CN105097126A - 超导膜元件及超导膜元件的制备方法 - Google Patents

超导膜元件及超导膜元件的制备方法 Download PDF

Info

Publication number
CN105097126A
CN105097126A CN201510233812.5A CN201510233812A CN105097126A CN 105097126 A CN105097126 A CN 105097126A CN 201510233812 A CN201510233812 A CN 201510233812A CN 105097126 A CN105097126 A CN 105097126A
Authority
CN
China
Prior art keywords
superconducting film
substrate
bacuo
yba
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510233812.5A
Other languages
English (en)
Inventor
颜得宗
吴茂昆
许家豪
陈诗芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN105097126A publication Critical patent/CN105097126A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0828Introducing flux pinning centres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

一种超导膜元件及超导膜元件的制备方法。该超导膜元件包含一基板以及一超导膜。基板的晶格常数介于(埃)至之间。超导膜设置于基板上。超导膜包含YBa2Cu3O7及Y2BaCuO5。其中Y2BaCuO5分散于YBa2Cu3O7中。该超导膜元件的制备方法,包含以下步骤。提供一基板,基板的晶格常数介于(埃)至之间。提供一靶材,靶材包含YBa2Cu3O7及Y2BaCuO5。执行一镀膜工艺,使靶材于基板上同时形成YBa2Cu3O7及Y2BaCuO5。其中Y2BaCuO5分散于YBa2Cu3O7中。

Description

超导膜元件及超导膜元件的制备方法
技术领域
本发明涉及一种超导膜元件及超导膜元件的制备方法,特别是一种含有Y2BaCuO5纳米颗粒作为钉札中心的YBa2Cu3O7的超导膜元件及超导膜元件的制备方法。
背景技术
超导发电机由于具有体积小、重量轻以及效率高等优点,因此是能源领域中重要的研究课题。
目前高温超导线材成本仍高。详细来说,依照目前工艺所制备的超导线材的临界电流密度仍有改善的空间。因此,如何提高超导线材的临界电流密度就成为高温超导应用普及的关键。
一般而言,超导线材是处于高磁场的环境下应用。磁场所发出的磁力线以量子磁通的形式穿过超导线材。由于超导线材上的电流与量子磁通之间存在有罗伦兹力,量子磁通会因为罗伦兹力而移动,而降低了超导线材的效能。也就是说,如何降低量子磁通因为罗伦兹力而移动的情形就成为目前的研究方向。
为了降低、避免量子磁通因罗伦兹力移动而降低超导线材的效能,目前发展出在超导线材的超导体内产生晶格缺陷或非超导相的方法。详细来说,是通过晶格缺陷或者非超导相作为钉札中心,以限制量子磁通在超导体的移动。如此一来,透过在超导体内所形成的钉札中心,可改善所制备的超导线材的效能。
为了在超导线材的超导体内形成钉札中心,可透过离子照射的方法,以在超导体内形成缺陷。然而,离子照射的方法较为昂贵。因此,在超导体内形成非超导相纳米颗粒作为钉札中心,对于超导线材的商用化是比较可行的作法。而如何改善目前在超导体内形成非超导相纳米颗粒的工艺,以提升所制备的超导线材的效能,就成为研究人员需要解决的问题。
发明内容
本发明所要解决的技术问题是提供一种超导膜元件及超导膜元件的制备方法,以改善超导膜的设计,提升超导膜的效能。
为了实现上述目的,本发明提供了一种超导膜元件,包含一基板以及一超导膜。基板的晶格常数介于(埃)至之间。超导膜设置于基板上。超导膜包含YBa2Cu3O7及Y2BaCuO5。其中Y2BaCuO5分散于YBa2Cu3O7中。
为了更好地实现上述目的,本发明还提供了一种超导膜元件的制备方法,包含以下步骤。提供一基板,基板的晶格常数介于(埃)至之间。提供一靶材,靶材包含YBa2Cu3O7及Y2BaCuO5。执行一镀膜工艺,使靶材于基板上同时形成YBa2Cu3O7及Y2BaCuO5。其中Y2BaCuO5分散于YBa2Cu3O7中。
本发明的技术效果在于:
本发明的超导膜元件及超导膜元件的制备方法,由于基板的晶格常数介于之间,而超导体YBa2Cu3O7的晶格常数因而基板与超导体的晶格常数具有相当的差异。另一方面,由于YBa2Cu3O7与Y2BaCuO5是镀膜时同时成长生成,Y2BaCuO5将形成纳米颗粒并均匀分布于YBa2Cu3O7内,亦即达到了钉札中心微小化及分散化的效果。如此一来,超导体YBa2Cu3O7内有均匀分布的非超导相Y2BaCuO5纳米颗粒,可做为超导膜的钉札中心,并进而改善了超导膜的临界电流密度。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图为1本发明一实施例的超导膜元件的制备方法流程图;
图2A为本发明一实施例的超导膜元件的示意图;
图2B为本发明一实施例超导线材的示意图;
图3为本发明实施例一的超导膜的穿透式电子显微镜的分析结果;
图4为本发明比较例一的超导膜的穿透式电子显微镜的分析结果;
图5为本发明比较例三的超导膜的穿透式电子显微镜的分析结果;
图6为实施例一、二以及比较例一、二的超导膜于绝对温度77度,不同磁场下的临界电流密度。
其中,附图标记
9超导线材
10超导膜元件
20载体
100基板
200超导膜
具体实施方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
首先,请参阅图1。图1为本发明一实施例的超导膜元件的制备方法流程图。
首先,提供一基板(S101)。基板的晶格常数介于(埃)至之间。基板的材质例如为钇安定氧化锆(Yttria-stabilizedzirconia,YSZ)(晶格常数)、铝酸镧(LanthanumAluminate,LaAlO3,LAO)(晶格常数)、Y3NbO7(晶格常数)、Gd2Zr2O7(晶格常数)、二氧化铈(CeO2)(晶格常数)或NdGaO3(晶格常数),但并不以此为限。
接着,提供一靶材(S102)。靶材包含钇、钡以及铜。靶材的组成元素是对应于所欲制备的超导膜。在另一实施例中,靶材例如包含有YBa2Cu3O7及Y2BaCuO5,其中Y2BaCuO5占靶材的总重的百分之5至百分之15重量百分比(wt%)。在部分实施例中,Y2BaCuO5占靶材的总重的百分之8重量百分比。在本实施例中,所欲制备的超导膜的材质包含YBa2Cu3O7(超导相)以及颗粒状的Y2BaCuO5(非超导相),其中Y2BaCuO5占超导膜的总重的百分之5至百分之15重量百分比(wt%)。在部分实施例中,Y2BaCuO5占超导膜的总重的百分之8重量百分比。在本实施例中,靶材例如是透过一顶端接种熔融工艺(TopSeededMeltTexturedGrowthProcess)或一烧结工艺而形成,因而靶材较为致密而具有较佳的品质,而可提升所制成的超导膜的临界电流密度(Jc)。
须注意的是,上述提供一基板(S101)以及提供一靶材(S102)的顺序并非用以限定本发明。在其他实施例中,也可以先提供一靶材,再提供一基板。
最后,执行一镀膜工艺(S103)。藉此,使靶材于基板上同时形成YBa2Cu3O7及Y2BaCuO5。在本实施例中,镀膜程序采用激光溅镀,激光的中心波长为248纳米。在本实施例及部分其他实施例中,激光的聚焦能量密度介于1.5焦耳/平方公分(J/cm2)至2.0焦耳/平方公分之间。在本实施例及部分其他实施例中,镀膜工艺的基板温度介于780℃至850℃之间。
在镀膜的过程中,靶材会分别形成YBa2Cu3O7及Y2BaCuO5。详细来说,由于YBa2Cu3O7与Y2BaCuO5会接触基板,并且因为本实施例的基板的晶格常数()与超导相YBa2Cu3O7的晶格常数差异较大,因而YBa2Cu3O7与Y2BaCuO5会在镀膜工艺中同时成长生成于基板上,并且Y2BaCuO5形成纳米颗粒并均匀分布于YBa2Cu3O7内,亦即达到了钉札中心微小化及分散化的效果。
当钉札中心小而分散时,可有效增加钉札中心数量,并且使量子磁通更平均地分布于超导相内,因而降低量子磁通间的互斥力,故能有效提升钉札效果,亦即临界电流密度可得到提升。
以下介绍本发明的超导膜元件。请参阅图2A,图2A为本发明一实施例的超导膜元件的示意图。本发明的超导膜元件10包含一基板100以及一超导膜200。本发明所指基板100例如是指超导线材中的缓冲层,特别是超导线材中超导膜所接触、设置的缓冲层。基板100的晶格常数介于之间。超导膜200设置于基板100上。超导膜200的材质包含YBa2Cu3O7(超导相)以及Y2BaCuO5(非超导相)。Y2BaCuO5分散于YBa2Cu3O7中,并且YBa2Cu3O7及Y2BaCuO5接触基板100。
在本发明部分实施例中,Y2BaCuO5呈纳米颗粒状。
在本发明部分实施例中,Y2BaCuO5的颗粒粒径介于15纳米至30纳米之间。
在本发明部分实施例中,Y2BaCuO5占超导膜200的总重的百分之5至百分之15重量百分比(wt%)。在部分实施例中,Y2BaCuO5占超导膜200的总重的百分之8重量百分比(wt%)。
在本发明部分实施例中,基板100的材质为钇安定氧化锆(Yttria-stabilizedzirconia,YSZ)(晶格常数)、铝酸镧(LanthanumAluminate,LaAlO3,LAO)(晶格常数)、Y3NbO7(晶格常数)、Gd2Zr2O7(晶格常数)、二氧化铈(CeO2)(晶格常数)或NdGaO3(晶格常数),但并不以此为限。
在本发明部分实施例中,超导膜200的厚度介于150纳米(nm)至350纳米之间。
本发明实施例的超导膜元件10可应用至超导线材中。请参阅图2B,图2B为本发明一实施例的超导线材的示意图。如图所示,超导线材9包含有超导膜元件10以及载体20。超导膜元件10设置于载体20。由于超导线材9包含有本发明的超导膜元件10,因而具有较佳的工作表现。
以下透过数个实施例以及比较例来说明本发明的超导膜元件的制备方法。
实施例一(LAO基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及LAO基板(LaAlO3)置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例一的超导膜的制备。请参阅图3,图3为本发明实施例一的超导膜的穿透式电子显微镜的分析结果。如图3所示,Y2BaCuO5以颗粒状的形式均匀分布于YBa2Cu3O7之内,且Y2BaCuO5的粒径约介于15纳米至30纳米之间。
实施例二(YSZ基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及YSZ基板(钇安定氧化锆)置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例二的超导膜的制备。
实施例三(Y3NbO7基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及Y3NbO7基板置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例三的超导膜的制备。
实施例四(Gd2Zr2O7基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及Gd2Zr2O7基板置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例四的超导膜的制备。
实施例五(二氧化铈基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及二氧化铈基板(CeO2)置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例五的超导膜的制备。
实施例六(NdGaO3基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及NdGaO3基板置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,但厚度不以此为限,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了实施例六的超导膜的制备。
比较例一(钛酸锶基板,STO基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及STO基板(SrTiO3)置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了比较例一的超导膜的制备。请参阅图4,图4为本发明比较例一的超导膜的穿透式电子显微镜的分析结果。如图所示,黑色部分代表YBa2Cu3O7,白色部分则为Y2BaCuO5,比较例一的超导膜内的Y2BaCuO5聚集成层状。
比较例二(STO基板)
首先制备YBa2Cu3O7起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu为1:2:3的比率量秤,混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7起始粉末。接着将YBa2Cu3O7起始粉末以25~35Mpa的压力压成块,于900℃持温8小时进行烧结,最后自然降温至室温,便完成YBa2Cu3O7靶材制作。将YBa2Cu3O7靶材以及STO基板(SrTiO3)置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至780℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了比较例二的超导膜的制备。
比较例三(MgO基板)
首先制备YBa2Cu3O7及Y2BaCuO5起始粉末,将Y2O3、BaCO3及CuO等粉末以莫耳比率Y:Ba:Cu分别为1:2:3及2:1:1等比率量秤,各自混合均匀后,以900℃持温8小时煅烧后,研磨均匀并再度煅烧2次,亦即共进行煅烧3次,即可得到YBa2Cu3O7及Y2BaCuO5起始粉末。接着将YBa2Cu3O7及Y2BaCuO5起始粉末以重量百分比92:8的比例均匀混合,以25~35Mpa的压力压成块,并于其表面中心放置SmBa2Cu3O7晶种,于908℃持温4小时,升温至1045℃持温1小时。最后以4℃/hr的降温速率降温至992℃,接着以0.2℃/hr的降温速率降温至982℃,最后自然降温至室温,便完成靶材制作。将内含8wt%(重量百分比)Y2BaCuO5的YBa2Cu3O7靶材以及MgO基板置入溅镀设备的腔室内。然后,透过抽气泵以将腔室内的压力降低至约10-6毫巴(mbar)。将腔室内的基板温度提升至850℃。通入300毫托耳(mTorr)的氧气于腔室内。接着,使用中心波长为248纳米的激光光源进行溅镀,将靶材溅镀至基板,而在基板上形成薄膜。其中,激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。待基板上的薄膜(即超导膜)的厚度介于150-350纳米的范围内时,将腔室内的基板温度降低至500℃。然后,通入0.8-1大气压(atm)的氧气于腔室内,并维持0.5-1小时。最后,使腔室内的基板温度自然下降至室温,即完成了比较例三的超导膜的制备。请参阅图5,图5为本发明比较例三的超导膜的穿透式电子显微镜的分析结果。如图所示,比较例三的基板的镁原子扩散至超导膜。
请参阅下表一及表二,表一为实施例一及实施例二的基板、晶格常数、靶材以及超导膜的临界电流密度的比较结果。表二为比较例一至比较例三的基板、晶格常数、靶材以及超导膜的临界电流密度的比较结果。其中,实施例一及实施例二、比较例一以及比较例三为使用相同靶材(YBa2Cu3O7及Y2BaCuO5)但不同的基板,而比较例二所使用的靶材为YBa2Cu3O7
表一
表二
由于实施例一及实施例二的基板的晶格常数与超导膜YBa2Cu3O7的晶格常数差异较大,因而在镀膜的过程中,YBa2Cu3O7与Y2BaCuO5是同时成长生成并且Y2BaCuO5会形成纳米颗粒并均匀分布于YBa2Cu3O7内,亦即达到了钉札中心微小化及分散化的效果,如图3穿透式电子显微镜照片所示。在比较例一中,比较例一与实施例一及实施例二的差别在于比较例一使用的基板为钛酸锶基板。钛酸锶基板的晶格常数为与超导膜YBa2Cu3O7的晶格常数相近。在图4的穿透式电子显微镜的分析结果中,黑色部分代表YBa2Cu3O7,白色部分则为Y2BaCuO5。相较于图3,在图4中,由于比较例一所用的钛酸锶基板的晶格常数与超导膜YBa2Cu3O7的晶格常数相近,而使得Y2BaCuO5呈层状聚集在一起,而非如图3呈纳米颗粒状分散分布。也就是说,当钉札中心小而分散时,可有效增加钉札中心数量,并且使量子磁通更平均地分布于超导相内,而降低量子磁通间的互斥力,故能有效提升钉札效果。亦即,临界电流密度可得到提升。如表一所示,实施例一的临界电流密度(3.26MA/cm2)以及实施例二的临界电流密度(2.06MA/cm2)均明显高于比较例一的电流密度(0.99MA/cm2)。
在比较例二中,由于所使用的靶材未含有Y2BaCuO5,因而比较例二具有更低的临界电流密度(0.11MA/cm2)。
就比较例三而言,由于溅镀工艺需要780℃-850℃的温度,而比较例三的基板(MgO)中的镁元素会在此温度范围内扩散至超导膜,如图5的镁元素扩散,而破坏了超导膜中超导相的超导性质。请一并参阅图6,图6为实施例一以及比较例一、二的超导膜于温度77K,不同磁场下的临界电流密度。如图所示,在77K、1T的环境下,实施例一的超导膜的临界电流密度(Jc)达3.26MA/cm2,实施例二的超导膜的临界电流密度(Jc)达2.06MA/cm2。比较例一、二的超导膜的临界电流密度则仅分别为0.99以及0.11MA/cm2
根据本发明实施例所揭露的超导膜元件及超导膜元件的制备方法,本发明是使用单一的靶材在基板上溅镀超导膜,使生成超导相YBa2Cu3O7及非超导相Y2BaCuO5,且基板的晶格常数介于之间,因而基板与超导膜的晶格常数具有相当的差异,使得本发明所制备的超导膜内的Y2BaCuO5为颗粒状均匀分布于YBa2Cu3O7内,而达到微小化、分散化钉札中心的效果。如此一来,可有效增加钉札中心数量,并且使量子磁通更平均地分布于超导体内,因而降低量子磁通间的互斥力,故能有效提升钉札效果,亦即临界电流密度可得到提升。
此外,在本发明部分实施例中,由于靶材是透过顶端接种熔融工艺或烧结工艺制备,因而靶材质地较致密,对于制作的超导膜的品质,亦有帮助。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (18)

1.一种超导膜元件,其特征在于,包含:
一基板,该基板的晶格常数介于之间;以及
一超导膜,设置于该基板上,该超导膜包含YBa2Cu3O7及Y2BaCuO5
其中该Y2BaCuO5分散于该YBa2Cu3O7中。
2.如权利要求1所述的超导膜元件,其特征在于,该Y2BaCuO5及该YBa2Cu3O7接触该基板。
3.如权利要求1所述的超导膜元件,其特征在于,该Y2BaCuO5占该超导膜的总重的百分之5至百分之15重量百分比。
4.如权利要求1所述的超导膜元件,其特征在于,该基板为钇安定氧化锆、铝酸镧、Y3NbO7、Gd2Zr2O7、二氧化铈或NdGaO3
5.如权利要求1所述的超导膜元件,其特征在于,该Y2BaCuO5以颗粒状的形式形成于该YBa2Cu3O7中。
6.如权利要求5所述的超导膜元件,其特征在于,该Y2BaCuO5的颗粒粒径介于15纳米至30纳米之间。
7.如权利要求1所述的超导膜元件,其特征在于,该超导膜的厚度介于150纳米至350纳米之间。
8.如权利要求1至权利要求7中任一项所述的超导膜元件,其特征在于,可应用至超导线材。
9.一种超导膜元件的制备方法,其特征在于,包含下列步骤:
提供一基板,该基板的晶格常数介于之间;
提供一靶材,该靶材包含有YBa2Cu3O7及Y2BaCuO5;以及
执行一镀膜工艺,使该靶材于该基板上同时形成YBa2Cu3O7及Y2BaCuO5,其中该Y2BaCuO5分散于该YBa2Cu3O7中。
10.如权利要求9所述的超导膜元件的制备方法,其特征在于,该镀膜工艺的基板温度介于780℃至850℃之间。
11.如权利要求9所述的超导膜元件的制备方法,其特征在于,该镀膜工艺为一激光溅镀工艺。
12.如权利要求11所述的超导膜元件的制备方法,其特征在于,该激光溅镀工艺的激光的聚焦能量密度介于1.5焦耳/平方公分至2.0焦耳/平方公分之间。
13.如权利要求11所述的超导膜元件的制备方法,其特征在于,该激光溅镀工艺的激光的中心波长为248纳米。
14.如权利要求9所述的超导膜元件的制备方法,其特征在于,于该镀膜工艺前还包含:
执行一顶端接种熔融工艺或一烧结工艺。
15.如权利要求9所述的超导膜元件的制备方法,其特征在于,该Y2BaCuO5占该靶材的总重的百分之5至百分之15重量百分比。
16.如权利要求9所述的超导膜元件的制备方法,其特征在于,于该镀膜工艺中,该Y2BaCuO5以颗粒状的形式形成于该YBa2Cu3O7内。
17.如权利要求9所述的超导膜元件的制备方法,其特征在于,该基板为钇安定氧化锆、铝酸镧、Y3NbO7、Gd2Zr2O7、二氧化铈或NdGaO3
18.如权利要求9所述的超导膜元件的制备方法,其特征在于,该Y2BaCuO5及该YBa2Cu3O7接触该基板。
CN201510233812.5A 2014-05-16 2015-05-11 超导膜元件及超导膜元件的制备方法 Pending CN105097126A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW103117380 2014-05-16
TW103117380 2014-05-16
TW104111340A TWI509850B (zh) 2014-05-16 2015-04-08 超導膜元件及超導膜元件之製備方法
TW104111340 2015-04-08

Publications (1)

Publication Number Publication Date
CN105097126A true CN105097126A (zh) 2015-11-25

Family

ID=54361843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510233812.5A Pending CN105097126A (zh) 2014-05-16 2015-05-11 超导膜元件及超导膜元件的制备方法

Country Status (5)

Country Link
US (1) US20150332813A1 (zh)
JP (1) JP2015220231A (zh)
CN (1) CN105097126A (zh)
DE (1) DE102015107614A1 (zh)
TW (1) TWI509850B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830776B1 (en) * 2002-02-08 2004-12-14 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing a high temperature superconductor
CN1905955A (zh) * 2004-01-16 2007-01-31 美国超导公司 具有纳米点通量钉轧中心的氧化物膜
US20070129255A1 (en) * 2005-12-02 2007-06-07 University Of Dayton FLUX PINNING ENHANCEMENTS IN SUPERCONDUCTIVE REBa2CU3O7-x (REBCO) FILMS AND METHOD OF FORMING THEREOF
CN101238597A (zh) * 2005-07-26 2008-08-06 洛斯阿拉莫斯国家安全股份有限公司 Ybco涂层中用于改进高临界电流密度的结构
CN101319387A (zh) * 2008-06-16 2008-12-10 北京师范大学 一种高温超导体纳米结构阵列的制备方法
CN101542641A (zh) * 2007-02-08 2009-09-23 独立行政法人产业技术综合研究所 超导氧化物材料的制造方法
CN102142300A (zh) * 2010-12-12 2011-08-03 西北有色金属研究院 一种第二相纳米粒子掺杂ybco薄膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9425528D0 (en) * 1994-12-19 1995-03-08 Johnson Matthey Plc Improved super conductor
JP2000022227A (ja) * 1998-07-03 2000-01-21 Internatl Superconductivity Technology Center 酸化物超電導体素材及び素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830776B1 (en) * 2002-02-08 2004-12-14 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing a high temperature superconductor
CN1905955A (zh) * 2004-01-16 2007-01-31 美国超导公司 具有纳米点通量钉轧中心的氧化物膜
CN101238597A (zh) * 2005-07-26 2008-08-06 洛斯阿拉莫斯国家安全股份有限公司 Ybco涂层中用于改进高临界电流密度的结构
US20070129255A1 (en) * 2005-12-02 2007-06-07 University Of Dayton FLUX PINNING ENHANCEMENTS IN SUPERCONDUCTIVE REBa2CU3O7-x (REBCO) FILMS AND METHOD OF FORMING THEREOF
CN101542641A (zh) * 2007-02-08 2009-09-23 独立行政法人产业技术综合研究所 超导氧化物材料的制造方法
CN101319387A (zh) * 2008-06-16 2008-12-10 北京师范大学 一种高温超导体纳米结构阵列的制备方法
CN102142300A (zh) * 2010-12-12 2011-08-03 西北有色金属研究院 一种第二相纳米粒子掺杂ybco薄膜及其制备方法

Also Published As

Publication number Publication date
TWI509850B (zh) 2015-11-21
TW201545386A (zh) 2015-12-01
JP2015220231A (ja) 2015-12-07
DE102015107614A1 (de) 2015-11-19
US20150332813A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
Horide et al. Structural evolution induced by interfacial lattice mismatch in self-organized YBa2Cu3O7− δ nanocomposite film
Chen et al. Enhanced flux pinning by BaZrO3 and (Gd, Y) 2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes
Erbe et al. BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films
Wee et al. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires
Cayado et al. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7− x-BaHfO3 nanocomposite films
Yoshida et al. Approaches in controllable generation of artificial pinning center in REBa2Cu3Oy-coated conductor for high-flux pinning
CN102142300B (zh) 一种第二相纳米粒子掺杂ybco薄膜的制备方法
KR20210100083A (ko) 열 형 결함이 없는 초전도체 플럭스 피닝
Rijckaert et al. Influence of Ba2+ consumption and intermediate dwelling during processing of YBa2Cu3O7 nanocomposite films
JP3089294B2 (ja) 超電導テープ材の製造方法
Chen et al. Composition effects on the critical current of MOCVD-processed Zr: GdYBCO coated conductors in an applied magnetic field
Mahmood et al. Enhancement of critical current density of liquid-infiltration-processed Y–Ba–Cu–O bulk superconductors using milled Y2BaCuO5 powder
US20220123193A1 (en) (re,y)-123 superconducting film containing mixed artificial pinning centers and preparation method thereof
Paidpilli et al. High-current, double-sided REBCO tapes by advanced MOCVD
JP5686437B2 (ja) 酸化物超電導薄膜線材およびその製造方法
CN105097126A (zh) 超导膜元件及超导膜元件的制备方法
Koritala et al. Transmission electron microscopy investigation of texture development in magnesium oxide buffer layers
US20110045984A1 (en) Superconductive Compositions with Enhanced Flux Pinning
Wang et al. Superconducting properties and microstructures of CeO2 doped YBa2Cu3O7− δ films fabricated by pulsed laser deposition
Zhao et al. High-Jc YBa2Cu3O7− δ superconducting film grown by laser-assisted chemical vapor deposition using a single liquid source and its microstructure
US20150105261A1 (en) Oxide superconducting thin film and method of manufacturing the same
CN102241526A (zh) 一种高温超导涂层导体缓冲层的制备方法
Sparing et al. Controlling particle properties in nanocomposites by combining PLD with an inert gas condensation system
Zhao et al. High utilization ratio of metal organic sources for MOCVD-derived GdYBCO films based on a narrow channel reaction chamber
CN108963067B (zh) 一种ReBa2Cu3O7-x超导薄膜上制备钉扎层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151125