TWI509850B - 超導膜元件及超導膜元件之製備方法 - Google Patents

超導膜元件及超導膜元件之製備方法 Download PDF

Info

Publication number
TWI509850B
TWI509850B TW104111340A TW104111340A TWI509850B TW I509850 B TWI509850 B TW I509850B TW 104111340 A TW104111340 A TW 104111340A TW 104111340 A TW104111340 A TW 104111340A TW I509850 B TWI509850 B TW I509850B
Authority
TW
Taiwan
Prior art keywords
substrate
superconducting film
bacuo
yba
superconducting
Prior art date
Application number
TW104111340A
Other languages
English (en)
Other versions
TW201545386A (zh
Inventor
Der Chung Yan
Maw Kuen Wu
Chia Hao Hsu
Shih Yun Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW104111340A priority Critical patent/TWI509850B/zh
Priority to CN201510233812.5A priority patent/CN105097126A/zh
Priority to JP2015098529A priority patent/JP2015220231A/ja
Priority to DE102015107614.4A priority patent/DE102015107614A1/de
Priority to US14/713,850 priority patent/US20150332813A1/en
Application granted granted Critical
Publication of TWI509850B publication Critical patent/TWI509850B/zh
Publication of TW201545386A publication Critical patent/TW201545386A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0828Introducing flux pinning centres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

超導膜元件及超導膜元件之製備方法
本提案係關於一種超導膜元件及超導膜元件之製備方法,特別是一種含有Y2 BaCuO5 奈米顆粒作為釘札中心之YBa2 Cu3 O7 之超導膜元件及超導膜元件之製備方法。
超導發電機由於具有體積小、重量輕以及效率高等優點,因此是能源領域中重要的研究課題。
目前高溫超導線材成本仍高。詳細來說,依照目前製程所製備的超導線材的臨界電流密度仍有改善的空間。因此,如何提高超導線材的臨界電流密度就成為高溫超導應用普及的關鍵。
一般而言,超導線材是處於高磁場的環境下應用。磁場所發出的磁力線係以量子磁通的形式穿過超導線材。由於超導線材上的電流與量子磁通之間存在有羅倫茲力,量子磁通會因為羅倫茲力而移動,而降低了超導線材的效能。也就是說,如何降低量子磁通因為羅倫茲力而移動的情形就成為目前的研究方向。
為了降低、避免量子磁通因羅倫茲力移動而降低超導線材的效能,目前發展出在超導線材的超導體內產生晶格缺陷或非超導相的方法。詳細來說,是藉由晶格缺陷或者非超導相作為釘札中心,以限制量子磁通在超導體 的移動。如此一來,透過在超導體內所形成的釘札中心,可改善所製備的超導線材的效能。
為了在超導線材的超導體內形成釘札中心,可透過離子照射的 方法,以在超導體內形成缺陷。然而,離子照射的方法較為昂貴。因此,在超導體內形成非超導相奈米顆粒作為釘札中心,對於超導線材的商用化是比較可行的作法。而如何改善目前在超導體內形成非超導相奈米顆粒的製程,以提升所製備的超導線材的效能,就成為研究人員需要解決的問題。
本提案是關於一種超導膜元件及超導膜元件之製備方法,藉以改善超導膜的設計,以提升超導膜的效能。
本提案一實施例所揭露之超導膜元件,包含一基板以及一超導膜。基板之晶格常數介於5.0Å(埃)至5.5Å之間。超導膜設置於基板上。超導膜包含YBa2 Cu3 O7 及Y2 BaCuO5 。其中Y2 BaCuO5 分散於YBa2 Cu3 O7 中。
本提案一實施例所揭露之超導膜元件的製備方法,包含以下步驟。提供一基板,基板之晶格常數介於5.0Å(埃)至5.5Å之間。提供一靶材,靶材包含YBa2 Cu3 O7 及Y2 BaCuO5 。執行一鍍膜程序,使靶材於基板上同時形成YBa2 Cu3 O7 及Y2 BaCuO5 。其中Y2 BaCuO5 分散於YBa2 Cu3 O7 中。
根據本提案實施例所揭露之超導膜元件及超導膜元件之製備方法,由於基板之晶格常數介於5.0Å至5.5Å之間,而超導體YBa2 Cu3 O7 之晶格常數a =3.821Å,b =3.885Å,因而基板與超導體之晶格常數具有相當之差異。另一方面,由於YBa2 Cu3 O7 與Y2 BaCuO5 是鍍膜時同時成長生成,Y2 BaCuO5 將形成奈米顆粒並均勻分布於YBa2 Cu3 O7 內,亦即達到了釘札中心微小化及分散化 的效果。如此一來,超導體YBa2 Cu3 O7 內有均勻分布的非超導相Y2 BaCuO5 奈米顆粒,可做為超導膜之釘札中心,並進而改善了超導膜之臨界電流密度。
9‧‧‧超導線材
10‧‧‧超導膜元件
20‧‧‧載體
100‧‧‧基板
200‧‧‧超導膜
第1圖為本提案一實施例所揭露之超導膜元件的製備方法之示意圖。
第2A圖為本提案一實施例所揭露之超導膜元件之示意圖。
第2B圖為本提案一實施例所揭露之超導線材之示意圖。
第3圖為本提案實施例一之超導膜的穿透式電子顯微鏡之分析結果。
第4圖為本提案比較例一之超導膜的穿透式電子顯微鏡之分析結果。
第5圖為本提案比較例三之超導膜的穿透式電子顯微鏡之分析結果。
第6圖為實施例一、二以及比較例一、二之超導膜於絕對溫度77度,不同磁場下的臨界電流密度。
以下在實施方式中詳細敘述本提案之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本提案之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本提案相關之目的及優點。以下之實施例係進一步詳細說明本提案之觀點,但非以任何觀點限制本提案之範疇。
首先,請參閱第1圖。第1圖為本提案一實施例所揭露之超導膜元件的製備方法之示意圖。
首先,提供一基板(S101)。基板之晶格常數介於5.0Å(埃)至5.5Å之間。基板之材質例如為釔安定氧化鋯(Yttria-stabilized zirconia,YSZ)(晶格 常數a=5.139Å)、鋁酸鑭(Lanthanum Aluminate,LaAlO3 ,LAO)(晶格常數a=5.364Å)、Y3 NbO7 (晶格常數a=5.250Å)、Gd2 Zr2 O7 (晶格常數a=5.264Å)、二氧化鈰(CeO2 )(晶格常數a=5.411Å)或NdGaO3 (晶格常數a=5.431Å),但並不以此為限。
接著,提供一靶材(S102)。靶材包含釔、鋇以及銅。靶材之組成元素是對應於所欲製備之超導膜。在另一實施例中,靶材例如包含有YBa2 Cu3 O7 及Y2 BaCuO5 ,其中Y2 BaCuO5 佔靶材之總重之百分之5至百分之15重量百分比(wt%)。在部分實施例中,Y2 BaCuO5 佔靶材之總重之百分之8重量百分比。在本實施例中,所欲製備之超導膜之材質包含YBa2 Cu3 O7 (超導相)以及顆粒狀之Y2 BaCuO5 (非超導相),其中Y2 BaCuO5 佔超導膜之總重之百分之5至百分之15重量百分比(wt%)。在部分實施例中,Y2 BaCuO5 佔超導膜之總重之百分之8重量百分比。在本實施例中,靶材例如是透過一頂端接種熔融製程(Top Seeded Melt Textured Growth Process)或一燒結程序而形成,因而靶材較為緻密而具有較佳之品質,而可提升所製成之超導膜的臨界電流密度(Jc)。
須注意的是,上述提供一基板(S101)以及提供一靶材(S102)之順序並非用以限定本提案。在其他實施例中,也可以先提供一靶材,再提供一基板。
最後,執行一鍍膜程序(S103)。藉此,使靶材於基板上同時形成YBa2 Cu3 O7 及Y2 BaCuO5 。在本實施例中,雷射的中心波長為248奈米。在本實施例及部分其他實施例中,雷射的聚焦能量密度介於1.5焦耳/平方公分(J/cm2 )至2.0焦耳/平方公分之間。在本實施例及部分其他實施例中,鍍膜程序之基板溫度係介於780℃至850℃之間。
在鍍膜的過程中,靶材會分別形成YBa2 Cu3 O7 及Y2 BaCuO5 。詳細來說,由於YBa2 Cu3 O7 與Y2 BaCuO5 會接觸基板,並且因為本實施例之基板的晶格常數(5.0Å至5.5Å)與超導相YBa2 Cu3 O7 之晶格常數(a =3.821Å,b =3.885Å)差異較大,因而YBa2 Cu3 O7 與Y2 BaCuO5 會在鍍膜程序中同時成長生成於基板上,並且Y2 BaCuO5 是形成奈米顆粒並均勻分布於YBa2 Cu3 O7 內,亦即達到了釘札中心微小化及分散化的效果。
當釘札中心小而分散時,可有效增加釘札中心數量,並且使量子磁通更平均地分佈於超導相內,因而降低量子磁通間的互斥力,故能有效提升釘札效果,亦即臨界電流密度可得到提升。
以下介紹本提案之超導膜元件。請參閱第2A圖,第2A圖為本提案一實施例所揭露之超導膜元件之示意圖。本提案之超導膜元件10包含一基板100以及一超導膜200。本提案所指基板100例如是指超導線材中的緩衝層,特別是超導線材中超導膜所接觸、設置的緩衝層。基板100之晶格常數介於5.0Å至5.5Å之間。超導膜200設置於基板100上。超導膜200之材質包含YBa2 Cu3 O7 (超導相)以及Y2 BaCuO5 (非超導相)。Y2 BaCuO5 分散於YBa2 Cu3 O7 中,並且YBa2 Cu3 O7 及Y2 BaCuO5 接觸基板100。
在本提案部分實施例中,Y2 BaCuO5 是呈奈米顆粒狀。
在本提案部分實施例中,Y2 BaCuO5 之顆粒粒徑介於15奈米至30奈米之間。
在本提案部分實施例中,Y2 BaCuO5 佔超導膜200之總重之百分之5至百分之15重量百分比(wt%)。在部分實施例中,Y2 BaCuO5 佔超導膜200之總重之百分之8重量百分比(wt%)。
在本提案部分實施例中,基板100之材質為釔安定氧化鋯(Yttria-stabilized zirconia,YSZ)(晶格常數a=5.139Å)、鋁酸鑭(Lanthanum Aluminate,LaAlO3 ,LAO)(晶格常數a=5.364Å)、Y3 NbO7 (晶格常數a=5.250Å)、Gd2 Zr2 O7 (晶格常數a=5.264Å)、二氧化鈰(CeO2 )(晶格常數a=5.411Å)或NdGaO3 (晶格常數a=5.431Å),但並不以此為限。
在本提案部分實施例中,超導膜200之厚度介於150奈米(nm)至350奈米之間。
本提案實施例之超導膜元件10可應用至超導線材中。請參閱第2B圖,第2B圖為本提案一實施例所揭露之超導線材之示意圖。如圖所示,超導線材9包含有超導膜元件10以及載體20。超導膜元件10設置於載體20。由於超導線材9包含有本提案之超導膜元件10,因而具有較佳的工作表現。
以下透過數個實施例以及比較例來說明本提案之超導膜元件的製備方法。
實施例一(LAO基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含 8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及LAO基板(LaAlO3 )置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了實施例一之超導膜的製備。請參閱第3圖,第3圖為本提案實施例一之超導膜的穿透式電子顯微鏡之分析結果。如第3圖所示,Y2 BaCuO5 以顆粒狀之形式均勻分布於YBa2 Cu3 O7 之內,且Y2 BaCuO5 的粒徑約介於15奈米至30奈米之間。
實施例二(YSZ基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及YSZ基板(釔安定氧化鋯) 置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了實施例二之超導膜的製備。
實施例三(Y3 NbO7 基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及Y3 NbO7 基板置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而 在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了實施例三之超導膜的製備。
實施例四(Gd2 Zr2 O7 基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及Gd2 Zr2 O7 基板置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基 板溫度自然下降至室溫,即完成了實施例四之超導膜的製備。
實施例五(二氧化鈰基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及二氧化鈰基板(CeO2 )置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了實施例五之超導膜的製備。
實施例六(NdGaO3 基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合 均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及NdGaO3 基板置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,但厚度不以此為限,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了實施例六之超導膜的製備。
比較例一(鈦酸鍶基板,STO基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至 1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及STO基板(SrTiO3 )置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了比較例一之超導膜的製備。請參閱第4圖,第4圖為本提案比較例一之超導膜的穿透式電子顯微鏡之分析結果。如圖所示,黑色部分代表YBa2 Cu3 O7 ,白色部分則為Y2 BaCuO5 ,比較例一之超導膜內的Y2 BaCuO5 聚集成層狀。
比較例二(STO基板)
首先製備YBa2 Cu3 O7 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu為1:2:3之比率量秤,混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 起始粉末。接著將YBa2 Cu3 O7 起始粉末以25~35Mpa之壓力壓成塊,於900℃持溫8小時進行燒結,最後自然降溫至室溫,便完成YBa2 Cu3 O7 靶材製作。將YBa2 Cu3 O7 靶材以及STO基板(SrTiO3 )置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提 升至780℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之範圍內時,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了比較例二之超導膜的製備。
比較例三(MgO基板)
首先製備YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末,將Y2 O3 、BaCO3 及CuO等粉末以莫耳比率Y:Ba:Cu分別為1:2:3及2:1:1等比率量秤,各自混合均勻後,以900℃持溫8小時煆燒後,研磨均勻並再度煆燒2次,亦即共進行煆燒3次,即可得到YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末。接著將YBa2 Cu3 O7 及Y2 BaCuO5 起始粉末以重量百分比92:8之比例均勻混合,以25~35Mpa之壓力壓成塊,並於其表面中心放置SmBa2 Cu3 O7 晶種,於908℃持溫4小時,升溫至1045℃持溫1小時。最後以4℃/hr的降溫速率降溫至992℃,接著以0.2℃/hr的降溫速率降溫至982℃,最後自然降溫至室溫,便完成靶材製作。將內含8wt%(重量百分比)Y2 BaCuO5 之YBa2 Cu3 O7 靶材以及MgO基板置入濺鍍設備之腔室內。然後,透過抽氣幫浦以將腔室內之壓力降低至約10-6 毫巴(mbar)。將腔室內之基板溫度提升至850℃。通入300毫托耳(mTorr)的氧氣於腔室內。接著,使用中心波長為248奈米之雷射光源進行濺鍍,將靶材濺鍍至基板,而在基板上形成薄膜。其中,雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。待基板上之薄膜(即,超導膜)之厚度介於150-350奈米之 範圍內時,將腔室內之基板溫度降低至500℃。然後,通入0.8-1大氣壓(atm)的氧氣於腔室內,並維持0.5-1小時。最後,使腔室內之基板溫度自然下降至室溫,即完成了比較例三之超導膜的製備。請參閱第5圖,第5圖為本提案比較例三之超導膜的穿透式電子顯微鏡之分析結果。如圖所示,比較例三之基板的鎂原子擴散至超導膜。
請參閱下表一及表二,表一為實施例一及實施例二之基板、晶格常數、靶材以及超導膜之臨界電流密度之比較結果。表二為比較例一至比較例三之基板、晶格常數、靶材以及超導膜之臨界電流密度之比較結果。其中,實施例一及實施例二、比較例一以及比較例三係使用相同靶材(YBa2 Cu3 O7 及Y2 BaCuO5 )但不同之基板,而比較例二所使用之靶材為YBa2 Cu3 O7
由於實施例一及實施例二之基板的晶格常數與超導膜YBa2 Cu3 O7 之晶格常數(a =3.821Å,b =3.885Å)差異較大,因而在鍍膜的過程中,YBa2 Cu3 O7 與Y2 BaCuO5 是同時成長生成並且Y2 BaCuO5 會形成奈米顆粒並均勻分布於YBa2 Cu3 O7 內,亦即達到了釘札中心微小化及分散化的效果,如第3圖穿透式電子顯微鏡照片所示。在比較例一中,比較例一與實施例一及實施例二之差別在於比較例一使用的基板為鈦酸鍶基板。鈦酸鍶基板的晶格常數為3.905Å,與超導膜YBa2 Cu3 O7 之晶格常數相近。在第4圖之穿透式電子顯微鏡之分析結果中,黑色部分代表YBa2 Cu3 O7 ,白色部分則為Y2 BaCuO5 。相較於第3圖,在第4圖中,由於比較例一所用之鈦酸鍶基板的晶格常數與超導膜YBa2 Cu3 O7 之晶格常數相近,而使得Y2 BaCuO5 呈層狀聚集在一起,而非如第3圖呈奈米顆粒狀分散分布。也就是說,當釘札中心小而分散時,可有效增加釘札中心數量,並且使量子磁通更平均地分佈於超導相內,而降低量子磁通間的互斥力,故能有效提升釘札效果。亦即,臨界電流密度可得到提升。如表一所示,實施例一之臨界電流密度(3.26MA/cm2 )以及實施例二之臨界電流密度(2.06MA/cm2 )均明顯高於比較例一之電流密度(0.99MA/cm2 )。
在比較例二中,由於所使用的靶材未含有Y2 BaCuO5 ,因而比較例二具有更低之臨界電流密度(0.11MA/cm2 )。
就比較例三而言,由於濺鍍程序需要780℃-850℃之溫度,而比 較例三之基板(MgO)中的鎂元素會在此溫度範圍內擴散至超導膜,如第5圖的鎂元素擴散,而破壞了超導膜中超導相的超導性質。請一併參閱第6圖,第6圖為實施例一、二以及比較例一、二之超導膜於溫度77K,不同磁場下的臨界電流密度。如圖所示,在77K、1T之環境下,實施例一之超導膜的臨界電流密度(Jc)達3.26MA/cm2 ,實施例二之超導膜的臨界電流密度(Jc)達2.06MA/cm2 。 比較例一、二之超導膜的臨界電流密度則僅分別為0.99以及0.11MA/cm2
根據本提案實施例所揭露之超導膜元件及超導膜元件之製備方法,本提案是使用單一之靶材在基板上濺鍍超導膜,使生成超導相YBa2 Cu3 O7 及非超導相Y2 BaCuO5 ,且基板之晶格常數介於5.0Å至5.5Å之間,因而基板與超導膜之晶格常數具有相當之差異,使得本提案所製備之超導膜內之Y2 BaCuO5 係顆粒狀均勻分布於YBa2 Cu3 O7 內,而達到微小化、分散化釘札中心的效果。如此一來,可有效增加釘札中心數量,並且使量子磁通更平均地分佈於超導體內,因而降低量子磁通間的互斥力,故能有效提升釘札效果,亦即臨界電流密度可得到提升。
此外,在本提案部分實施例中,由於靶材是透過頂端接種熔融製程或燒結程序製備,因而靶材質地較緻密,對於製作之超導膜的品質,亦有幫助。
雖然本提案已以實施例揭露如上,然其並非用以限定本提案,任何所屬技術領域中具有通常知識者,在不脫離本提案之精神和範圍內,當可作些許之更動與潤飾,故本提案之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧超導膜元件
100‧‧‧基板
200‧‧‧超導膜

Claims (16)

  1. 一種超導膜元件,包含:一基板,該基板之晶格常數介於5.0Å(埃)至5.5Å之間;以及一超導膜,設置於該基板上,該超導膜包含YBa2 Cu3 O7 及Y2 BaCuO5 ;其中該Y2 BaCuO5 分散於該YBa2 Cu3 O7 中,該Y2 BaCuO5 佔該超導膜之總重之百分之5至百分之15重量百分比,該Y2 BaCuO5 之顆粒粒徑介於15奈米至30奈米之間。
  2. 如請求項1所述之超導膜元件,其中該Y2 BaCuO5 及該YBa2 Cu3 O7 接觸該基板。
  3. 如請求項1所述之超導膜元件,其中該基板為釔安定氧化鋯(Yttria-stabilized zirconia,YSZ)、鋁酸鑭(Lanthanum Aluminate,LAO)、Y3 NbO7 、Gd2 Zr2 O7 、二氧化鈰(CeO2 )或NdGaO3
  4. 如請求項1所述之超導膜元件,其中該Y2 BaCuO5 係以顆粒狀之形式形成於該YBa2 Cu3 O7 中。
  5. 如請求項1所述之超導膜元件,其中該超導膜之厚度介於150奈米至350奈米之間。
  6. 如請求項1至請求項5中任一項所述之超導膜元件,可應用至超導線材。
  7. 一種超導膜元件的製備方法,其包含下列步驟:提供一基板,該基板之晶格常數介於5.0Å(埃)至5.5Å之間;提供一靶材,該靶材包含有YBa2 Cu3 O7 及Y2 BaCuO5 ;以及執行一鍍膜程序,使該靶材於該基板上同時形成YBa2 Cu3 O7 及Y2 BaCuO5 ,其中該Y2 BaCuO5 分散於該YBa2 Cu3 O7 中。
  8. 如請求項7所述之超導膜元件的製備方法,其中,該鍍膜程序之基板溫度介於780℃至850℃之間。
  9. 如請求項7所述之超導膜元件的製備方法,其中,該鍍膜程序係為一雷射濺鍍程序。
  10. 如請求項9所述之超導膜元件的製備方法,其中,該雷射濺鍍程序之雷射的聚焦能量密度介於1.5焦耳/平方公分至2.0焦耳/平方公分之間。
  11. 如請求項9所述之超導膜元件的製備方法,其中,該雷射濺鍍程序之雷射的中心波長為248奈米。
  12. 如請求項7所述之超導膜元件的製備方法,其中,於該鍍膜程序前另包含:執行一頂端接種熔融製程或一燒結程序。
  13. 如請求項7所述之超導膜元件的製備方法,其中該Y2 BaCuO5 佔該靶材之總重之百分之5至百分之15重量百分比。
  14. 如請求項7所述之超導膜元件的製備方法,其中,於該鍍膜程序中,該Y2 BaCuO5 係以顆粒狀之形式形成於該YBa2 Cu3 O7 內。
  15. 如請求項7所述之超導膜元件的製備方法,其中該基板為釔安定氧化鋯(Yttria-stabilized zirconia,YSZ)、鋁酸鑭(Lanthanum Aluminate,LAO)、Y3 NbO7 、Gd2 Zr2 O7 、二氧化鈰(CeO2 )或NdGaO3
  16. 如請求項7所述之超導膜元件的製備方法,其中該Y2 BaCuO5 及該YBa2 Cu3 O7 接觸該基板。
TW104111340A 2014-05-16 2015-04-08 超導膜元件及超導膜元件之製備方法 TWI509850B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW104111340A TWI509850B (zh) 2014-05-16 2015-04-08 超導膜元件及超導膜元件之製備方法
CN201510233812.5A CN105097126A (zh) 2014-05-16 2015-05-11 超导膜元件及超导膜元件的制备方法
JP2015098529A JP2015220231A (ja) 2014-05-16 2015-05-13 超伝導膜ユニットおよびその製造方法
DE102015107614.4A DE102015107614A1 (de) 2014-05-16 2015-05-13 Supraleitende Filmeinheit und Verfahren zur Herstellung derselben
US14/713,850 US20150332813A1 (en) 2014-05-16 2015-05-15 Superconducting film unit and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103117380 2014-05-16
TW104111340A TWI509850B (zh) 2014-05-16 2015-04-08 超導膜元件及超導膜元件之製備方法

Publications (2)

Publication Number Publication Date
TWI509850B true TWI509850B (zh) 2015-11-21
TW201545386A TW201545386A (zh) 2015-12-01

Family

ID=54361843

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104111340A TWI509850B (zh) 2014-05-16 2015-04-08 超導膜元件及超導膜元件之製備方法

Country Status (5)

Country Link
US (1) US20150332813A1 (zh)
JP (1) JP2015220231A (zh)
CN (1) CN105097126A (zh)
DE (1) DE102015107614A1 (zh)
TW (1) TWI509850B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW369727B (en) * 1994-12-19 1999-09-11 Johnson Matthey Plc Improved thick film superconductors and preparation thereof
EP0971422A1 (en) * 1998-07-03 2000-01-12 International Superconductivity Technology Center Oxide superconducting element and material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830776B1 (en) * 2002-02-08 2004-12-14 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing a high temperature superconductor
US20050159298A1 (en) * 2004-01-16 2005-07-21 American Superconductor Corporation Oxide films with nanodot flux pinning centers
US20070032384A1 (en) * 2005-07-26 2007-02-08 The Regents Of The University Of California Structure for improved high critical current densities in YBCO coatings
US7687436B2 (en) * 2005-12-02 2010-03-30 University Of Dayton Flux pinning enhancements in superconductive REBa2CU3O7-x (REBCO) films and method of forming thereof
JP5327932B2 (ja) * 2007-02-08 2013-10-30 独立行政法人産業技術総合研究所 超電導コーティング材料の製造方法
CN101319387B (zh) * 2008-06-16 2011-09-14 北京师范大学 一种高温超导体纳米结构阵列的制备方法
CN102142300B (zh) * 2010-12-12 2012-06-20 西北有色金属研究院 一种第二相纳米粒子掺杂ybco薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW369727B (en) * 1994-12-19 1999-09-11 Johnson Matthey Plc Improved thick film superconductors and preparation thereof
EP0971422A1 (en) * 1998-07-03 2000-01-12 International Superconductivity Technology Center Oxide superconducting element and material

Also Published As

Publication number Publication date
TW201545386A (zh) 2015-12-01
US20150332813A1 (en) 2015-11-19
DE102015107614A1 (de) 2015-11-19
CN105097126A (zh) 2015-11-25
JP2015220231A (ja) 2015-12-07

Similar Documents

Publication Publication Date Title
Matsumoto et al. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors
CN101911218B (zh) Re系氧化物超导线材及其制造方法
US8124568B2 (en) Oxide superconductor and method of fabricating same
US9812233B2 (en) Superconducting oxide thin film
Lu et al. Optimization of a fluorine-free metal-organic deposition to fabricate BaZrO3-doped YBa2Cu3O7− δ film on RABiTS substrates
KR20080041665A (ko) 와이비씨오 코팅에 있어 고 임계전류밀도를 갖는 구조
US20210408359A1 (en) Superconductor flux pinning without columnar defects
Rijckaert et al. Influence of Ba2+ consumption and intermediate dwelling during processing of YBa2Cu3O7 nanocomposite films
JP5736603B2 (ja) Rebco系酸化物超電導薄膜とその製造方法
Chen et al. Composition effects on the critical current of MOCVD-processed Zr: GdYBCO coated conductors in an applied magnetic field
JP5686437B2 (ja) 酸化物超電導薄膜線材およびその製造方法
TWI509850B (zh) 超導膜元件及超導膜元件之製備方法
Yoshihara et al. BaMO 3 (M= Zr, Hf) Doped REBCO Tapes Fabricated by Fluorine-Free MOD
Wu et al. Probing microscopic strain interplay due to impurity doping and vicinal growth and its effect on pinning landscape in YBCO films
US20150105261A1 (en) Oxide superconducting thin film and method of manufacturing the same
Fan et al. Optimum composition in 10% Zr-added GdYBCO coated conductor for enhanced flux pinning at 30 K
JP2012174564A (ja) 酸化物超電導薄膜とその製造方法
JP6155402B2 (ja) 超電導線材及びその製造方法
Vojtkova et al. Microstructure YBCO bulk superconductors fabricated by infiltration growth process
Sparing et al. Controlling particle properties in nanocomposites by combining PLD with an inert gas condensation system
Takahashi et al. Plastic Forming of High‐Tc YBa 2 Cu 3 O 7− x Bulk Superconductors
US10301221B1 (en) Materials, devices, and methods for producing strong magnetic-flux pinning in superconducting materials by including sites having high electronic effective mass and charge carrier density
Jongprateep et al. Composition and Particle Size of ReBa2Cu3O7− X Superconductor Powders Synthesized by Solid State Reactions
JP4326634B2 (ja) 水銀系銅酸化物超電導薄膜及び作製方法
JP5713440B2 (ja) 酸化物超電導薄膜とその製造方法