TWI479730B - 不碎裂之固態氧化物燃料電池之電解質 - Google Patents

不碎裂之固態氧化物燃料電池之電解質 Download PDF

Info

Publication number
TWI479730B
TWI479730B TW099108262A TW99108262A TWI479730B TW I479730 B TWI479730 B TW I479730B TW 099108262 A TW099108262 A TW 099108262A TW 99108262 A TW99108262 A TW 99108262A TW I479730 B TWI479730 B TW I479730B
Authority
TW
Taiwan
Prior art keywords
electrolyte
fuel
region
interconnect
roughness
Prior art date
Application number
TW099108262A
Other languages
English (en)
Other versions
TW201042810A (en
Inventor
Martin Janousek
Tad Armstrong
Dien Nguyen
Ananda H Kumar
Original Assignee
Bloom Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bloom Energy Corp filed Critical Bloom Energy Corp
Publication of TW201042810A publication Critical patent/TW201042810A/zh
Application granted granted Critical
Publication of TWI479730B publication Critical patent/TWI479730B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

不碎裂之固態氧化物燃料電池之電解質
本發明大致上係關於燃料電池組件,且尤其係關於固態氧化物燃料電池。
本申請案主張2009年3月20日申請之美國臨時申請案第61/202,639號之優點,其全文以引用之方式併入本文中。
燃料電池係可以高效率將儲存於燃料中之能量轉換至電能的電子化學器件。電解器電池係可使用電能而減少一給定材料(例如水)來產生一燃料(例如氫)的電子化學器件。該等燃料電池及電解器電池可包括於燃料電池及電解模式兩者中操作之可逆式電池。
在一高溫燃料電池系統中,例如一固態氧化物燃料電池(SOFC)系統,氧化流通過該燃料電池之陰極側而燃料流通過該燃料電池之陽極側。該氧化流典型係空氣,而該燃料流可為一碳氫燃料,例如甲烷、天然氣、戊烷、乙醇或甲醇。操作於750℃及950℃之間之一典型溫度之該燃料電池使得負電荷氧離子從該陰極流流至該陽極流,其中該離子與遊離氫或碳氫分子中之氫組合以形成水蒸氣及/或與一氧化碳組合來形成二氧化碳。來自負電荷離子之過剩電子經過陽極與陰極之間完成之一電路而選路回至該燃料電池之該陰極側,導致流過該電路的一電流。一固態氧化物可逆式燃料電池(SORFC)系統從一燃料電池或放電模式中之燃料及氧化劑而產生電能及反應物產物,且在一電解或充電模式中使用電能而產生燃料及氧化劑。
燃料電池堆疊經常以由平面元件、管道或其他幾何之形式的多重電池而建立。燃料電池堆疊,尤其具平面幾何之堆疊通常使用介於電解質與互連表面之間的密封而在該堆疊中之多種位置包含燃料及空氣。如圖1中所顯示,內部用歧管供燃料之燃料電池堆疊中(即,其中燃料經過SOFC中之燃料上升管開口及在該堆疊中之互連件而提供)由電池電解質腐蝕而初始之電解質碎裂形成已在密封環處觀察到。一密封環係圍繞一給定SOFC之陰極(即空氣)側與一鄰近互連件(亦稱之為一氣體分離器板)之一空氣側之間之燃料進口及燃料出口上升管開口之一密封件。與在操作期間發生之壓力相關之此腐蝕在提高之溫度處(例如在900℃處2小時後)導致碎裂、電池碎裂及災難性故障,如圖2中所呈現。
本發明之一態樣提供一固態氧化物燃料電池(SOFC)堆疊,該堆疊包含複數個SOFC及複數個互連件,每個互連件在該互連件之空氣側上含有一導電鈣鈦礦層。內部用歧管供燃料之該堆疊及在每個互連件上之該導電鈣鈦礦層不暴露於該燃料進口上升管中。在本發明之另一態樣中,該SOFC電解質在鄰近於該電解質中之該等燃料進口及燃料出口開口處之區域具有一比該陰極電極或陽極電極之下更小之粗糙度。
在本發明之第一實施例中,本發明者意識到電池電解質腐蝕及碎裂可藉由減少或消除該燃料進口及廢氣流與塗佈於該互連件之該空氣側上(即,面對一燃料電池堆疊中之一鄰近SOFC之陰極電極的互連側)之一導電鈣鈦礦材料之間之接觸而減少或消除。因此,在內部用歧管供燃料之一堆疊中,在每個互連件上之該導電鈣鈦礦層不暴露於該等燃料進口及燃料出口上升管中。
不意欲受一特定理論而束縛,本發明者咸信該燃料之至少一個成分(例如氫)侵蝕該鈣鈦礦材料(例如鑭鍶錳氧化物)或其之一成分及/或與之反應。該鈣鈦礦材料或其之一成分接著侵蝕一玻璃密封材料或其之一成分及/或與之反應。此導致該玻璃密封材料之一崩解,且該玻璃材料之一個或多個成分及/或該鈣鈦礦材料之一個或多個成分接著侵蝕該燃料電池之陶瓷電解質及/或與之反應而造成電解質碎裂及/或腐蝕。藉由防止或減少該燃料與該鈣鈦礦材料之間之接觸,該碎裂及/或腐蝕被消除或減少。因此,本發明者發現與LSM及燃料氣體組合之該等SOFC玻璃密封件可腐蝕該電解質而導致碎裂形成。
圖3繪示一經過一平面固態氧化物燃料電池(SOFC)堆疊100之中間的側截面圖。該堆疊包括複數個固態氧化物燃料電池1及複數個互連件/氣體分離器板9。每個電池1包含一陽極電極3、一固態氧化物電解質5及一陰極電極7。該陽極電極3可包括具有一金屬相之一金屬陶瓷,例如鎳或氧化鎳相及一陶瓷相,例如一經摻雜之氧化鈰(例如摻雜氧化釤之氧化鈰或摻雜氧化釓之氧化鈰)及/或一穩定化氧化鋯,例如氧化釔穩定化氧化鋯或氧化鈧穩定化氧化鋯。該陽極3可包括一個或多個子層,該等子層包括上文描述之金屬陶瓷或陶瓷材料。該電解質5可包括一穩定化氧化鋯,例如氧化鈧穩定化氧化鋯(SSZ)或氧化釔穩定化氧化鋯(YSZ)。或者,該電解質5可包括另一離子導電材料,例如一經摻雜之氧化鈰。該陰極電極7可包括一導電材料,例如一導電鈣鈦礦材料,例如鑭鍶錳氧化物(LSM)。亦可使用其他導電鈣鈦礦,例如LSCo等,或金屬,例如Pt。
圖3顯示較低之SOFC 1位於兩個互連件9之間。每個互連件/氣體分離器板9分離燃料,例如一氫及/或一碳氫燃料,其從氧化劑(例如空氣)流至該堆疊中之一電池之燃料電極處(即,陽極3),流至該堆疊中之一鄰近電池之空氣電極(即,陰極7)。該互連件9含有肋狀物10之間之氣體流道或通道8。該互連件電性連接一電池之該燃料電極3至該鄰近電池之該空氣電極7。該互連件由導電材料組成或含有導電材料,例如鉻或其一合金,例如鉻鐵、鉻釔、鉻鐵釔等。將一第一導電接觸層,例如一鈣鈦礦層11設置於該互連件9之該空氣側上(即,在該互連件與一鄰近燃料電池1之該陰極電極7之間)。層11塗佈該等肋狀物10之頂部,該等肋狀物10之側面(為了清楚而未圖示)及該等流道8之底部。該鈣鈦礦層11較佳地為LSM,但亦可包括其他鈣鈦礦材料,例如鑭鍶鉻氧化物或鈷酸鹽。可將一選用第二導電接觸層(未圖示)例如一鎳接觸層提供於該互連件之該燃料側上(即,在該陽極電極與該互連件之間)。
雖然在圖3中顯示垂直配向之堆疊,該等燃料電池可水平堆疊或以在垂直與水平之間之任意適宜方向中堆疊。在此使用之術語「燃料電池堆疊」意指共用一共同燃料進口及排氣道或上升管之複數個成堆疊之燃料電池。在此使用之「燃料電池堆疊」包含一不同電性實體,該實體含有兩個連接至功率調節設備及該堆疊之功率(即電)輸出之末端板。因此,在一些組態中,來自此一不同電性實體之電功率輸出可與其他堆疊分開地控制。在此使用之該術語「燃料電池堆疊」亦包含該不同電性實體之一部分。例如,該等堆疊可共用相同之末端板。在此情況下,該等堆疊一起地包括一不同電性實體。在此情況下,來自兩堆疊之該電力功率輸出無法分開控制。
圖4A顯示一例示性互連件9之空氣側。該互連件可用於內部用歧管供燃料且外部用歧管供空氣之一堆疊中。該互連件在肋狀物10之間含有空氣流道或通道8,以允許空氣從該互連件之一側13流至該互連件之相對側14。密封環15位於圍繞燃料進口及出口開口16A、16B處(即,互連件9中之通孔16A、16B)。密封條(未圖示)位於該互連件1之橫向側。圖4B呈現一例示性密封件15、流道8及肋狀物10之一放大視圖。該等密封件15可包括任意適宜密封玻璃或玻璃陶瓷材料,例如硼矽玻璃。或者,該等密封件15可包括申請於2008年11月12日之美國申請案第12/292,078號中描述之一玻璃陶瓷材料,該申請案以引用之方式併入本文中。較佳地,該密封玻璃對於LSM成分(例如Mn)具有一非常低之溶解度及一低擴散係數來防止該燃料與該LSM或其成分反應。
若須要,該互連件9可在該密封件15之下含有一升起或凸起區域。若須要,該互連件可經組態用於內部用歧管供空氣及燃料兩者之一堆疊。在該情況下,該互連件及對應之燃料電池電解質亦將含有額外空氣進口及出口開口。
圖4C繪示該互連件9之該燃料側。一密封窗18位於該互連件9之週邊。圖中亦顯示燃料分佈充氣室17及在肋狀物10之間之燃料流道8。重要的是要注意在圖4C中顯示之該互連件具有兩個種類之燃料流道;然而,其並非是本發明之一限制。一互連件之該燃料側可有具有全部相同深度及長度或短與長及/或深與淺流道之一組合之燃料流道。
圖5A繪示該堆疊100之一SOFC 1之一俯視圖。如圖5A中所示,該SOFC 1以該電解質5之空氣側向上而定位。該陰極電極7位於該電解質5之中間部分。該陽極電極3位於該電解質之底部,且圖5A中未顯示。該電解質5含有一燃料進口開口26A及一燃料出口開口26B。該電解質亦含有分別圍繞該等開口26A、26B之環形區域27A、27B,及一週邊區域28,該區域28將參考下文之第二實施例更詳細描述。圖3中顯示之該堆疊之側截面圖沿著圖4A及圖5A中之線A-A而獲得。該SOFC 1經組態用於內部用歧管供燃料且外部用歧管供空氣之一堆疊。或者,該SOFC 1可經組態以用於內部用歧管供空氣及燃料兩者之一堆疊。在該情況下,該電解質將含有額外空氣進口及出口開口。
電解質5中之開口26A、26B與該互連件9中各自之開口16A、16B對準,以形成該堆疊之該等燃料進口及出口上升管之部分,如下文將參考圖6而更詳細描述。一燃料上升管係一系列之經過該互連件9及/或經過該SOFC 1之一層或多層(例如該陽極、陰極及/或電解質,一燃料進口或燃料出口流通過其而穿過該堆疊100)而連接之開口。
圖6繪示該SOFC堆疊100之該燃料進口上升管部分沿圖4B及圖5A中線B-B之一側截面圖之一部分。圖6繪示在每個互連件9上之該導電鈣鈦礦層(例如一LSM層11)如何不暴露於該燃料進口上升管36中(即,不暴露於經過該燃料進口上升管之該燃料進口流通道或路徑)。該導電鈣鈦礦層11不位於鄰近於每個互連件9之該空氣側上之至少該燃料進口開口16A處。例如,層11覆蓋該互連件9(包含該等通道8及肋狀物10)之一整個空氣側,除了鄰近於該互連件中之該燃料進口開口16A及一燃料出口開口16B之區域。例如,層11可從由該等環形密封件15覆蓋之區域中省略。
因此,如圖6中所顯示,一環形玻璃(或玻璃陶瓷)密封件15位於該導電鈣鈦礦層11之一第一邊緣表面12與該燃料進口開口16A(即,該燃料進口上升管36之一部分)之間之每個互連件9之該空氣側上。該密封件15中之內部開口位在該互連件中之開口16A之上,該內部開口形成該燃料進口上升管36之一部分。該密封件15亦接觸鄰近於該電解質中之一燃料進口開口26A之一區域中之一鄰近SOFC 1的一電解質5,使得該電解質中之該開口26A、該密封件15中之該內部開口及該互連件中之該開口16A形成該燃料進口上升管36之一更大部分。因此,該LSM層11不形成該燃料進口上升管36之一側壁,且不暴露至該燃料進口上升管中之燃料流。該LSM層11從該燃料進口上升管處偏移一距離37A。圖7顯示該互連件9之一部分的一照片,其中該LSM層11從該燃料開口偏移。
如圖4A中所顯示,一第二環形玻璃密封件15位於該導電鈣鈦礦層11之一第二邊緣表面與該燃料出口開口16B之間之每個互連件9之空氣側上。該第二密封件中之一內部開口位於該互連件9中之該開口16B(即,該出口開口)之上。該第二密封件與鄰近該電解質中之燃料出口開口26B之一鄰近SOFC之電解質接觸。該電解質中之開口26B,該第二密封件15中之該內部開口及該互連件中之該開口16B形成該燃料出口上升管之一部分。該導電鈣鈦礦層11亦不暴露於該燃料出口上升管中。
在不希望被一特定理論而束縛下,咸信該密封件15防止上升管36中之該燃料進口流與該偏移LSM層11之間之接觸,如圖6中所顯示。因此,該燃料(例如氫)不侵蝕該LSM層11及/或與之反應。該LSM層11繼而不侵蝕一玻璃密封件15材料或其之一成分及/或與之反應。此避免了該玻璃密封材料之崩解。因此,藉由防止或減少該燃料與該鈣鈦礦材料之間之接觸,該碎裂及/或腐蝕可被消除或減少。
相反,如圖8中所呈現,在該先前技術SOFC堆疊中,該LSM層11形成該燃料進口上升管36之一部分(即,層11形成該上升管之側壁的一部分)。該密封件15位於該LSM層11之上。在該先前技術組態中,咸信該燃料之至少一個成分(例如氫)侵蝕該LSM及/或與之反應,該成分接著侵蝕一玻璃密封材料或其之一成分及/或與之反應。此導致該玻璃密封材料的一崩解,且該玻璃材料的一個或多個成分及/或該鈣鈦礦材料的一個或多個成分接著侵蝕該燃料電池之陶瓷電解質5及/或與之反應,以造成電解質碎裂及/或腐蝕,如圖8中用箭頭所呈現。
在本發明之一第二實施例中,該電解質5之至少一側(例如該空氣側)在鄰近於該等燃料進口開口及燃料出口開口26A、26B之第一區域27A及第二區域27B中具有小於該陰極電極7下之一第三區域中的一粗糙度,如圖5A及圖5B中所顯示。區域27A、27B可包括圍繞該等燃料進口開口及出口開口26A、26B之環形區域。區域27A、27B可具有任意適宜形狀,例如空心圓、橢圓形、多邊形等。該燃料電池電極,例如該陽極或陰極可具有一筆直的邊緣,如圖5A中所呈現,其中該等區域27A、27B位於鄰近於該等筆直邊緣處。或者,該等平滑電解質區域27A、27B之邊界可突出進入至該等電極3或電極7之側部分中。在該情況下,該等電極3、電極7可具有一彎曲之側邊緣,如圖5B中所示。
較佳地,該等第一及第二實施例組合使用。換句話說,該偏移LSM層11可與該電解質5上之平滑區域27A、27B組合使用。因此,該等密封環15位於與區域27A、27B接觸。區域27A、27B可具有與該等密封環15大約相同之尺寸(即,直徑及/或面積)。然而,若須要,區域27A、27B可具有大於或小於該等密封件15之尺寸。此外,該等第一及第二實施例可分開使用,且該堆疊100可僅含有該第一實施例之該偏移互連LSM層11或該第二實施例之該(等)平滑電解質區域27A、27B之一者。
例如,該電解質5之空氣側具有一小於4微英寸之一粗糙度Ra ,例如在該第一區域27A及該第二區域27B中為1微英寸至3微英寸,且在該陰極電極7下之該第三區域中具有大於32微英寸之一粗糙度,例如35微英寸至75微英寸。
該電解質5亦包含週邊第四區域28。區域28圍繞該等陽極或陰極電極3或7及在該(等)電極下之該電解質5之主動區域。區域28排除了該等第一區域27A、第二區域27B及第三(電極之下)區域。該第四區域28可具有大於該等第一區域27A及第二區域27B之粗糙度之一粗糙度且其等於或小於該(等)電極之下之第三區域的一粗糙度。例如,區域28可具有8-75微英寸之一粗糙度,例如8-12微英寸。
雖然圖5A及圖5B中顯示該電解質5之該空氣側,應注意該電解質之該燃料側亦可含有代替該電解質之該空氣側上之相同區域或除了該電解質之該空氣側上之相同區域之外,比該陽極電極之下之一第三區域平滑之鄰近於該等燃料進口開口及燃料出口開口之第一區域及第二區域。
圖3及圖6中顯示形成一平面、電解質支撐之SOFC堆疊的一方法,該方法包含形成SOFC 1及互連件9,且在一堆疊100中交替此等SOFC及互連件。形成該SOFC 1之方法包括提供具有一初始粗糙度之一生胚陶瓷電解質。該生胚電解質可藉由薄帶鑄造成形或其他適宜陶瓷製造方法而形成。該生胚電解質含有一接合劑及視需要在後續燒製或燒結期間移除之其他適宜添加劑。該生胚電解質可具有8-12微英寸之一鑄造狀態之粗糙度Ra
接著,該等燃料進口開口及燃料出口開口26A、26B係在生胚電解質中打孔。該等開口26A、26B可在該電解質5從一生胚薄帶形成至其最終形狀之後而打孔。或者,該電解質5可從一生胚薄帶在如該等開口26A、26B之打孔步驟相同之打孔步驟期間打孔至其最終形狀(例如一矩形形狀)。換句話說,相同之打孔裝置可用於從該生胚薄帶打出該電解質,且在一單一打孔步驟期間在該電解質中形成開口。較佳地,該打孔模具具有鄰近用於將該等開口打孔之該頂端部分的一更平滑表面。該打孔模具之該平滑表面使該電解質5之區域27A、27B中之表面平滑,使得此等區域具有小於4微英寸之一粗糙度。相對之打孔模具可具有鄰近於用於將該等開口之頂端打孔之相對之平滑表面,以在該電解質5之兩側形成平滑區域27A、27B。或者,僅一個模具可具有一平滑表面以僅在該電解質5之一側形成平滑區域。
該打孔裝置之一個或兩個模具亦可視需要具有一粗糙表面以將該陰極電極及/或陽極電極之下之該電解質5之一側或兩側上之作用區域粗糙化,來達成大於32微英寸之一粗糙度。因此,該電解質可為經打孔、繞著該等開口而平滑化及在相同打孔/壓製步驟中在該作用區域內粗糙化。週邊區域28可留為約8-12微英寸之初始鑄造狀態之粗糙度,或其可與該(等)作用區域一起粗糙化。或者,可使用描述於美國專利第7,045,237號(其全文藉由引用併入本文)中之其他適宜平滑及/或粗糙化方法來代替該等模具打孔方法。
在該平滑/粗糙化步驟之後,一陰極電極形成於一第三粗糙化區域中之該電解質之該第一側上,且一陽極電極形成於該電解質之該第二側上(例如該電解質之該燃料側上之一粗糙化區域上)。該等電極可藉由網版印刷或其他適宜沈積方法來形成。該電解質、陰極電極及該陽極電極之至少一者接著被燒製或燒結。可實行一個或多個燒製或燒結步驟。例如,一加熱步驟可在該打孔後實行,另一加熱步驟在該陰極沈積之後實行,且一第三加熱步驟在該陽極沈積之後實行。該陽極及陰極沈積可以任一次序執行。該等三個加熱步驟可組合為兩個加熱步驟或在兩個電極沈積之後組合為一單一加熱步驟。
本發明之前述描述已出於繪示及描述之目的而呈現。其並非意欲為詳盡的,或並非意欲限制本發明至精確之揭示形式,且按照上述教示,修正及變動係可行的或可從本發明之實踐中獲得。選擇本描述來解釋本發明之原理及其實際應用。預期本發明之範圍由在此所附請求項及其等之等效內容來定義。
1...固態氧化物燃料電池
3...陽極電極
5...電解質
7...陰極電極
8...流道
9...氣體分離板/互連件
10...肋狀物
11...導電鈣鈦礦層
13...互連件之一側
14...互連件之另一側
15...環形玻璃密封件
16A...燃料進口開口
16B...燃料出口開口
17...燃料分佈充氣室
18...密封窗
26A...燃料進口開口
26B...燃料出口開口
27A...環形區域
27B...環形區域
28...週邊區域
36...燃料進口上升管
37A...距離
100...固態氧化物燃料電池堆疊
圖1及圖2係顯示先前技術之SOFC堆疊中電池電解質腐蝕及碎裂的照片。圖1係腐蝕之放大圖,且圖2係含有一碎裂(用圓圈標識)之一SOFC的俯視圖。
圖3繪示沿本發明之一實施例的圖4A及圖5A中之線A-A之一SOFC堆疊的一側截面圖。
圖4A及圖4B係本發明之一實施例之一互連件之一空氣側之俯視圖。圖4C係該互連件之一燃料側之一俯視圖。
圖5A及圖5B係本發明之一實施例之燃料電池之一空氣側之俯視圖。
圖6繪示沿本發明之一實施例的圖4B及圖5A中之線B-B之一SOFC堆疊之一側截面圖之一部分。
圖7係一燃料電池堆疊之一區域之一照片,其中該LSM繞著該燃料開口而移除。
圖8繪示一先前技術SOFC堆疊之一側截面圖之一部分。
1...SOFC
5...電解質
7...陰極電極
26A...燃料進口開口
26B...燃料出口開口
27A...環形區域
27B...環形區域
28...週邊區域

Claims (26)

  1. 一種固態氧化物燃料電池(SOFC)堆疊,其包括:複數個SOFC;及複數個互連件,每個互連件包括:一燃料進口開口;一燃料出口開口;在該互連件之一空氣側上之複數個第一流通道;在該互連件之一燃料側上之第二複數個流通道;及一導電鈣鈦礦層,其覆蓋除了鄰近於該燃料進口開口及該燃料出口開口之區域以外的該互連件之空氣側;其中:該堆疊在內部用歧管供燃料;且在每個互連件上之該導電鈣鈦礦層不暴露於一燃料進口上升管中。
  2. 如請求項1之堆疊,其中該導電鈣鈦礦層不位於鄰近於每個互連件之該空氣側上之至少一個燃料進口開口。
  3. 如請求項2之堆疊,其進一步包括位於該導電鈣鈦礦層之一第一邊緣表面與該燃料進口開口之間之每個互連件之該空氣側上之一第一密封件。
  4. 如請求項3之堆疊,其中該第一密封件包括一環形玻璃密封件,使得該第一密封件中之一內部開口位於該互連件中之該燃料進口開口之上以形成該燃料進口上升管之 一第一部分。
  5. 如請求項4之堆疊,其中該第一密封件與鄰近於該電解質中之一燃料進口開口之一鄰近SOFC之一電解質接觸,使得在該電解質中之該燃料進口開口、該第一密封件中之該內部開口及該互連件中之該燃料進口開口形成該燃料進口上升管之一第二部分。
  6. 如請求項5之堆疊,其中該導電鈣鈦礦層包括一LSM層,該LSM層覆蓋除了鄰近於該互連件中之該燃料進口開口及一燃料出口開口之區域以外的該互連件之一整個空氣側。
  7. 如請求項6之堆疊,其進一步包括位於該導電鈣鈦礦層之一第二邊緣表面與該燃料出口開口之間之每個互連件之該空氣側上之一第二密封件。
  8. 如請求項7之堆疊,其中:該第二密封件包括一環形玻璃密封件;該第二密封件中之一內部開口位於該互連件中之該燃料出口開口上;該第二密封件與鄰近於該電解質中之一燃料出口開口之一鄰近SOFC之一電解質接觸;該電解質中之該燃料出口開口、該第二密封件中之該內部開口及該互連件中之該燃料出口開口形成該燃料出口上升管之一部分;且該導電鈣鈦礦層不暴露於該燃料出口上升管中。
  9. 如請求項8之堆疊,其中: 該複數個SOFC之每個SOFC包括一固態氧化物電解質、位於該電解質之一第一側上之一陰極電極及位於該電解質之一第二側上之一陽極電極;該陰極電極面對一鄰近互連件之該空氣側上之該導電鈣鈦礦層;且該陽極電極面對另一鄰近互連件之一燃料側。
  10. 如請求項9之堆疊,其中該電解質之該第一側在鄰近於該電解質中之該燃料進口開口及該燃料出口開口之第一區域及第二區域中比在該陰極電極之下之一第三區域中更平滑。
  11. 如請求項10之堆疊,其中該電解質之該第一側在該等第一及第二區域中具有小於4微英寸之一粗糙度,且在該第三區域中具有大於32微英寸之一粗糙度。
  12. 如請求項1之堆疊,其中該堆疊在外部用歧管供空氣。
  13. 一種用於一固態氧化物燃料電池堆疊之平面互連件,其包括:一燃料進口開口;一燃料出口開口;在該互連件之一空氣側上之複數個第一流通道;在該互連件之一燃料側上之第二複數個流通道;及一導電鈣鈦礦層,其覆蓋除了鄰近於該燃料進口開口及該燃料出口開口之區域以外的該互連件之空氣側。
  14. 如請求項13之互連件,其中該導電鈣鈦礦層包括LSM且該等區域包括圍繞該燃料進口開口及該燃料出口開口之 環形區域。
  15. 一種固態氧化物燃料電池(SOFC),其包括:一固態氧化物電解質,其包括一燃料進口開口及一燃料出口開口;位於該電解質之一第一側上之一陰極電極;及位於該電解質之一第二側上之一陽極電極;其中該電解質之該第一側在鄰近於該等燃料進口開口及燃料出口開口之第一區域及第二區域中具有比在該陰極電極之下之一第三區域中更小的一粗糙度。
  16. 如請求項15之SOFC,其中該電解質之該第一側在該等第一及第二區域中具有小於4微英寸之一粗糙度,且在該第三區域中具有大於32微英寸之一粗糙度。
  17. 如請求項15之SOFC,其進一步包括在排除該等第一、第二及第三區域之該電解質之該第一側上之一週邊第四區域,該第四區域具有大於該等第一及第二區域之一粗糙度且等於或小於該第三區域之一粗糙度的一粗糙度。
  18. 如請求項15之SOFC,其中該電解質之該第二側在鄰近於該等燃料進口開口及燃料出口開口之第一區域及第二區域中係比在該陽極電極之下之一第三區域中更平滑。
  19. 一種製造一固態氧化物燃料電池(SOFC)之方法,該方法包括:提供具有一初始粗糙度之一生胚陶瓷電解質;用具有一平滑表面部分之一打孔機在該電解質中打出燃料進口開口及燃料出口開口,使得該電解質之該第一 側在鄰近於該等燃料進口開口及燃料出口開口之第一區域及第二區域中具有比該初始粗糙度更小的一粗糙度;在一第三區域中之該電解質之該第一側上形成一陰極電極;在該電解質之該第二側上形成一陽極電極;且繞製該電解質、陰極電極及陽極電極之至少一者。
  20. 如請求項19之方法,其進一步包括在形成該陰極電極之前將該電解質之該第一側之該第三區域粗糙化,使得該第三區域具有高於該初始粗糙度之一粗糙度。
  21. 如請求項20之方法,其中排除該等第一、第二及第三區域之該電解質的該第一側上之一週邊第四區域具有大於該等第一及第二區域之一粗糙度且等於或小於該第三區域之一粗糙度的一粗糙度。
  22. 如請求項21之方法,其中該電解質包括一薄帶鑄造成形電解質且該第四區域具有鑄造狀態之初始粗糙度。
  23. 如請求項22之方法,其進一步包括在該電解質中打孔該等燃料進口開口及燃料出口開口之步驟期間從一生胚薄帶打孔該電解質。
  24. 如請求項21之方法,其中該電解質之該第一側在該等第一及第二區域內具有小於4微英寸之一粗糙度,在該第三區域內具有大於32微英寸之一粗糙度,且在該第四區域內具有8微英寸至12微英寸之一粗糙度。
  25. 如請求項20之方法,其中粗糙化該第三區域之步驟包括將該打孔機之一粗糙表面部分在打孔之步驟期間壓入該 第三區域內。
  26. 如請求項19之方法,其中該電解質之該第二側在鄰近於該等燃料進口及燃料出口上升管開口之第一區域及第二區域中比在該陽極電極下之一第三區域中更平滑。
TW099108262A 2009-03-20 2010-03-19 不碎裂之固態氧化物燃料電池之電解質 TWI479730B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20263909P 2009-03-20 2009-03-20

Publications (2)

Publication Number Publication Date
TW201042810A TW201042810A (en) 2010-12-01
TWI479730B true TWI479730B (zh) 2015-04-01

Family

ID=42737949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099108262A TWI479730B (zh) 2009-03-20 2010-03-19 不碎裂之固態氧化物燃料電池之電解質

Country Status (3)

Country Link
US (1) US8663869B2 (zh)
TW (1) TWI479730B (zh)
WO (1) WO2010108057A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691470B2 (en) 2008-11-12 2014-04-08 Bloom Energy Corporation Seal compositions, methods, and structures for planar solid oxide fuel cells
US10087103B2 (en) 2008-11-12 2018-10-02 Bloom Energy Corporation Seal compositions, methods, and structures for planar solid oxide fuel cells
US9054348B2 (en) * 2011-04-13 2015-06-09 NextTech Materials, Ltd. Protective coatings for metal alloys and methods incorporating the same
TWI552417B (zh) 2011-11-17 2016-10-01 博隆能源股份有限公司 對氧化鋯為主之電解質提供抗腐蝕性之多層塗層
WO2013074918A1 (en) 2011-11-18 2013-05-23 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US10431833B2 (en) 2012-03-01 2019-10-01 Bloom Energy Corporation Coatings for metal interconnects to reduce SOFC degradation
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US8968509B2 (en) 2013-05-09 2015-03-03 Bloom Energy Corporation Methods and devices for printing seals for fuel cell stacks
WO2015050855A1 (en) 2013-10-01 2015-04-09 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10147955B2 (en) 2015-05-28 2018-12-04 Uti Limited Partnership High performance oxygen and fuel electrode for reversible solid oxide fuel cell applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074650A1 (en) * 2002-02-20 2005-04-07 Ion America Corporaton Textured electrolyte for a solid oxide fuel cell
US20080081223A1 (en) * 2004-08-10 2008-04-03 Central Research Institute Of Electric Power Industry, A Corp. Of Japan Film Formed Article

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723947A1 (de) * 1977-05-27 1978-11-30 Varta Batterie Elektrodenplatte fuer bleiakkumulatoren
US4755429A (en) * 1986-11-03 1988-07-05 International Fuel Cells Corporation Composite graphite separator plate for fuel cell stack
US4913982A (en) * 1986-12-15 1990-04-03 Allied-Signal Inc. Fabrication of a monolithic solid oxide fuel cell
US5045413A (en) * 1989-05-03 1991-09-03 Institute Of Gas Technology Fully internal mainfolded fuel cell stack
JPH03145522A (ja) 1989-11-01 1991-06-20 Yoshitane Tanaka エンヂン用ピストンとクランクシヤフト
US5290642A (en) * 1990-09-11 1994-03-01 Alliedsignal Aerospace Method of fabricating a monolithic solid oxide fuel cell
US5162167A (en) * 1990-09-11 1992-11-10 Allied-Signal Inc. Apparatus and method of fabricating a monolithic solid oxide fuel cell
US5256499A (en) * 1990-11-13 1993-10-26 Allied Signal Aerospace Monolithic solid oxide fuel cells with integral manifolds
US5248712A (en) * 1990-12-21 1993-09-28 Takeda Chemical Industries, Ltd. Binders for forming a ceramics sheet and applications thereof
US5382315A (en) * 1991-02-11 1995-01-17 Microelectronics And Computer Technology Corporation Method of forming etch mask using particle beam deposition
JPH04292865A (ja) * 1991-03-20 1992-10-16 Ngk Insulators Ltd 固体電解質型燃料電池
US5215946A (en) * 1991-08-05 1993-06-01 Allied-Signal, Inc. Preparation of powder articles having improved green strength
US5273837A (en) * 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
JP3145522B2 (ja) 1993-01-18 2001-03-12 三菱重工業株式会社 固体電解質型燃料電池
US5368667A (en) * 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
JP3267034B2 (ja) 1993-03-10 2002-03-18 株式会社村田製作所 固体電解質型燃料電池の製造方法
US5342705A (en) * 1993-06-04 1994-08-30 Allied-Signal, Inc. Monolithic fuel cell having a multilayer interconnect
JP3064167B2 (ja) * 1993-09-01 2000-07-12 三菱重工業株式会社 固体電解質燃料電池
US5589285A (en) * 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
JP3349245B2 (ja) * 1994-03-04 2002-11-20 三菱重工業株式会社 固体電解質型燃料電池の製造方法
US5494700A (en) * 1994-04-05 1996-02-27 The Curators Of The University Of Missouri Method of coating a substrate with a metal oxide film from an aqueous solution comprising a metal cation and a polymerizable organic solvent
US5453331A (en) * 1994-08-12 1995-09-26 University Of Chicago Compliant sealants for solid oxide fuel cells and other ceramics
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same
DE69514987T2 (de) * 1994-11-09 2000-06-29 Ngk Insulators Ltd Keramische Grünfolie und Verfahren zur Herstellung keramisches Substrat
US5641585A (en) * 1995-03-21 1997-06-24 Lockheed Idaho Technologies Company Miniature ceramic fuel cell
JPH09199143A (ja) 1996-01-19 1997-07-31 Murata Mfg Co Ltd 固体電解質型燃料電池の製造方法
JPH09223506A (ja) 1996-02-14 1997-08-26 Murata Mfg Co Ltd 固体電解質型燃料電池の製造方法
JPH09245811A (ja) 1996-03-12 1997-09-19 Murata Mfg Co Ltd 固体電解質型燃料電池の製造方法
JPH09245810A (ja) 1996-03-12 1997-09-19 Murata Mfg Co Ltd 固体電解質型燃料電池の製造方法
JPH09277226A (ja) 1996-04-15 1997-10-28 Murata Mfg Co Ltd 固体電解質型燃料電池の製造方法
AUPO724997A0 (en) * 1997-06-10 1997-07-03 Ceramic Fuel Cells Limited A fuel cell assembly
JP2000281438A (ja) 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd ジルコニアシート及びその製法
US7163713B2 (en) * 1999-07-31 2007-01-16 The Regents Of The University Of California Method for making dense crack free thin films
US6361892B1 (en) * 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
EP1113518B1 (en) * 1999-12-27 2013-07-10 Corning Incorporated Solid oxide electrolyte, fuel cell module and manufacturing method
US6589681B1 (en) * 2000-03-06 2003-07-08 Hybrid Power Generation Systems Llc Series/parallel connection of planar fuel cell stacks
US6835488B2 (en) * 2000-05-08 2004-12-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with patterned electrolyte/electrode interface
US6638575B1 (en) * 2000-07-24 2003-10-28 Praxair Technology, Inc. Plasma sprayed oxygen transport membrane coatings
US20040200187A1 (en) * 2002-11-27 2004-10-14 Warrier Sunil G. Compliant, strain tolerant interconnects for solid oxide fuel cell stack
US8048587B2 (en) * 2002-11-27 2011-11-01 Delphi Technologies, Inc. Compliant current collector for fuel cell anode and cathode
WO2004049483A2 (en) * 2002-11-28 2004-06-10 Global Thermoelectric Inc. Solid oxide fuel cell stack
US20050017055A1 (en) * 2003-07-24 2005-01-27 Kurz Douglas L. Electrochemical fuel cell component materials and methods of bonding electrochemical fuel cell components
US20050136312A1 (en) * 2003-12-22 2005-06-23 General Electric Company Compliant fuel cell system
US20050227134A1 (en) * 2004-04-13 2005-10-13 Ion American Corporation Offset interconnect for a solid oxide fuel cell and method of making same
JP2006190593A (ja) * 2005-01-07 2006-07-20 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池スタックとその製造方法
US7951509B2 (en) * 2006-04-03 2011-05-31 Bloom Energy Corporation Compliant cathode contact materials
US8691470B2 (en) * 2008-11-12 2014-04-08 Bloom Energy Corporation Seal compositions, methods, and structures for planar solid oxide fuel cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074650A1 (en) * 2002-02-20 2005-04-07 Ion America Corporaton Textured electrolyte for a solid oxide fuel cell
US20080081223A1 (en) * 2004-08-10 2008-04-03 Central Research Institute Of Electric Power Industry, A Corp. Of Japan Film Formed Article

Also Published As

Publication number Publication date
TW201042810A (en) 2010-12-01
WO2010108057A3 (en) 2011-01-13
WO2010108057A2 (en) 2010-09-23
US8663869B2 (en) 2014-03-04
US20100239937A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
TWI479730B (zh) 不碎裂之固態氧化物燃料電池之電解質
JP6214546B2 (ja) ジルコニア系電解質に耐食性を付与する多層コーティング
US8968956B2 (en) Fuel cell repeat unit and fuel cell stack
US10347930B2 (en) Perimeter electrolyte reinforcement layer composition for solid oxide fuel cell electrolytes
JP2016167372A (ja) 燃料電池スタック
WO2009122768A1 (ja) 固体電解質形燃料電池とその製造方法
US20230155157A1 (en) Fuel cell column including stress mitigation structures
KR101670800B1 (ko) 고체산화물 연료전지용 셀 및 그 제조방법
JP2005203255A (ja) 燃料電池のマニホールド構造
KR101174407B1 (ko) 고체전해질 연료전지의 제조방법
JP7368402B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP2009009738A (ja) 固体電解質形燃料電池及びその製造方法
JP5326330B2 (ja) 固体電解質形燃料電池とその製造方法
US10411274B2 (en) Arrangement of electrochemical cells and the use of the same
JP5203635B2 (ja) 固体酸化物形燃料電池スタック及びモノリス形固体酸化物形燃料電池
JP4228895B2 (ja) 固体酸化物型燃料電池
KR20240096299A (ko) 고체산화물 셀 및 고체산화물 셀 스택
KR101116281B1 (ko) 평관형 고체산화물 단위 셀의 밀봉장치
JP2012094322A (ja) 燃料電池セル
KR20120038946A (ko) 고체전해질 연료전지의 제조방법 및 이에 의한 고체전해질 연료전지
JP2012084401A (ja) 固体電解質型燃料電池、及びその製造方法