CN102548737A - 基于挤出的数字制造系统中使用的非圆柱形细丝 - Google Patents

基于挤出的数字制造系统中使用的非圆柱形细丝 Download PDF

Info

Publication number
CN102548737A
CN102548737A CN2010800438783A CN201080043878A CN102548737A CN 102548737 A CN102548737 A CN 102548737A CN 2010800438783 A CN2010800438783 A CN 2010800438783A CN 201080043878 A CN201080043878 A CN 201080043878A CN 102548737 A CN102548737 A CN 102548737A
Authority
CN
China
Prior art keywords
cylindrical
liquefier
cross
consumable material
sectional profiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800438783A
Other languages
English (en)
Other versions
CN102548737B (zh
Inventor
J·塞缪尔·巴彻尔德
威廉·J·斯万松
S·斯科特·克伦普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratasys Inc
Original Assignee
Stratasys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stratasys Inc filed Critical Stratasys Inc
Publication of CN102548737A publication Critical patent/CN102548737A/zh
Application granted granted Critical
Publication of CN102548737B publication Critical patent/CN102548737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • B32B38/1841Positioning, e.g. registration or centering during laying up
    • B32B38/185Positioning, e.g. registration or centering during laying up combined with the cutting of one or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • B29K2509/04Carbides; Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/10Mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/007Narrow strips, e.g. ribbons, tapes, bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/045Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种在基于挤出的数字制造系统(10)中使用的消耗材料(34),消耗材料(34)包括一个区段(36)和区段(36)的至少一部分的为轴向不对称的横截面轮廓(38)。横截面轮廓(38)被构造成对于相同的热限制最大体积流量与通过圆柱形液化器中的圆柱形细丝获得的响应时间相比通过基于挤出的数字制造系统(10)的非圆柱形液化器(48)提供更快的响应时间。

Description

基于挤出的数字制造系统中使用的非圆柱形细丝
技术领域
本发明涉及直接数字制造系统构建三维(3D)模型。具体地,本发明涉及基于挤出的数字制造系统中使用的诸如造型材料和支撑材料的消耗材料。
背景技术
基于挤出的数字制造系统(例如,由Stratasys,Inc.,Eden Prairie,MN开发的熔融沉积成型系统)用于通过挤出可流动的消耗造型材料以逐层方式由3D模型的数字表示法构建3D模型。造型材料通过由挤出头携带的挤出端挤出,并被作为一系列条道沉积在x-y平面中的基板上。挤出的造型材料熔化到先前沉积的造型材料并在温度降低时凝固。挤出头相对于基板的位置接着沿着z轴线(垂直于x-y平面)增长,并且所述过程接着被重复以形成类似于数字表示的3D模型。
在计算机控制下根据表现3D模型的构建数据执行挤出头相对于基板的运动。所述构建数据通过初始将3D模型的数字表示切成多个水平切片层而获得。接着,主计算机对每一个切片层产生用于淀积造型材料的条道的构建路径以形成3D模型。
在通过淀积造型材料层制造3D模型中,支撑层或结构在建造中典型地被构建在物体的悬垂部分的下面或物体的空腔中,所述悬垂部分或所述空腔本身没有被造型材料支撑。支撑结构可以利用相同的沉积技术构建,其中造型材料通过所述沉积技术沉积。主计算机产生用作用于形成的3D模型的悬垂或自由空间段的支撑结构的额外几何结构。可消耗支撑材料在构建过程期间接着根据生成的几何结构从第二喷嘴沉积。支撑材料在制造期间粘接到造型材料,并且在构建过程完成时被从完成的3D模型移走。
发明内容
本发明的第一方面涉及一种基于挤出的数字制造系统中使用的消耗材料。消耗材料包括一个区段以及所述区段的至少一部分的为轴向不对称的横截面轮廓。所述横截面轮廓被构造成通过基于挤出的数字制造系统的非圆柱形液化器对于相同的热限制(thermally limited)最大体积流量提供比通过圆柱形液化器中的圆柱形细丝获得的响应时间快(例如,至少快50%)的响应时间。
本发明的另一个方面涉及基于挤出的数字制造系统中使用的消耗材料,其中消耗材料包括含有具有非晶特性的至少一个材料的成分。消耗材料还包括一个区段和所述区段的至少一部分的横截面轮廓的非圆柱形几何形状。横截面轮廓被构造成与具有入口横截面面积As和液压直径Dh的基于挤出的数字制造系统的非圆柱形液化器配合,其中
本发明的另一个方面涉及一种用于制造在基于挤出的数字制造系统中使用的消耗材料的方法。所述方法包括以下步骤:提供具有片材厚度和包括至少一种热塑性材料的成分的片材。所述方法还包括以下步骤:将片材切成多个非圆柱形细丝,其中多个非圆柱形细丝中的至少一个具有一个区段和所述区段的至少一部分的横截面轮廓。横截面轮廓被构造成与具有入口横截面面积As和液压直径Dh的基于挤出的数字制造系统的非圆柱形液化器配合,其中
Figure BDA0000148775320000022
所述方法还包括以下步骤:以基本上平行的方式将多个非圆柱形细丝的至少一部分装载到供应组件上。
附图说明
图1是用于由造型材料和支撑材料的非圆柱形细丝构建3D模型和支撑结构的基于挤出的数字制造系统的正视图;
图2是为具有矩形横截面轮廓的非圆柱形细丝的带状细丝的立体图;
图3为图2中截得的截面3-3的剖视图,显示了带状细丝的横截面轮廓;
图4为与带状细丝一起使用的基于挤出的数字制造系统的挤出头分组件的分解立体图,其中挤出头分组件包括矩形液化器;
图5A是图4中截得的截面5A-5A的剖视图,显示了带状细丝正在通过矩形液化器被挤出;
图5B是图4中截得的截面5B-5B的剖视图,进一步显示了带状细丝正在通过矩形液化器被挤出;
图5C是图4中截得的截面5C-5C的剖视图,显示了矩形液化器的入口横截面轮廓;
图6是叠置在矩形液化器上的多个圆柱形液化器的示意图;
图7是形成带状细丝的方法的流程图;
图8是用于形成带状细丝的挤出片材的立体图;
图9是用于形成挤出片材的片材挤出系统的示意图;
图10是用于由挤出片材形成带状细丝的细丝制造系统的示意图;
图11是图2中截得的截面3-3的可选剖视图,显示具有单个层叠表面的第一可选带状细丝;
图12是图2中截得的截面3-3的可选剖视图,显示具有两个层叠表面的第二可选带状细丝;以及
图13是图2中截得的截面3-3的可选剖视图,显示具有两个具有多个层的层叠表面的第三可选带状细丝。
具体实施方式
本发明涉及用于在基于挤出的数字制造系统中使用的造型材料和支撑材料的非圆柱形细丝以及用于制造所述非圆柱形细丝的方法和系统。如下所述,非圆柱形细丝是在具有相同体积流量的情况下与由圆柱形液化器熔化并挤出的圆柱形细丝相比能够以减少的响应时间由非圆柱形液化器熔化并挤出的消耗材料。这有利于提高沉积精度并减少构建时间,从而增加用于构建3D模型和相应的支撑结构的过程效率。
在此使用的术语“非圆柱形细丝”表示具有为非圆形的横截面轮廓(例如,矩形横截面轮廓)的造型材料或支撑材料的细丝。这将与具有为圆形的横截面轮廓的“圆柱形细丝”相比较。相应地,在此使用的术语“非圆柱形液化器”表示具有通道的液化器,所述通道具有为非圆形的横截面轮廓(例如,矩形或弧形横截面轮廓)以容纳非圆柱形细丝。这将与具有通道的“圆柱形液化器”相比较,所述通道具有为圆形的横截面轮廓以容纳圆柱形细丝。
图1是系统10的正视图,所述系统为包括构建室12、台板14、台架16、挤出头18以及供应源20和22的基于挤出的数字制造系统,其中挤出头18被构造成在构建操作期间容纳并熔化非圆柱形细丝(图1中未示出)的连续部分。用于系统10的适当的基于挤出的数字制造系统包括由Stratasys,Inc.,Eden Prairie,MN开发的熔融沉积成型系统。
构建室12为容纳台板14、台架16以及用于构建3D模型(称为3D模型24)和相应的支撑结构(称为支撑结构26)的挤出头18的封闭环境。台板14为其上构建3D模型24和支撑结构26的平台,并且根据计算机操作的控制器(称为控制器28)提供的信号沿着垂直的z轴线移动。台架16为被构造成根据从控制器28提供的信号使挤出头18在构建室12内在水平x-y平面中移动的导轨系统。水平x-y平面为由x轴线和y轴线限定的平面(图1中未示出),其中x轴线、y轴线和z轴线彼此正交。在一个可选实施例中,台板14可以被构造成在构建室12内在水平的x-y平面中移动,而挤出头18可以被构造成沿着z轴线移动。也可以使用其它类似的装置以使台板14和挤出头18中的一个或两者都可相对于彼此移动。
挤出头18由台架16支撑以用于根据控制器28提供的信号以逐层方式在台板14上构建3D模型24和支撑结构26。挤出头18包括一对非圆柱形液化器(图1中未示出),其中第一非圆柱形液化器被构造成容纳并熔化非圆柱形造型材料细丝的连续部分,而第二非圆柱形液化器被构造成容纳并熔化非圆柱形支撑材料细丝的连续部分。
非圆柱形的造型材料细丝可以通过通道30被从供应源20供应到挤出头18。类似地,非圆柱形支撑材料细丝可以通过通道32被从供应源22供应到挤出头18。系统10还可以包括附加的驱动机构(未示出),所述驱动机构被构造成帮助将非圆柱形细丝从供应源20和22供给到挤出头18。供应源20和22是用于非圆柱形细丝的源(例如,卷线筒式容器),并且理想地保持在远离构建室12的远位置处。用于供应源20和22的适当组件包括Swanson等人的美国专利第6,923,634号;Comb等人的美国专利第7,122,246号;以及Taatjes等人的美国专利申请公开出版物第2010/0096485号和第2010/0096489号中所公开的组件。
在构建操作期间,台架16使挤出头18在构建室12内大约在水平x-y平面中移动,并且非圆柱形细丝被供应给挤出头18。挤出头18热熔化容纳的造型材料细丝的连续部分,从而允许挤出熔融材料以构建3D模型24。类似地,挤出头18热熔化支撑材料细丝的连续部分,从而允许挤出熔融材料以构建支撑结构26。非圆柱形细丝的上游未熔化部分每一个都可以用作具有粘性泵作用的活塞,以将熔融材料从挤出头18的相应液化器中挤出。
挤出的造型材料和支撑材料被沉积到台板14上以利用基于层的添加技术构建3D模型24和支撑结构26。支撑结构26理想地被沉积以沿着z轴线为3D模型24的层的悬垂区域提供垂直支撑。在构建操作完成之后,产生的3D模型24/支撑结构26可以被从构建室12移除,并且支撑结构26可以被从3D模型24移除。
如下所述,非圆柱形细丝的横截面轮廓以及液化器与圆柱形细丝和液化器相比允许以减少的响应时间熔化非圆柱形细丝并从挤出头18挤出。这增加了用于构建3D模型24和支撑结构26的系统10中的过程效率。例如,减少的响应时间可以增加用于造型材料和支撑材料的沉积条道的起始位置的精度。在用于形成3D模型(例如,3D模型24)的层的构建操作期间,挤出头(例如,挤出头18)在水平x-y平面中移动并沉积熔融的造型材料。在完成给定的沉积图案之后,挤出头停止沉积造型材料。这伴随有使细丝停止供给到挤出头的液化器中,从而停止细丝的粘性泵作用。
然而,挤出头使将细丝供给到液化器停止的时间与造型材料实际上停止从挤出头挤出的时间之间的响应时间不是瞬时的。相反,具有基于诸如液化器的热特性、细丝的成分以及如下所述的细丝和液化器通道的横截面轮廓的因素的延迟。类似地,还具有与从零流量状态转变到稳定状态流动相关联的响应时间延迟。需要大的响应时间的液化器和细丝增加这些延迟,从而潜在地降低沉积精度。然而,减少响应时间可以提高产生的3D模型的美感和结构质量,特别是在构建含有细微特征的3D模型时更是如此。
例如,系统10的减少的响应时间可以在靠近沉积开始和停止点的适当位置处以闸道的方式(gate)使台架16的加速。这可以增加隐藏每一个层的接缝的能力,从而可以增加部件质量。另外,响应时间确定在台架16在x-y平面中移动大约一个拐角时台架16可以偏离恒定切向速度多远。因此,减少的响应时间允许挤出头18获得更大的拐弯加速度和减速度。这可以以与赛车的拐弯性能对于减少整个空转时间很重要的相同方式减少构建3D模型和支撑结构所需的制造时间。
为了便于说明,关于具有矩形横截面轮廓的非圆柱形细丝(称为带状细丝)以及具有用于容纳带状细丝的相应矩形通道的非圆柱形液化器做出以下公开内容。然而,本发明还可应用到具有各种不同横截面轮廓的非圆柱形细丝,所述非圆柱形细丝与圆柱形细丝相比减少响应时间。
图2是带状细丝34的立体图,所述带状细丝为具有矩形横截面轮廓的非圆柱形细丝并包括区段36。区段36为可以根据供应源20或22(图1所示)中剩余的带状细丝34的量变化的连续区段。带状细丝34理想地沿着区段36可弯曲,以允许带状细丝34保持在供应源20和22中(例如,卷绕在卷线筒上)并通过系统10(例如,通过通道30和32)供给而不会出现塑性变形或裂缝。例如,在一个实施例中,带状细丝34理想地能够承受大于t/r的弹性应变,其中“t”为带状细丝34在弯曲平面中的横截面厚度(例如,厚度42,图3所示),“r”为弯曲半径(例如,供应源20或22中的弯曲半径和/或通过通道30或32的弯曲半径)。
带状细丝34可以由各种可挤出的造型材料和支撑材料制造以分别构建3D模型24和支撑结构26(图1所示)。用于带状细丝34的适当的造型材料包括聚合材料和金属材料。在一些实施例中,适当的造型材料包括具有非晶特性的材料,例如,热塑性材料、非晶金属材料及其组合。用于带状细丝34的适当的热塑性材料的实例包括丙烯腈-丁二烯-苯乙烯(ABS)共聚物、聚碳酸酯、聚砜、聚醚砜、聚芳砜、聚醚酰亚胺、非晶聚酰胺、其修改变体(例如。ABS-M30共聚物)、聚苯乙烯及其混合物。适当的非晶金属材料的实例包括公开在Batchelder的美国专利申请公开出版物第2009/0263582号中的材料。
用于带状细丝34的适当的支撑材料包括具有非晶特性的材料(例如,热塑性材料),并且所述材料理想地可在构建3D模型24和支撑结构26之后从相应的造型材料移去。用于带状细丝34的适当的支撑材料的实例包括在贸易指定(trade designations)“WATERWORKS”和“SOLUBLESUPPORTS”下市场上可从Stratasys,Inc.,Eden Prairie,MN买到的水溶性支撑材料;在贸易指示“BASS”下可在市场上从Stratasys,Inc.,Eden Prairie,MN买到的破坏支撑材料,以及公开在Crump等人的美国专利第5,503,785号;Lombardi等人的美国专利第6,070,107号和第6,228,923号;Priedeman等人的美国专利第6,790,403号;以及Hopkins等人的美国专利申请公开出版物第2010/0096072号中公开的材料。
带状细丝34的成分还可以包括另外的添加剂,例如,增塑剂、流变改性剂、惰性填料、着色剂、稳定剂及其组合。支撑材料中使用的适当添加的增塑剂的实例包括临苯二甲酸二烷基酯、环烷酞酸盐、苯甲基及芳香基酞酸盐、烷氧基酞酸盐、烷基/磷酸芳基酯、聚乙二醇酯、己二酸盐酯、柠檬酸盐酯、甘油酯及其组合。适当的惰性填料的实例包括碳酸钙、碳酸镁、玻璃球、石墨、炭黑、碳纤维、玻璃纤维、滑石、硅灰石、云母、矾土、硅石、高岭土、碳化硅、复合材料(例如,球状及丝状复合材料)及其组合。在其中成分中包括附加的添加剂的实施例中,附加的添加剂的适当的结合浓度的实例根据成分的整个重量在从大约1%重量比至大约10%重量比的成分范围内,并且特别适当的浓度在从大约1%重量比至大约5%重量比的范围内。
带状细丝34还理想地表现出允许带状细丝34用作系统10中的消耗材料的物理特性。在一个实施例中,带状细丝34的成分沿着其长度基本上是同质的。另外,带状细丝34的成分理想地表现出适合用于构建室12中的玻璃转变温度。大气压力下对于带状细丝34的成分的适当的玻璃转变温度的实例包括大约80℃或更大的温度。在一些实施例中,适当的玻璃转变温度包括大约100℃或更大。在另外的实施例中,适当的玻璃转变温度包括大约120℃或更大。
带状细丝34还理想地表现出低压缩性,使得所述带状细丝的轴向压缩不会造成带状细丝34卡在液化器内。用于带状细丝34的聚合物成分的适当的杨氏模量值的实例包括大约0.2吉帕斯卡(GPa)(大约30,000磅/平方英寸(psi))或更大的模量值,其中杨氏模量值依据ASTMD638-08测得。在一些实施例中,适当的杨氏模量在从大约1.0GPa(大约145,000psi)到大约5.0GPa(大约725,000psi)的范围内。在另外的实施例中,适当的杨氏模量值在从大约1.5GPa(大约200,000psi)到大约3.0GPa(大约440,000psi)的范围内。
在一些实施例中,如下所述,带状细丝34可以为多层细丝。例如,带状细丝34可以包括设置在不同材料外表层之间的中心层。这允许带状细丝34表现出各种物理及美学特性。在另外的实施例中,带状细丝34可以沿着区段36在不同位置处表现出地形表面图案。例如,带状细丝34可以包括Batchelder等人的美国临时专利申请第61/247,078号;以及Batchelder等人的美国专利申请第12/612,342号的名称为“Consumable Materials HavingTopographical Surface Patterns For Use In Extrusion-Based DigitalManufacturing Systems”所公开的地形表面图案。
图3是图2中截得的截面3-3的剖视图,显示了带状细丝34的轮廓38。轮廓38为带状细丝34在沿着区段36的位置处的轴向不对称的横截面轮廓。在所示的实施例中,带状细丝34沿着区段36具有基本上相同的轮廓38,从而允许在构建操作期间使用整个区段36。可选地,区段36的一个或多个部分(例如,后端部分)可以是不可用的。
在所示实施例中,带状细丝34具有横截面宽度40和横截面厚度42。用于宽度40和厚度42的适当尺寸理想地允许带状细丝34与挤出头18的矩形液化器配合,并且还理想地提供与具有相同体积流量的圆柱形液化器中的圆柱形细丝相比降低挤出材料的响应时间的横截面纵横比。
用于宽度40的适当尺寸的实例在大约1.0毫米(大约0.04英寸)至大约10.2毫米(大约0.40英寸)的范围内,并且特别适当的宽度在大约2.5毫米(大约0.10英寸)至大约7.6毫米(大约0.30英寸)的范围内,而且更加特别适当的宽度在大约3.0毫米(大约0.12英寸)至大约5.1毫米(大约0.20英寸)的范围内。
厚度42理想地厚到足以为带状细丝34提供适当的结构整体性,从而减低带状细丝34保持在供应源20或22中时以及通过系统10(例如,通过通道30或32)供给时破裂或断裂的风险。用于厚度42的适当尺寸的实例在从大约0.08毫米(大约0.003英寸)到大约1.5毫米(大约0.06英寸)的范围内,并且特别适当的厚度在从大约0.38毫米(大约0.015英寸)到大约1.3毫米(大约0.05英寸)的范围内,而且更加特别适当的厚度在从大约0.51毫米(大约0.02英寸)到大约1.0毫米(大约0.04英寸)的范围内。
如下所述,宽度40与厚度42的纵横比以及矩形液化器的相应纵横比可以被选择为有效地消除与具有圆形横截面的圆柱形细丝相关的芯体。这允许以减少的响应时间在矩形液化器中熔化并挤出带状细丝34。
图4是分组件44的分解立体图,所述分组件为与带状细丝34一起使用的挤出头18(图1所示)的适当的分组件。分组件44包括驱动机构46、液化器48和热块50。驱动机构46为将带状细丝34的连续部分从通道30(图1所示)供给到液化器48的细丝驱动机构。驱动机构46理想地与控制器28(图1所示)信号通信,从而允许控制器28控制驱动机构46将带状细丝34供给到液化器48的比率。驱动机构46在显示为一对驱动轮时可以包括用于将带状细丝34供给到液化器48的各种不同机构。用于驱动机构46的适当的细丝驱动机构的实例包括Batchelder等人的美国专利申请公开出版物第2009/0274540号和第2009/0273122号中公开的驱动机构。
液化器48为包括在顶端54与底端56之间延伸的通道52的非圆柱形液化器。顶端54和底端56是液化器48沿着纵向轴线58相对的端部。通道52为其中容纳并熔化带状细丝34的矩形槽。因此,通道52在顶端54处的入口理想地具有允许带状细丝34与通道52配合的尺寸。这允许带状细丝34在没有不适当摩擦阻力的情况下滑入通道52。通道52还理想地表现出沿着纵向轴线58在顶端54与底端56之间基本上相同的横截面轮廓。然而,在可选的实施例中,通道52的横截面轮廓在底端56处可以渐细成较小横截面面积。
液化器48还包括挤出端60,所述挤出端为位于底端56的小直径末端并被构造成以期望的条道宽度挤出带状细丝34的熔融材料。用于挤出端60的适当的末端内径的实例在大约125微米(大约0.005英寸)到大约510微米(大约0.020英寸)的范围内。
热块50为热传递部件,所述热传递部件绕着带状液化器48的至少一部分延伸并被构造成将热量传导到带状液化器48和容纳的带状细丝34。用于热块50的适当的热传递部件的实例包括Swanson等人的美国专利第6,004,124号;Comb的美国专利第6,547,995号;LaBossiere等人的美国公开出版物第2007/0228590号;以及Batchelder等人的美国专利申请公开出版物第2009/0273122号中公开的部件。在可选实施例中,热块50可以被替换成产生热量和/或将热量传递到液化器48的许多不同的热传递部件,从而沿着纵向轴线58在液化器48内形成热梯度。
在系统10(图1所示)中的构建操作期间,带状细丝34与驱动机构46接合并被装载到液化器48的通道52中。控制器28接着引导驱动机构46以驱动带状细丝34的连续部分通过液化器48。在带状细丝34通过液化器48时,热块50产生的热梯度使液化器48内的带状细丝34的材料熔化。带状细丝34的由驱动机构46驱动的上游未熔化部分用作具有作用于未熔化部分与液化器48的壁之间的熔融材料的粘性泵的活塞,从而将熔融材料从挤出端60中挤出。所述挤出材料接着可以被沉积为条道,以便以逐层方式形成3D模型24。
如上所述,带状细丝34与以相同体积流量熔化并从圆柱形液化器挤出的圆柱形细丝相比能够以减少的响应时间熔化并被从液化器48挤出。对于圆柱形液化器,通过类似于RC的集总参数控制响应。因此,圆柱形液化器的响应时间是指1/e时间,该时间为流量从0%变化到新的稳态值的大约63%内的时间。比较起来,对于诸如液化器48的非圆柱形液化器,通过传输线参数控制响应。因此,诸如液化器48的非圆柱形液化器的响应时间是指在流量变化的大约10%与大约90%之间的时间。
例如,分组件44的响应时间为挤出端60处的熔融材料的流量(由于来自控制器28的指令)响应驱动机构46施加到带状细丝34的驱动压力的变化所需的时间。低响应时间特别是在构建包含细微特征的3D模型时有助于提高产生的3D模型的美感和结构质量。具体地,以高速构建3D模型需要低响应时间,这是因为这决定台架(例如,台架16)可以慢下来进入拐角并接着在其离开拐角时加速的程度。
“体积流量”是指通过液化器的热限制最大体积流量,所述最大体积流量为液化器可以将其液化成可挤出状态并接着挤出的材料的最大体积流量。对于圆柱形液化器,可以依据公式1确定热限制最大体积流量Qmax,c
Qmax,c=2πκLp,c
其中k为圆柱形细丝的材料的热扩散率,Lp,c为含有熔融材料的圆柱形液化器的长度。因此,仅根据该特征,体积流量Qmax,c可以仅通过增加含有熔融材料的圆柱形液化器的长度来增加。
然而,在具有特定直径的圆柱形液化器中,增加流量Qmax,c还会增加流动阻力,从而相应地增加响应时间。响应时间可以由集总压力变化时间常数τc表示,所述集总压力变化时间常数为圆柱形液化器和细丝材料的流体阻力与流动电容的乘积。对于圆柱形液化器每个压力下的流动阻力FRc(体积/秒)可以根据公式2确定:
FR c = 128 η L p , c πd c 4
其中η为圆柱形细丝的材料的动态粘度,并且dc为圆柱形液化器的内径。圆柱形液化器的流动电容FCc可以根据公式3确定:
FC c = πd c 2 L p , c 4 B
其中B为细丝材料的体积模量(即,材料的均匀压缩的阻力)。
通过结合圆柱形液化器的流动阻力和流动电容,圆柱形液化器的响应时间根据集总压力变化时间常数τc可以依据公式4确定:
τ c = 32 η L p , c 2 Bd c 2
组合公式1和4显示对于圆柱形液化器时间常数与体积流量Qmax,c之间的比例关系,该比例关系显示在公式5中:
τ c = 8 η Q max , c 2 π 2 κ 2 Bd c 2
如公式5所示,增加材料的体积流量相应地增加了响应时间,从而不希望出现地在挤出端处增加熔融材料的压力响应圆柱形细丝上的驱动压力的变化所需的时间。
用于减少响应时间的一个潜在技术将增加圆柱形细丝和液化器的直径。然而,具有大于大约2.5毫米(大约0.1英寸)的直径的圆柱形细丝变得在基于挤出的数字制造系统中难以处理和操纵。因此,对于圆柱形液化器中的给定容积,材料的体积流量的增加将不希望有地增加响应时间,反之亦然。这些竞争因素有效地限制圆柱形液化器的可获得的响应时间以及体积流量。
图5A和图5B分别是图4中截得的截面5A-5A和5B-5B的剖视图,显示了在液化器48中熔化的带状细丝34。如图5A所示,热块50被构造成绕着液化器48的长度的一部分(称为加热长度62)延伸并加热该部分。用于液化器48的适当的加热长度62的实例在大约13毫米(大约0.5英寸)大约130毫米(大约5.0英寸)的范围内,并且特别适当的长度88在大约25毫米(大约1.0英寸)到大约51毫米(大约2.0英寸)的范围内。
在带状细丝34被驱动到液化器48的通道52中时,带状细丝34的连续部分被熔化到至少可挤出状态以在通道52中形成熔融材料的熔池64。如图所示,熔池64沿着轴线58在底端56与弯月面66之间延伸。因此,液化器48的沿着58含有熔池64的长度(称为长度68)在底端56与弯月面66之间延伸。弯月面66在液化器48内的位置可以根据诸如沿着液化器48的热剖面、液化器48的尺寸、带状细丝34的材料、带状细丝34的驱动速率等因素变化。然而,在稳态挤出期间,弯月面66可以保持在基本上恒定的水平,使得熔池64的长度68典型地小于加热长度62。
如图5A和图5B分别所示,液化器48的通道52具有横截面宽度(称为宽度70)和横截面厚度(称为厚度72),其中宽度70大于厚度72。这在图5C中进一步显示,图5C显示通道52的入口横截面轮廓(称为通道轮廓74)。用于宽度70和厚度72的适当尺寸理想地允许带状细丝34与通道52配合,如上所述。如上所述,通道轮廓74还理想地沿着液化器48的加热长度62表现出基本上相同的尺寸(图5A和图5B所示)。然而,在可选的实施例中,通道轮廓74可以相邻于液化器48的底端56渐细到较小横截面面积(图4、图5A和图5B所示)。在另外可选的实施例中,通道轮廓74可以向上成锥形到较大的横截面面积以给弯月面位置提供稳定性。
用于通道轮廓74处的宽度70和厚度72的适当尺寸包括允许带状细丝34与通道52配合而没有不适当的摩擦力的宽度。用于宽度70的适当尺寸的实例在大约1.0毫米(大约0.04英寸)到大约12.7毫米(大约0.50英寸)的范围内,并且特别适当的宽度在大约3.0毫米(大约0.12英寸)到大约10.1毫米(大约0.40英寸)的范围内,而且更加特别适当的宽度在大约3.8毫米(大约0.15英寸)到大约6.4毫米(大约0.25英寸)的范围内。
用于厚度72的适当尺寸的实例在大约0.25毫米(大约0.01英寸)到大约2.5毫米(大约0.10英寸)的范围内,并且特别适当的厚度在大约0.51毫米(大约0.02英寸)到大约2.0毫米(大约0.08英寸)的范围内,而且更加特别适当的厚度在大约0.76毫米(大约0.03英寸)到大约1.8毫米(大约0.07英寸)的范围内。
在不希望受到理论限制时,相信通道轮廓74的纵横比有效地除去与具有圆形横截面的圆柱形细丝相关的芯体。这与具有相同的润湿通道容积(例如,通道52的容积,所述容积为沿着长度68截取的通道轮廓74的面积,图5A和图5B所示)的圆柱形液化器相比允许液化器48获得减少的响应时间。忽略从带状细丝34的边缘扩散的热量,假定宽度70与厚度72相比较大,可以根据公式6确定带状细丝34的依赖时间的温度轮廓:
Temp ( x , t ) = Temp a + ( Temp f - Temp a ) Σ n = 0 ∞ ( - 1 ) n { erfc ( ( 2 n + 1 ) T f - 2 x 4 κt ) + erfc ( ( 2 n + 1 ) T f + 2 x 4 κt ) }
其中Tempa为带状细丝34的在液化器48中被加热之前的初始温度,Tempf为液化器48的温度,Tf为带状细丝34的厚度(即,厚度42),其中-Tf<2x<Tf,以及其中erfc为如公式7所示的余误差函数:
erfc ( x ) = 2 π ∫ x ∞ exp ( - t 2 ) dt
余误差函数具有如公式8所示的渐近展开:
erfc ( x ) = e - x 2 x π [ 1 + Σ n = 0 ∞ ( - 1 ) n 1,3,5 . . . ( 2 n - 1 ) ( 2 x 2 ) n ]
从公式8可以求出最低次特征时间常数,所述最低次特征时间常数可以由公式9表示:
τ f = T f 2 16 κ
使用8.13毫米/秒2(0.320英寸/秒2)的热扩散率κ(用于ABS材料的适当值)、为0.76毫米(0.03英寸)的带状细丝34的厚度Tf(即,厚度42)、80℃的初始温度Tempa以及液化器48的320℃的壁温Tempf并入公式8中的渐近展开的第一个一百项,如最低次时间常数τf表示的平均温度中途移动到渐近温度的合理时间大约为0.24秒。因此,加热带状细丝34所需的时间的合理估计大约为最低次时间常数τf的四倍(即,4τf)。因此,该过程如根据公式10所确定以4τf秒产生大量熔融材料:
Q(4τf)=(Wr)(Tr)(Lp,r)
其中Wr为通道52的宽度(即,宽度70),Tr为通道52的厚度(即,厚度72),以及Lp,r为含有熔融材料的通道52的长度(即,长度68)。
因此,对于矩形液化器(例如,液化器48),热限制体积流量Qmax,r可以根据公式11确定:
Q max , r = 4 κL p , r W r T r
如公式11所示,热限制最大体积流量Qmax,r取决于液化器48的含有熔融材料的长度(即,长度68)。因此,操作长度为带状细丝34的加热长度而不是液化器的加热长度(例如,加热长度62)。
如以上对于圆柱形液化器所述,对于矩形液化器(例如,液化器48)的响应时间也是矩形液化器和带状细丝材料的流动阻力与流动电容的乘积。用于矩形液化器的流动阻力FRr可以根据公式12确定:
FR r = 12 η L p , r W r T r 3
矩形液化器的流动电容FCr可以根据公式13确定:
FC r = W r T r L p , r B
通过结合矩形液化器的流动阻力和流动电容,可以根据公式14确定用于矩形液化器的响应时间τr
τ r = 12 η L p , r 2 B T r 2
组合公式11和14显示了对于矩形液化器的响应时间τr与体积流量Qmax,r之间的比例关系,所述比例关系显示在公式15中:
τ r = 3 η Q max , r 2 4 κ 2 BW r 2
公式5与15的对比显示了对于相同的热限制最大体积流量(即,Qmax,c=Qmax,r),当带状细丝34的宽度40大于带状细丝34的厚度42时,对于控制液化器48中的带状细丝34的挤出的响应时间小于对于圆柱形液化器中的圆柱形细丝的响应时间。对于相同的热限制最大体积流量(即,Qmax,c=Qmax,r),带状细丝34的轮廓38与通道52的通道轮廓74的纵横比理想地提供比通过具有圆形横截面轮廓的圆柱形液化器获得的响应时间快至少1.5倍的响应时间。更理想地,所述响应时间至少快两倍,甚至更理想的是至少快三倍。因此,宽度40与厚度42的适当的纵横比的实例包括大约2∶1或更大的纵横比,特别适当的纵横比在大约2.5∶1到大约20∶1的范围内,而且更加特别适当的纵横比在大约3∶1到大约10∶1的范围内,并且尤其特别适当的纵横比在大约3∶1到大约8∶1的范围内。
公式5和15的对比可以通过以阵列重叠多个圆柱形液化器以形成可比得上通道52的通道轮廓74的槽来体现,如图6所示。这导致对于圆柱形液化器(称为圆柱形液化器76)和通道轮廓74相同的横截面面积,忽略圆柱形液化器76之间的孔隙空间。因此,在该实例中,每一个圆柱形液化器76的直径的厚度72相同。还假定每一个圆柱形液化器76的含有熔融材料的长度与熔池64的长度68相同。因此,组合的圆柱形液化器76的润湿容积与液化器48的润湿容积相同。
圆柱形液化器的响应时间与液化器48τcr的响应时间的比值所示在公式16中:
τ r τ c = 3 π 2 d c 2 32 W r 2 = 0.93 d c 2 W r 2
因此,如公式16所示,对于相同的热限制最大体积流量(即,Qmax,c=Qmax,r),圆柱形液化器的响应时间与液化器48的响应时间的比值与通道52的厚度72的平方上的圆柱形液化器的直径的平方成比例。例如,具有1.78毫米(0.070英寸)的圆柱形液化器以及具有3.05毫米(0.120英寸)和0.813毫米(0.032英寸)的厚度72(即,大约4∶1的纵横比)具有基本上相同的横截面面积。因此,对于这些横截面面积和相同的熔池长度(例如,长度68)以及Qmax,c=Qmax,r,根据公式16,响应时间比τrc=0.32。换句话说,对于具有带状细丝34的液化器48的响应时间比通过圆柱形液化器和圆柱形细丝获得的响应时间快大约三倍。
在另一个示例中,具有1.78毫米(0.070英寸)的直径的圆柱形液化器以及具有4.19毫米(0.165英寸)的宽度70和0.584毫米(0.023英寸)的厚度72的液化器48(即,大约7∶1的纵横比)也具有基本上相同的横截面面积。因此,对于这些横截面面积和相同的熔融长度以及Qmax,c=Qmax,r,根据公式16,响应时间比τrc=0.167。换句话说,在该实例中,对于液化器48和带状细丝34的响应时间比通过圆柱形液化器和圆柱形细丝获得的响应时间快大约六倍。这表示带状细丝34和通道52的纵横比增加,响应时间也增加。
当再次不希望受到理论限制时,相信该响应时间的减少是由于圆柱形液化器阵列包含有效地形成矩形液化器48的横截面区域中的连接板的附加壁部分,从而增加摩擦阻力。该增加的摩擦阻力在通道轮廓74中没有发现。因此,对于给定的热限制最大体积流量,液化器48与圆柱形液化器和圆柱形细丝相比能够以减少的响应时间接收、熔化和挤出带状细丝34。
上述实施例涉及具有矩形横截面轮廓的非圆柱形细丝(即,带状细丝34)和具有相应矩形通道的非圆柱形液化器(即,液化器48)。这些实施例的横截面轮廓可以适当地特征在于宽度与厚度(例如,带状细丝34的宽度与厚度42以及通道52的宽度70与厚度72)的横截面纵横比。然而,许多非圆柱形细丝和液化器可能具有无法恰当地以宽度与厚度的横截面纵横比为特征的横截面轮廓。因此,用于恰当地表示非圆柱形细丝和液化器的横截面轮廓特征的可选方式可以通过液压直径Dh获得,如公式17所表示:
D h = 4 A s U
其中Ae是液化器通道的入口处的横截面轮廓的面积,U是液化器通道的润湿周长。
对于圆柱形液化器,公式17还原成Dh=Dc。对于诸如液化器48的矩形液化器,其中通道52基本上用熔融材料装满,Ae=WrTr,并且U=2(Wr+Tr),液压直径Dh可以由公式18表示:
D h = 2 W r T r W r + T r
因此,用于本发明的非圆柱形细丝和液化器的适当的横截面轮廓理想地具有由公式19表示的液压直径Dh
D h < P 1 A s
其中P1是使Dh小于
Figure BDA0000148775320000164
的百分之P1的百分比值。对于百分比P1的适当值的实例包括大约0.95(即,
Figure BDA0000148775320000165
),特别适当的百分比值P1包括大约0.90(即,
Figure BDA0000148775320000171
),并且更加特别适当的百分比值P1包括大约0.87(即, D h < 0.87 A e )。
公式19显示本发明的用于非圆柱形细丝和液化器的液压直径Dh的适当的上限。因此,用于本发明的非圆柱形细丝和液化器的适当的横截面轮廓理想地也具有由公式20表示的液压直径Dh
D h > P 2 A e
其中P2是使得Dh大于的百分之P2的百分比值。用于百分比P2的适当的值的实例包括大约0.40(即,
Figure BDA0000148775320000175
),特别适当的百分比值P2包括大约0.55(即,
Figure BDA0000148775320000176
),并且更加特别适当的百分比值P2包括大约0.70(即,
Figure BDA0000148775320000177
)。因此,本发明的非圆柱形细丝和液化器的液压直径理想地满足公式19的判别式,理想地满足公式20的判别式,并且甚至更理想地满足公式19和公式20的判别式。这些值对应于上述的用于诸如液化器48的矩形液化器的适当的横截面纵横比。比较起来,圆柱形细丝和液化器需要P1和P2每一个大约为2.25。
图7-11显示用于制造诸如带状细丝34(图2-4所示)的在基于挤出的数字制造系统(例如,系统10,图1所示)中使用之前的非圆柱形细丝的适当实施例。图7是为用于制造诸如带状细丝34的非圆柱形细丝的适当方法的实例的方法78的流程图。如图所示,方法78包括步骤80-88,并且初始涉及将给料物质供应到片材挤出系统(步骤80)。给料物质可以以诸如小球、杆、粉末、颗粒、块、铸块等的各种不同介质供应给生产系统。用于给料物质的适当成分包括用于带状细丝34的造型材料和支撑材料的上述材料。
给料物质在被供应给片材挤出系统时可以熔化并挤出以制造给料物质的挤出片材(步骤82)。如下所述,挤出片材可以随后被使用并分成多个单独的带状细丝,其中挤出片材在固态下的厚度理想地匹配带状细丝中的每一个的厚度。挤出片材在被挤出之后理想地被冷却以使挤出片材至少部分凝固(步骤84)。在一些实施例中,如下所述,所述片材也可以通过不同材料的附加片材层叠以形成多层片材。
在这一点上,在所述过程中,所述片材例如在连续生产过程中可以被存储(例如,卷绕在卷线轴上)以用于随后的分离或直接供应给片材切割器。在所述片材切割器处,片材可以被纵向切割成多个带状细丝,其中带状细丝中的至少一个的横截面轮廓理想地被构造成与非圆柱形液化器(例如,液化器48)配合,如上所述(步骤86)。更理想地,从挤出片材切下的带状细丝中的每一个被构造成与非圆柱形液化器(例如,液化器48)配合。
带状细丝在切割之后可以接着被装载到供应组件上(步骤88)。在一个实施例中,用于多个带状细丝的装载过程可以以基本上平行的方式执行,其中带状细丝在被从挤出片材切下之后被以基本上连续的方式供给到多个卷线轴上。供应组件可以接着用在用于构建3D模型和支撑结构的一个或多个基于挤出的数字制造系统(例如,系统10)中。
图8是片材90的立体图,所述片材是可以根据方法78(图7所示)的步骤80、82和84制造的挤出片材的实例。如图8所示,片材90可以被切成多个带状细丝92,其中每一个带状细丝92都理想地对应于带状细丝34(图2-4所示)。可以由单个片材90制造的带状细丝92的数量可以根据片材90的宽度(称为片材宽度94)变化。可以由单个片材90挤出的带状细丝92的适当数量的实例在大约五百到大约一百的范围内,并且特别适当的数量在大约十到大约五十的范围内。
片材90的片材宽度94理想地使浪费的材料量最小化。因此,切割的带状细丝92理想地延伸过整个片材宽度94。然而,在可选的实施例中,沿着片材90的片材宽度94的一个或多个部分可以丢弃或回收。例如,片材90的宽度的侧边缘部分可以根据需要丢弃或回收。用于片材宽度94的适当尺寸的实例在大约0.3米(大约1.0英尺)到大约1.2米(大约4.0英尺)的范围内,并且特别适当的宽度在大约0.46米(大约1.5英尺)到大约0.91米(大约3.0英尺)的范围内。
另外,凝固状态下的片材90理想地具有与带状细丝92的期望厚度(例如,带状细丝34的厚度42)基本上相同的片材厚度(称为片材厚度96)。用于片材厚度96的适当尺寸的实例在大约0.08毫米(大约0.003英寸)到大约1.5毫米(大约0.06英寸)的范围内,特别适当的厚度在大约0.38毫米(大约0.015英寸)到大约1.3毫米(大约0.05英寸)的范围内,并且更加特别适当的厚度在大约0.51毫米(大约0.02英寸)到大约1.0毫米(大约0.04英寸)的范围内。
片材90在被挤出并至少部分固化之后可以依据方法78的步骤86接着被切成带状细丝92。这显示在图8中,其中具有位于在每一个带状细丝92之间的切割线98。每一个带状细丝92在被从挤出片材90切下之后可以根据方法78的步骤88接着被装载到供应组件(例如,卷轴)上。该过程允许在不需要额外的尺寸复原步骤的情况下由单个挤出片材90制造多个带状细丝92,以获得带状细丝92的期望厚度。这相应地允许获得高生产率。
图9是片材挤出系统100的示意图,所述片材挤出系统是用于根据方法78(图7所示)生产挤出片材(例如,片材90,图8所示)的适当系统的实例。如图所示,系统100包括挤出组件102、冷却滚筒104和106、滑轮108和110、以及卷线轴112。挤出组件102被构造成接收并挤出期望的造型材料和/或支撑材料的给料物质(显示为介质)以制造片材90。挤出组件102包括加料斗116、热套管118、传动螺杆120和挤出出口122。虽然显示为垂直方向,但是挤出组件102(和系统100)可以可选地沿不同方向定位(例如,水平方向)。在操作期间,传动螺杆120将介质114的连续部分从加料斗116供给到由热套管118限定的挤出轴(称为挤出轴124)。在介质114被供给到挤出轴122中时,热套管118将热能传递到介质114,从而熔化介质114并将介质114从挤出出口122中挤出以制造片材90。
片材90可以接着接合冷却滚筒104和106以限定片材90的厚度(即。片材厚度96)。冷却滚筒104和106是圆柱形滚筒,所述圆柱形滚筒在片材90在辊隙126处与冷却滚筒104和106接合时理想地保持在降低温度下以冷却片材90。用于冷却滚筒104和106的降低温度可以根据诸如片材90的线速度、片材90的成分和尺寸等因素变化。用于冷却滚筒104和106的适当温度的实例在大约40℃到大约60℃的范围内。这允许片材90在通过辊隙126之后保持片材厚度96的同时至少部分地凝固成固态。
因此,冷却滚筒104理想地在辊隙126处从冷却滚筒106偏移设定用于片材90的片材厚度96的距离。因此,片材90的连续部分的厚度可以匹配将被从片材90切下的每一个带状细丝92的期望厚度。这允许每一个带状细丝92随后与相应的非圆柱形液化器(例如,液化器48)配合以获得减少的响应时间,如上所述。在一个实施例中,系统100还可以包括传感器组件(未示出),所述传感器组件被构造成实时检测和测量片材90的片材厚度,并调节一个或多个处理参数以获得期望的片材厚度(例如,调节线速度、辊隙尺寸等等)。
在一个实施例中,片材90中可以形成地形表面图案,以提供具有如Batchelder等人的美国临时专利申请第61/247,078号;以及Batchelder等人的美国专利申请第12/612,342号中公开的名称为“Consumable MaterialsHaving Topographical Surface Patterns For Use In Extrusion-Based DigitalManufacturing Systems”的地形表面图案的带状细丝92。在该实施例中,冷却滚筒104和106中的一个或两者都可以包括被构造成在片材90中形成地形表面图案的织纹外表面。这有利于在片材90充分凝固之前形成地形表面图案。可选地,片材90中的图案可以借助于具有织纹表面的附加辊形成,其中附加辊可以位于冷却滚筒104和106的上游或下游。
在一个另外的实施例中,系统100可以包括用于将涂层涂敷到片材90的一个或两个主表面上的一个或多个涂敷单元(未示出)。例如,系统100可以包括被构造成将薄材料涂层淀积到片材90的任一个或两个主表面上的电晕放电单元(未示出)。这允许将各种涂层材料沉积到片材90上,例如,低表面能材料。在带状细丝92被驱动到基于挤出的数字制造系统(例如,系统10)的矩形液化器(例如,液化器48)中时,低表面能材料可以有利于减少摩擦阻力。
片材90可以接着卷绕滑轮108和110并卷绕在卷线轴112上,其中冷却滚筒104和106、滑轮108和110以及卷线轴112中的一个或多个可以为电机驱动以施加用于形成片材90的适当的线速度。用于形成片材90的适当的线速度的实例在大约1米/分钟到大约20米/分钟的范围内,并且特别适当的线速度在大约5米/分钟到大约15米/分钟的范围内。在可选的实施例中,额外数量的滑轮可以用于引导片材90到卷线轴112上。在适当长度的片材90被卷绕到卷线轴112上之后,片材90可以被分离,并且卷线轴112可以被储存或准备用于将片材90切成单独的带状细丝92的下一工序,如下所述。在一个可选实施例中,片材90可以直接被供给到切割单元以将片材90切成单独的带状细丝92。在该实施例中,卷线轴112可以被省略,并且片材90在连续生产过程中通过挤出和形成片材90的连续部分被切成带状细丝92。
图10是为用于由片材90形成带状细丝92的适当系统的细丝制造系统128的示意图。系统128包括切割辊130、支承辊132、惰轮134和卷线轴136a-136d。如图所示,片材90可以被从卷线轴(例如,卷线轴112)供应到切割辊130和支承辊132的辊隙相交部,或者对于连续生产过程从系统100直接供给。
切割辊130是包括圆柱形表面的第一辊,所述圆柱形表面具有被构造成将片材90的连续部分切成单独的带状细丝(称为带状细丝92a-92d)的多个平行的薄刀片。因此,切割辊130的平行刀片理想地分开计算带状细丝92的宽度(例如,带状细丝34的宽度40,图3所示)的间隙。切割辊130还理想地被电机驱动以在切割操作期间在切割辊130与支承辊132之间拉片材90。支承辊132为第二辊,所述第二辊与切割辊130分隔开适当的距离,以允许片材90在切割辊130与支承辊132之间通过并与切割辊130的刀片表面接合。
每一个带状细丝92(例如,带状细丝92a-92d)在被从片材90切下之后理想地被供应给卷线轴136a-136d中的单独的卷线轴。卷线轴136a-136d是用于供卷筒20和/或供卷筒22(图1所示)的适当的供应组件的实例。带状细丝92a-92d可以通过惰轮134被引导到各自的卷线轴136a-136d。如图所示,惰轮134被定位成允许带状细丝92a-92d在不同的径向位置处退出支承辊132。这降低了带状细丝92a-92d在被装载到卷线轴136a-136d时被缠住的风险。
卷线轴136a-136d中的每一个也可以被电机驱动以在带状细丝92a-92d被从片材90切下时分别卷绕带状细丝92a-92d。虽然系统128显示为具有四个带状细丝92和四个卷线轴136,但是切割辊130可以根据片材90和带状细丝92的宽度将片材90切成任何适当数量的带状细丝92。切下的带状细丝92可以接着以基本上平行的方式被装载到单独的卷线轴136上。
虽然系统128显示为具有一对切割辊130/支承辊132,但是在可选实施例中,系统128可以包括多堆切割辊/支承辊。例如,系统128可以包括可以将片材90切成多个部分的初始的一对切割辊130和支承辊132,其中每一个部分都具有包括多个带状细丝92的宽度。每一个切下的部分可以接着通过另外一对切割辊130和支承辊132,所述切割辊和支承辊可以将给定的部分切成单独的带状细丝92。单独的带状细丝92可以接着被装载到卷线轴136上,如上所述。因此,片材90可以在单个切割步骤期间或者以多个连续的切割步骤切成带状细丝92。
片材挤出系统100和细丝制造系统128每一个都理想地容纳在壳体(未示出)内以获得干燥环境。例如,系统100和128每一个都可以包括干燥空气循环器和/或干燥封装件以保持低含水量。此外,卷线轴112和136每一个也都可以包括干燥封装件,以在储存和随后使用期间保持容纳的片材90/带状细丝92干燥。用于在系统100和128以及卷线轴112和136中保持干燥环境的适用技术包括Swanson等人的美国专利第6,923,634号;Comb等人的美国专利第7,122,246号;以及Taatjes等人的美国专利申请公开出版物第2010/0096485号和第2010/0096489号中公开的技术。
图11-13是图2中截得的截面3-3的可选剖视图,显示了本发明的多层带状细丝。如图11所示,带状细丝200具有类似于带状细丝34(图2所示)的横截面轮廓。然而,在该实施例中,带状细丝200包括基部202和层204,其中基部202包括上表面206和底面208,并且其中层202形成在上表面206上。用于带状细丝200的适当尺寸包括用于带状细丝34的上述尺寸。因此,用于带状细丝200的适当宽度(称为宽度210)的实例包括用于带状细丝34的宽度40的上述宽度。基部202和层204的适当的组合厚度(称为厚度212)的实例包括用于带状细丝34的厚度42的上述厚度。
用于基部202的适当材料包括用于带状细丝34的上述造型材料和支撑材料。然而,层204可以包括与基部202不同的材料,从而可以有助于系统10(图1所示)中的构建操作。例如,用于可溶于水的支撑材料的许多成分相对较脆,从而在细丝通过基于挤出的数字制造系统(例如,系统10)供给时可能导致细丝断裂。为了降低脆性,层204可以作为薄涂层由非脆性材料形成在上表面206上,所述非脆性材料至少部分地可溶于水。这允许带状细丝200在不会断裂或损坏的情况下通过系统10供给,从而增加系统10中的可靠性。相对于基部202的大块材料,薄涂层204提供了小量的非脆性材料。因此,即使非脆性材料具有低水溶解度,支撑结构26的总成分也具有接近用于形成基部202的大块材料的水溶性,从而允许带状细丝200的材料仍然用作适当的可溶于水的支撑材料。
图12和图13显示为带状细丝200的可选形式的带状细丝300和400,并且其中附图标记分别增加“100”和“200”。如图12所示,带状细丝300还包括形成在底面308上的层314,从而将基部302定位在层304与314之间。如图12所示,带状细丝400还包括设置在上表面406与层404之间的层416以及设置在底面408与层414之间的层418。因此,本发明的带状细丝可以包括多个层,其中每一个层根据期望的层特性以及用于形成给定层的过程可以包括相同或不同的材料。
带状细丝200、300和400每一个可以大致以与带状细丝92的上述方式相同的方式形成,可以初始涉及用系统100挤出基片(例如,片材90),其中所述基片理想地具有与各基部(例如,基部202、302和402)的厚度相同的片材厚度(图9所示)。一个或多个层可以接着利用各种涂敷技术形成在(一个或多个)基片表面上。层形成过程理想地在(例如通过系统128)将基片切成多个带状细丝之前执行。
在一个实施例中,每一个层可以通过初始形成具有与给定层的厚度相对应的片材厚度的附加挤出片材而形成。(一个或多个)附加挤出片材可以接着层叠在基片上并在辊之间被热压,以将层固定到基部。在该实施例中,带状细丝400的层416和418可以用作用于将层404和414易于接收地固定到基部402的复合薄膜粘结层。所述层叠过程可以在基片卷绕在卷线轴(例如,卷线轴112)上之前执行,或者可选地,基片可以卷绕在卷线轴上并随后松开以用于层叠过程。
在一个可选实施例中,每一个层可以通过沉积或者以其它方式将涂层涂敷到(一个或多个)基片表面上而形成。例如,每一个涂层可以通过电晕放电单元沉积,如上所述。可选地,每一个涂层可以通过一个或多个传统涂敷方法形成,例如,刮涂方法和辊涂方法。
在另外的可选实施例中,每一个层可以通过将每一个层连同基片一起共同挤出片材而形成。这消除了对用于形成(一个或多个)层的单独的叠层或涂层步骤的使用,并允许通过系统100(例如,在辊隙126处)限定多层片材的尺寸。
在完成层叠和/或涂敷过程之后,多层片材可以接着被系统128切成单独的带状细丝(例如,带状细丝200、300和400)。产生的每一个层的厚度可以根据给定层的期望特性以及使用的层叠或涂敷工艺变化。用于带状细丝200、300和400的层的适当的组合厚度的实例包括达到带状细丝的厚度(即,厚度212、312或412)的大约50%,特别适当的组合厚度在带状细丝的厚度的大约1%到大约25%的范围内,并且更加特别适当的组合厚度在带状细丝的厚度的大约5%到大约25%的范围内。
带状细丝200、300和400显示可以通过系统100和128制造并与系统10一起使用以用减少的响应时间构建3D模型和/或支撑结构的多层带状细丝的适当实例。带状细丝200、300和400的多层特性还允许带状细丝由挤出片材(例如,片材90)形成并获得各种不同的物理特性和美观特性。
在本发明的另外的实施例中,上述圆柱形细丝和非圆柱形细丝也可以是中空的。由于为塑料的横截面面积由于缺少芯体而减小,因此中空细丝的液压直径也可以小于物理直径。因此,用于本发明的中空细丝的适当的液压直径的实例包括上述的实例。此外,液化器还可以包括用于中空细丝的配合芯体,使得挤出物被从内侧以及外侧加热。
中空细丝的一个潜在的另外的优点在于当中空细丝通过由混合物迅速挤出制造时,理想地是该细丝在保持在供应组件(例如,卷线筒)上之前被快速冷却。该快速冷却过程可以引起另外的固体细丝的直径变化,所述直径变化可以沿着细丝的长度变化。比较起来,如果中空细丝被快速冷却,则中空细丝的内表面的直径可以不同,从而使外表面更一致。
为圆筒形壳体的中空细丝的另一个潜在的另外的优点符合细丝驱动机构。固体细丝可以接近于不可压缩,使得如果细丝直径略小或略大,则驱动辊或驱动齿可以获得很小或很大的牵引力。然而,中空细丝提供可塑性,使得细丝直径的小变化被中空细丝的压缩量的变化补偿。
中空细丝的另一个潜在的另外的优点是减小液化器的入口中的热传导。当固体细丝固定时,热量可以缓慢地向上从细丝的中心传导到液化器的加热部分上方的区域,其中壁被相对冷却。如果细丝在该处熔化,则所述细丝趋向于抵靠冷却壁凝固,从而潜在地使大的轴向力再次使细丝运动。然而,热传导到中空细丝的速率由于缺少芯体将慢于传导到固体细丝的速率。
虽然已经参照优选实施例说明了本发明,但是本领域的技术人员将会认识到在不背离本发明的精神和范围的情况下可以对形式和细节做出改变。

Claims (20)

1.一种在基于挤出的数字制造系统中使用的消耗材料,所述消耗材料包括一区段和所述区段的至少一部分的为轴向不对称的横截面轮廓,其中所述横截面轮廓被构造成:对于相同的热限制最大体积流量,与通过圆柱形液化器中的圆柱形细丝获得的响应时间相比,通过所述基于挤出的数字制造系统的非圆柱形液化器提供快至少50%的响应时间。
2.根据权利要求1所述的消耗材料,其中,所述非圆柱形液化器中的所述消耗材料的响应时间比所述圆柱形液化器中的所述圆柱形细丝的响应时间至少快大约两倍。
3.根据权利要求2所述的消耗材料,其中,所述非圆柱形液化器中的所述消耗材料的响应时间比所述圆柱形液化器中的所述圆柱形细丝的响应时间至少快大约三倍。
4.根据权利要求1所述的消耗材料,其中,所述横截面轮廓包括矩形几何形状。
5.根据权利要求4所述的消耗材料,其中,所述横截面轮廓具有大约为2∶1或更大的宽度与厚度的横截面纵横比。
6.根据权利要求5所述的消耗材料,其中,所述横截面纵横比在大约2.5∶1到大约20∶1的范围内。
7.根据权利要求5所述的消耗材料,其中,所述横截面轮廓的所述宽度在大约1.0毫米到大约10.2毫米的范围内。
8.根据权利要求1所述的消耗材料,其中,所述消耗材料成分上包括选自由热塑性材料、非晶金属合金及其组合构成的组的至少一种材料。
9.一种在基于挤出的数字制造系统中使用的消耗材料,所述消耗材料包括:
包括具有非晶特性的至少一种材料的成分;和
非圆柱形几何结构,所述非圆柱形几何结构包括:
一区段;和
所述区段的至少一部分的横截面轮廓,所述横截面轮廓被构造成与所述基于挤出的数字制造系统的具有入口横截面面积Ae和液压直径Dh的非圆柱形液化器配合,其中
Figure FDA0000148775310000021
10.根据权利要求9所述的消耗材料,其中,
Figure FDA0000148775310000022
11.根据权利要求9所述的消耗材料,其中,
Figure FDA0000148775310000023
12.根据权利要求9所述的消耗材料,其中,所述横截面轮廓包括具有宽度和厚度的矩形几何形状,所述宽度大于所述厚度。
13.根据权利要求12所述的消耗材料,其中,所述横截面轮廓的所述宽度在大约1.0毫米到大约10.2毫米的范围内。
14.根据权利要求9所述的消耗材料,其中,所述至少一种材料选自由热塑性材料、非晶金属合金及其组合构成的组。
15.一种用于制造在基于挤出的数字制造系统中使用的消耗材料的方法,所述方法包括以下步骤:
提供具有片材厚度以及包括至少一种热塑性材料的成分的挤出片材;
将所述挤出片材切成多个非圆柱形细丝,其中所述多个非圆柱形细丝中的至少一个包括一区段以及所述区段的至少一部分的横截面轮廓,其中所述横截面轮廓被构造成与所述基于挤出的数字制造系统的具有入口横截面面积Ae和液压直径Dh的非圆柱形液化器配合,其中
Figure FDA0000148775310000024
将所述多个非圆柱形细丝的至少一部分以基本上平行的方式装载到供应组件上。
16.根据权利要求15所述的方法,其中,
Figure FDA0000148775310000025
17.根据权利要求15所述的方法,其中,所述横截面轮廓包括具有宽度和厚度的矩形几何形状,其中所述横截面轮廓的所述厚度基本上等于所述片材厚度。
18.根据权利要求17所述的方法,其中,所述横截面轮廓的所述宽度在大约1.0毫米到大约10.2毫米的范围内。
19.根据权利要求15所述的方法,还包括以下步骤:
在所述挤出片材中形成至少一个地形表面图案。
20.根据权利要求15所述的方法,其中,提供所述挤出片材的所述步骤包括以下步骤:
挤出所述挤出片材的基部;和
在所述挤出片材的所述基部上形成至少一层。
CN201080043878.3A 2009-09-30 2010-09-21 基于挤出的数字制造系统中使用的非圆柱形细丝 Active CN102548737B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24706709P 2009-09-30 2009-09-30
US61/247,067 2009-09-30
US12/612,333 2009-11-04
US12/612,333 US8221669B2 (en) 2009-09-30 2009-11-04 Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
PCT/US2010/049607 WO2011041166A1 (en) 2009-09-30 2010-09-21 Non-cylindrical filaments for use in extrusion-based digital manufacturing systems

Publications (2)

Publication Number Publication Date
CN102548737A true CN102548737A (zh) 2012-07-04
CN102548737B CN102548737B (zh) 2015-03-11

Family

ID=43780707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080043878.3A Active CN102548737B (zh) 2009-09-30 2010-09-21 基于挤出的数字制造系统中使用的非圆柱形细丝

Country Status (10)

Country Link
US (4) US8221669B2 (zh)
EP (1) EP2483060B1 (zh)
JP (1) JP5701302B2 (zh)
KR (1) KR101380112B1 (zh)
CN (1) CN102548737B (zh)
CA (1) CA2775076C (zh)
ES (1) ES2627566T3 (zh)
RU (1) RU2514831C2 (zh)
TW (1) TWI517962B (zh)
WO (1) WO2011041166A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339154A (zh) * 2013-03-22 2016-02-17 格雷戈里·托马斯·马克 三维打印
CN108381909A (zh) * 2012-11-09 2018-08-10 赢创罗姆有限公司 用于挤出式3d打印法的经涂布长丝的用途和制备
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US10434702B2 (en) 2013-03-22 2019-10-08 Markforged, Inc. Additively manufactured part including a compacted fiber reinforced composite filament
US10603841B2 (en) 2013-03-22 2020-03-31 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10696039B2 (en) 2013-03-22 2020-06-30 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10717228B2 (en) 2013-03-22 2020-07-21 Markforged, Inc. Three dimensional printing
US10821662B2 (en) 2013-03-22 2020-11-03 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10953610B2 (en) 2013-03-22 2021-03-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
CN113426846A (zh) * 2017-01-12 2021-09-24 吉斯通塔系统公司 圆柱形管形成
US11420382B2 (en) 2013-03-22 2022-08-23 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US11504892B2 (en) 2013-03-22 2022-11-22 Markforged, Inc. Impregnation system for composite filament fabrication in three dimensional printing
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596543B (zh) * 2009-06-23 2014-09-17 斯特拉塔西斯公司 具有自定义特征的消耗材料
WO2010151767A1 (en) 2009-06-25 2010-12-29 3D Biotek Llc Methods and apparatus for fabricating porous three-dimensional tubular scaffolds
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8439665B2 (en) 2009-09-30 2013-05-14 Stratasys, Inc. Ribbon liquefier for use in extrusion-based digital manufacturing systems
WO2011063216A2 (en) 2009-11-19 2011-05-26 Stratasys, Inc. Encoded consumable materials and sensor assemblies for use in additive manufacturing systems
US8479795B2 (en) * 2010-09-17 2013-07-09 Synerdyne Corporation System and method for rapid fabrication of arbitrary three-dimensional objects
US8801990B2 (en) * 2010-09-17 2014-08-12 Stratasys, Inc. Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments
US8920697B2 (en) * 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8647098B2 (en) 2010-09-22 2014-02-11 Stratasys, Inc. Liquefier assembly for use in extrusion-based additive manufacturing systems
US8815141B2 (en) 2010-09-22 2014-08-26 Stratasys, Inc. Method for building three-dimensional models with extrusion-based additive manufacturing systems
US9238329B2 (en) 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
EP2655046B1 (en) 2010-12-22 2019-05-22 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8465111B2 (en) 2010-12-22 2013-06-18 Stratasys, Inc. Print head for use in fused deposition modeling system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8512024B2 (en) * 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
US8986767B2 (en) 2011-03-30 2015-03-24 Stratsys, Inc. Additive manufacturing system and method with interchangeable cartridges for printing customized chocolate confections
EP2690966B8 (en) 2011-03-30 2023-11-08 Barry Callebaut AG Additive manufacturing system and method for printing customized chocolate confections
US8883064B2 (en) 2011-06-02 2014-11-11 A. Raymond & Cie Method of making printed fastener
US8916085B2 (en) 2011-06-02 2014-12-23 A. Raymond Et Cie Process of making a component with a passageway
WO2012166552A1 (en) 2011-06-02 2012-12-06 A. Raymond Et Cie Fasteners manufactured by three-dimensional printing
US8818544B2 (en) 2011-09-13 2014-08-26 Stratasys, Inc. Solid identification grid engine for calculating support material volumes, and methods of use
US9108360B2 (en) 2011-09-23 2015-08-18 Stratasys, Inc. Gantry assembly for use in additive manufacturing system
US9321608B2 (en) 2011-12-22 2016-04-26 Stratasys, Inc. Spool assembly with locking mechanism for additive manufacturing system, and methods of use thereof
US8985497B2 (en) 2011-12-22 2015-03-24 Stratasys, Inc. Consumable assembly with payout tube for additive manufacturing system
US9073263B2 (en) 2011-12-22 2015-07-07 Stratasys, Inc. Spool assembly for additive manufacturing system, and methods of manufacture and use thereof
US9050788B2 (en) 2011-12-22 2015-06-09 Stratasys, Inc. Universal adapter for consumable assembly used with additive manufacturing system
US9205690B2 (en) 2012-03-16 2015-12-08 Stratasys, Inc. Automated calibration method for additive manufacturing system, and method of use thereof
US9050753B2 (en) 2012-03-16 2015-06-09 Stratasys, Inc. Liquefier assembly having inlet liner for use in additive manufacturing system
US9172829B2 (en) * 2012-07-31 2015-10-27 Makerbot Industries, Llc Three-dimensional printer with laser line scanner
CN103568323A (zh) * 2012-08-09 2014-02-12 上海科斗电子科技有限公司 光固化三维打印机及其打印方法
US9174388B2 (en) 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US9636868B2 (en) 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US11020899B2 (en) 2012-08-16 2021-06-01 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9102098B2 (en) 2012-12-05 2015-08-11 Wobbleworks, Inc. Hand-held three-dimensional drawing device
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US9090428B2 (en) 2012-12-07 2015-07-28 Stratasys, Inc. Coil assembly having permeable hub
US9321609B2 (en) 2012-12-07 2016-04-26 Stratasys, Inc. Filament drive mechanism for use in additive manufacturing system
US8961167B2 (en) 2012-12-21 2015-02-24 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9216544B2 (en) 2012-12-21 2015-12-22 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US10562226B1 (en) * 2013-03-15 2020-02-18 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive, and magnetic materials
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
EP3838593A1 (en) 2013-07-11 2021-06-23 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US9912001B2 (en) * 2013-08-07 2018-03-06 Massachusetts Institute Of Technology Extruder feed system
KR102208200B1 (ko) * 2013-08-09 2021-01-27 킴벌리-클라크 월드와이드, 인크. 3차원 인쇄용 중합체 물질
CN203680854U (zh) * 2013-08-16 2014-07-02 深圳维示泰克技术有限公司 一种可组装拆卸的材料加工装置
US9950474B2 (en) 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US10201931B2 (en) 2013-10-04 2019-02-12 Stratasys, Inc. Additive manufacturing system and process with material flow feedback control
US10131131B2 (en) * 2013-10-04 2018-11-20 Stratasys, Inc. Liquefier assembly with multiple-zone plate heater assembly
US9327447B2 (en) 2013-10-04 2016-05-03 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
US10086564B2 (en) 2013-10-04 2018-10-02 Stratsys, Inc. Additive manufacturing process with dynamic heat flow control
WO2015050958A2 (en) 2013-10-04 2015-04-09 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
EP3055122B1 (en) 2013-10-08 2023-11-29 Stratasys, Inc. Method for extrusion-based additive manufacturing using consumable filaments having reversible reinforcement
ITAN20130201A1 (it) * 2013-11-02 2015-05-03 Stefano Corinaldesi Metodo di alimentazione di una stampante di oggetti tridimensionali ed elemento di adduzione di materiale di formatura
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
US20150183159A1 (en) * 2013-12-30 2015-07-02 Chad E. Duty Large scale room temperature polymer advanced manufacturing
WO2015156877A2 (en) 2014-01-17 2015-10-15 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US9636872B2 (en) 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
TW201538304A (zh) * 2014-03-24 2015-10-16 Dws有限責任公司 產生三度空間物體的數字表示的方法及設備,該數字表示係適合使用於藉由光固化製造該三度空間物體
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
US10675853B2 (en) 2014-05-16 2020-06-09 Stratasys, Inc. High-temperature soluble support material for additive manufacturing
EP3172038B1 (en) 2014-07-22 2020-03-04 Stratasys, Inc. Gear-based liquefier assembly for additive manufacturing system, and methods of use thereof
US10500830B2 (en) 2014-07-29 2019-12-10 Nscrypt, Inc. Method and apparatus for 3D fabrication
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
IL282056B (en) 2014-08-21 2022-09-01 Mosaic Mfg Ltd Multi-material extrusion technology enabled serially
EP3197680B1 (en) 2014-09-26 2020-07-01 Stratasys, Inc. Liquefier assembly for additive manufacturing system, and method of use thereof
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
DE102014118577A1 (de) * 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel
US9694545B2 (en) 2014-12-18 2017-07-04 Stratasys, Inc. Remotely-adjustable purge station for use in additive manufacturing systems
US10040235B2 (en) 2014-12-30 2018-08-07 Wobbleworks, Inc. Extrusion device for three-dimensional drawing
US9610733B2 (en) 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
US10426917B2 (en) 2015-04-16 2019-10-01 Stryker Corporation System and method for manufacturing variable stiffness catheters
WO2016165140A1 (en) 2015-04-17 2016-10-20 Wobbleworks,Inc. Distribution of driving pressure about filament's circumference in extrusion device
JP6616134B2 (ja) * 2015-09-08 2019-12-04 東洋リビング株式会社 3dプリンタ用防湿庫
DE112016004933T5 (de) 2015-10-30 2018-08-16 Stratasys, Inc. Trägerplattenausbau für ein additives Fertigungssystem
US10583646B2 (en) 2015-10-30 2020-03-10 Stratasys, Inc. Starter piece and printing methods for additive manufacturing system
US10399326B2 (en) 2015-10-30 2019-09-03 Stratasys, Inc. In-situ part position measurement
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
US10421268B2 (en) 2015-11-18 2019-09-24 Stratasys, Inc. Filament feeding device having a capacitive filament displacement sensor for use in additive manufacturing system
US10518472B2 (en) * 2015-12-08 2019-12-31 Stratasys, Inc. Thermal drying system for additive manufacturing device
WO2017112687A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support material for high temperature additive manufacturing applications
WO2017112689A1 (en) 2015-12-24 2017-06-29 Stratasys, Inc. Water soluble support materials for high temperature additive manufacturing applications
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US10232551B2 (en) 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
CA3038750C (en) 2016-08-22 2021-07-13 Stratasys, Inc. Multiple axis robotic additive manufacturing system and methods
US20180065307A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Systems and methods for controlling additive manufacturing
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US20180065317A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-situ fiber splicing
US10766595B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US20210094230A9 (en) 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
US10940638B2 (en) 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US20180229092A1 (en) 2017-02-13 2018-08-16 Cc3D Llc Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
USD888115S1 (en) 2017-03-16 2020-06-23 Stratasys, Inc. Nozzle
US10906240B2 (en) 2017-06-29 2021-02-02 Continuous Composites Inc. Print head for additive manufacturing system
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
EP3664990A1 (en) * 2017-08-07 2020-06-17 Teva Pharmaceutical Industries Ltd. Method and an apparatus for feeding a filament and use of the apparatus for production of a pharmaceutical dosage form
US11485088B2 (en) 2017-10-03 2022-11-01 Jabil Inc. Apparatus, system and method of process monitoring and control in an additive manufacturing environment
US10919221B2 (en) 2017-10-03 2021-02-16 Jabil Inc. Apparatus, system and method for an additive manufacturing print head
US11584078B2 (en) 2017-10-03 2023-02-21 Jabil Inc. Apparatus, system and method of operating an additive manufacturing nozzle
CN109840338B (zh) * 2017-11-28 2023-04-25 南京国图信息产业有限公司 一种应用于三维不动产信息管理的三维楼盘模型构建方法
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10449719B2 (en) * 2017-12-01 2019-10-22 Bulent Besim System for feeding filament to a nozzle in an additive manufacturing machine
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN209869406U (zh) 2017-12-29 2019-12-31 斯特塔思有限公司 具有扩展的打印体积的增材制造系统
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
CN112188952B (zh) * 2018-03-21 2023-10-03 埃森提姆公司 高速挤出3-d打印系统
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11130284B2 (en) 2018-04-12 2021-09-28 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11491702B2 (en) * 2018-08-08 2022-11-08 New Jersey Institute Of Technology Additive manufacturing of channels
US11806444B2 (en) * 2019-08-06 2023-11-07 New Jersey Institute Of Technology Additive manufacturing of cell-laden functional hydrogel and live cell constructs
US11192298B2 (en) 2018-08-17 2021-12-07 Stratasys, Inc. Laser preheating in three-dimensional printing
US11203156B2 (en) 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
US11247387B2 (en) 2018-08-30 2022-02-15 Stratasys, Inc. Additive manufacturing system with platen having vacuum and air bearing
US20200086563A1 (en) 2018-09-13 2020-03-19 Cc3D Llc System and head for continuously manufacturing composite structure
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11511480B2 (en) 2018-10-26 2022-11-29 Continuous Composites Inc. System for additive manufacturing
IL282910B1 (en) 2018-11-09 2024-04-01 Nexa3D Inc 3D printing system
US11338514B2 (en) 2018-11-09 2022-05-24 Stratasys, Inc. Protective filament guide tube for additive manufacturing system
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
WO2020109280A1 (de) * 2018-11-29 2020-06-04 Covestro Deutschland Ag Additive fertigung 3-dimensionaler formkörper mittels filamenten mit hohem aspektverhältnis
US20200238603A1 (en) 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
EP3941714B1 (en) 2019-03-18 2023-03-08 Nexa3D Inc. Method and system for additive manufacturing
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
EP3888879A1 (en) 2020-04-02 2021-10-06 Universitat de Girona An extrusion head and a method for continuous fused filament fabrication
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
USD995629S1 (en) 2021-01-29 2023-08-15 Wobble Works, Inc. Drawing tool
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system
US20220396028A1 (en) * 2021-06-13 2022-12-15 Sergey Julius Glimis Elongated Nozzle FDM 3D printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019798A2 (en) * 1995-11-13 1997-06-05 Stratasys, Inc. Method and apparatus for solid prototyping
WO2007130229A2 (en) * 2006-04-03 2007-11-15 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE553136A (zh) 1955-12-08
GB1176357A (en) * 1967-04-01 1970-01-01 Barmag Barmer Maschf Improvements in the Conversion of Films into Separate Oriented Filaments
US4113935A (en) * 1973-06-06 1978-09-12 Barmag Barmer Maschinenfabrik Ag Process for producing low shrinkage film bands
NZ210504A (en) * 1983-12-22 1987-03-31 Bostik New Zealand Ltd Hot melt dispenser:spring urges hot melt material out of melt chamber when not dispensing
US4749347A (en) * 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
US4797313A (en) * 1985-11-08 1989-01-10 Monsanto Company Non-metallic polymeric twist tie
GB2229702B (en) * 1989-02-04 1992-09-30 Draftex Ind Ltd Strip handling apparatus
JP2813994B2 (ja) * 1989-10-06 1998-10-22 株式会社 共和 無芯ツイストタイおよびその製造方法
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5312224A (en) * 1993-03-12 1994-05-17 International Business Machines Corporation Conical logarithmic spiral viscosity pump
US5424119A (en) * 1994-02-04 1995-06-13 Flex Products, Inc. Polymeric sheet having oriented multilayer interference thin film flakes therein, product using the same and method
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JPH0825451A (ja) 1994-07-11 1996-01-30 Shinko Sellbick:Kk 流動性材料の供給方法および供給装置
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6085957A (en) 1996-04-08 2000-07-11 Stratasys, Inc. Volumetric feed control for flexible filament
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5578227A (en) * 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
US6070107A (en) * 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6067480A (en) * 1997-04-02 2000-05-23 Stratasys, Inc. Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) * 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5968561A (en) * 1998-01-26 1999-10-19 Stratasys, Inc. High performance rapid prototyping system
US6004124A (en) * 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
US6022207A (en) * 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US5939008A (en) * 1998-01-26 1999-08-17 Stratasys, Inc. Rapid prototyping apparatus
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6054077A (en) * 1999-01-11 2000-04-25 Stratasys, Inc. Velocity profiling in an extrusion apparatus
CN1320992C (zh) * 1999-04-20 2007-06-13 斯特拉塔西斯公司 可溶材料和三维模型的加工方法
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US6645412B2 (en) * 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6257517B1 (en) * 1999-08-10 2001-07-10 Sandvik Steel Co. Method and apparatus for feeding welding wire
US6302309B1 (en) * 2000-06-16 2001-10-16 Clarence H. Drader Forwarding a rod for use in welding by high pressure injection
US6730252B1 (en) * 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6480740B2 (en) * 2000-12-26 2002-11-12 Cardiac Pacemakers, Inc. Safety pacing in multi-site CRM devices
US6684633B2 (en) * 2001-04-27 2004-02-03 Marion Barney Jett Exhaust device for two-stroke internal combustion engine
US6749414B1 (en) * 2001-04-30 2004-06-15 Stratasys, Inc. Extrusion apparatus for three-dimensional modeling
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US6547995B1 (en) * 2001-09-21 2003-04-15 Stratasys, Inc. Melt flow compensation in an extrusion apparatus
US6814907B1 (en) * 2001-12-18 2004-11-09 Stratasys, Inc. Liquifier pump control in an extrusion apparatus
AU2003291228A1 (en) * 2002-11-02 2004-06-07 Ambec, Inc. Apparatus for diverting successive articles in a single lane to plural lanes
US6869559B2 (en) * 2003-05-05 2005-03-22 Stratasys, Inc. Material and method for three-dimensional modeling
US20050046065A1 (en) * 2003-08-30 2005-03-03 Cowan Martin E. Thermoplastic fibers exhibiting durable high color strength characteristics
JP4564448B2 (ja) * 2003-10-14 2010-10-20 株式会社共和 ノンメタリックツイストタイ
US20050101684A1 (en) * 2003-11-06 2005-05-12 Xiaorong You Curable compositions and rapid prototyping process using the same
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
US7891964B2 (en) * 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US8215371B2 (en) * 2008-04-18 2012-07-10 Stratasys, Inc. Digital manufacturing with amorphous metallic alloys
US7896209B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Filament drive mechanism for use in extrusion-based digital manufacturing systems
US7897074B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Liquefier assembly for use in extrusion-based digital manufacturing systems
US8246888B2 (en) 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US7938356B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament spool
US7938351B2 (en) 2008-10-22 2011-05-10 Stratasys, Inc. Filament guide mechanism for filament spool container
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8236227B2 (en) 2009-09-30 2012-08-07 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019798A2 (en) * 1995-11-13 1997-06-05 Stratasys, Inc. Method and apparatus for solid prototyping
WO2007130229A2 (en) * 2006-04-03 2007-11-15 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108381909B (zh) * 2012-11-09 2021-05-25 赢创运营有限公司 用于挤出式3d打印法的经涂布长丝的用途和制备
CN108381909A (zh) * 2012-11-09 2018-08-10 赢创罗姆有限公司 用于挤出式3d打印法的经涂布长丝的用途和制备
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US11014305B2 (en) 2013-03-22 2021-05-25 Markforged, Inc. Mid-part in-process inspection for 3D printing
US10603841B2 (en) 2013-03-22 2020-03-31 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10696039B2 (en) 2013-03-22 2020-06-30 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10717228B2 (en) 2013-03-22 2020-07-21 Markforged, Inc. Three dimensional printing
US10821662B2 (en) 2013-03-22 2020-11-03 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10953610B2 (en) 2013-03-22 2021-03-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
CN105339154A (zh) * 2013-03-22 2016-02-17 格雷戈里·托马斯·马克 三维打印
US10434702B2 (en) 2013-03-22 2019-10-08 Markforged, Inc. Additively manufactured part including a compacted fiber reinforced composite filament
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures
US11420382B2 (en) 2013-03-22 2022-08-23 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US11504892B2 (en) 2013-03-22 2022-11-22 Markforged, Inc. Impregnation system for composite filament fabrication in three dimensional printing
US11577462B2 (en) 2013-03-22 2023-02-14 Markforged, Inc. Scanning print bed and part height in 3D printing
US11759990B2 (en) 2013-03-22 2023-09-19 Markforged, Inc. Three dimensional printing
CN113426846B (zh) * 2017-01-12 2024-03-12 吉斯通塔系统公司 圆柱形管形成
CN113426846A (zh) * 2017-01-12 2021-09-24 吉斯通塔系统公司 圆柱形管形成

Also Published As

Publication number Publication date
US10272665B2 (en) 2019-04-30
RU2514831C2 (ru) 2014-05-10
TWI517962B (zh) 2016-01-21
CN102548737B (zh) 2015-03-11
US8221669B2 (en) 2012-07-17
EP2483060B1 (en) 2017-03-08
EP2483060A1 (en) 2012-08-08
US20170136691A1 (en) 2017-05-18
US20110076496A1 (en) 2011-03-31
TW201213095A (en) 2012-04-01
JP2013506580A (ja) 2013-02-28
US10759107B2 (en) 2020-09-01
ES2627566T3 (es) 2017-07-28
CA2775076C (en) 2015-01-06
KR20120063538A (ko) 2012-06-15
CA2775076A1 (en) 2011-04-07
JP5701302B2 (ja) 2015-04-15
WO2011041166A1 (en) 2011-04-07
US9586357B2 (en) 2017-03-07
KR101380112B1 (ko) 2014-04-01
RU2012117834A (ru) 2013-11-10
US20120258190A1 (en) 2012-10-11
US20190240970A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN102548737A (zh) 基于挤出的数字制造系统中使用的非圆柱形细丝
CA2775078C (en) Consumable materials having topographical surface patterns for use in extrusion-based digital manufacturing systems
KR101413485B1 (ko) 압출가공 기반 디지털 제조 시스템용 리본 액화기
US11643754B2 (en) Core-shell morphology of composite filaments for use in extrusion-based additive manufacturing systems
EP3055122A1 (en) Consumable filaments having reversible reinforcement for extrusion-based additive manufacturing
WO2004096894A3 (de) Formkörper enthaltend kern-mantel-partikel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant