y un perfil de seccion transversal de al menos una parte de la longitud. El perfil de seccion transversal se configura para coincidir con un licuefactor no cilmdrico del sistema de fabricacion digital basado en extrusion que tiene un area Ae de seccion transversal de entrada y un diametro hidraulico Dh, en el que
Dh < 0,95 va; .
Otro aspecto de la presente divulgacion se dirige a un procedimiento para la fabricacion de materiales consumibles para su uso en sistemas de fabricacion digital basados en extrusion. El procedimiento incluye proporcionar una lamina que tiene un espesor de lamina y una composicion que comprende al menos un material termoplastico. El procedimiento incluye tambien el corte de la lamina en una pluralidad de filamentos no cilmdricos, en los que al menos uno de la pluralidad de filamentos no cilmdricos tiene una longitud y perfil de seccion transversal de al menos
5
10
15
20
25
30
35
40
45
50
55
una parte de la longitud. El perfil de seccion transversal se configura para coincidir con un licuefactor no cilmdrico del sistema de fabricacion digital basado en extrusion que tiene un area Ae de seccion transversal de entrada y un
diametro hidraulico Dh, en el que Dh < 0,95 . El procedimiento incluye adicionalmente la carga de al menos una
parte de la pluralidad de filamentos no cilmdricos sobre conjuntos de suministro en una forma sustancialmente paralela.
Breve descripcion de los dibujos
La FIG. 1 es una vista frontal del sistema de fabricacion digital basado en extrusion para la construccion de modelos 3D y estructuras de soporte a partir de filamentos no cilmdricos de modelado y materiales de soporte.
La FIG. 2 es una vista en perspectiva de un filamento de cinta, que es un filamento no cilmdrico que tiene un perfil de seccion transversal rectangular.
La FIG. 3 es una vista en seccion de la seccion 3-3 tomada en la FIG. 2, que ilustra el perfil de seccion transversal del filamento de cinta.
La FIG. 4 es una vista en perspectiva en despiece de un subconjunto de cabezal de extrusion del sistema de fabricacion digital basado en extrusion en uso con un filamento de cinta, en el que el subconjunto de cabezal de extrusion incluye un licuefactor rectangular.
La FIG. 5A es una vista en seccion de la seccion 5A-5A tomada en la FIG. 4, que ilustra el filamento de cinta siendo extrudido a traves del licuefactor rectangular.
La FIG. 5B es una vista en seccion de la seccion 5B-5B tomada en la FIG. 4, que ilustra adicionalmente el filamento de cinta siendo extrudido a traves del licuefactor rectangular.
La FIG. 5C es una vista en seccion de la seccion 5C-5C tomada en la FIG. 4, que ilustra un perfil de seccion transversal de entrada del licuefactor rectangular.
La FIG. 6 es una ilustracion esquematica de una pluralidad de licuefactores cilmdricos superpuestos sobre un licuefactor rectangular.
La FIG. 7 es un diagrama de flujo de un procedimiento para la formacion de filamentos de cinta.
La FIG. 8 es una vista en perspectiva de una lamina extrudida usada para formar filamentos de cinta.
La FIG. 9 es una ilustracion esquematica de un sistema de extrusion de laminas para la formacion de la lamina extrudida.
La FIG. 10 es una ilustracion esquematica de un sistema de produccion de filamentos para la formacion de filamentos de cinta a partir de laminas extrudidas.
La FIG. 11 es una vista en seccion alternativa de la seccion 3-3 tomada en la FIG. 2, que ilustra un primer filamento de cinta alternativo que tiene una unica superficie laminada.
La FIG. 12 es una vista en seccion alternativa de la seccion 3-3 tomada en la FIG. 2, que ilustra un segundo filamento de cinta alternativo que tiene dos superficies laminadas.
La FIG. 13 es una vista en seccion alternativa de la seccion 3-3 tomada en la FIG. 2, que ilustra un tercer filamento de cinta alternativo que tiene dos superficies laminadas con multiples capas.
Descripcion detallada
La presente divulgacion se dirige a filamentos no cilmdricos de modelado y materiales de soporte para su uso en sistemas de fabricacion digital basados en extrusion, y procedimientos y sistemas para la fabricacion de filamentos no cilmdricos. Como se explica a continuacion, los filamentos no cilmdricos son materiales consumibles capaces de ser fundidos y extrudidos desde licuefactores no cilmdricos con tiempos de respuesta reducidos en comparacion con filamentos cilmdricos fundidos y extrudidos desde licuefactores cilmdricos con los mismos caudales volumetricos. Es beneficioso para la mejora de las precisiones de deposicion y reduccion de los tiempos de construccion, incrementando de ese modo las eficiencias del procedimiento para la construccion de modelos 3D y estructuras de soporte correspondientes.
Tal como se usa en el presente documento, la expresion “filamento no cilmdrico” se refiere a un filamento de un material de modelado o soporte que tiene un perfil de seccion transversal que es no circular (por ejemplo, un perfil de seccion transversal rectangular). Esto es en comparacion con un “filamento cilmdrico”, que tiene un perfil de seccion transversal que es circular. Correspondientemente, tal como se usa en el presente documento, la expresion “licuefactor no cilmdrico” se refiere a un licuefactor que tiene un canal con un perfil de seccion transversal que no es circular (por ejemplo, un perfil de seccion transversal rectangular o en arco) para la recepcion de un filamento no cilmdrico. Esto es en comparacion con un “licuefactor cilmdrico), que tiene un canal con un perfil de seccion transversal que es circular para la recepcion de un filamento cilmdrico.
La FIG. 1 es una vista frontal del sistema 10, que es un sistema de fabricacion digital basado en extrusion que incluye una camara 12 de construccion, una bandeja 14, portico 16, cabezal 18 de extrusion, y fuentes 20 y 22 de suministro, en el que el cabezal 18 de extrusion se configura para recibir y fundir partes sucesivas de filamentos no cilmdricos (no mostrados en la FIG. 1) durante una operacion de construccion. Los sistemas de fabricacion digital basados en extrusion adecuados para el sistema 10 incluyen sistemas de modelado por deposicion fundida desarrollados por Stratasys, Inc., Eden Prairie, MN.
La camara 12 de construccion es un entorno cerrado que contiene la bandeja 14, el portico 16, y el cabezal 18 de
5
10
15
20
25
30
35
40
45
50
55
60
extrusion para la construccion de un modelo 3D (al que se hace referencia como el modelo 3D 24) y una estructura de soporte correspondiente (a la que se hace referencia como estructura 26 de soporte). La bandeja 14 es una plataforma sobre la que se construye el modelo 3D 24 y la estructura 26 de soporte, y se mueve a lo largo de un eje vertical z basandose en senales proporcionadas desde un controlador accionado por ordenador (al que se hace referencia como el controlador 28). El portico 16 es un sistema de carriles de gma configurados para mover el cabezal 18 de extrusion en un plano horizontal x-y dentro de la camara 12 de construccion basandose en senales proporcionadas desde el controlador 28. El plano horizontal x-y es un plano definido por un eje x un eje y (no mostrados en la FIG. 1), en el que el eje x, el eje y, y el eje z son ortogonales entre st En una realizacion alternativa, la bandeja 14 puede configurarse para moverse en el plano horizontal x-y dentro de la camara 12 de construccion, y el cabezal 18 de extrusion puede configurarse para moverse a lo largo del eje z. Pueden usarse tambien otras disposiciones similares tales como que uno o ambos de entre la bandeja 14 y el cabezal 18 de extrusion sean moviles relativamente entre sf.
El cabezal 18 de extrusion esta soportado por el portico 16 para la construccion del modelo 3D 24 y la estructura 26 de soporte sobre la bandeja 14 en una forma capa a capa, basandose en senales proporcionadas desde el controlador 28. El cabezal 18 de extrusion incluye un par de licuefactores no cilmdricos (no mostrados en la FIG. 1), en el que el primer licuefactor no cilmdrico se configura para recibir y fundir partes sucesivas de un filamento no cilmdrico, de material de modelado, y un segundo licuefactor no cilmdrico se configura para recibir y fundir partes sucesivas de un filamento no cilmdrico, de material de soporte.
El filamento no cilmdrico, de material de modelado puede proporcionarse al cabezal 18 de extrusion desde la fuente 20 de suministro a traves de un recorrido 30, de modo similar, el filamento no cilmdrico, de material de soporte puede proporcionarse al cabezal 18 de extrusion desde la fuente 22 de suministro a traves de un recorrido 32. El sistema 10 puede incluir tambien mecanismos de accionamiento adicionales (no mostrados) configurados para ayudar en la alimentacion de los filamentos no cilmdricos desde las fuentes 20 y 22 de suministro al cabezal 18 de extrusion. Las fuentes 20 y 22 de suministro son fuentes (por ejemplo, contenedores de carretes) para filamentos no cilmdricos, y se retienen convenientemente en una localizacion remota respecto a la camara 12 de construccion. Conjuntos adecuados para fuentes 20 y 22 de suministro incluyen los desvelados en Swanson et al., Patente de Estados Unidos N.° 6.923.634; Comb et al., Patente de Estados Unidos N.° 7.122.246; y Taatjes et al., publicaciones de Solicitud de Patente de Estados Unidos N.° 2010/0096485 y 2010/0096489.
Durante una operacion de construccion, el portico 16 mueve el cabezal 18 de extrusion alrededor del plano horizontal x-y dentro de la camara 12 de construccion, y los filamentos no cilmdricos se alimentan al cabezal 18 de extrusion. El cabezal 18 de extrusion funde termicamente las partes sucesivas del filamento de material de modelado recibido, proporcionando de ese modo el material fundido a ser extrudido para construir el modelo 3D 24. De modo similar, el cabezal 18 de extrusion funde termicamente las partes sucesivas del filamento de material de soporte, permitiendo de ese modo que el material fundido sea extrudido para construir la estructura 26 de soporte. Las partes aguas arriba, no fundidas de filamentos no cilmdricos pueden funcionar cada una como un piston con una accion de bomba de viscosidad para extrudir el material fundido fuera de los licuefactores respectivos del cabezal 18 de extrusion.
Los materiales de modelado y soporte extrudidos se depositan sobre la bandeja 14 para construir el modelo 3D 24 y la estructura 26 de soporte usando la tecnica aditiva basada en capas. La estructura 26 de soporte se deposita convenientemente para proporcionar un soporte vertical a lo largo del eje z para zonas colgantes de las capas del modelo 3D 24. Despues de que se complete la operacion de construccion, el modelo 24 3D/estructura 26 de soporte resultante puede retirarse de la camara 12 de construccion, y la estructura 26 de soporte puede retirarse del modelo 3D 24.
Como se explica a continuacion, los perfiles de seccion transversal de los filamentos y licuefactores no cilmdricos permiten que los filamentos no cilmdricos se fundan y extrudan desde el cabezal 18 de extrusion con tiempos de respuesta reducidos en comparacion con filamentos y licuefactores cilmdricos. Esto incrementa las eficiencias del procedimiento en el sistema 10 para la construccion del modelo 3D 24 y estructura 26 de soporte. Por ejemplo, los tiempos de respuesta reducidos pueden incrementar la precision de las localizaciones de inicio y final para las rutas depositadas de materiales de modelado y soporte. Durante una operacion de construccion para formar una capa de modelo 3D (por ejemplo, el modelo 3D 24), un cabezal de extrusion (por ejemplo el cabezal 18 de extrusion) se mueve en un plano horizontal x-y y deposita un material de modelado fundido. Despues de que se complete un patron de deposicion dado, el cabezal de extrusion para la deposicion del material de modelado. Esto se lleva a cabo mediante la detencion de la alimentacion del filamento al interior de licuefactor del cabezal de extrusion, deteniendo de ese modo la accion de bomba de viscosidad del filamento.
Sin embargo, el tiempo de respuesta entre que el cabezal de extrusion para la alimentacion del filamento al licuefactor y cuando el material de modelado realmente para de extrudirse desde el cabezal de extrusion no es instantaneo. En su lugar, hay un retardo que se basa en factores tales como las propiedades termicas del licuefactor, la composicion del filamento y, como se explica a continuacion, el perfil de seccion transversal del filamento y canal del licuefactor. De modo similar, hay tambien un retardo de tiempo de respuesta asociado con la transicion desde un estado de cero flujo a un estado de flujo estable. Los licuefactores y filamentos que requieren largos tiempos de respuesta incrementan estos retardos, disminuyendo potencialmente por ello las precisiones de
5
10
15
20
25
30
35
40
45
50
55
60
deposicion. La reduccion de los tiempos de respuesta, sin embargo, puede mejorar las calidades esteticas y estructurales del modelo 3D resultante, particularmente cuando se construyen modelos 3D que contienen caractensticas finas.
Por ejemplo, un tiempo de respuesta reducido para el sistema 10 puede regular la aceleracion del portico 16 en localizaciones adecuadas cerca de los puntos de inicio y parada de la deposicion. Esto puede incrementar la capacidad para ocultar las costuras de cada capa, lo que puede incrementar la calidad parcial. Adicionalmente, el tiempo de respuesta determina como puede desviarse el portico 16 desde una velocidad tangencial constante cuando el portico 16 se traslada alrededor de una curva en el plano x-y. Como resultado, un tiempo de respuesta reducido permite que el cabezal 18 de extrusion alcance aceleraciones y desaceleraciones en curva mayores. Esto puede reducir los tiempos de produccion requeridos para construir modelos 3D y estructuras de soporte, en una forma muy similar a como las capacidades de giro en curva de un coche de carreras son importantes para reducir un tiempo de carrera global.
Por facilidad de la divulgacion, la siguiente divulgacion se realiza con referencia a un filamento no cilmdrico que tenga un perfil de seccion transversal rectangular (al que se hace referencia como filamento de cinta), y un licuefactor no cilmdrico que tenga un canal rectangular correspondiente para la recepcion del filamento de cinta. La presente divulgacion, sin embargo, es aplicable tambien a filamentos no cilmdricos que tengan una variedad de perfiles de seccion transversal diferentes que reduzcan los tiempos de respuesta en comparacion con filamentos cilmdricos.
La FIG. 2 es una vista en perspectiva del filamento 34 de cinta, que es un filamento cilmdrico que tiene un perfil de seccion transversal rectangular e incluye la longitud 36. La longitud 36 es una longitud continua que puede variar dependiendo de la cantidad de filamento 34 de cinta que permanece en la fuente 20 o 22 de suministro (mostrada en la FIG. 1). El filamento 34 de cinta es convenientemente flexible a lo largo de la longitud 36 para permitir que el filamento 34 de cinta se retenga en las fuentes 20 y 22 de suministro (por ejemplo, bobinado sobre carretes) y que se alimente a traves del sistema 10 (por ejemplo, a traves de recorridos 30 y 32) sin deformarse plasticamente o fracturar. Por ejemplo, en una realizacion, el filamento 34 de cinta es convenientemente capaz de soportar tensiones elasticas mayores que t/r, en la que “t” es el espesor de seccion transversal del filamento 34 de cinta en el plano de curvatura (por ejemplo, el espesor 42, mostrado en la FIG. 3), y “r” es un radio de doblado (por ejemplo, un radio de un doblado en la fuente 20 o 22 de suministro y/o un radio de doblado a traves del recorrido 30 o 32).
El filamento 34 de cinta puede fabricarse a partir de una variedad de materiales de modelado y soporte que pueden extrudirse para la construccion respectivamente del modelo 3D 24 y la estructura 26 de soporte (mostrada en la FIG. 1). Los materiales de modelado adecuados para el filamento 34 de cinta incluyen materiales polimericos y metalicos. En algunas realizaciones, los materiales de modelado adecuados incluyen materiales que tienen propiedades amorfas, tales como materiales termoplasticos, materiales metalicos amorfos, y combinaciones de los mismos. Ejemplos de materiales termoplasticos adecuados para el filamento 34 de cinta incluyen copolfmeros de acrilonitrilo- butadieno-estireno (ABS), policarbonatos, polisulfonas, polieter sulfonas, polifenilsulfonas, polieter imidas, poliamidas amorfas, variaciones modificadas de los mismos (por ejemplo, copolfmeros ABS-M30), poliestireno, y mezclas de los mismos. Por ejemplo, materiales metalicos amorfos adecuados incluyen los desvelados en Batchelder, publicacion de Solicitud de Patente de Estados Unidos N.° 20090263582.
Materiales de soporte adecuados para el filamento 34 de cinta incluyen materiales que tengan propiedades amorfas (por ejemplo, materiales termoplasticos) y que sean convenientemente extrafbles desde los materiales de modelado correspondientes despues de que se haya construido el modelo 3D 24 y la estructura 26 de soporte. Ejemplos de materiales de soporte adecuados para el filamento 34 de cinta incluyen materiales de soporte solubles en agua comercialmente disponibles bajo las designaciones comerciales “WATERWORKS” y “SOLUBLE SUPPORTS” de Stratasys, Inc., Eden Prairie, MN; materiales de soporte que pueden soltarse comercialmente disponibles bajo la designacion comercial “BASS” de Stratasys, Inc., Eden Prairie, MN, y los desvelados en Crump et al., Patente de Estados Unidos N.° 5,503,785; Lombardi et al., Patentes de Estados Unidos N.° 6.070.107 y 6.228.923; Priedeman et al., Patente de Estados Unidos N.° 6.,790.403; y Hopkins et al., publicacion de Solicitud de Patente de Estados Unidos N.° 2010/0096072.
La composicion del filamento 34 de cinta puede incluir tambien aditivos adicionales, tales como plastificantes, modificadores de la reologfa, aportes inertes, colorantes, estabilizadores y combinaciones de los mismos. Ejemplos de plastificantes adicionales adecuados para su uso en el material de soporte incluyen dialquil ftalatos, cicloalquilo ftalatos, bencil y aril ftalatos, alcoxi ftalatos, alquil/aril fosfatos, esteres de poliglicol, esteres de adipato, esteres de citrato, esteres de glicerina, y combinaciones de los mismos. Ejemplos de rellenos inertes incluyen carbonato de calcio, carbonato de magnesio, esferas de vidrio, grafito, negro de carbono, fibra de carbono, fibra de vidrio, tal como, wollastonita, mica, alumina, sflice, caolm, carburo de silicio, materiales compuestos (por ejemplo, materiales compuestos esfericos y filamentosos), y combinaciones de los mismos. En realizaciones en las que la composicion incluye aditivos adicionales, los ejemplos de concentraciones combinadas adecuadas de aditivos adicionales en el intervalo de composicion vanan desde aproximadamente 1 % en peso a aproximadamente 10 % en peso, con concentraciones particularmente adecuadas que vanan desde aproximadamente 1 % en peso a aproximadamente 5 % en peso, basandose en todo el peso de la composicion.
5
10
15
20
25
30
35
40
45
50
55
El filamento 34 de cinta presenta tambien convenientemente propiedades ffsicas que permiten al filamento 34 de cinta ser usado como un material consumible en el sistema 10. En una realizacion, la composicion del filamento 34 de cinta es sustancialmente homogenea a lo largo de su longitud. Adicionalmente, la composicion del filamento 34 de cinta presenta convenientemente una temperatura de transicion vftrea que es adecuada para su uso en la camara 12 de construccion. Ejemplos de temperatura de transicion vftrea adecuada a presion atmosferica para la composicion del filamento 34 de cinta incluyen temperaturas de aproximadamente 80 °C o mayores. En algunas realizaciones, las temperaturas de transicion vftrea adecuadas incluyen aproximadamente 100 °C o mayores. En realizaciones adicionales, temperaturas de transicion vftrea adecuadas incluyen aproximadamente 120 °C o mayores.
El filamento 34 de cinta presenta tambien convenientemente una baja compresibilidad de modo que su compresion axial no provoque que el filamento 34 de cinta se agarre dentro de un licuefactor. Ejemplos de valores del modulo de Young adecuados para composiciones polimericas del filamento 34 de cinta incluyen valores del modulo de aproximadamente 0,2 gigapascales (GPa) (aproximadamente 30.000 libras por pulgada cuadrada (psi)) o mayor, en donde los valores del modulo de Young se miden siguiendo la norma ASTM D638-08. En algunas realizaciones, el modulo de Young adecuado vana desde aproximadamente 1,0 GPa (aproximadamente 145.000 psi) a aproximadamente 5,0 GPa (aproximadamente 725.000 psi). En realizaciones adicionales, los valores del modulo de Young adecuados vanan desde aproximadamente 1,5 GPa (aproximadamente 200.000 psi) a aproximadamente 3,0 GPa (aproximadamente 440.000 psi).
En algunas realizaciones, como se explica a continuacion, el filamento 34 de cinta puede ser un filamento multicapa. Por ejemplo, el filamento 34 de cinta puede incluir una capa central dispuesta entre capas exteriores de diferentes materiales. Esto permite al filamento 34 de cinta presentar una variedad de calidades ffsicas y esteticas. En realizaciones adicionales, el filamento 34 de cinta puede presentar patrones superficiales topograficos en varias localizaciones a lo largo de la longitud 36. Por ejemplo, el filamento 34 de cinta puede incluir patrones superficiales topograficos tal como se desvela en Batchelder et al., Solicitud de Patente Provisional de Estados Unidos N.° 61/247.078; y Batchelder et al., Solicitud de Patente de Estados Unidos N.° 12/612.342, titulada “Consumable Materials Having Topographical Surface Patterns For Use In Extrusion-Based Digital Manufacturing Systems”.
La FIG. 3 es una vista en seccion de la seccion 3-3 tomada en la FIG. 2, que ilustra el perfil 38 del filamento 34 de cinta. El perfil 38 es un perfil en seccion transversal axialmente asimetrico, del filamento 34 de cinta en una localizacion a lo largo de la longitud 36. En la realizacion mostrada, el filamento 34 de cinta tiene sustancialmente el mismo perfil 38 a lo largo de la longitud 36, permitiendo de ese modo que se use toda la longitud 36 durante la operacion de construccion. Alternativamente, una o mas partes de la longitud 36 (por ejemplo, el segmento de salida final) pueden no ser utilizables.
En la realizacion mostrada, el filamento 34 de cinta tiene un ancho 40 de seccion transversal y un espesor 42 de seccion transversal. Las dimensiones adecuadas para el ancho 40 y espesor 42 permiten convenientemente al filamento 34 de cinta coincidir con un licuefactor rectangular del cabezal 18 de extrusion, y proporciona tambien convenientemente una relacion de aspecto de la seccion transversal que reduce el tiempo de respuesta del material extrudido comparado con un filamento cilmdrico en un licuefactor cilmdrico con el mismo caudal volumetrico.
Ejemplos de dimensiones adecuadas para el ancho 40 vanan desde aproximadamente 1,0 miftmetros (aproximadamente 0,04 pulgadas) a aproximadamente 10,2 miftmetros (aproximadamente 0,40 pulgadas), con anchos particularmente adecuados que vanan desde aproximadamente 2,5 miftmetros (aproximadamente 0,10 pulgadas) a aproximadamente 7,6 miftmetros (aproximadamente 0,30 pulgadas), y con anchos incluso mas particularmente adecuados que vanan desde aproximadamente 3,0 miftmetros (aproximadamente 0,12 pulgadas) a aproximadamente 5,1 miftmetros (aproximadamente 0,20 pulgadas).
El espesor 42 es convenientemente suficientemente grueso para proporcionar una integridad estructural adecuada para el filamento 34 de cinta, reduciendo de ese modo el riesgo de fracturas o roturas mientras el filamento 34 de cinta se retiene en la fuente 20 o 22 de suministro y mientras se alimenta a traves del sistema 10 (por ejemplo, a traves de los recorridos 30 o 32). Ejemplos de dimensiones adecuadas para el espesor 42 vanan desde aproximadamente 0,08 miftmetros (aproximadamente 0,003 pulgadas) a aproximadamente 1,5 miftmetros (aproximadamente 0,06 pulgadas), con espesores particularmente adecuados que vanan desde aproximadamente 0,38 miftmetros (aproximadamente 0,015 pulgadas) a aproximadamente 1,3 miftmetros (aproximadamente 0,05 pulgadas), y con espesores incluso mas particularmente adecuados que vanan desde aproximadamente 0,51 miftmetros (aproximadamente 0,02 pulgadas) a aproximadamente 1,0 miftmetros (aproximadamente 0,04 pulgadas).
Como se explica a continuacion, la relacion de aspecto del ancho 40 al espesor 42, y la relacion de aspecto correspondiente del licuefactor rectangular, puede seleccionarse para retirar efectivamente el nucleo que se asocia con el filamento cilmdrico que tiene una seccion transversal circular. Esto permite al filamento 34 de cinta ser fundido y extrudido en un licuefactor rectangular con un tiempo de respuesta reducido.
La FIG. 4 es una vista en perspectiva en despiece del subconjunto 44, que es un subconjunto adecuado para el cabezal 18 de extrusion (mostrado en la FIG. 1) para su uso con el filamento 34 de cinta. El subconjunto 44 incluye el mecanismo 46 de accionamiento, licuefactor 48 y bloque 50 termico. El mecanismo 46 de accionamiento es un
5
10
15
20
25
30
35
40
45
50
55
60
mecanismo de accionamiento del filamento que alimenta partes sucesivas del filamento 34 de cinta desde el recorrido 30 (mostrada en la FIG. 1) al licuefactor 48. El mecanismo 46 de accionamiento esta convenientemente en comunicacion de senal con el controlador 28 (mostrado en la FIG. 1), permitiendo de ese modo al controlador 28 dirigir las velocidades a las que el mecanismo 46 de accionamiento alimenta el filamento 34 de cinta al licuefactor 48. Aunque se muestra como un par de ruedas de accionamiento, el mecanismo 46 de accionamiento puede incluir una variedad de diferentes mecanismos para la alimentacion del filamento 34 de cinta al licuefactor 48. Ejemplos de mecanismo de accionamiento del filamento adecuados para el mecanismo 46 de accionamiento incluyen los desvelados en Batchelder et al., publicaciones de Solicitud de Patente de Estados Unidos N.° 2009/0274540 y 2009/0273122.
El licuefactor 48 es un licuefactor no cilmdrico que incluye el canal 52 que se extiende entre el extremo 54 superior y el extremo 56 inferior. El extremo 54 superior y el extremo 56 inferior son extremos opuestos de licuefactor 48 a lo largo del eje longitudinal 58. El canal 52 es una ranura rectangular en la que se recibe y funde el filamento 34 de cinta. En consecuencia, la entrada del canal 52 en el extremo 54 superior tiene convenientemente dimensiones que permiten al filamento 34 de cinta coincidir con el canal 52. Esto permite al filamento 34 de cinta deslizarse dentro del canal 52 sin una resistencia de friccion indebida. El canal 52 tambien presenta convenientemente sustancialmente el mismo perfil de seccion transversal a lo largo del eje longitudinal 58 entre el extremo 54 superior y el extremo 56 inferior. En realizaciones alternativas, sin embargo, el perfil de seccion transversal del canal 52 puede ahusarse reduciendo a un area de seccion transversal menor en el extremo 56 inferior.
El licuefactor 48 tambien incluye la punta 60 de extrusion, que es una punta de pequeno diametro que se localiza en el extremo 56 inferior y se configura para extrudir el material fundido del filamento 34 de cinta con un ancho de ruta deseado. Ejemplos de diametros de punta interior adecuados para la punta 60 de extrusion vanan desde aproximadamente 125 micrometros (aproximadamente 0,005 pulgadas) a aproximadamente 510 micrometros (aproximadamente 0,020 pulgadas).
El bloque 50 termico es un componente de transferencia de calor que se extiende alrededor de al menos una parte del licuefactor 48 y se configura para conducir calor al licuefactor 48 y al filamento 34 de cinta recibido. Ejemplos de componentes de transferencia de calor adecuados para el bloque 50 termico incluyen los desvelados en Swanson et al., Patente de Estados Unidos N.° 6.004.124; Comb, Patente de Estados Unidos N.° 6.547.995; LaBossiere et al., publicacion de Estados Unidos N.° 2007/0228590; y Batchelder et al., publicacion de Solicitud de Patente de Estados Unidos N.° 2009/0273122. En realizaciones alternativas, el bloque 50 termico puede sustituirse con una variedad de diferentes componentes de transferencia de calor que generan y/o transfieren calor al licuefactor 48, formando de ese modo un gradiente termico dentro del licuefactor 48 a lo largo del eje 58 longitudinal.
Durante una operacion de construccion en el sistema 10 (mostrado en la FIG. 1), el filamento 34 de cinta se acopla con el mecanismo 46 de accionamiento y se carga dentro del canal 52 del licuefactor 48. El controlador 28 dirige entonces el mecanismo 46 de accionamiento para accionar partes sucesivas del filamento 34 de cinta traves del licuefactor 48. Cuando el filamento 34 de cinta pasa a traves del licuefactor 48, el gradiente termico generado por el bloque 50 termico funde el material del filamento 34 de cinta dentro del licuefactor 48. La parte aguas arriba, sin fundir del filamento 34 de cinta que es accionada por el mecanismo 46 de accionamiento funciona como un piston con una bomba de viscosidad que actua sobre el material fundido entre la parte sin fundir y las paredes del licuefactor 48, extrudiendo de ese modo el material fundido fuera de la punta 60 de extrusion. El material extrudido puede depositarse entonces como rutas para formar el modelo 24 3D en una forma capa a capa.
Como se ha explicado anteriormente, el filamento 34 de cinta es capaz de ser fundido y extrudido desde el licuefactor 48 con tiempos de respuesta reducidos comparado con filamentos cilmdricos fundidos y extrudidos desde licuefactores cilmdricos con los mismos caudales volumetricos. Para licuefactores cilmdricos, la respuesta es dominada por los parametros acumulados similares a RC. De ese modo, el tiempo de respuesta para licuefactores cilmdricos se refiere al tiempo 1/e, que es el tiempo para que el caudal cambie desde 0 % a aproximadamente 63 % de un nuevo valor de estado estable. En comparacion, los licuefactores no cilmdricos tales como el licuefactor 48, la respuesta es dominada por los parametros en la lmea de transmision. De ese modo, el tiempo de respuesta para licuefactores no cilmdricos tales como el licuefactor 48 se refiere al tiempo entre aproximadamente el 10 % y aproximadamente el 90 % de cambio de caudal.
Por ejemplo, el tiempo de respuesta del subconjunto 44 es el tiempo requerido para que el caudal del material fundido en la punta 60 de extrusion responda a un cambio en la presion de accionamiento que el mecanismo 46 de accionamiento aplica al filamento 34 de cinta (debido a ordenes desde el controlador 28). Bajos tiempos de respuesta son utiles para mejorar las calidades esteticas y estructurales del modelo 3D resultante, particularmente cuando se construyen modelos 3D que contienen caractensticas finas. En particular, los bajos tiempos de respuesta son necesarios para la construccion de modelos 3D a altas velocidades, dado que determina el grado en el que un portico (por ejemplo el portico 16) puede frenar al llegar a una esquina y posteriormente acelerar cuando sale de la esquina.
El “caudal volumetrico” se refiere al caudal volumetrico maximo, limitado termicamente a traves del licuefactor, que es el caudal volumetrico maximo del material que un licuefactor puede licuar hasta un estado en que pueda extrudirse y a continuacion extrudirlo. Para un licuefactor cilmdrico, el caudal volumetrico maximo, termicamente
5
10
15
20
25
30
35
40
45
limitado Qmax,c puede determinate de conformidad con la Ecuacion 1:
Qmax,c = 2 n k Lp,c
en la que k es la viscosidad termica del material de un filamento cilmdrico, y Lp,c es la longitud del licuefactor cilmdrico que contiene el material fundido. Asf, basandose unicamente en esta caractenstica, el caudal volumetrico Qmax,c puede incrementarse meramente mediante el incremento de la longitud del licuefactor cilmdrico que contiene el material fundido.
Sin embargo, en un licuefactor cilmdrico que tenga un diametro particular, el incremento del caudal Qmax,c tambien incrementa la resistencia al flujo, lo que en correspondencia incrementa el tiempo de respuesta. El tiempo de respuesta puede representarse por un constante de tiempo Tc, de cambio acumulado, presion que es el producto de la resistencia al flujo y la capacidad del flujo del licuefactor cilmdrico y material de filamento. La resistencia al flujo FRc para el licuefactor cilmdrico en presion por (volumen por segundo) puede determinarse de conformidad con la Ecuacion 2:
FRc =
128nLp,c
nd4
en la que n es la viscosidad dinamica del material del filamento cilmdrico, y dc es el diametro interior del licuefactor cilmdrico. La capacidad de flujo FCc para el licuefactor cilmdrico puede determinarse de conformidad con la Ecuacion 3:
FCc =
nd2 Lp,c
4B
en la que B es el modulo volumetrico para el material de filamento (es decir, la resistencia del material a compresion uniforme).
Mediante la combinacion de la resistencia al flujo y la capacidad del flujo del licuefactor cilmdrico, el tiempo de respuesta para el licuefactor cilmdrico, basandose en una constante de tiempo de cambio de presion, acumulado Tc, puede determinarse de conformidad con la Ecuacion 4:
_ _ 32nLP,c
'c = ------^—
Bdl
Combinando las ecuaciones 1 y 4 se ilustra la relacion proporcional entre la constante de tiempo Tc y el caudal volumetrico Qmax,c para el licuefactor cilmdrico, que se muestra en la Ecuacion 5:
Tc =
8nQm ax,c
n 2k2Bd2
Como se muestra en la Ecuacion 5, el incremento del caudal volumetrico del material incrementa en correspondencia el tiempo de respuesta, incrementando de ese modo inconvenientemente el tiempo requerido para que la presion del material fundido en una punta de extrusion responda a un cambio en la presion de accionamiento del filamento cilmdrico.
Una tecnica potencial para la reduccion del tiempo de respuesta es incrementar los diametros del filamento cilmdrico y licuefactor. Sin embargo, los filamentos cilmdricos que tienen diametros mayores de aproximadamente 2,5 milfmetros (aproximadamente 0,1 pulgadas) se convierten en diffciles de manejar y gestionar en un sistema de fabricacion digital basado en extrusion. De ese modo, para un volumen dado en un licuefactor cilmdrico, un incremento en el caudal volumetrico del material incrementa inconvenientemente el tiempo de respuesta, y viceversa. Estos factores en competicion limitan efectivamente los tiempos de respuesta conseguibles y los caudales volumetricos para licuefactores cilmdricos.
Las FIGS. 5A y 5B son vistas en seccion de las secciones 5A-5A y 5B-5B tomadas en la FIG. 4, respectivamente, ilustran el filamento 34 de cinta que se funde en el licuefactor 48. Como se muestra en la FIG. 5A, el bloque 50 termico se configura para extenderse alrededor y calentar una parte de la longitud del licuefactor 48 (a la que se hace referencia como longitud 62 calentada). Ejemplos de longitudes 62 calentadas para el licuefactor 48 vanan desde aproximadamente 13 milfmetros (aproximadamente 0,5 pulgadas) a aproximadamente 130 milfmetros (aproximadamente 5,0 pulgadas), con longitudes 88 particularmente adecuadas que vanan desde aproximadamente 25 milfmetros (aproximadamente 1,0 pulgadas) a aproximadamente 51 milfmetros (aproximadamente 2,0 pulgadas).
Cuando el filamento 34 de cinta se impulsa al interior del canal 52 del licuefactor 48, partes sucesivas del filamento 34 de cinta se funden hasta al menos un estado que pueda extrudirse para formar un deposito 64 fundido del
5
10
15
20
25
30
35
40
45
50
material fundido en el canal 52. Tal como se muestra, el deposito 64 fundido se extiende a lo largo del eje 58 entre el extremo 56 inferior y el menisco 66. En consecuencia, la longitud del licuefactor 48 que contiene el deposito 64 fundido a lo largo del eje 58 (referido como la longitud 68) se extiende entre el extremo 56 inferior y el menisco 66. La localizacion del menisco 66 dentro del licuefactor 48 puede variar dependiendo de factores tales como el perfil termico a lo largo del licuefactor 48, las dimensiones del licuefactor 48, el material del filamento 34 de cinta, la tasa de accionamiento del filamento 34 de cinta, y similares. Sin embargo, durante una extrusion en estado estable, el menisco 66 puede mantenerse a un nivel sustancialmente constante de modo que la longitud 68 del deposito 64 fundido es tipicamente menor que la longitud 62 calentada.
Como se muestra respectivamente en las FIGS. 5A y 5B, el canal 52 del licuefactor 48 tiene un ancho de seccion transversal (referida como el ancho 70) y un espesor de seccion transversal (referido como el grueso 72), en el que el ancho 70 es mayor que el grueso 72. Esto se ilustra adicionalmente en la FIG. 5C, que muestra un perfil de seccion transversal de entrada del canal 52 (referido como el perfil del canal 74). Las dimensiones adecuadas para el ancho 70 y el grueso 72 permiten convenientemente al filamento 34 de cinta coincidir con el canal 52, como se ha explicado anteriormente. Como tambien se ha explicado anteriormente, el perfil 74 del canal tambien presenta convenientemente sustancialmente las mismas dimensiones a lo largo de la longitud 62 calentada del licuefactor 48 (mostrado en las FIGS. 5A y 5B). En realizaciones alternativas, sin embargo, el perfil 74 del canal puede ahusarse para reducirse a un area de seccion transversal mas pequena adyacente al extremo 56 inferior del licuefactor 48 (mostrado en las FIGS. 4, 5A y 5B). En realizaciones alternativas adicionales, el perfil 74 del canal puede ahusarse para aumentar hasta un area de seccion transversal mayor para proporcionar estabilidad a la posicion del menisco.
Las dimensiones adecuadas para el ancho 70 y el grueso 72 de un perfil 74 del canal incluyen anchos que permiten el filamento 34 de cinta coincidir con el canal 52 sin friccion indebida. Ejemplos de dimensiones adecuadas para el ancho 70 vanan desde aproximadamente 1,0 milfmetros (aproximadamente 0,04 pulgadas) a aproximadamente 12,7 milfmetros (aproximadamente 0,50 pulgadas), con anchos particularmente adecuados que vanan desde aproximadamente 3,0 milfmetros (aproximadamente 0,12 pulgadas) a aproximadamente 10,1 milfmetros (aproximadamente 0,40 pulgadas), y con anchos incluso mas particularmente adecuados que vanan desde aproximadamente 3,8 milfmetros (aproximadamente 0,15 pulgadas) a aproximadamente 6,4 milfmetros (aproximadamente 0,25 pulgadas).
Ejemplos de dimensiones adecuadas para espesor 72 vanan desde aproximadamente 0,25 milfmetros (aproximadamente 0,01 pulgadas) a aproximadamente 2,5 milfmetros (aproximadamente 0,10 pulgadas), con espesores particularmente adecuados que vanan desde aproximadamente 0,51 milfmetros (aproximadamente 0,02 pulgadas) a aproximadamente 2,0 milfmetros (aproximadamente 0,08 pulgadas), y espesores incluso mas particularmente adecuados que vanan desde aproximadamente 0,76 milfmetros (aproximadamente 0,03 pulgadas) a aproximadamente 1,8 milfmetros (aproximadamente 0,07 pulgadas).
Sin desear quedar ligado a teona alguna, se cree que la relacion de aspecto del perfil 74 del canal elimina de modo efectivo el nucleo que se asocia con un filamento ciimdrico que tiene una seccion transversal circular. Esto permite al licuefactor 48 conseguir tiempos de respuesta reducidos en comparacion con un licuefactor cilmdrico que tenga el mismo volumen de canal humedecido (por ejemplo, el volumen de canal 52, que es el area del perfil 74 del canal tomada a lo largo de la longitud 68, mostrada en las FIGS. 5A y 5B). Ignorando la difusion termica desde los bordes del filamento 34 de cinta, suponiendo que el ancho 70 es grande en comparacion con el espesor 72, el perfil de temperatura dependiente del tiempo del filamento 34 de cinta puede determinarse de conformidad con la Ecuacion 6:
Temp(x,t) =Tempa + (Tempf- Tempa) ^(-1)n\erf c
(2n + 1)T - 2x 4/Kt
+ erf c
(2n + 1)T + 2x 4/Ki
n=0
en la que Tempa es una temperatura inicial del filamento 34 de cinta previamente a ser calentado en el licuefactor 48, Tempf es la temperatura del licuefactor 48, Tf es el espesor del filamento 34 de cinta (es decir, el espesor 42), en la que -Tf < 2x < Tf, y en la que erf c es la funcion de error complementaria tal como se muestra en la Ecuacion 7:
erf c(x) = — T exp (-12 \dt
La funcion de error complementaria tiene una expansion asintotica tal como se muestra en la Ecuacion 8:
erf c(x) =
imagen1
1+s (-1)n
n=0
1,3,5,...(2n -1) (2x 2)n
De la Ecuacion 8, puede extraerse la constante de tiempo caractenstica de orden mas bajo, que puede representarse por la Ecuacion 9:
5
10
15
20
25
30
35
40
Tf
16k
Incorporando los primeros cien terminos de la expansion asintotica en la Ecuacion 8, usando una difusion termica k de 8,13 mi^metros/segundo2 (0,320 pulgadas/segundo2) (un valor adecuado para materiales ABS), un espesor Tf del filamento 34 de cinta (es decir el espesor 42) de 0,76 milfmetros (0,03 pulgadas), una temperatura inicial Tempa de 80 °C, y una temperatura de pared Tempf del licuefactor 48 de 320 °C, un tiempo razonable para que la temperatura promedio se mueva la mitad de la temperatura asintotica, tal como se representa por la constante de tiempo de orden mas bajo Tf, es de aproximadamente 0,24 segundos. En consecuencia, una estimacion razonable para el tiempo requerido para que el filamento 34 de cinta se caliente es de aproximadamente cuatro veces la constante de tiempo de orden mas bajo Tf (es decir, 4Tf). Por ello, este procedimiento produce un volumen del material fundido en 4Tf segundos tal como se determina de conformidad con la ecuacion 10:
Q(4Tf) = (Wr)(Tr)(Lp,r)
en la que Wr es el ancho del canal 52 (es decir, el ancho 70), Tr es el espesor del canal 52 (es decir, espesor 72), y Lp,r es la longitud del canal 52 que contiene el material fundido (es decir, la longitud 68).
En consecuencia, para un licuefactor rectangular (por ejemplo, el licuefactor 48), el caudal volumetrico, termicamente limitado, Qmax,r puede determinarse de conformidad con la Ecuacion 11:
Qmax,r =
4KLp,r
W
T
Como se muestra en la Ecuacion 11, el caudal volumetrico maximo Qmax,r, termicamente limitado, esta controlado por la longitud del licuefactor 48 que contiene el material fundido (es decir, la longitud 68). De ese modo, la longitud operativa es la longitud calentada del filamento 34 de cinta mas que la longitud calentada del licuefactor (por ejemplo, la longitud 62 calentada).
Como se ha explicado anteriormente para el licuefactor cilmdrico, el tiempo de respuesta para un licuefactor rectangular (por ejemplo, el licuefactor 48) es tambien el producto de la resistencia al flujo y de la capacidad del flujo del licuefactor rectangular y del material del filamento de cinta. La resistencia al flujo FRr para el licuefactor rectangular puede determinarse de conformidad con la ecuacion 12:
FRr =
12nLpr WrTr3
La capacidad de flujo FCr para el licuefactor rectangular puede determinarse de conformidad con la Ecuacion 13:
FCr =
WrTrLpf
B
Mediante la combinacion de la resistencia al flujo y la capacidad del flujo del licuefactor rectangular, el tiempo de respuesta Tf para el licuefactor rectangular puede determinarse de conformidad con la Ecuacion 14:
Tr =
12nL2p,r BTr 2
Combinando las Ecuaciones 11 y 14 se ilustra la relacion proporcional entre el tiempo de respuesta Tf y el caudal volumetrico Qmax,r para el licuefactor rectangular, que se muestra en la Ecuacion 15:
Tr =
3nQ2m ax,r
4k 2BWr 2
Una comparacion de las Ecuaciones 5 y 15 muestra que, para los mismos caudales volumetricos maximos, termicamente limitados (es decir Qmax,c = Qmax,r), cuando el ancho 40 del filamento 34 de cinta es mayor que el espesor 42 del filamento 34 de cinta, el tiempo de respuesta para el control de la extrusion del filamento 34 de cinta en el licuefactor 48 es menor que el tiempo de respuesta para un filamento cilmdrico en un licuefactor cilmdrico. Para los mismos caudales volumetricos maximos, termicamente limitados (es decir Qmax,c = Qmax,r), la relacion de aspecto del perfil 38 del filamento 34 de cinta y el perfil 74 del canal del canal 52 proporciona convenientemente un tiempo de respuesta que es al menos 1,5 mas rapido que un tiempo de respuesta que puede conseguirse con un licuefactor cilmdrico que tenga un perfil de seccion transversal circular. Mas convenientemente, el tiempo de respuesta es al menos dos veces mas rapido, e incluso mas convenientemente es al menos tres veces mas rapido. En consecuencia, ejemplos de relaciones de aspecto adecuadas para el ancho 40 al espesor 42 incluyen relaciones de
5
10
15
20
25
30
35
40
45
50
aspecto de aproximadamente 2:1 o mayores, con relaciones de aspecto particularmente adecuadas que vanan desde aproximadamente 2,5:1 a aproximadamente 20:1, con relaciones de aspecto incluso mas particularmente adecuadas que vanan desde aproximadamente 3:1 a aproximadamente 10:1, y con relaciones de aspecto incluso mas particularmente adecuadas que vanan desde aproximadamente 3:1 a aproximadamente 8:1.
La comparacion de las Ecuaciones 5 y 15 puede visualizarse mediante la superposicion de multiples licuefactores cilmdricos en una matriz para formar una ranura comparable al perfil 74 de canal del canal 52, tal como se muestra en la FIG. 6. Esto da como resultado las mismas areas de seccion transversal para los licuefactores cilmdricos (a los que se hace referencia como licuefactores 76 cilmdricos) y para el perfil 74 del canal, ignorando los espacios intersticiales entre licuefactores 76 cilmdricos. En consecuencia, en este ejemplo, el diametro de cada licuefactor 76 cilmdrico es el mismo que el espesor 72. Se supone tambien que las longitudes de cada licuefactor 76 cilmdrico que contiene material fundido son las mismas que la longitud 68 del deposito 64 fundido. De ese modo los volumenes humedos combinados de los licuefactores 76 cilmdricos son iguales que el volumen humedo del licuefactor 48.
La relacion del tiempo de respuesta del licuefactor cilmdrico al tiempo de respuesta del licuefactor 48 Tc/Tr se muestra en la Ecuacion 16:
Tj_
Tc
^1= 0 93 dC- 32W2 w2
Asf, tal como se muestra en la Ecuacion 16, para los mismos caudales volumetricos maximos, termicamente limitados (es decir Qmax,c - Qmax.r), la relacion del tiempo de respuesta del licuefactor cilmdrico al tiempo de respuesta del licuefactor 48 es proporcional al diametro al cuadrado del licuefactor cilmdrico sobre el espesor 72 del canal 52 al cuadrado. Por ejemplo, un licuefactor cilmdrico que tenga un diametro de 1,78 milfmetros (0,070 pulgadas) y licuefactor 48 que tenga un ancho 70 de 3,05 milfmetros (0,120 pulgadas) y un espesor 72 de 0,813 milfmetros (0,032 pulgadas) (es decir, una relacion de aspecto de aproximadamente 4:1) tienen sustancialmente las mismas areas de seccion transversal. Por ello, para estas areas de seccion transversal, y las mismas longitudes de deposito de fundido (por ejemplo, longitud 68), y Qmax,c - Qmax,r, de conformidad con la Ecuacion 16, la relacion del tiempo de respuesta Tc/Tr - 0,32. En otras palabras, el tiempo de respuesta del licuefactor 48 con el filamento 34 de cinta es de aproximadamente tres veces mas rapido que el tiempo de respuesta que puede conseguirse con el licuefactor cilmdrico y el filamento cilmdrico.
En otro ejemplo, un licuefactor cilmdrico que tenga un diametro de 1,78 milfmetros (0,070 pulgadas) y licuefactor 48 que tenga un ancho 70 de 4,19 milfmetros (0,165 pulgadas) y un espesor 72 de 0,584 milfmetros (0,023 pulgadas) (es decir, una relacion de aspecto de aproximadamente 7:1) tienen tambien sustancialmente las mismas areas de seccion transversal. Por ello, para estas areas de seccion transversal, y las mismas longitudes de fundido, y Qmax.c - Qmax.r, de conformidad con la Ecuacion 16, la relacion del tiempo de respuesta Tc/Tr - 0,167. En otras palabras, en este ejemplo, el tiempo de respuesta para el licuefactor 48 y el filamento 34 de cinta es de aproximadamente seis veces mas rapido que el tiempo de respuesta que puede conseguirse con el licuefactor cilmdrico y el filamento cilmdrico. Esto ilustra que cuando se incrementa la relacion de aspecto del filamento 34 de cinta y el canal 52, los tiempos de respuesta tambien se incrementan.
De nuevo sin desear quedar ligado a teona alguna, se cree que esta reduccion en el tiempo de respuesta es debido al hecho de que la matriz de los licuefactores cilmdricos contiene secciones de paredes adicionales que forman efectivamente redes en el area de la seccion transversal del licuefactor 48 rectangular, incrementando de ese modo la resistencia a la friccion. Esta resistencia a la friccion incrementada no se encuentra en el perfil 74 del canal. De ese modo, para un caudal volumetrico maximo, termicamente limitado dado, el licuefactor 48 es capaz de recibir, fundir, y extrudir el filamento 34 de cinta con un tiempo de respuesta reducido en comparacion con un licuefactor cilmdrico y un filamento cilmdrico.
Las realizaciones anteriormente explicadas se han dirigido a un filamento no cilmdrico que tiene un perfil de seccion transversal rectangular (es decir, el filamento 34 de cinta), y un licuefactor no cilmdrico que tiene un canal rectangular correspondiente (es decir, el licuefactor 48). Los perfiles de seccion transversal de estas realizaciones pueden caracterizarse apropiadamente por las relaciones de aspecto de la seccion transversal de ancho a espesor (por ejemplo, del ancho 40 al espesor 42 del filamento 34 de cinta, y de ancho 70 a espesor 72 del canal 52). Sin embargo, muchos filamentos y licuefactores no cilmdricos pueden tener perfiles de seccion transversal que no pueden caracterizarse apropiadamente por relaciones de aspecto de seccion transversal de ancho a espesor. De ese modo, una forma alternativa de caracterizar apropiadamente los perfiles de seccion transversal de filamentos y licuefactores no cilmdricos puede ser con un diametro hidraulico Dh, tal como se representa por la Ecuacion 17:
n - 4A, Dh = —
en la que Ae es el area del perfil de seccion transversal a la entrada del canal del licuefactor, y U es el penmetro humedecido del canal del licuefactor.
5
10
15
20
25
30
35
40
45
Para un licuefactor cilmdrico, la Ecuacion 17 se reduce a Dh = Dc. Para un licuefactor rectangular tal como el licuefactor 48, en el que el canal 52 esta sustancialmente lleno con el material fundido, Ae = Wr • T, y U = 2(Wr + T), y el diametro hidraulico Dh puede representarse por la ecuacion 18:
Dh =
2WrTr
Wr + Tr
En consecuencia, perfiles de seccion transversal adecuada para filamentos y licuefactores no cilmdricos de la presente divulgacion tienen convenientemente diametros hidraulicos Dh que se representan por la Ecuacion 19:
Dh < P1 fee
en la que Pi es un valor en porcentaje de modo que Dh es menor que el porcentaje Pi de -yJA . Ejemplos de valores adecuados para el porcentaje Pi incluyen aproximadamente 0,95 (es decir, Dh < 0,95 ), incluyendo valores del
porcentaje Pi particularmente adecuados aproximadamente 0,90 (es decir, Dh < 0,90 -yJA), e incluyendo valores del porcentaje Pi incluso mas particularmente adecuados aproximadamente 0,87 (es decir, Dh < 0,87 -yJA ).
La Ecuacion i9 ilustra lfmites superiores adecuados para los diametros hidraulicos Dh de filamentos y licuefactores no cilmdricos de la presente divulgacion. En consecuencia, los perfiles de seccion transversal adecuada para filamentos y licuefactores no cilmdricos de la presente divulgacion tambien tienen convenientemente diametros hidraulicos Dh que se representan por la Ecuacion 20:
Dh > P2 fee
en la que P2 es un valor en porcentaje de modo que Dh es mayor que el porcentaje P2 de -yJA . Ejemplos de valores adecuados para el porcentaje P2 incluyen aproximadamente 0,40 (es decir, Dh > 0,40 ), incluyendo valores del
porcentaje P2 particularmente adecuados aproximadamente 0,55 (es decir, Dh > 0,55 -yJA), e incluyendo valores
del porcentaje P2 incluso mas particularmente adecuados aproximadamente 0,70 (es decir, Dh > 0,70 ). De ese
modo, los diametros hidraulicos Dh de los filamentos y licuefactores no cilmdricos de la presente divulgacion cumplen convenientemente con los criterios de la Ecuacion i9, cumplen convenientemente con los criterios de la Ecuacion 20, e incluso mas convenientemente cumplen los criterios de la Ecuacion i9 y la Ecuacion 20. Estos valores corresponden a las relaciones de aspecto de seccion transversal adecuada anteriormente explicados para un licuefactor rectangular tal como el licuefactor 48. En comparacion, los filamentos y licuefactores cilmdricos requieren que Pi y P2 sea cada uno de aproximadamente 2,25.
Las FIGS. 7-ii ilustran realizaciones adecuadas para la fabricacion de filamentos no cilmdricos, tal como un filamento 34 de cinta (mostrado en las FIGS. 2-4), previamente a su uso en sistemas de fabricacion digital basados en extrusion (por ejemplo, el sistema i0, mostrado en la FIG. i). La FIG. 7 es un diagrama de flujo del procedimiento 78, que es un ejemplo de un procedimiento adecuado para la fabricacion de filamentos no cilmdricos, tal como el filamento 34 de cinta. Tal como se muestra, el procedimiento 78 incluye las etapas 80-88, e inicialmente implica el suministro de material de alimentacion a un sistema de extrusion de laminas (etapa 80). El material alimentado puede suministrarse al sistema de produccion en una variedad de medios diferentes, tales como bolitas, barras, polvos, partmulas, bloques, lingotes y similares. Composiciones adecuadas para los materiales de alimentacion incluyen las explicadas anteriormente para los materiales de modelado y soporte del filamento 34 de cinta.
Tras ser suministrado al sistema de extrusion de laminas, el material de alimentacion puede fundirse y extrudirse para producir una lamina extrudida del material de alimentacion (etapa 82). Como se explica a continuacion, la lamina extrudida puede usarse posteriormente y separarse en una pluralidad de filamentos de cinta individuales, en los que el espesor de la lamina extrudida en un estado solido coincide convenientemente con el espesor de cada uno de los filamentos de cinta. Despues de ser extrudida, la lamina extrudida convenientemente se enfna hasta solidificar al menos parcialmente la lamina extrudida (etapa 84). En algunas realizaciones, como se explica a continuacion, la lamina tambien puede laminarse con laminas adicionales de diferentes materiales para formar una lamina multicapa.
En este punto en el procedimiento, la lamina puede almacenarse (por ejemplo, bobinarse en un carrete de recogida) para su separacion posterior o alimentar directamente a un cortador de laminas, como en un procedimiento continuo. En el cortador de laminas, la lamina puede cortarse longitudinalmente en una pluralidad de filamentos de cinta, en donde el perfil de seccion transversal de al menos uno de los filamentos de cinta se configura convenientemente para coincidir con un licuefactor no cilmdrico (por ejemplo, el licuefactor 48), como se ha explicado anteriormente (etapa 86). Mas convenientemente, cada uno de los filamentos de cinta cortados a partir de la lamina extrudida se
5
10
15
20
25
30
35
40
45
50
55
60
configuran para coincidir con un licuefactor no cilmdrico (por ejemplo el licuefactor 48).
Despues de ser cortados, los filamentos de cinta pueden cargarse a continuacion sobre conjuntos de suministro (etapa 88). En una realizacion, el procedimiento de carga para la pluralidad de filamentos de cinta puede realizarse en una forma sustancialmente paralela, en el que despues de ser cortados a partir de la lamina extrudida, los filamentos de cinta se alimentan sobre multiples carretes de recogida en una forma sustancialmente continua. Los conjuntos de suministro pueden usarse entonces en uno o mas sistemas de fabricacion digital basados en extrusion (por ejemplo el sistema 10) para la construccion de modelos 3D y estructuras de soporte.
La FIG. 8 es una vista en perspectiva de la lamina 90, que es un ejemplo de una lamina extrudida que puede producirse de conformidad con las etapas 80, 82 y 84 del procedimiento 78 (mostrado en la FIG. 7). Como se muestra en la FIG. 8, la lamina 90 puede cortarse en una pluralidad de filamentos 92 de cinta, en el que cada filamento 92 de cinta corresponde convenientemente al filamento 34 de cinta (mostrado en las FIGS. 2-4). El numero de filamentos 92 de cinta que puede producirse a partir de una unica lamina 90 puede variar dependiendo del ancho de la lamina 90 (al que se hace referencia como el ancho 94 de lamina). Ejemplos de numeros adecuados de filamentos 92 de cinta que pueden extrudirse a partir de una unica lamina 90 vanan desde aproximadamente cinco a aproximadamente cien, variando los numeros particularmente adecuados desde aproximadamente diez a aproximadamente cincuenta.
El ancho 94 de lamina de la lamina 90 minimiza convenientemente la cantidad de material desperdiciado. De ese modo, los filamentos 92 de cinta cortados se extienden convenientemente a traves de todo el ancho 94 de la lamina. En realizaciones alternativas, sin embargo, pueden descartarse o reciclarse una o mas partes a lo largo del ancho 94 de lamina de la lamina 90. Por ejemplo, las partes del borde lateral del ancho de lamina 90 pueden descartarse o reciclarse, segun se desee. Ejemplos de dimensiones adecuadas para el ancho 94 de lamina vanan desde aproximadamente 0,3 metros (aproximadamente 1,0 pies) a aproximadamente 1,2 metros (aproximadamente 4,0 pies) variando los anchos particularmente adecuados desde aproximadamente 0,46 metros (aproximadamente 1,5 pies) a aproximadamente 0,91 metros (aproximadamente 3,0 pies).
Adicionalmente, la lamina 90, en un estado solidificado, tiene convenientemente un espesor de lamina (al que se hace referencia como el espesor 96 de lamina) que es sustancialmente el mismo que el espesor deseado de los filamentos 92 de cinta (por ejemplo, el espesor 42 del filamento 34 de cinta). Ejemplos de dimensiones adecuadas para el espesor 96 de lamina vanan desde aproximadamente 0,08 milfmetros (aproximadamente 0,003 pulgadas) a aproximadamente 1,5 milfmetros (aproximadamente 0,06 pulgadas), con espesores particularmente adecuados que vanan desde aproximadamente 0,38 milfmetros (aproximadamente 0,015 pulgadas) a aproximadamente 1,3 milfmetros (aproximadamente 0,05 pulgadas), y con espesores incluso mas particularmente adecuados que vanan desde aproximadamente 0,51 milfmetros (aproximadamente 0,02 pulgadas) a aproximadamente 1,0 milfmetros (aproximadamente 0,04 pulgadas).
Despues de ser extrudida y al menos parcialmente solidificada, la lamina 90 puede cortarse entonces en filamentos 92 de cinta, de conformidad con la etapa 86 del procedimiento 78. Esto se ilustra en la FIG. 8 con una lmea 98 de corte localizada entre cada filamento 92 de cinta. Despues de ser cortada a partir de la lamina 90 de extrusion, cada filamento 92 de cinta puede cargarse a continuacion sobre un conjunto de suministro (por ejemplo, un carrete), de conformidad con la etapa 88 del procedimiento 78. Este procedimiento permite que se fabriquen multiples filamentos 92 de cinta a partir de una unica lamina 90 extrudida sin requerir etapas de redimensionamiento adicionales para alcanzar los espesores deseados para los filamentos 92 de cinta. Esto permite en correspondencia que se consigan altas tasas de produccion.
La FIG. 9 es una ilustracion esquematica del sistema 100 de extrusion de laminas, que es un ejemplo de sistema adecuado para la produccion de laminas extrudidas (por ejemplo, la lamina 90, mostrada en la FIG. 8) de conformidad con el procedimiento 78 (mostrado en la FIG. 7). Tal como se muestra, el sistema 100 incluye un conjunto 102 de extrusion, tambores 104 y 106 de enfriamiento, poleas 108 y 110, y carrete 112 de recogida. El conjunto 102 de extrusion se configura para recibir y extrudir un material de alimentacion del material de modelado y/o soporte deseado (mostrado como el medio 114), para producir la lamina 90. El conjunto 102 de extrusion incluye la tolva 116, el casquillo 118 termico, el tornillo 120 sinfm de accionamiento y la salida 122 extrusion. Aunque se muestra en una orientacion vertical, el conjunto 102 de extrusion (y el sistema 100) pueden posicionarse alternativamente en diferentes orientaciones (por ejemplo, una orientacion horizontal). Durante la operacion, el tornillo 120 sinfm de accionamiento alimenta partes sucesivas del medio 114 desde la tolva 116 a un eje de extrusion definido por el casquillo 118 termico (al que se hace referencia como eje 124 de extrusion). El casquillo 118 termico transfiere energfa termica al medio 114 cuando se alimenta un medio 114 dentro del eje 122 de extrusion, fundiendo y extrudiendo de ese modo el medio 114 a partir de la salida 122 de extrusion para producir la lamina 90.
La lamina 90 puede acoplarse entonces a los tambores 104 y 106 de enfriamiento para definir el espesor de la lamina 90 (es decir el espesor 96 de lamina). Los tambores 104 y 106 de enfriamiento son tambores cilmdricos que se mantienen convenientemente a temperaturas reducidas para enfriar la lamina 90 cuando la lamina 90 se acopla con los tambores 104 y 106 de enfriamiento en la tangencia 126. Las temperaturas reducidas para los tambores 104 y 106 de enfriamiento pueden variar dependiendo de factores tales como la velocidad de lmea de la lamina 90, la
5
10
15
20
25
30
35
40
45
50
55
60
composicion y dimensiones de la lamina 90, y otros similares. Ejemplos de temperaturas adecuadas para los tambores 104 y 106 de enfriamiento vanan desde aproximadamente 40 °C a aproximadamente 60 °C. Esto permite a la lamina 90 solidificar al menos parcialmente hasta un estado solido mientras mantiene el espesor 96 de lamina despues de pasar a traves de la tangencia 126.
En consecuencia, el tambor 104 de enfriamiento se desplaza convenientemente del tambor 106 de enfriamiento en la tangencia 126 a la distancia que fija el espesor 96 de la lamina para la lamina 90. Como resultado, los espesores de partes sucesivas de la lamina 90 pueden ajustarse al espesor deseado de cada filamento 92 de cinta que se cortara a partir de la lamina 90. Esto permite que cada filamento 92 de cinta coincida posteriormente con un licuefactor no cilmdrico correspondiente (por ejemplo, el licuefactor 48) para alcanzar tiempos de respuesta reducidos, como se ha explicado anteriormente. En una realizacion, el sistema 100 puede incluir tambien un conjunto sensor (no mostrado) configurado para detectar y medir el espesor de lamina de la lamina 90 en tiempo real, y para ajustar uno o mas parametros de procesamiento para conseguir el espesor de lamina deseado (por ejemplo, ajustar velocidades de lmea, dimensiones de la tangencia y similares).
En una realizacion, pueden formarse en la lamina 90 patrones superficiales topograficos para formar filamentos 92 de cinta que tengan patrones superficiales topograficos como se ha desvelado en Batchelder et al., Solicitud de Patente Provisional de Estados Unidos N.° 61/247.078; y Batchelder et al., Solicitud de Patente de Estados Unidos N.° 12/612.342, titulada “Consumable Materials Having Topographical Surface Patterns For Use In Extrusion-Based Digital Manufacturing Systems”. En esta realizacion, uno o ambos de los tambores 104 y 106 de enfriamiento pueden incluir una superficie exterior texturada configurada para formar los patrones superficiales topograficos en la lamina 90 cuando se realiza la lamina 90. Esto es beneficioso para la formacion de los patrones superficiales topograficos previamente a que la lamina 90 se solidifique totalmente. Alternativamente, los patrones en la lamina 90 pueden formarse con el uso de rodillos adicionales que tengan superficies exploradas, en el que los rodillos adicionales pueden localizarse aguas arriba o aguas abajo de los tambores 104 y 106 de enfriamiento.
En una realizacion adicional, sistema 100 puede incluir una o mas unidades de recubrimiento (no mostradas) para aplicar un recubrimiento a una o ambas de las superficies principales de la lamina 90. Por ejemplo, el sistema 100 puede incluir una unidad de descarga corona (no mostrada) configurada para depositar delgados recubrimientos de material sobre cualquiera o ambas de las superficies principales de la lamina 90. Esto permite que se depositen una variedad de materiales de recubrimiento sobre la lamina 90, tal como materiales de baja energfa superficial. Los materiales de baja energfa superficial pueden ser beneficiosos para la reduccion de la resistencia a la friccion cuando los filamentos 92 de cinta se accionan dentro de los licuefactores rectangulares (por ejemplo, el licuefactor 48) de los sistemas de fabricacion digital basados en extrusion (por ejemplo, el sistema 10).
La lamina 90 puede bobinarse a continuacion alrededor de poleas 108 y 110, y bobinarse sobre el carrete 112 de recogida, en donde uno o mas de los tambores 104 y 106 de enfriamiento, poleas 108 y 110, y carrete 112 de recogida pueden accionarse por motor para aplicar una velocidad de lmea adecuada para la formacion de la lamina 90. Ejemplos de velocidades de lmea adecuadas para la formacion de la lamina 90 vanan desde aproximadamente 1 metro/minuto a aproximadamente 20 metros/minuto, variando las velocidades de lmea particularmente adecuadas desde aproximadamente 5 metros/minuto a aproximadamente 15 metros/minuto. En realizaciones alternativas, pueden usarse numeros adicionales de poleas para dirigir la lamina 90 al carrete 112 de recogida. Despues de que se haya bobinado una longitud adecuada de lamina 90 sobre el carrete 112 de recogida, la lamina 90 puede separarse y el carrete 112 de recogida puede almacenarse o configurarse para procesamiento posterior para cortar la lamina 90 en filamentos 92 de cinta separados, tal como se explica a continuacion. En una realizacion alternativa, la lamina 90 puede alimentarse directamente a una unidad de corte para cortar la lamina 90 en filamentos 92 de cinta separados. En esta realizacion, el carrete 112 de recogida puede omitirse y la lamina 90 puede cortarse en filamentos 92 de cinta en un procedimiento continuo con la extrusion y formacion de partes sucesivas de lamina 90.
La FIG. 10 es una ilustracion esquematica del sistema 128 de produccion de filamentos, que es un sistema adecuado para la formacion de filamentos 92 de cinta a partir de la lamina 90. El sistema 128 incluye un rodillo 130 de corte, rodillo 132 de apoyo, poleas 134 locas, y carretes 136a-136d de recogida. Como se muestra, la lamina 90 puede suministrarse a la tangencia de interseccion del rodillo 130 de corte y rodillo 132 de apoyo desde un carrete de recogida (por ejemplo, el carrete 112 de recogida) o como una alimentacion directa desde el sistema 100 para un procedimiento continuo.
El rodillo 130 de corte es un primer rodillo que incluye una superficie cilmdrica que tiene una pluralidad de delgadas cuchillas paralelas configuradas para cortar partes sucesivas de la lamina 90 en filamentos de cinta separados (a los que se hace referencia como los filamentos 92a-92d de cinta). En consecuencia, las cuchillas paralelas del rodillo 130 de corte se separan convenientemente por espacios que tienen en cuenta los anchos de los filamentos 92 de cinta (por ejemplo, el ancho 40 del filamento 34 de cinta, mostrando en la FIG. 3). El rodillo 130 de corte es tambien convenientemente accionado por motor para tirar de la lamina 90 entre el rodillo 130 de corte y el rodillo 132 de apoyo durante la operacion de corte. El rodillo 132 de apoyo es un segundo rodillo que esta separado del rodillo 130 de corte en una distancia adecuada para permitir que la lamina 90 pase entre el rodillo 130 de corte y el rodillo 132 de apoyo y se acople con la superficie de cuchillas del rodillo 130 de corte.
Despues de ser cortado a partir de la lamina 90, cada filamento 92 de cinta (por ejemplo, los filamentos 92a-92d de
5
10
15
20
25
30
35
40
45
50
55
60
cinta) se alimentan convenientemente a un carrete separado de los carretes 136a-136d de recogida. Los carretes 136a-136d de recogida son ejemplos de conjuntos de suministro adecuados para el carrete 20 de suministro y/o el carrete 22 de suministro (mostrados en la FIG. 1). Los filamentos 92a-92d de cinta pueden dirigirse a los carretes 136a-136d de recogida respectivos con poleas 134 locas. Como se muestra, las poleas 134 locas se situan para permitir que los filamentos 92a-92d de cinta salgan del rodillo 132 de apoyo a diferentes localizaciones radiales. Esto reduce el riesgo de que los filamentos 92a-92d de cinta queden enredados mientras se cargan en los carretes 136a- 136d de recogida.
Cada uno de los carretes 136a-136d de recogida puede tambien accionarse por motor para bobinar respectivamente filamentos 92a-92d de cinta segun se cortan desde la lamina 90. Aunque el sistema 128 se ilustra con cuatro filamentos 92 de cinta y cuatro carretes 136 de recogida, el rodillo 130 de corte puede cortar la lamina 90 en cualquier numero adecuado de filamentos 92 de cinta, basandose en los anchos de la lamina 90 y de los filamentos 92 de cinta. El filamento 92 de cinta cortado puede cargarse entonces sobre los carretes 136 de recogida individuales en una forma sustancialmente paralela.
Aunque se muestra el sistema 128 con un unico par rodillo 130 de corte/rodillo 132 de apoyo, en realizaciones alternativas, el sistema 128 puede incluir multiples pares de rodillos de corte/rodillos de apoyo. Por ejemplo, el sistema 128 puede incluir un par inicial de rodillo 130 de corte y rodillo 132 de apoyo, que puede cortar la lamina 90 en multiples segmentos, en el que cada segmento tiene un ancho que incluye multiples filamentos 92 de cinta. Cada segmento cortado puede pasar a continuacion a traves de un par adicional de rodillo 130 de corte y rodillo 132 de apoyo, que puede cortar el segmento dado en los filamentos 92 de cinta separados. Los filamentos 92 de cinta separados pueden cargarse entonces sobre los carretes 136 de recogida separados, segun se ha explicado anteriormente. De ese modo, la lamina 90 puede cortarse en filamentos 92 de cinta durante una unica etapa de corte o en multiples etapas de corte sucesivas.
El sistema 100 de extrusion de laminas y sistema 128 de produccion de filamentos estan contenidos cada uno convenientemente dentro de un alojamiento (no mostrado) para conseguir un entorno seco. Por ejemplo, los sistemas 100 y 128 pueden incluir cada uno un circulador de aire seco y/o paquetes de desecante para mantener el bajo contenido de humedad. Adicionalmente, los carretes 112 y 136 de recogida pueden incluir cada uno tambien paquetes de desecantes para mantener la lamina 90/filamento 92 de cinta recibidos secos durante el almacenamiento y posterior uso. Tecnicas adecuadas para el mantenimiento de entornos secos en sistemas 100 y 128, y en los carretes 112 y 136 de recogida incluyen los desvelados en Swanson et al., Patente de Estados Unidos N.° 6.923.634; Comb et al., Patente de Estados Unidos N.° 7.122.246; y Taatjes et al., publicaciones de Solicitud de Patente de Estados Unidos N.° 2010/0096485 y 2010/0096489.
Las FIGS. 11-13 son vistas en seccion alternativas de la seccion 3-3 tomada en la FIG. 2, que ilustran filamentos de cinta multicapa de la presente divulgacion. Como se muestra en la FIG. 11, el filamento 200 de cinta tiene un perfil de seccion transversal similar al del filamento 34 de cinta (mostrado en la FIG. 2). En esta realizacion, sin embargo, el filamento 200 de cinta incluye una parte 202 base, y una capa 204. En donde la parte 202 base incluye una superficie 206 superior y una superficie de 208 inferior, y en donde la capa 202 se forma sobre la superficie 206 superior. Dimensiones adecuadas para el filamento 200 de cinta incluyen las explicadas anteriormente para el filamento 34 de cinta. En consecuencia, ejemplos de anchos adecuados para filamento 200 de cinta (referido como ancho 210) incluye los explicados anteriormente para el ancho 40 del filamento 34 de cinta. Ejemplos de espesores combinados adecuados para la parte 202 b ase y la capa 204 (referido como el espesor 212) incluyen los explicados anteriormente para el espesor 42 del filamento 34 de cinta.
Materiales adecuados para la parte 202 base incluyen materiales de modelado y soporte explicados anteriormente para el filamento 34 de cinta. La capa 204, sin embargo, puede incluir diferentes materiales a la parte 202 base que pueden ayudar en la operacion de construccion del sistema 10 (mostrada en la FIG. 1). Por ejemplo, muchas composiciones de materiales de soporte solubles en agua son relativamente quebradizas, lo que puede dar como resultado la fractura del filamento mientras es alimentado a traves del sistema de fabricacion digital basado en extrusion (por ejemplo, el sistema 10). Para reducir la fragilidad, la capa 204 puede formarse sobre la superficie 206 superior como un delgado recubrimiento de un material no quebradizo que sea al menos parcialmente soluble en agua. Esto permite que el filamento 200 de cinta se alimente a traves del sistema 10 sin fracturas o roturas, incrementando de ese modo la fiabilidad del sistema 10. Con relacion a la materia prima de la parte 202 base, el delegado recubrimiento de la capa 204 proporciona pequenas cantidades de material no quebradizo. De ese modo, incluso si el material no quebradizo tiene una baja solubilidad en agua, la composicion global de la estructura 26 de soporte tiene una solubilidad en agua que esta proxima a la de la materia prima usada para formar la parte 202 base. Permitiendo de ese modo que el material del filamento 200 de cinta aun funcione como un material de soporte soluble en agua adecuado.
Las FIGS. 12 y 13 ilustran filamentos 300 y 400 de cinta, que son alternativas al filamento 200 de cinta, y en donde las etiquetas de referencia se incrementan en “100” y “200” respectivamente. Tal como se muestra en la FIG. 12, el filamento 300 de cinta tambien incluye la capa 314 formada sobre la superficie 308 inferior, localizando de ese modo la parte 302 base entre las capas 304 y 314. Como se muestra en la FIG. 12, el filamento 400 de cinta incluye la capa 416 dispuesta entre la superficie 406 superior y la capa 404, y la capa 418 dispuesta entre la superficie 408 inferior y la capa 414. En consecuencia, los filamentos de cinta de la presente divulgacion pueden incluir multiples
5
10
15
20
25
30
35
40
45
50
55
capas, en donde cada una de las capas puede incluir los mismos o diferentes materiales dependiendo de las propiedades deseadas de la capa y de los procedimientos usados para formar las capas dadas.
Los filamentos 200, 300 y 400 de cinta pueden cada uno formarse en general de la misma manera que lo explicado anteriormente para los filamentos 92 de cinta, lo que puede implicar inicialmente la extrusion de una lamina base (por ejemplo, la lamina 90) con el sistema 100, en donde la lamina base tiene convenientemente el mismo espesor de lamina que los espesores respectivos de la parte base (por ejemplo, partes 202, 302 y 402 base) (mostrado en la FIG. 9). Pueden formarse a continuacion una o mas capas sobre la(s) superficie(s) de la lamina base usando una variedad de tecnicas de recubrimiento. El procedimiento de formacion de capas se realiza convenientemente previamente al corte de la lamina base en multiples filamentos de cinta (por ejemplo, con el sistema 128).
En una realizacion, cada capa puede formarse mediante la formacion inicialmente de una lamina extrudida adicional que tenga un espesor de lamina que corresponde al espesor de la capa dada. La(s) lamina(s) extrudida(s) adicional(es) pueden laminarse entonces sobre la lamina base y prensarse en caliente entre rodillos para asegurar las capas a la parte base. En esta realizacion, las capas 416 y 418 del filamento 400 de cinta pueden usarse como capas de union para asegurar efectivamente las capas 404 y 414 a la parte 402 base. El procedimiento de laminacion puede realizarse antes de que la lamina base se bobine sobre el carrete de recogida (por ejemplo, el carrete 112 de recogida), o, alternativamente, la lamina base puede bobinarse sobre un carrete de recogida y desbobinarse posteriormente para el procedimiento de laminacion.
En una realizacion alternativa, cada capa puede formarse mediante la deposicion o aplicacion en otra forma de un recubrimiento sobre la(s) superficie(s) de la lamina base. Por ejemplo, cada recubrimiento puede depositarse con una unidad de descarga corona, como se ha explicado anteriormente. Alternativamente, cada recubrimiento puede formarse con uno o mas procedimientos de recubrimiento convencionales, tales como procedimientos de recubrimiento por cuchilla y procedimientos de recubrimiento por rodillo.
En una realizacion alternativa adicional, cada capa puede formarse mediante coextrusion de laminas de cada capa junto con la lamina base. Esto elimina el uso de una etapa de laminacion o recubrimiento separada para formar la(s) capa(s) y permite que se definan las dimensiones de la lamina multicapa con el sistema 100 (por ejemplo, en la tangencia 126).
Despues de que se complete el procedimiento de laminacion y/o recubrimiento, la lamina multicapa puede cortarse entonces en filamentos de cinta separados (por ejemplo, los filamentos 200, 300 y 400 de cinta) con el sistema 128. Los espesores resultantes de cada capa pueden variar dependiendo de las caractensticas deseadas de la capa dada y del procedimiento de laminacion o recubrimiento usado. Ejemplos de espesores combinados adecuados para las capas de filamentos 200, 300 y 400 de cinta incluyen hasta aproximadamente el 50 % del espesor del filamento de cinta (es decir, espesores 212, 312 o 412), variando los espesores combinados particularmente adecuados desde aproximadamente 1 % a aproximadamente 25 % del espesor del filamento de cinta, y variando los espesores combinados incluso mas particularmente adecuados desde aproximadamente 5 % a aproximadamente 25 % del espesor del filamento de cinta.
Los filamentos 200, 300 y 400 de cinta ilustran ejemplos adecuados de filamentos de cinta multicapa que pueden fabricarse con los sistemas 100 y 128, y usarse con el sistema 10 para construir modelos 3D y/o estructuras de soporte con tiempos de respuesta reducidos. La naturaleza multicapa de los filamentos 200, 300 y 400 de cinta tambien permite que los filamentos de cinta se formen a partir de laminas extrudidas (por ejemplo, la lamina 90) y alcancen una variedad de diferentes propiedades ffsicas y esteticas.
En realizaciones adicionales de la presente divulgacion, los filamentos cilmdricos y no cilmdricos anteriormente explicados pueden ser tambien huecos. Dado que el area de seccion transversal del plastico se reduce por el nucleo faltante, el diametro hidraulico del filamento hueco puede tambien ser menor que el diametro ffsico. En consecuencia, ejemplos de diametros hidraulicos adecuados para filamentos huecos de la presente divulgacion incluyen los explicados anteriormente. Adicionalmente, el licuefactor puede incluir tambien un nucleo ajustado al filamento hueco, de modo que el extrudido se caliente desde el interior asf como desde el exterior.
Una ventaja adicional potencial de un filamento hueco es que cuando el filamento hueco se fabrica mediante extrusion rapida desde un combinador, se enfna convenientemente de modo rapido antes de que se retenga sobre un conjunto de suministro (por ejemplo, en carrete). Este procedimiento de enfriamiento rapido puede inducir por otro lado cambios en el diametro en un filamento que puede variar a lo largo de su longitud. En comparacion, si se enfna rapidamente un filamento hueco, la superficie interior de filamento hueco puede variar en diametro, dejando la superficie exterior mas uniforme.
Otra ventaja adicional potencial de un filamento hueco en la forma de una carcasa cilmdrica es la adaptacion al mecanismo de accionamiento del filamento. Un filamento solido puede estar proximo a ser incompresible, de modo que el rodillo de accionamiento o diente de accionamiento puede obtener muy poca o demasiada traccion si el diametro del filamento es ligeramente pequeno o grande. Un filamento hueco, sin embargo, proporciona una adaptacion de modo que pequenas variaciones en el diametro del filamento se compensan por variaciones en la cantidad de compresion del filamento hueco.
Otra ventaja adicional potencial mas de un filamento hueco es la reducida conduccion termica en el interior del licuefactor. Cuando esta fijo un filamento solido, el calor puede conducirse lentamente hacia el centro del filamento a la zona anterior a la parte calentada del licuefactor donde las paredes estan relativamente fnas. Si el filamento se funde atn, tiende a solidificar contra la pared fna, provocando potencialmente una gran fuerza axial para reiniciar el 5 movimiento del filamento. La tasa de conduccion de calor de un filamento hueco, sin embargo, sera mas lenta que la tasa de conduccion de un filamento solido debido a la carencia de un nucleo.

Claims (12)

10
15
20
25
30
35
40
45
REIVINDICACIONES
1. Un sistema que comprende un sistema (10) de fabricacion digital basado en extrusion y un material (34) consumible, comprendiendo el material (34) consumible un filamento de cinta, teniendo el filamento de cinta una longitud (36) y un perfil (38) de seccion transversal que es no cilmdrico, en el que el perfil (38) de seccion transversal comprende una geometna rectangular que tiene una relacion de aspecto de seccion transversal de ancho a espesor que es de aproximadamente 2:1 o mayor, en el que el perfil (38) de seccion transversal se configura para coincidir con una geometna rectangular correspondiente de un licuefactor (48) no cilmdrico del sistema (10) de fabricacion digital basado en extrusion, teniendo el licuefactor (48) un area Ae de seccion transversal de entrada y un diametro
Dk hidraulico, en el que Dk < 0,95 JA, para proporcionar un tiempo de respuesta con el licuefactor (48) no
cilmdrico que sea al menos 1,5 veces mas rapido que un tiempo de respuesta que pueda conseguirse con un filamento cilmdrico en un licuefactor cilmdrico para al mismo caudal volumetrico maximo, termicamente limitado.
2. El sistema de la reivindicacion 1, en el que el ancho (40) del perfil (38) de seccion transversal vana desde aproximadamente 1,0 milfmetros a aproximadamente 10,2 milfmetros.
3. El sistema de la reivindicacion 1, en el que el material (300) consumible comprende adicionalmente una segunda capa (314) dispuesta sobre la segunda superficie (308) de la parte (302) base, y en el que la parte (302) base y la segunda capa (314) se derivan de materiales diferentes.
4. El sistema de la reivindicacion 3 y en el que el material de la segunda capa (314) es el mismo que el material de la primera capa (304).
5. El sistema de la reivindicacion 1 y en el que el filamento de cinta se configura para soportar una tension elastica mayor que una relacion del espesor del area de seccion transversal del filamento dividida por un radio de curvatura del filamento de cinta.
6. La combinacion de cualquier reivindicacion precedente, en la que Dk < 0,90 .yJA .
7. Un procedimiento de construccion de un modelo tridimensional en un sistema de fabricacion digital basado en extrusion, comprendiendo el procedimiento:
alimentar un filamento (34) de cinta de un material consumible a un licuefactor (48) no cilmdrico retenido por el sistema (10) de fabricacion digital basado en extrusion, teniendo el filamento (34) de cinta una longitud (36) y un perfil (38) de seccion transversal que es no cilmdrico en el que el perfil (38) de seccion transversal comprende una geometna rectangular que tiene una relacion de aspecto de seccion transversal de ancho a espesor que es de aproximadamente 2:1 o mayor, en el que el perfil (38) de seccion transversal se configura para coincidir con una geometna rectangular correspondiente del licuefactor (48) no cilmdrico teniendo un area Ae de seccion
transversal de entrada y un diametro Dk hidraulico, en el que Dk < 0,95 ;
fundir el filamento (34) de cinta en el licuefactor (48) de cinta para proporcionar un material consumible fundido; extrudir el material (34) consumible fundido desde el licuefactor (48) de cinta;
depositar el material consumible extrudido en una forma capa a capa para formar al menos una parte del modelo (34) tridimensional;
cambiar una presion de actuacion para la alimentacion del filamento (34) de cinta al licuefactor (48) de cinta, que presenta un tiempo de respuesta para la extrusion del material (34) consumible fundido que es al menos 1,5 veces mas rapida que un tiempo de respuesta que pueda conseguirse con un filamento cilmdrico en un licuefactor cilmdrico para al mismo caudal volumetrico maximo, termicamente limitado;
mientras se extrude el material (34) consumible fundido, mover el licuefactor (48) de cinta a una tasa que se basa en parte en el tiempo de respuesta presentado.
8. El procedimiento de la reivindicacion 7, en el que el tiempo de respuesta para la extrusion del material (34) consumible fundido desde el licuefactor (48) de cinta es al menos aproximadamente dos veces mas rapido que el tiempo de respuesta del filamento cilmdrico en el licuefactor cilmdrico.
9. El procedimiento de las reivindicaciones 7 y 8, en el que el tiempo de respuesta para la extrusion del material (34) consumible fundido desde el licuefactor (48) de cinta es al menos aproximadamente tres veces mas rapido que el tiempo de respuesta del filamento cilmdrico en el licuefactor cilmdrico.
10. El procedimiento de la reivindicacion 7, en el que el perfil (38) de seccion transversal del filamento (34) de cinta tiene una relacion de aspecto de seccion transversal de ancho (80) a espesor (42) que vana desde aproximadamente 2,5:1 a aproximadamente 20:1.
11. El procedimiento de la reivindicacion 7, en el que el ancho (40) del perfil (38) de seccion transversal del filamento (34) de cinta vana desde aproximadamente 1,0 milfmetros a aproximadamente 10,2 milfmetros.
12. El procedimiento de las reivindicaciones 7-11, en el que Dk < 0,90 JA .
ES10757920.3T 2009-09-30 2010-09-21 Sistema de fabricación digital basado en extrusión con un filamento de cinta Active ES2627566T3 (es)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24706709P 2009-09-30 2009-09-30
US247067P 2009-09-30
US612333 2009-11-04
US12/612,333 US8221669B2 (en) 2009-09-30 2009-11-04 Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
PCT/US2010/049607 WO2011041166A1 (en) 2009-09-30 2010-09-21 Non-cylindrical filaments for use in extrusion-based digital manufacturing systems

Publications (1)

Publication Number Publication Date
ES2627566T3 true ES2627566T3 (es) 2017-07-28

Family

ID=43780707

Family Applications (1)

Application Number Title Priority Date Filing Date
ES10757920.3T Active ES2627566T3 (es) 2009-09-30 2010-09-21 Sistema de fabricación digital basado en extrusión con un filamento de cinta

Country Status (10)

Country Link
US (4) US8221669B2 (es)
EP (1) EP2483060B1 (es)
JP (1) JP5701302B2 (es)
KR (1) KR101380112B1 (es)
CN (1) CN102548737B (es)
CA (1) CA2775076C (es)
ES (1) ES2627566T3 (es)
RU (1) RU2514831C2 (es)
TW (1) TWI517962B (es)
WO (1) WO2011041166A1 (es)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596543B (zh) * 2009-06-23 2014-09-17 斯特拉塔西斯公司 具有自定义特征的消耗材料
WO2010151767A1 (en) 2009-06-25 2010-12-29 3D Biotek Llc Methods and apparatus for fabricating porous three-dimensional tubular scaffolds
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8439665B2 (en) 2009-09-30 2013-05-14 Stratasys, Inc. Ribbon liquefier for use in extrusion-based digital manufacturing systems
WO2011063216A2 (en) 2009-11-19 2011-05-26 Stratasys, Inc. Encoded consumable materials and sensor assemblies for use in additive manufacturing systems
US8479795B2 (en) * 2010-09-17 2013-07-09 Synerdyne Corporation System and method for rapid fabrication of arbitrary three-dimensional objects
US8801990B2 (en) * 2010-09-17 2014-08-12 Stratasys, Inc. Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments
US8920697B2 (en) * 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8647098B2 (en) 2010-09-22 2014-02-11 Stratasys, Inc. Liquefier assembly for use in extrusion-based additive manufacturing systems
US8815141B2 (en) 2010-09-22 2014-08-26 Stratasys, Inc. Method for building three-dimensional models with extrusion-based additive manufacturing systems
US9238329B2 (en) 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
EP2655046B1 (en) 2010-12-22 2019-05-22 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8465111B2 (en) 2010-12-22 2013-06-18 Stratasys, Inc. Print head for use in fused deposition modeling system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8512024B2 (en) * 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
US8986767B2 (en) 2011-03-30 2015-03-24 Stratsys, Inc. Additive manufacturing system and method with interchangeable cartridges for printing customized chocolate confections
EP2690966B8 (en) 2011-03-30 2023-11-08 Barry Callebaut AG Additive manufacturing system and method for printing customized chocolate confections
US8883064B2 (en) 2011-06-02 2014-11-11 A. Raymond & Cie Method of making printed fastener
US8916085B2 (en) 2011-06-02 2014-12-23 A. Raymond Et Cie Process of making a component with a passageway
WO2012166552A1 (en) 2011-06-02 2012-12-06 A. Raymond Et Cie Fasteners manufactured by three-dimensional printing
US8818544B2 (en) 2011-09-13 2014-08-26 Stratasys, Inc. Solid identification grid engine for calculating support material volumes, and methods of use
US9108360B2 (en) 2011-09-23 2015-08-18 Stratasys, Inc. Gantry assembly for use in additive manufacturing system
US9321608B2 (en) 2011-12-22 2016-04-26 Stratasys, Inc. Spool assembly with locking mechanism for additive manufacturing system, and methods of use thereof
US8985497B2 (en) 2011-12-22 2015-03-24 Stratasys, Inc. Consumable assembly with payout tube for additive manufacturing system
US9073263B2 (en) 2011-12-22 2015-07-07 Stratasys, Inc. Spool assembly for additive manufacturing system, and methods of manufacture and use thereof
US9050788B2 (en) 2011-12-22 2015-06-09 Stratasys, Inc. Universal adapter for consumable assembly used with additive manufacturing system
US9205690B2 (en) 2012-03-16 2015-12-08 Stratasys, Inc. Automated calibration method for additive manufacturing system, and method of use thereof
US9050753B2 (en) 2012-03-16 2015-06-09 Stratasys, Inc. Liquefier assembly having inlet liner for use in additive manufacturing system
US9172829B2 (en) * 2012-07-31 2015-10-27 Makerbot Industries, Llc Three-dimensional printer with laser line scanner
CN103568323A (zh) * 2012-08-09 2014-02-12 上海科斗电子科技有限公司 光固化三维打印机及其打印方法
US9174388B2 (en) 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US9636868B2 (en) 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US11020899B2 (en) 2012-08-16 2021-06-01 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
CN104781063B (zh) * 2012-11-09 2018-02-27 赢创罗姆有限公司 用于挤出式3d打印法的经涂布长丝的用途和制备
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9102098B2 (en) 2012-12-05 2015-08-11 Wobbleworks, Inc. Hand-held three-dimensional drawing device
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US9090428B2 (en) 2012-12-07 2015-07-28 Stratasys, Inc. Coil assembly having permeable hub
US9321609B2 (en) 2012-12-07 2016-04-26 Stratasys, Inc. Filament drive mechanism for use in additive manufacturing system
US8961167B2 (en) 2012-12-21 2015-02-24 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9216544B2 (en) 2012-12-21 2015-12-22 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US10562226B1 (en) * 2013-03-15 2020-02-18 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive, and magnetic materials
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
CN107187022B (zh) 2013-03-22 2020-08-11 格雷戈里·托马斯·马克 三维打印
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
EP3004435B1 (en) 2013-06-05 2018-08-08 Markforged, Inc. Methods for fiber reinforced additive manufacturing
EP3838593A1 (en) 2013-07-11 2021-06-23 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US9912001B2 (en) * 2013-08-07 2018-03-06 Massachusetts Institute Of Technology Extruder feed system
KR102208200B1 (ko) * 2013-08-09 2021-01-27 킴벌리-클라크 월드와이드, 인크. 3차원 인쇄용 중합체 물질
CN203680854U (zh) * 2013-08-16 2014-07-02 深圳维示泰克技术有限公司 一种可组装拆卸的材料加工装置
US9950474B2 (en) 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US10201931B2 (en) 2013-10-04 2019-02-12 Stratasys, Inc. Additive manufacturing system and process with material flow feedback control
US10131131B2 (en) * 2013-10-04 2018-11-20 Stratasys, Inc. Liquefier assembly with multiple-zone plate heater assembly
US9327447B2 (en) 2013-10-04 2016-05-03 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
US10086564B2 (en) 2013-10-04 2018-10-02 Stratsys, Inc. Additive manufacturing process with dynamic heat flow control
WO2015050958A2 (en) 2013-10-04 2015-04-09 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
EP3055122B1 (en) 2013-10-08 2023-11-29 Stratasys, Inc. Method for extrusion-based additive manufacturing using consumable filaments having reversible reinforcement
ITAN20130201A1 (it) * 2013-11-02 2015-05-03 Stefano Corinaldesi Metodo di alimentazione di una stampante di oggetti tridimensionali ed elemento di adduzione di materiale di formatura
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
US20150183159A1 (en) * 2013-12-30 2015-07-02 Chad E. Duty Large scale room temperature polymer advanced manufacturing
WO2015156877A2 (en) 2014-01-17 2015-10-15 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US9636872B2 (en) 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
TW201538304A (zh) * 2014-03-24 2015-10-16 Dws有限責任公司 產生三度空間物體的數字表示的方法及設備,該數字表示係適合使用於藉由光固化製造該三度空間物體
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
US10675853B2 (en) 2014-05-16 2020-06-09 Stratasys, Inc. High-temperature soluble support material for additive manufacturing
EP3172038B1 (en) 2014-07-22 2020-03-04 Stratasys, Inc. Gear-based liquefier assembly for additive manufacturing system, and methods of use thereof
US10500830B2 (en) 2014-07-29 2019-12-10 Nscrypt, Inc. Method and apparatus for 3D fabrication
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
IL282056B (en) 2014-08-21 2022-09-01 Mosaic Mfg Ltd Multi-material extrusion technology enabled serially
EP3197680B1 (en) 2014-09-26 2020-07-01 Stratasys, Inc. Liquefier assembly for additive manufacturing system, and method of use thereof
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
DE102014118577A1 (de) * 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel
US9694545B2 (en) 2014-12-18 2017-07-04 Stratasys, Inc. Remotely-adjustable purge station for use in additive manufacturing systems
US10040235B2 (en) 2014-12-30 2018-08-07 Wobbleworks, Inc. Extrusion device for three-dimensional drawing
US9610733B2 (en) 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
US10426917B2 (en) 2015-04-16 2019-10-01 Stryker Corporation System and method for manufacturing variable stiffness catheters
WO2016165140A1 (en) 2015-04-17 2016-10-20 Wobbleworks,Inc. Distribution of driving pressure about filament's circumference in extrusion device
JP6616134B2 (ja) * 2015-09-08 2019-12-04 東洋リビング株式会社 3dプリンタ用防湿庫
DE112016004933T5 (de) 2015-10-30 2018-08-16 Stratasys, Inc. Trägerplattenausbau für ein additives Fertigungssystem
US10583646B2 (en) 2015-10-30 2020-03-10 Stratasys, Inc. Starter piece and printing methods for additive manufacturing system
US10399326B2 (en) 2015-10-30 2019-09-03 Stratasys, Inc. In-situ part position measurement
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
US10421268B2 (en) 2015-11-18 2019-09-24 Stratasys, Inc. Filament feeding device having a capacitive filament displacement sensor for use in additive manufacturing system
US10518472B2 (en) * 2015-12-08 2019-12-31 Stratasys, Inc. Thermal drying system for additive manufacturing device
WO2017112687A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support material for high temperature additive manufacturing applications
WO2017112689A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support materials for high temperature additive manufacturing applications
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US10232551B2 (en) 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
CA3038750C (en) 2016-08-22 2021-07-13 Stratasys, Inc. Multiple axis robotic additive manufacturing system and methods
US20180065307A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Systems and methods for controlling additive manufacturing
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US20180065317A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-situ fiber splicing
US10766595B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US20210094230A9 (en) 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
EP4234849A3 (en) * 2017-01-12 2023-10-18 Keystone Tower Systems, Inc. Cylindrical tube formation
US10940638B2 (en) 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US20180229092A1 (en) 2017-02-13 2018-08-16 Cc3D Llc Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
USD888115S1 (en) 2017-03-16 2020-06-23 Stratasys, Inc. Nozzle
US10906240B2 (en) 2017-06-29 2021-02-02 Continuous Composites Inc. Print head for additive manufacturing system
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
EP3664990A1 (en) * 2017-08-07 2020-06-17 Teva Pharmaceutical Industries Ltd. Method and an apparatus for feeding a filament and use of the apparatus for production of a pharmaceutical dosage form
US11485088B2 (en) 2017-10-03 2022-11-01 Jabil Inc. Apparatus, system and method of process monitoring and control in an additive manufacturing environment
US10919221B2 (en) 2017-10-03 2021-02-16 Jabil Inc. Apparatus, system and method for an additive manufacturing print head
US11584078B2 (en) 2017-10-03 2023-02-21 Jabil Inc. Apparatus, system and method of operating an additive manufacturing nozzle
CN109840338B (zh) * 2017-11-28 2023-04-25 南京国图信息产业有限公司 一种应用于三维不动产信息管理的三维楼盘模型构建方法
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10449719B2 (en) * 2017-12-01 2019-10-22 Bulent Besim System for feeding filament to a nozzle in an additive manufacturing machine
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN209869406U (zh) 2017-12-29 2019-12-31 斯特塔思有限公司 具有扩展的打印体积的增材制造系统
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN112188952B (zh) * 2018-03-21 2023-10-03 埃森提姆公司 高速挤出3-d打印系统
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11130284B2 (en) 2018-04-12 2021-09-28 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11491702B2 (en) * 2018-08-08 2022-11-08 New Jersey Institute Of Technology Additive manufacturing of channels
US11806444B2 (en) * 2019-08-06 2023-11-07 New Jersey Institute Of Technology Additive manufacturing of cell-laden functional hydrogel and live cell constructs
US11192298B2 (en) 2018-08-17 2021-12-07 Stratasys, Inc. Laser preheating in three-dimensional printing
US11203156B2 (en) 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
US11247387B2 (en) 2018-08-30 2022-02-15 Stratasys, Inc. Additive manufacturing system with platen having vacuum and air bearing
US20200086563A1 (en) 2018-09-13 2020-03-19 Cc3D Llc System and head for continuously manufacturing composite structure
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11511480B2 (en) 2018-10-26 2022-11-29 Continuous Composites Inc. System for additive manufacturing
IL282910B1 (en) 2018-11-09 2024-04-01 Nexa3D Inc 3D printing system
US11338514B2 (en) 2018-11-09 2022-05-24 Stratasys, Inc. Protective filament guide tube for additive manufacturing system
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
WO2020109280A1 (de) * 2018-11-29 2020-06-04 Covestro Deutschland Ag Additive fertigung 3-dimensionaler formkörper mittels filamenten mit hohem aspektverhältnis
US20200238603A1 (en) 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
EP3941714B1 (en) 2019-03-18 2023-03-08 Nexa3D Inc. Method and system for additive manufacturing
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
EP3888879A1 (en) 2020-04-02 2021-10-06 Universitat de Girona An extrusion head and a method for continuous fused filament fabrication
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
USD995629S1 (en) 2021-01-29 2023-08-15 Wobble Works, Inc. Drawing tool
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system
US20220396028A1 (en) * 2021-06-13 2022-12-15 Sergey Julius Glimis Elongated Nozzle FDM 3D printer

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE553136A (es) 1955-12-08
GB1176357A (en) * 1967-04-01 1970-01-01 Barmag Barmer Maschf Improvements in the Conversion of Films into Separate Oriented Filaments
US4113935A (en) * 1973-06-06 1978-09-12 Barmag Barmer Maschinenfabrik Ag Process for producing low shrinkage film bands
NZ210504A (en) * 1983-12-22 1987-03-31 Bostik New Zealand Ltd Hot melt dispenser:spring urges hot melt material out of melt chamber when not dispensing
US4749347A (en) * 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
US4797313A (en) * 1985-11-08 1989-01-10 Monsanto Company Non-metallic polymeric twist tie
GB2229702B (en) * 1989-02-04 1992-09-30 Draftex Ind Ltd Strip handling apparatus
JP2813994B2 (ja) * 1989-10-06 1998-10-22 株式会社 共和 無芯ツイストタイおよびその製造方法
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5312224A (en) * 1993-03-12 1994-05-17 International Business Machines Corporation Conical logarithmic spiral viscosity pump
US5424119A (en) * 1994-02-04 1995-06-13 Flex Products, Inc. Polymeric sheet having oriented multilayer interference thin film flakes therein, product using the same and method
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JPH0825451A (ja) 1994-07-11 1996-01-30 Shinko Sellbick:Kk 流動性材料の供給方法および供給装置
US5764521A (en) * 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6085957A (en) 1996-04-08 2000-07-11 Stratasys, Inc. Volumetric feed control for flexible filament
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5578227A (en) * 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
US6070107A (en) * 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6067480A (en) * 1997-04-02 2000-05-23 Stratasys, Inc. Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) * 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5968561A (en) * 1998-01-26 1999-10-19 Stratasys, Inc. High performance rapid prototyping system
US6004124A (en) * 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
US6022207A (en) * 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US5939008A (en) * 1998-01-26 1999-08-17 Stratasys, Inc. Rapid prototyping apparatus
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6054077A (en) * 1999-01-11 2000-04-25 Stratasys, Inc. Velocity profiling in an extrusion apparatus
CN1320992C (zh) * 1999-04-20 2007-06-13 斯特拉塔西斯公司 可溶材料和三维模型的加工方法
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US6645412B2 (en) * 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6257517B1 (en) * 1999-08-10 2001-07-10 Sandvik Steel Co. Method and apparatus for feeding welding wire
US6302309B1 (en) * 2000-06-16 2001-10-16 Clarence H. Drader Forwarding a rod for use in welding by high pressure injection
US6730252B1 (en) * 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6480740B2 (en) * 2000-12-26 2002-11-12 Cardiac Pacemakers, Inc. Safety pacing in multi-site CRM devices
US6684633B2 (en) * 2001-04-27 2004-02-03 Marion Barney Jett Exhaust device for two-stroke internal combustion engine
US6749414B1 (en) * 2001-04-30 2004-06-15 Stratasys, Inc. Extrusion apparatus for three-dimensional modeling
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US6547995B1 (en) * 2001-09-21 2003-04-15 Stratasys, Inc. Melt flow compensation in an extrusion apparatus
US6814907B1 (en) * 2001-12-18 2004-11-09 Stratasys, Inc. Liquifier pump control in an extrusion apparatus
AU2003291228A1 (en) * 2002-11-02 2004-06-07 Ambec, Inc. Apparatus for diverting successive articles in a single lane to plural lanes
US6869559B2 (en) * 2003-05-05 2005-03-22 Stratasys, Inc. Material and method for three-dimensional modeling
US20050046065A1 (en) * 2003-08-30 2005-03-03 Cowan Martin E. Thermoplastic fibers exhibiting durable high color strength characteristics
JP4564448B2 (ja) * 2003-10-14 2010-10-20 株式会社共和 ノンメタリックツイストタイ
US20050101684A1 (en) * 2003-11-06 2005-05-12 Xiaorong You Curable compositions and rapid prototyping process using the same
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
US7604470B2 (en) * 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7891964B2 (en) * 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US8215371B2 (en) * 2008-04-18 2012-07-10 Stratasys, Inc. Digital manufacturing with amorphous metallic alloys
US7896209B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Filament drive mechanism for use in extrusion-based digital manufacturing systems
US7897074B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Liquefier assembly for use in extrusion-based digital manufacturing systems
US8246888B2 (en) 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US7938356B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament spool
US7938351B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament guide mechanism for filament spool container
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8236227B2 (en) 2009-09-30 2012-08-07 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments

Also Published As

Publication number Publication date
US10272665B2 (en) 2019-04-30
RU2514831C2 (ru) 2014-05-10
TWI517962B (zh) 2016-01-21
CN102548737B (zh) 2015-03-11
US8221669B2 (en) 2012-07-17
EP2483060B1 (en) 2017-03-08
EP2483060A1 (en) 2012-08-08
US20170136691A1 (en) 2017-05-18
US20110076496A1 (en) 2011-03-31
TW201213095A (en) 2012-04-01
CN102548737A (zh) 2012-07-04
JP2013506580A (ja) 2013-02-28
US10759107B2 (en) 2020-09-01
CA2775076C (en) 2015-01-06
KR20120063538A (ko) 2012-06-15
CA2775076A1 (en) 2011-04-07
JP5701302B2 (ja) 2015-04-15
WO2011041166A1 (en) 2011-04-07
US9586357B2 (en) 2017-03-07
KR101380112B1 (ko) 2014-04-01
RU2012117834A (ru) 2013-11-10
US20120258190A1 (en) 2012-10-11
US20190240970A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
ES2627566T3 (es) Sistema de fabricación digital basado en extrusión con un filamento de cinta
US8236227B2 (en) Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments
ES2628033T3 (es) Licuefactor de cinta para su uso en sistemas de fabricación digitales basados en extrusión
US10549517B2 (en) Additive manufacturing system with extended printing volume, and methods of use thereof
JP2009536597A5 (es)
EP3055122B1 (en) Method for extrusion-based additive manufacturing using consumable filaments having reversible reinforcement
US10059053B2 (en) Break-away support material for additive manufacturing
JP6643553B2 (ja) 溶解フィラメント製造方式3dプリンターの押出機
CN104357990B (zh) 成型丝及其制备方法
JP2021075019A (ja) 造形装置および造形方法
US20080224346A1 (en) Method and Apparatus for Producing Plastic Film