TWI504914B - 磁場感測器與製造磁場感測器的方法 - Google Patents

磁場感測器與製造磁場感測器的方法 Download PDF

Info

Publication number
TWI504914B
TWI504914B TW099127643A TW99127643A TWI504914B TW I504914 B TWI504914 B TW I504914B TW 099127643 A TW099127643 A TW 099127643A TW 99127643 A TW99127643 A TW 99127643A TW I504914 B TWI504914 B TW I504914B
Authority
TW
Taiwan
Prior art keywords
substrate
coil
magnetic
magnetic field
magnetic core
Prior art date
Application number
TW099127643A
Other languages
English (en)
Other versions
TW201109699A (en
Inventor
Frank Schatz
Tino Fuchs
Ando Feyh
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Publication of TW201109699A publication Critical patent/TW201109699A/zh
Application granted granted Critical
Publication of TWI504914B publication Critical patent/TWI504914B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0286Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

磁場感測器與製造磁場感測器的方法
本發明關於申請專利範圍第1項的引文的一種磁場感測器。
此類微機械式磁場感測器係一般習知者。舉例而言,在文獻德專利DE 44 42 441 A1及文獻歐洲專利EP 1 052 519 B1提到所謂的通量閘(Fluxgate)類型的磁場感測器,它包含一半導體基材、一激發元件、二個檢出線圈、及一磁鐵芯。在此,激發元件包含各一個激發線圈,它用一交流電(此交流電具有一激發頻率)操作,如此,在磁鐵芯中依相同頻率的磁滯(Hysterese)(B-H-曲線)產生一磁流。此磁鐵芯包含一鐵磁性材料,該材料受到激發元件作用而週期性地變成磁飽和。在此,「磁飽和」表示:到此程度時,附加的外磁場不會使磁鐵芯中的磁流明顯升高,磁鐵芯中的磁流和磁滲透性(magnetische Permeabilitt)及磁場的乘積成比例。依此,在磁飽和範圍,滲透性相對地小,而它在磁滯的零通過(Nulldurchgang)時相對地大。由於滲透性非線性,因此,既有之要測量的外磁場會引起磁流扭曲(Verzerrung),此磁流可利用檢出線圈檢出。為此,檢出線圈設成反向繞磁鐵芯,因此,在檢出線圈中由於磁鐵芯中的磁流所感應的「感應電流」的總和,在沒有要測量的外磁場存在時係等於零。當存在一個要測量的外磁場時,由於鐵磁性的磁鐵芯的滲透性為非線性,故各感應電流含有激發頻率的不同之和諧波(Harmonische,英:harmonic),它們與外磁場有關。因此,感應電流的總和不等於零,而係為代表所要測量的外磁性的量的一種值。依先前技術,該激發線圈橫截面係垂直於此設置的一基材的一主延伸平面朝向,其中該線圈橫截面被磁場從中央穿過。這種設置的缺點為:該使磁流導通的構造不能用標準CMOS程序做到此設置中。由於有CMOS程序中不尋常的材料──鎳和鐵,故污染(Kontamination)的風險提高,因此這種步驟在許多CMOS生產線不能使用。此外,依此先前技術,還有一種習知的激發線圈,它具有一個和主延伸平面平行的線圈橫截面。由於此激發線圈的構造方式係扁平者,故這種磁場感測器在實施上較佔空間且因此成本較高。
相較於先前技術,依申請專利範圍的本發明之磁場感測器及製磁場感測器的本發明方法的優點為:該磁場感測器在實施上,構造空間可較緊密且因此成本較有效率,其中,同時在製造此磁場感測器時由於異物造成的污染情事(特別是在磁鐵芯放入時)可以排除,因此本發明的磁場感測器可有利地用一道標準半導體製造程序(特別是CMOS程序)製造。這點係用以下方式達成:該激發線圈的線圈橫截面大致垂直於基材的主延伸平面對準,其中該磁鐵芯沿線圈橫截面的徑向係設在線圈橫截面外,且宜設在基材上。這點有一優點即可在基材中製造電構造和電子構造,而不受磁鐵芯在基材上的設置影響,且因此可在標準的半導體製造方法(特別是CMOS程序)中實施。在此,異物粒子侵入基材的情事可排除。磁鐵芯可特別在基材密封(Versiegeln)後才設在基材表面。「線圈橫截面」一詞,在本發明的意義特別是包含激發線圈的一些面積,這些面積特別是垂直於該由激發線圈感應的磁場對準,且其外圈被激發線圈的繞組定出界限。儘管磁鐵芯設在激發線圈之外,但利用此激發線圈可有利地在磁鐵芯中感應一股磁流,它可供該依通量閘感測器原理的感測器設置使用,在各種任意的實施例,該基材宜包含一種半導體基材,它尤宜是一種矽基材。
本發明的有利的設計和進一步特點見於申請專利範圍附屬項及說明書中及可參考圖式看出。
依一較佳實施例,該磁鐵芯垂直於該主延伸平面設在該線圈橫截面之外,且宜設在基材的一表面特別是在一外表面上。因此可用有利的方式簡單而廉價地製造此磁場感測器,其方法係為:在基材中製造電構造和電子構造後(特別是用一道標準CMOS程序)將磁鐵芯簡單地設置在激發線圈上方設在主延伸平面上或垂直於主延伸平面,這點宜用一道獨立的製造方法實施。在本發明的意義中,一表面特別包含基材的一平坦面及在基材的一表面上的一入口部(Einbuchtung)(磁鐵芯放入此入口部中)。
依一較佳實施例,該基材包含一種層構造,其中該激發線圈包含多數往行導線及多數回行導線,其中該多數的往行導線及多數回行導線宜在該層構造的不同的層中設成垂直於該主延伸平面及/或設在基材的不同側上。因此特別有利的做法,係為激發線圈可用標準半導體製造方法製造,其中該往行導線(Hinleiter,英:forth-wire)和回行導線(Rckleiter,英:back-wire)在不同的鍍金屬層的平面中製造,這些鍍金屬層平面宜利用電接點元素──所謂的「通路」(Via)──互相連接,這點可使磁場感測器較有成本效率地製造。回行導線特別用於將該多數的往行導線中的個別往行導線互相連接成導電。該多數往行導線尤宜設在基材的後側。因此,往行導線與回行導線之間的距離較大,因此可達成較大的電場。
依一較佳實施例,該多數的往行導線垂直於該主延伸平面被該磁鐵芯至少部分地覆住。因此可用有利方式由激發線圈,特別是流過往行導線的電流在磁鐵芯中感應一磁流。在此,磁鐵芯宜交替地在磁飽和中操作,因此可用於依「通量閘」原理檢出外磁場。
依一較佳實施例,該多數的往行導線垂直於該主延伸平面大致設在該磁鐵芯及多數回行導線之間。因此,磁鐵芯與往行導線之間的距離有利地遠小於磁鐵芯與回行導線之間的距離,如此一來,由往行導線在磁鐵芯的地點產生的磁流遠大於由回行導線在磁鐵芯的範圍產生的磁流。因此,造成的總磁流由該被往行導線產生的磁流決定且不等於零,因此磁鐵芯被激發線圈中的電流變成磁飽和,磁鐵芯宜包含一軟磁性材料,特別是一鐵-鎳合金。因此磁鐵芯可較簡單地磁化。
依一較佳實施例,該磁場感測器包含檢出線圈以檢出磁鐵芯中的磁流,其中,該檢出線圈的橫截面宜平行於及/或垂直於該主延伸平面對準。檢出線圈宜互相設成反向,因此由激發線圈在磁鐵芯中感應的磁流會在檢出線圈中造成「檢出電流」,它們在沒有要測量的外磁場存在時會互相反向抵消。當存在要測量的磁場時,該外磁場的附加的向量的分量在檢出線圈中感應出一造成的信號,它和所要測量的外磁場成比例。檢出線圈的線圈橫截係平行或垂直於主延伸面對準。因此可用有利方式造成該檢出線圈的一種構造空間較緊密的設置,其線圈橫截面垂直於主延伸平面,一如在激發線圈的場合,在中磁鐵芯特別設在線圈橫截面外;或者線圈較簡單地設置在基材表面,其中該線圈橫截面在此情形大致平行於主延伸平面對準,檢出線圈一般設計成遠小於激發線圈,因此該附加所需的構造空間在線圈橫截面平行於主延伸平面的場合係比較小。
依一較佳實施例,在往行導線與回行導線之間設有接點元件及/或介電層,設成與主延伸平面垂直。該往行導線和回行導線以有利方式利用接點元件互相接觸成導電方式,其中該接點元件特別包含所謂的「通路」,該通路在半導體製造程序中將不同的鍍金屬層平面互相連接。介電層宜設置用於將線圈橫截面中的往行導線和回行導線互相電絕緣,介電層特別包含氧化物層,它們依標準用半導體製造程序設在不同鍍金屬層平面中。因此可用有利方式用標準半導體製造方法較廉價地製造激發線圈。
本發明是另一標的係為一種製造磁場感測器的方法,其中,在一第一製造步驟製備該基材,在一第二製造步驟在基材中製造該激發線圈,而在一第三製造步驟將磁鐵芯沿線圈橫截面的徑向設在該線圈橫截面外。因此,相較於先前技術,可用少得多的成本製造構造空間較緊密的磁場感測器。這點用以下方式達成:該第一及第二製造步驟可用標準半導體製造程序(特別是標準COMS程序)實施,因此只有在第三製造步驟才需要一附加的方法,在此方法中磁鐵芯只須在激發線圈的範圍中設在基材上。特別是在製造激發線圈時,不須設置磁鐵芯,因此半導體材料被磁鐵芯材料污染的情事可防止,儘管磁鐵芯設置在激發線圈外,但能用有利方式利用激發線圈在磁鐵芯中感應一磁流,它可用於依「通量閘」感測器原理作感測器設置。
依一較佳實施例,在該第三製造步驟將磁鐵芯設在線圈橫截面外垂直於主延伸平面,且宜設在基材的一表面上,特別是在其一外表面上。如此該第三製造步驟可較簡單地且廉價地實施。
依一較佳實施例,在第二製造步驟的一第一部分步驟中,產生該多數回行導線,在第二製造步驟的一第二部分步驟中產生該多數往行導線,及/或在第二製造步驟的一第三部分步驟產生多數的接點元件及/或在基材中產生多數介電層。在此,該第三部分步驟係宜在第一或第二部分步驟之前、之時及/或之後實施,該第一、第二、及/或第三部分步驟尤宜作數次。因此,該激發線圈可用有利方式用標準半導體製造程序製造,其中,不同的鍍金屬層先後分別析出在基材上,在一下方鍍金屬層平面中。在第一部分步驟的範圍中產生多數回行導線,它們各互相電絕緣,在以後的第二部分步驟中將另一鍍金屬層平面析出在基材上,在其中產生多數往行導線。在此,往行導線互相電絕緣,該回行導線與往行導線(它們設在不同的鍍金屬層平面中)用有利方式利用接點元件--所謂的通路--互相連接成導電,在激發線圈內部,回行導線與相關的往行導線利用介電層互相電絕緣。在一變更實施例中,在第二製造步驟時也製造磁場感測器的檢出線圈。
本發明的實施例在圖中顯示且在以下說明中敘述。
在這些圖中,相同的部分都用相同圖號表示,因此一般也只說明一次。
圖1中顯示依本發明一實施例的一磁場感測器(1)的一示意剖面圖。磁場感測器(1)包含一基材(2),基材中設有一激發線圈(4),它宜為一半導體基材,尤宜為一矽基材。激發線圈(4)有一線圈橫截圖(4’),它垂直於基材(2)的一主延伸平面(100)對準,且被激發線圈(4)的繞組圍出界限。在激發線圈(4)的範圍中,在基材(2)的一表面(2’)上有一磁鐵芯(3)設成使該磁鐵芯(3)沿線圈橫截面(4’)的徑向位在線圈橫截面(4’)之外。激發線圈(4)包含往行導線(5)和回行導線(6), 它們利用接點元件(7)互相連接成導電。往行導線(5)與磁鐵芯(3)之間[垂直於主延伸平面(100)]的距離遠小於回行導線(6)與磁鐵芯(3)之間[垂直於主延伸平面(100)]的距離,這是因為往行導線(5)主要在磁鐵芯(3)與回行導線(6)之間垂直於主平面(100)設置之故。當電流經激發線圈(4)流過時,在磁鐵芯(3)中一股磁流一次利用往行導線(5)產生,一次利用回行導線(6)產生。由於往行導線(5)與磁鐵芯(3)之間的距離小得多,故當相同電流經過回行導線(6)和往行導線(5)流過時,由往行導線(5)在磁鐵芯(3)中產生的磁流遠大於由回行導線(6)在磁鐵芯(3)中產生的磁流。因此,一電流經激發線圈(4)流過,就在磁鐵芯(3)中產生一股造成之磁流,如此磁鐵芯(3)特別變成磁飽和,且可供依“通量閘”感測器原理[也稱Förster探針]的感測器設置之用。激發線圈(4)建構到基材(2)中一多層構造中。為此,基材(2)包含一晶圓(10),在晶圓上析出一第一氧化物層(11)。在第一氧化物層(11)上在一第二製造步驟的一道第一部分步驟中析出一第一鍍金屬層平面,在該平面中,製造多數回行導線(6),其中該多數回行導線(6)互相呈電絕緣。將介電層(12)(13)以及在介電層(12)(13)內的接點元件(7)析出到第一鍍金屬層平面上。在第二製造步驟的一第二部分步驟中。將一第二鍍金屬層平面析出,在此平面中產生該多數往行導線(5)。再將該多數往行導線(5)互相作電絕緣。將另一介電層(14)析出在第二鍍金屬層平面上。這些介電層(12)(13)和另一介電層(14)宜包含一種氧化物,且宜為二氧化矽。此多數回行導線(6)和多數往行導線(5)宜包含金屬。回行導線(6)與往行導線(5)宜利用所謂的「通路」互相呈導電連接,因此在基材(2)中造成一激發線圈(4),該激發線圈平行於主延伸平面(100)在基材(2)中延伸。最好該磁場感測器(1)包含「檢出線圈」(圖1中未示),它用於將一股在磁鐵芯(3)中利用一所要測量的外場(例如地磁場)或一由一測試體發出的磁場產生的磁場檢出。此檢出線圈宜包一些線圈橫截面,這些線圈橫截面平行或垂直於主延伸平面(100)對準。相較於先前技術,此磁場感測器(1)特別可用一道標準半導體製造方法(特別是一道CMOS程序)製造。
圖2顯示依本發明第一實施例的一磁場感測器(1)的一示意上視圖,其中,在圖2中顯示圖中所示的磁場感測器(1)沿箭頭(101)的上視圖。在此,為了一目了然起見,在圖2中只顯示該多數往行導線(5)、多數回行導線(6)、接點元件(7)、和磁鐵芯(3)。往行導線(5)大致互相平行對準且互相間隔一段距離。在往行導線(5)的平面中不同的往行導線(5)互相呈電絕緣,而在回行導線(6)的平面中,個別的回行導線(6)互相呈電絕緣,往行導線(5)與相關的回行導線(6)各經由接點元件(7)呈導電連接,在此各一往行導線(5)的一端與一回行導線(6)連接,而各一往行導線(5)的另一端與另一回行導線(6)連接。該磁鐵芯(3)[它至少部分地垂直於主延伸平面(100)地將往行導線(5)與回行導線(6)蓋住]用虛線以示意方式圖示。箭頭(102)表示由回行導線(5)產生的磁流,它大於該從回行導線(6)出來的磁流[用箭頭(103)表示]。這點利用不同大小的箭頭(102)(103)表示。因此在磁鐵芯(3)中產生的磁流密度主要由回行導線(5)感應,而回行導線(6)主要用於將激發線圈的線圈作配線。
圖3中顯示依本發明的第一實施例的一磁場感測器(1)的一回行導線(6)、一往行導線(5)、一接點元件(7)及一磁鐵芯(3)的一示意側視圖。此外,圖3顯示一磁流密度(50)[它由回行導線(6)中的電流產生]及一磁流密度(51)[它由流經往行導線(5)中的電流產生]。該磁流密度與距該通電流的導線的距離的關係相對地大。因此由往行導線(5)在磁鐵芯(3)中產生的磁流密度遠大於由回行導線(6)在磁鐵芯(3)中產生的磁流密度,因此回行導線(6)與往行導線(5)的磁流密度並不能反向相抵消,且因此在磁鐵芯(3)中產生一種淨磁流密度,它可用於作依磁計(1)的通量閘感測器原理的應測器功能。
(1)...磁場感測器
(2)...基材
(2’)...[基材(2)的]表面
(3)...磁鐵芯
(4)...激發線圈
(4’)...[激發線圈的]橫截面
(5)...往行導線
(6)...回行導線
(7)...接點元件
(10)...晶圓
(11)...第一氧化物層
(12)...介電層
(13)...介電層
(50)...磁流密度
(51)...磁流密度
(100)...主延伸平面
(101)...箭頭
(102)...箭頭
(103)...箭頭
圖1係依本發明的一實施例的一磁場感測器的示意剖面圖;
圖2係依本發明的該實施例的一磁場感測器的示意上視圖;
圖3係依本發明的該實施例的一磁場感測器的一激發線圈及一磁鐵芯的示意側視圖。
(1)‧‧‧磁場感測器
(2)‧‧‧基材
(2’)‧‧‧[基材(2)的]表面
(3)‧‧‧磁鐵芯
(4)‧‧‧激發線圈
(4’)‧‧‧[激發線圈的]橫截面
(5)‧‧‧往行導線
(6)‧‧‧回行導線
(7)‧‧‧接點元件
(10)‧‧‧晶圓
(11)‧‧‧第一氧化物層
(12)‧‧‧介電層
(13)‧‧‧介電層
(14)‧‧‧介電層
(51)‧‧‧磁流密度
(100)‧‧‧主延伸平面
(101)‧‧‧箭頭

Claims (10)

  1. 一種磁場感測器(1),具有一基材(2)和一磁鐵芯(3),其中該基材(2)有一激發線圈(4)以在磁鐵芯(3)中產生一股磁流,且其中該激發線圈(4)的線圈橫截面(4’)大致垂直於基材(2)的主延伸平面(100)對準,其特徵在:該磁鐵芯(3)沿線圈橫截面(4’)的徑向設在該線圈橫截面(4’)之外。
  2. 如申請專利範圍第1項之磁場感測器,其中:該磁鐵芯(3)垂直於該主延伸平面(100)設在該線圈橫截面(4’)之外,且宜設在基材(2)的一表面(2’)特別是在一外表面上。
  3. 如申請專利範圍第1項之磁場感測器,其中:該基材(2)包含一種層構造,其中該激發線圈(4)包含多數往行導線(5)及多數回行導線(6),其中該多數的往行導線(5)及多數回行導線(6)宜在該層構造的不同的層中設成垂直於該主延伸平面(100)及/或設在基材(2)的不同側上。
  4. 如申請專利範圍第1或第2項之磁場感測器,其中:該多數的往行導線(5)垂直於該主延伸平面(100)被該磁鐵芯至少部分地覆住。
  5. 如申請專利範圍第1或第2項之磁場感測器,其中:該多數的往行導線(5)垂直於該主延伸平面(100)大致設在該磁鐵芯(3)及多數回行導線(6)之間。
  6. 如申請專利範圍第1或第2項之磁場感測器,其中:該磁場感測器(1)包含檢出線圈以檢出磁鐵芯(3)中的磁流,其中,該檢出線圈的橫截面宜平行於及/或垂直於該主延伸平面(100)對準。
  7. 如申請專利範圍第1或第2項之磁場感測器,其中:在往行導線(5)與回行導線(6)之間設有接點元件(7)及/或介電層(8),設成與主延伸平面(100)垂直。
  8. 一種製造申請專利範圍第1項或依第1項的引文的磁場感測器(1)的方法,其特徵在:在一第一製造步驟製備該基材,在一第二製造步驟在基材(2)中製造該激發線圈(4),而在一第三製造步驟將磁鐵芯(3)沿線圈橫截面(4’)的徑向設在該線圈橫截面(4’)外。
  9. 如申請專利範圍第8項之方法,其中:在該第三製造步驟將磁鐵芯(3)設在線圈橫截面(4’)外垂直於主延伸平面(100),且宜設在基材(2)的一表面上,特別是在其一外表面上。
  10. 如申請專利範圍第8或第9項之方法,其中:在第二製造步驟的一第一部分步驟中,產生該多數回行導線(6),在第二製造步驟的一第二部分步驟中產生該多數往行導線(5),及/或在第二製造步驟的一第三部分步驟產生多數的接點元件(7)及/或在基材(2)中產生多數介電層(8)。
TW099127643A 2009-08-21 2010-08-19 磁場感測器與製造磁場感測器的方法 TWI504914B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009028815A DE102009028815A1 (de) 2009-08-21 2009-08-21 Magnetfeldsensor und Verfahren zur Herstellung eines Magnetfeldsensors

Publications (2)

Publication Number Publication Date
TW201109699A TW201109699A (en) 2011-03-16
TWI504914B true TWI504914B (zh) 2015-10-21

Family

ID=42732599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127643A TWI504914B (zh) 2009-08-21 2010-08-19 磁場感測器與製造磁場感測器的方法

Country Status (8)

Country Link
US (1) US9030198B2 (zh)
EP (1) EP2467727B1 (zh)
JP (1) JP5619163B2 (zh)
KR (1) KR101762977B1 (zh)
CN (1) CN102483445B (zh)
DE (1) DE102009028815A1 (zh)
TW (1) TWI504914B (zh)
WO (1) WO2011020678A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047624A1 (de) 2009-12-08 2011-06-09 Robert Bosch Gmbh Magnetfeldsensor
DE102012204835A1 (de) 2012-03-27 2013-10-02 Robert Bosch Gmbh Sensor, Verfahren zum Herstellen eines Sensors und Verfahren zum Montieren eines Sensors
DE102012205268A1 (de) 2012-03-30 2013-10-02 Robert Bosch Gmbh Verfahren zum Herstellen von zumindest einer Kontaktierungsfläche eines Bauelementes und Sensor zum Aufnehmen einer Richtungskomponente einer gerichteten Messgröße
US9229066B2 (en) 2013-08-15 2016-01-05 Texas Instruments Incorporated Integrated fluxgate magnetic sensor and excitation circuitry
US11092656B2 (en) * 2015-05-12 2021-08-17 Texas Instruments Incorporated Fluxgate magnetic field detection method and circuit
CN106341764B (zh) * 2015-07-10 2020-12-01 罗伯特·博世有限公司 微机械声转换器装置以及相应的制造方法
US9577185B1 (en) * 2016-04-28 2017-02-21 Texas Instruments Incorporated Fluxgate device with low fluxgate noise
EP3382409B1 (en) * 2017-03-31 2022-04-27 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with integrated flux gate sensor
EP3477322B1 (en) 2017-10-27 2021-06-16 Melexis Technologies SA Magnetic sensor with integrated solenoid
US20220271570A1 (en) * 2021-02-24 2022-08-25 Aira, Inc. Integrated transmitter-transformer for wireless charging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831431A (en) * 1994-01-31 1998-11-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
CN1274853A (zh) * 1999-05-12 2000-11-29 阿苏拉布股份有限公司 形成在半导体基片上的磁传感器
US20030043010A1 (en) * 2000-03-06 2003-03-06 Chartered Semiconductor Manufacturing Ltd. Integrated helix coil inductor on silicon
TW200300496A (en) * 2001-10-29 2003-06-01 Yamaha Corp Magnetic sensor
JP2008288071A (ja) * 2007-05-18 2008-11-27 Fujikura Ltd 磁気近接スイッチ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442441C2 (de) 1994-01-31 1997-02-06 Fraunhofer Ges Forschung Miniaturisierte Spulenanordnung hergestellt in Planartechnologie zur Detektion von ferromagnetischen Stoffen
EP1052519B1 (fr) 1999-05-12 2005-06-01 Asulab S.A. Capteur magnétique réalisé sur un substrat semiconducteur
US20030004301A1 (en) 2000-11-03 2003-01-02 Dietmar Wandel Method of spinning, spooling, and stretch texturing polyester filaments and polyester filaments thereby produced
KR20050035251A (ko) 2002-08-01 2005-04-15 젠트론 아크티엔게젤샤프트 자기장 센서 및 자기장 센서의 작동 방법
JP4186593B2 (ja) * 2002-11-13 2008-11-26 松下電工株式会社 Dcブラシレスモータ及びそれを備えたdcポンプ
JP4487710B2 (ja) 2004-09-28 2010-06-23 ヤマハ株式会社 センサ及び同センサを用いた物理量の測定方法
FR2891917B1 (fr) 2005-10-07 2008-01-11 Billanco Capteurs de champ magnetique et de courant, procede de commande et noyau magnetique pour ces capteurs
US20100259349A1 (en) * 2009-04-09 2010-10-14 Qualcomm Incorporated Magnetic Film Enhanced Inductor
CN202929182U (zh) * 2012-11-20 2013-05-08 林志娟 一种磁传感器结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831431A (en) * 1994-01-31 1998-11-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
CN1274853A (zh) * 1999-05-12 2000-11-29 阿苏拉布股份有限公司 形成在半导体基片上的磁传感器
US20030043010A1 (en) * 2000-03-06 2003-03-06 Chartered Semiconductor Manufacturing Ltd. Integrated helix coil inductor on silicon
TW200300496A (en) * 2001-10-29 2003-06-01 Yamaha Corp Magnetic sensor
JP2008288071A (ja) * 2007-05-18 2008-11-27 Fujikura Ltd 磁気近接スイッチ

Also Published As

Publication number Publication date
TW201109699A (en) 2011-03-16
CN102483445A (zh) 2012-05-30
DE102009028815A1 (de) 2011-02-24
KR101762977B1 (ko) 2017-07-28
CN102483445B (zh) 2014-08-13
EP2467727A1 (de) 2012-06-27
WO2011020678A1 (de) 2011-02-24
US20120126799A1 (en) 2012-05-24
EP2467727B1 (de) 2013-09-11
US9030198B2 (en) 2015-05-12
JP2013502565A (ja) 2013-01-24
KR20120062721A (ko) 2012-06-14
JP5619163B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
TWI504914B (zh) 磁場感測器與製造磁場感測器的方法
US9417269B2 (en) Current sensor
JP5967423B2 (ja) 電線を流れる電流を測定するための装置
JP5411285B2 (ja) 磁気平衡式電流センサ
JP2018021925A (ja) 集積されたコイルを有する磁場センサのための方法及び装置
KR102299048B1 (ko) 금속 검지용 센서 및 해당 센서를 사용한 금속 검지 방법
US10670671B2 (en) Magnetic field sensor circuit in package with means to add a signal from a coil
US9678177B2 (en) Magnetic sensor device for suppressing magnetic saturation
US8680854B2 (en) Semiconductor GMI magnetometer
US10884077B2 (en) Inductance element for magnetic sensor and current sensor including the same
US10495671B2 (en) Current detection device
JP2009180608A (ja) Icチップ形電流センサ
US20130057266A1 (en) Magnetic balance type current sensor
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
JP5665422B2 (ja) 磁束検出装置および磁束検出装置の製造方法
JP5620075B2 (ja) 磁界センサおよびこれを用いた磁界測定方法
WO2010032825A1 (ja) 磁気結合型アイソレータ
WO2021016162A1 (en) Magnetic flux concentrator for in-plane direction magnetic field concentration
WO2022172565A1 (ja) 電流センサ
JP7332725B2 (ja) 磁気抵抗効果素子を用いた磁気センサおよび電流センサ
US20240219487A1 (en) Sensor device with circuit and integrated component for magneto-impedance measurement, and method of producing same
WO2015046206A1 (ja) 電流センサ
JP2017163094A (ja) 磁気センサ
JP6597076B2 (ja) 漏電検出器
JP2010091346A (ja) 回転検出装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees