TWI427038B - 氫氧化鋁之製造方法 - Google Patents

氫氧化鋁之製造方法 Download PDF

Info

Publication number
TWI427038B
TWI427038B TW96122707A TW96122707A TWI427038B TW I427038 B TWI427038 B TW I427038B TW 96122707 A TW96122707 A TW 96122707A TW 96122707 A TW96122707 A TW 96122707A TW I427038 B TWI427038 B TW I427038B
Authority
TW
Taiwan
Prior art keywords
ath
ranging
slurry
particles
spray
Prior art date
Application number
TW96122707A
Other languages
English (en)
Other versions
TW200806582A (en
Inventor
Rene Gabriel Erich Herbiet
Norbert Wilhelm Puetz
Volker Ernst Willi Keller
Winfried Toedt
Original Assignee
Martinswerk Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martinswerk Gmbh filed Critical Martinswerk Gmbh
Publication of TW200806582A publication Critical patent/TW200806582A/zh
Application granted granted Critical
Publication of TWI427038B publication Critical patent/TWI427038B/zh

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

氫氧化鋁之製造方法
本發明係關於用於製造氫氧化鋁阻燃劑之新穎方法。
氫氧化鋁具有各種不同名稱例如水合鋁、三水合鋁等,但是一般稱為ATH。ATH粒子供應使用在許多材料,舉例而言,例如塑膠、橡膠、熱固物、紙等中作為填料。此等產物供應使用在多種多樣商業應用方面例如電線和電纜化合物、運送機帶、熱塑性塑膠模製、壁護套、地板等。一般,使用ATH來改良此等材料的阻然性且亦作為煙霧抑制劑。
用於合成ATH之方法在該技藝中係眾所周知。然而,特製ATH等級的要求日漸增加,但是目前方法不能產生此等等級。因此,有日漸增加之要求製造ATH之優良方法。
較高之配合產量通過使用具有較佳潤濕性之ATH在所選擇之合成材料(樹脂)中可獲得。合成樹脂中具有不良潤濕性之ATH導致在合成期間合成馬達的功率圖之較大變更,其順次,在最佳時導致穩定化合物品質、低產量,且隨著時間過去,可能顯示配合機器的引擎損壞之相當大風險。
因此,一個實施例中,本發明係關於可製造具有改良潤濕性之ATH之方法。此實施例中,本發明包括:濕式研磨一種漿體其包括基於該漿體的總重量,範圍自約1至約80wt%ATH,因此產生研磨之ATH漿體,及噴霧乾燥該研磨之ATH漿體因此產生經噴霧乾燥之ATH。
其中,濕式研磨係在一種液體存在時,使用球形研磨介質予以實施,此球形研磨介質具有自約0.1mm至約1.0mm範圍內之直徑及自約1.5至約3g/cm範圍內之密度。
ATH粒子對於樹脂的潤濕性係基於ATH粒子的形態學,關於此發明人意外地發現經由使用本發明的方法,相對於目前可供利用之ATH粒子,可製造具有改良潤濕性之ATH粒子。雖然不希望受理論所約束,關於此,發明人確信此改良之潤濕性係可歸因於經由本文中所揭示之方法所產生之ATH粒子的形態學改良。
漿體
存在於經濕式研磨之漿體中的ATH粒子數量通常是基於漿體的總重量,範圍自約1至約40wt%,較佳範圍自約5至約40wt%,更佳範圍自約10至約35wt%,最佳範圍自約20至約30wt%,全部基於相同基礎。
實施本發明時予以經濕式研磨之ATH漿體可自製造ATH粒子所使用之任何方法獲得。該漿體較佳自包括通過沉澱和過濾來產生ATH粒子之方法獲得。一例示之實施例中,漿體自一種方法獲得,此方法包括:溶解粗氫氧化鋁在苛性鈉中以形成鋁酸鈉液,將其冷卻並過濾,因此形成使用於此例示實施例中之鋁酸鈉液。如此所產生之鋁酸鈉液通常具有範圍自約1.4:1至約1.55:1之Na2 O對Al2 O3 的莫耳比。為了自鋁酸鈉液沉澱ATH粒子,將ATH晶種粒子加至鋁酸鈉液,其數量係範圍自每升之鋁酸鈉液,自約1克的ATH晶種粒子至每升之鋁酸鈉液約3克的ATH晶種粒子因此形成程序混合物。當鋁酸鈉液是在自約45至約80℃的溫度時,將ATH晶種粒子加至鋁酸鈉液。在添加ATH晶種粒子之後,將程序混合物攪拌歷約100小時或另種方式,直至Na2 O對Al2 O3 莫耳比是在自約2.2:1至約3.5:1之範圍內,因此形成ATH懸浮液。所獲得之ATH懸浮液一般包括基於懸浮液自約80至約160 g/l之ATH。然而,在屬於上述之範圍以內可變更ATH濃度。然後將所獲得之ATH懸浮液過濾並洗滌以便自其中移除雜質,因此形成濾餅。然後如上所述,將濾餅用水再形成漿體以形成漿體,適合使用於本文中所述之濕磨步驟中。然而,其可在將濾餅再形成漿體之前,且在較佳實施例中,用水洗滌一次,或在某些實施例中,在再成漿體之前,用水洗滌一次以上。
然而,在其他例示之實施例中,將分散劑加至濾餅來形成漿體。如果將分散劑加至濾餅,在濕式研磨之前,將分散劑在任何時刻添加亦係在本發明的範圍以內。分散劑的非限制性實施例包括聚丙烯酸酯、有機酸、萘磺酸鹽/甲醛縮合物、脂肪醇-聚乙二醇-醚、聚丙烯-環氧乙烷、聚乙二醇-酯、多元胺-環氧乙烷、磷酸鹽、聚乙烯醇。如果漿體包括分散劑,因為分散劑的效果,該漿體可含有基於漿體之總重量,高達約80wt%ATH。因此,此實施例中,該漿體一般包括基於漿體之總重量,範圍自1至約80wt%ATH,該漿體較佳包括基於漿體的總重量,範圍自約40至約75wt%ATH,更佳範圍自約45至約70wt%ATH,最佳範圍自約50至約65wt%ATH。
漿體中之ATH粒子通常其特徵為具有範圍自約0.5至8m2 /g之BET。較佳實施例中,漿體中之ATH粒子具有範圍自約1.5至約5m2 /g之BET,更佳範圍自約2.0至約3.5m2 /g之BET,漿體中之ATH粒子其另外特徵為具有範圍自約1.0至6.0μm之d50 。較佳之實施例中,漿體中之ATH粒子具有範圍自約1.5至約3.5μm之d50 ,更佳範圍自約2.0至約3.0μm,其比ATH產物粒子較粗。按較粗係意指漿體中ATH粒子的d50 數值通常是高於最後ATH產物粒子的d50 約0.2至5μm。
關於此,發明人雖然不希望受理論所約束,但是確信經由本發明所製造之經噴霧乾燥之ATH的改良形態學至少部分可歸因於沉澱ATH所使用之方法。因此,雖然濕式研磨和經噴霧乾燥等技術在該技藝中係熟知,但是關於此,發明人發現經由使用本文中所述之沉澱和過濾程序,包括較佳之實施例,如下列所述,可容易製造具有改良形態學之ATH粒子。
濕式研磨
如本文中所使用,濕式研磨意指述及ATH漿體與研磨介質的接觸。本文中所使用之研磨介質可為由各種材料造成之球、桿或其他形狀。研磨介質之某些通常構造材料包括陶瓷、鋼、鋁、玻璃或氧化鋯(ZrO2 )。
較佳之實施例中,關於此,本發明人發現如本文中所述,經噴霧乾燥之ATH粒子可通過使用球形研磨介質更容易製成,此球形研磨介質具有範圍自約0.1mm至約1.0mm之直徑,較佳範圍自約0.4mm至0.7mm。此外,其較佳者為使用之研磨介質具有範圍自約1.5至約8.0g/cm2 之密度,較佳範圍自約1.5至約3.0g/cm3 之密度,更佳範圍自約2.0至約2.5g/cm3 。特佳之實施例中,本文中所使用之研磨介質是氧化鋯珠。
ATH漿體與研磨介質的接觸在液體之存在時發生。適合使用於本文中濕式研磨之液體是不會大體上增溶溶解ATH之任何液體。該液體可在濕式研磨之前添加,且所添加之液體的數量是調整漿體的ATH濃度至上文所詳述範圍以內的任何數量。該液體較佳為水。應特別述及:如果漿體具有在上述範圍以內之ATH濃度,在濕式研磨之前,不需要添加另外之液體至其中。然而,即使漿體的ATH濃度是在上文所詳述之範圍以內,在某些實施例中,可能仍需要添加另外數量的液體至漿體來產生具有較低ATH濃度之漿體同時仍然係在上文所詳述之範圍以內。應特別述及:如上所述,如果將分散劑加至濾餅,漿體與研磨介質的接觸亦係在分散劑存在時發生。
實施濕式研磨之條件是習用之條件且由具有通常精於該項技藝和具有所需要最後產物特性的知識之人士容易選擇。又,適合使用於濕磨漿體之磨機,商業上迅速可供應且包括Pearl Mills、攪拌器珠磨機、圓盤磨機或循環磨機系統,例如由Netzsch公司所製造的那些系統。
濕式研磨ATH漿體導致研磨之ATH漿體其經由通常使用自濕式研磨操作回收研磨產物之任何技術的濕磨操作予以回收。然後將所回收之經研磨ATH漿體噴霧乾燥來產生一種ATH產物,當與目前可供利用之ATH產物相比較時,其具有改良之形態學。
噴霧乾燥
噴霧乾燥是通常使用於製造氫氧化鋁之一種技術。此技術一般包括將ATH進料霧化,本文中,經研磨之ATH漿體係通過噴嘴及/或旋轉霧化器。然後使霧化之進料與熱氣,一般是空氣接觸,然後將經噴霧乾燥之ATH自熱氣流中回收。霧化進料的接觸可能以逆向流或同向流方式予以實施,可控制氣體溫度、霧化、接觸和氣體的流量及/或霧化進料的流量來產生具有所需要之產物性質之ATH粒子。
回收經噴霧乾燥之ATH可通過使用回收技術例如過濾予以實現或直接容許經噴霧乾燥之粒子下落在噴霧乾燥器中以便收集,在該處,可將彼等移出,但是可使用任何適當回收技術。較佳實施例中,經由容許ATH沉降將它自噴霧乾燥器回收,螺旋運送機自噴霧乾燥器中回收ATH,隨後依靠壓縮空氣,通過管路運送入筒倉中。
噴霧乾燥之條件是習用之條件且由具有通常精於該項技藝和下文所述之所需要ATH粒子產物品質的知識之人士容易選擇。通常,此等條件包括一般在250至550℃間之進口空氣溫度及一般在105至150℃間之出口空氣溫度。
可將如此製成之經噴霧乾燥之ATH粒子"直接"使用於許多應用中。然而,在某些實施例中,將經噴霧乾燥之ATH粒子進一步處理來減少黏聚物,或在某些實施例中,除去黏聚物。黏聚物在ATH粒子製造過程中係普遍且其存在可能,在某些應用方面卻是不利地影響樹脂中ATH粒子的性能。因此,ATH製造者極需要減少,較佳消除黏聚物。
於實施本發明時,存在於噴霧乾燥之ATH粒子中之黏聚物的數目或黏聚的程度可經由使噴霧乾燥之ATH粒子歷經進一步去黏聚處理步驟予以減少。
去黏聚
按去黏聚或去聚集,係意指使經噴霧乾燥之ATH粒子歷經進一步處理其中,減少存在於噴霧乾燥之ATH粒子中之黏聚物的數目或黏聚的程度(即,存在於噴霧乾燥之ATH粒子中黏聚物的數目大於存在於ATH產物粒子中黏聚物的數目),在某些實施例中,大體上消除了黏聚物,附以少許減小噴霧乾燥之ATH的粒子大小。按"少量縮減粒徑"其意指ATH產物粒子的d50 係大於或等於90%的噴霧乾燥之ATH粒子。噴霧乾燥之ATH粒子的其餘性質與自去黏聚噴霧乾燥之ATH粒子所產生之ATH產物粒子相同或大上相同。較佳實施例中,噴霧研究之ATH粒子的d50 是在經噴霧乾燥之ATH粒子的自約90%至約95%之範圍內,更佳在噴霧乾燥之ATH粒子的自約95%至約99%之範圍內。
減少存在於經噴霧乾燥之ATH粒子中之黏聚物可經由使用在減少黏聚物時係有效之所熟知任何技術予以實現。較佳實施例中,去除黏聚通過使用空氣類析器或針磨機予以實現。某些實施例中,去黏聚係通過使用一或數個針磨機予以實現,其他實施例中,係使用一或數個空氣分類器。較佳實施例中,使用針磨機雖然不希望受學說所約束,關於此,本發明人確信使用針磨機可能具有製造具有比噴霧乾燥之ATH較高體密度之ATH產物的附加利益。
適合本文中使用之空氣分類器包括使用重力、離心力、慣力、或其任何組合之那些分類器來將ATH產物粒子分類。使用此等分類器在該項技藝中是眾所周知,具有通常精於該項技藝和所需要之最後ATH產物大小的知識之人士可容易選擇含有適當篩網及/或篩之類析器。
適合本文中使用之針磨機包括乾和濕針磨機。如同關於空氣分類器,使用針磨機在該項技藝中是眾所周知,具有通常精於該項技藝和所需要之最後ATH產物粒子性質的知識之人士可容易選擇最佳針磨機來配合特別應用。
經噴霧乾燥之ATH的改良形態學
就大體而論,可使用本發明的方法來製造具有許多不同性質之經噴霧乾燥之ATH。通常,可使用該方法來製造經噴霧乾燥之ATH其具有如經由ISO 787-5:1980所測定之範圍自約1至約35%之油吸收;如經由DIR-66132所測定之範圍自約1至約15m2 /g之BET比表面積及範圍自約0.5至2.5μm之d50
然而,當與目前可供利用之ATH相比較時,本發明的方法特別很適合製造具有改良形態學之噴霧乾燥之ATH。亦,不希望受學說所約束,關於此,本發明人確信:此改良之形態學可歸因於ATH產物粒子的總比孔隙體積及/或中值孔隙半徑(r50 )。關於此,本發明確信,關於指定之聚合物分子,具有較高結構聚集體之ATH產物含有較多且較大之孔隙且似乎更難以潤濕,導致在捏和機中進行配合期間之各種困難(電動機上功率吸進之較大變更),捏和機實施例例如Buss Ko捏和機或雙螺桿擠壓機或該技藝方面所熟知且為此目的而使用之其他機器。因此,關於此,發明人已發現本發明的方法製成之噴霧乾燥之ATH其特徵為較小之中值孔隙半徑及/或較低之總孔隙體積,此特徵與對於聚合物材料之改良潤濕相互關聯而因此導致改良之配合性狀,即:配合含有ATH填料之阻燃樹脂時所使用之配合機器引擎(電動機)的功率改進較少變更。
經由本發明所產生之噴霧乾燥ATH粒子的r50 和Vmax 可自水銀孔隙度測定法衍生出。水銀孔隙度測定法的理論係基於物理原理就是:不反應之,非潤濕液體不會穿透孔隙直至施加充分壓力來強制它進入。因此,使液體進入孔隙所必須之壓力愈高,細孔大小愈小。發現較小之細孔大小及/或較低之總比孔隙體積與經由本發明所產生之噴霧乾燥ATH粒子的較佳潤濕性相互關聯。經由本發明所產生之經噴霧乾燥ATH粒子的細孔大小可自使用來自義大利,Carlo Erba Strumentazione之孔隙計2000進行之水銀孔隙度測定法所衍生之數據予以計算。根據孔隙計2000的手冊,使用下列方程式自所測得之壓力來計算細孔半徑r:p:r=-2γcos(θ)/p其中θ為潤濕角,γ為表面張力。本文中所取得之量測係使用θ=141.3°並將γ設定為480dyn/cm。
為了改良測量的再現性,ATH粒子的孔隙大小自第二ATH注入試驗操作予以計算,如孔隙計2000的手冊中所述。使用第二試驗操作因為發明人注意到具有體積V0 之汞的數量在擠壓之後,即,在放釋壓力至周圍壓之後依然在ATH粒子的樣品中。因此,r50 可自此數據衍生出,如參照第1、2和3圖下文中所解釋。
第一試驗操作中,經由本發明所產生之噴霧乾燥之ATH粒子樣品係如孔隙計2000的手冊中所述予以製造,並使用1000巴的最大壓力,孔隙體積予以量測為所施加之注入壓力p的函數。於完成第一試驗操作時,放釋壓力並容許達到周圍壓力。利用來自第一試驗操作,無摻雜之相同ATH樣品實施第二注入試驗操作(根據孔隙計2000的手冊),於此情況,第二試驗操作的比孔隙體積V(p)之量測採用體積V0 作為新開始體積,然後將它設定為零供第二試驗操作。
第二注入試驗操作時,使用1000巴的最大壓力,再實施樣品的比孔隙體積V(p)之量測係所施加之注入壓力的函數。第1圖顯示與現時商業上可供應之ATH產物比較,關於第二注入試驗操作和根據本發明所產生之第1級ATH,孔體積比V係所施加之壓力的函數。在1000巴時之孔體積,即,量測時所使用之最大壓力,本文中稱為Vmax
自第二ATH注入試驗操作,細孔半徑r經由孔隙計2000根據下式予以計算:r=-2γcos(θ)/p其中θ為潤濕角,γ為表面張力和p為注入壓力。關於本文中所記錄之所有γ量測,使用之θ為141.3°並將γ設定為480dyn/cm。因此可將孔體積比對細孔半徑r繪圖。第2圖顯示第二注入試驗操作(使用相同樣品)的比孔隙體積V對細孔半徑r之繪圖。
第3圖顯示第二注入試驗操作的正規化比孔隙體積對細孔半徑r之繪圖,即,此曲線中,將第二注入試驗操作的最大孔體積比,Vmax 設定為100%,並將該特別ATH的其他體積比除以此最大值。按照定義,將在50%的相對孔體積比時的細孔半徑本文中稱為中值孔隙半徑r50 。舉例而言,根據第3圖,根據本發明之ATH,即,發明創造1之中值孔隙半徑r50 為0.277μm。
上述之步驟使用根據本發明所產生之ATH粒子的樣品予以重複,並發現經由本發明所產生之經噴霧乾燥ATH粒子具有範圍自約0.09至約0.33μm之r50 ,即,在50%的相對孔體積比時的細孔半徑。本發明的較佳實施例中,經由本發明所產生之經噴霧乾燥ATH粒子的r50 為在自約0.20至約0.33μm之範圍內,更佳為自約0.2至約0.3μm之範圍內。其他較佳實施例中,r50 為在自約0.185至約0.325μm之範圍內,更佳為自約0.185至約0.25μm之範圍內。更有其他實施例中,該r50 為在自約0.09至約0.21μm之範圍內,更佳為自約0.09至約0.165μm之範圍內。
經由本發明所產生之經噴霧乾燥ATH粒子亦可述其特徵為具有自約300至約700mm3 /g範圍內之Vmax ,即,在1000巴時之最大比孔隙體積。本發明的較佳實施例中,經由本發明所產生之噴霧乾燥ATH粒子的Vmax 為在自約390至約480mm3 /g之範圍內,更佳為自約410至約450mm3 /g之範圍內。在其他較佳之實施例中,該Vmax 為在自約400至約600mm3 /g之範圍內,更佳為自約450至約550mm3 /g之範圍內。尚有其他較佳之實施例中,該Vmax 為在自約300至約700mm3 /g之範圍內,更佳為自約350至約550mm3 /g之範圍內。
經由本發明所產生之經噴霧乾燥ATH粒子亦可述其特徵為具有如經由ISO 787-5:1980所測定,在自約1至約35%範圍內之油吸收。某些較佳之實施例中,經由本發明所產生之經噴霧乾燥之ATH粒子之特徵為具有在自約23至約30%範圍內之油吸收,更佳為自約25%至約28%範圍內之油吸收。其他較佳之實施例中,經由本發明所產生之噴霧乾燥ATH粒子之特徵為具有自約25%至約32%範圍內之油吸收,更佳為自約26%至約30%範圍內之油吸收。尚有其他較佳之實施例中,經由本發明所產生之噴霧乾燥ATH粒子之特徵為具有自約25至約35%範圍內之油吸收,更佳為自約27%至約32%範圍內。其他實施例中,經由本發明所產生之噴霧乾燥ATH粒子的油吸收為在自約19%至約23%範圍內,更其他實施例中,經由本發明所產生之噴霧乾燥ATH粒子的油吸收為在自約21%至約25%之範圍內。
經由本發明所產生之經噴霧乾燥ATH粒子亦可述其特徵為具有如經由DIN-66132所測定,自約1至約15m2 /g範圍內之BET比表面積。較佳實施例中,經由本發明所產生之噴霧乾燥ATH粒子具有自約3至約6m2 /g範圍內之BET比表面積,更佳為自約3.5至約5.5m2 /g範圍內。在其他較佳實施例中,經由本發明所產生之經噴霧乾燥ATH粒子具有自約6至約9m2 /g範圍內之BET比表面積,更佳為自約6.5至約8.5m2 /g之範圍內。在更其他較佳實施例中,經由本發明所產生之噴霧乾燥ATH粒子具有自約9至約15m2 /g範圍內之BET比表面積,更佳為自約1.5至約12.5m2 /g範圍內。
經由本發明所產生之經噴霧乾燥ATH粒子亦可述其特徵為具有自約0.5至約2.5μm範圍內之d50 。較佳實施例中,經由本發明所產生之經噴霧乾燥ATH粒子具有自約1.5至約2.5μm範圍內之d50 ,更佳為自約1.8至約2.2μm的範圍內。其他較佳實施例中,經由本發明所產生之經噴霧乾燥ATH粒子具有自約1.3至約2.0μm範圍內之d50 ,更佳為自約1.4至約1.8μm的範圍內。更有其他較佳實施例中,經由本發明所產生之噴霧乾燥ATH粒子具有自約0.9至約1.8μm範圍內之d50 ,更佳為自約1.1至約1.5μm的範圍內。
應特別述及:本文中所揭示之所有粒子直徑量測,即d50 係由使用來自Quantachrome公司之Cilas 1064 L雷射分光計之雷射繞射予以量測。通常,為了量測d50 本文中所使用之步驟可經由首先導引適當水-分散劑溶液(製備見下文)入裝置的樣品製備容器中予以實施。然後選擇稱為"粒子專家"之標準量測,亦選擇量測模式"範圍1",然後選擇裝置一內部參數,其施加至預期之粒子大小分佈。應特別述及:在量測期間,在分散期間和在量測期間,將樣品典型暴露至超音波歷約60秒。在背景量測已舉行之後,將自約75至約100mg之欲分析樣品連同水/分散劑溶液置入樣品容器中並開始量測。該水/分散劑溶液可經由首先使用自BASF可供應之3升的CAL Polysalt及自KMF Laborchemie可供應之500g,Calgon製備一種濃縮物予以製備。將此溶液用去離子水組成至10升。取出100毫升的此原來10升溶液,依次用去離子水進一步稀釋至10升,並使用此最後溶液作為上述之水-分散劑溶液。
上述係關於本發明的數個實施例。精於該技藝之人士應確認可能設計同等有效之其他方法用來實行本發明的要旨。亦應特別述及:本發明的較佳實施例考慮:本文中所論述之所有範圍包括自任何較低量至任何較高量之範圍。
下列實例將舉例說明本發明,但是並非意指欲以任何方式限制本發明。
實施例
如上文所述,下列實施例中所敘述之r50 和Vmax 自使用孔隙計2000進行之水銀孔隙度測定法予以衍生出。除非在其他情況下指示,所有d50 、BET、油吸收等係根據上述之各種技術來量測。又,如實施例中所使用之術語"發明創造之氫氧化鋁級"和"發明創造之填料"意指述及根據本發明之ATH,及"比較性氫氧化鋁級"係意指述及商業上可供應且並非根據本發明之ATH。
實施例1
經由加種晶至一種有創造力之鋁酸鈉液,例如EP 1 206 412 B1中所揭示者,產生具有d50 =2.43μm中值粒子大小及2.6m2 /g比表面積之合成氫氧化鋁級。使用普通分離和過濾技術來分離該合成之氫氧化鋁;隨後在帶濾機上之洗滌步驟後,經由添加充分數量的來自Ciba公司之分散劑Antiprex A40,將具有61wt%固體含量之生成的氫氧化鋁過濾糊之液化直至漿體的黏度為約150cPoise。將該漿體進給入來自瑞士,Bachofen之KD200D型珠磨機中。此磨機含有270仟克的由具有0.6mm直徑之氧化鋯所造成之小珠。控制磨機的產量以便在使用Niro F 100噴霧乾燥器進行乾燥及運送發明創造之氫氧化鋁入筒倉中之後,所產生之d50 為1.89μm及比表面積為4.9m2 /g。本實施例中,產量為每小時約3立方公尺。第1圖顯示發明創造之氫氧化鋁第1級的孔體積比係第二注入試驗操作的所施加壓力的函數。第2圖顯示發明創造之氫氧化鋁第1級的孔體積比係細孔半徑的函數。第3圖顯示發明創造之氫氧化鋁第1級的正規化孔體積比係孔半徑的函數以線性繪製。發明創造之氫氧化鋁第1級的產物性質列入下列表1中。
實施例2-比較性
經由Martinswerk公司所製造之比較性氫氧化鋁級Martinal OL-104 LE的產物性質及兩競爭性氫氧化鋁級"競爭性1"和"競爭性2"的產物性質亦顯示於表1中。
如自表1中可見,發明創造之氫氧化鋁第1級,根據本發明之ATH具有最低之中位數孔半徑和最低之最大孔體積比。
實施例3
經由加種晶一種有創造力之鋁酸鈉液,例如EP 1 206 412 B1中所揭示者,產生具有d50 =2.43μm之中位數粒子大小及2.6m2 /g比表面積之合成氫氧化鋁級。使用普通分離和過濾技術來分離合成之氫氧化鋁;隨後在帶濾機上之洗滌步驟後,經由添加充分數量的來自Ciba公司之分散劑Antiprex A40,將具有61wt%固體含量之生成的氫氧化鋁過濾糊液化直至漿體的黏度為約150cPoise。將該漿體進給入來自瑞士,Bachofen之KD 200D型珠磨機中。此磨機含有270仟克的由具有0.6mm直徑之氧化鋯所造成之小珠。控制磨機的產量以便在使用Niro F 100噴霧乾燥器進行乾燥及運送發明創造之氫氧化鋁入筒倉中之後,所產生之d50 為1.44μm及比表面積為6.7m2 /g。本實施例中,產量為每小時約2立方公尺。第4圖顯示發明創造之氫氧化鋁第2級的比孔隙體積係第二注入試驗操作之所施加壓力的函數。第5圖顯示發明創造之氫氧化鋁第2級的孔體積比係細孔半徑的函數。第6圖顯示發明創造之氫氧化鋁第2級的正規化孔體積比係細孔半徑的函數以線性繪製(on liner scale)。發明創造之氫氧化鋁第2級的產物性質包含在下列表2中。
實施例4-比較性
經由Martinswerk公司所製造之比較性氫氧化鋁級Martinal OL-107 LE的產物性質及競爭性氫氧化鋁級"競爭性3"的產物性質亦顯示於表2中。
如自表2中可見,發明創造之氫氧化鋁第2級具有最低之中位數孔半徑和最低之最大孔體積比。
實施例5
經由加種晶一種有創造力之鋁酸鈉液,例如EP 1 206 412 B1中所揭示者,產生具有d50 =2.43μm之中位數粒子大小及2.6m2 /g比表面積之合成氫氧化鋁級。使用普通分離和過濾技術來分離合成之氫氧化鋁;隨後在帶濾機上之洗滌步驟後,經由添加充分數量的來自Ciba公司之分散劑Antiprex A40,將具有61wt%固體含量之生成的氫氧化鋁過濾糊液化直至漿體的黏度為約150cPoise。將該漿體進給入來自瑞士,Bachofen之KD 200D型珠磨機中。此磨機含有270公斤的由具有0.6mm直徑之氧化鋯所造成之小珠。控制磨機的產量以便在使用Niro F 100噴霧乾燥器進行乾燥及運送發明創造之氫氧化鋁入筒倉中之後,所產生之d50 為1.36μm及比表面積為10.0m2 /g。本實施例中,產量為每小時約0.75立方公尺。第7圖顯示發明創造之氫氧化鋁第3級的孔體積比係第二注入試驗操作之所施加壓力的函數。第8圖顯示發明創造之氫氧化鋁第3級的孔體積比係細孔半徑的函數。第9圖顯示發明創造之氫氧化鋁第3級的正規化孔體積比係細孔半徑的函數以線性繪製(on liner scale)。發明創造之氫氧化鋁第3級的產物性質列入下列表3中。
實施例6-比較性
經由Martinswerk公司所製造之比較性氫氧化鋁級Martinal OL-111 LE的產物性質亦示於表3中。
如自表3中可見,發明創造之氫氧化鋁第3級具有較低之中值孔隙半徑和較低之最大比孔隙體積。
實施例7
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間與595.4克(150phr)之發明創造之氫氧化鋁第1級連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarl公司之2.9克(0.75phr)的抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機中來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方的機械性質,使用具有Haake Rheomex擠壓機之Harke Polylab系統將顆粒擠壓成2mm厚之帶。根據DIN 53504將試驗棒在帶上穿孔。此實驗的結果列於下列表4中。
實施例8-比較性
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間與595.4克(150phr)之經由Mantinswerk公司所製造之商業上可供售之ATH級OL-104 LE連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克(=0.75phr)的抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機中來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方的機械性質,使用具有Haake Rheomex擠壓機之Harke Polylab系統將顆粒擠壓成2mm厚之帶。根據DIN 53504將試驗棒在帶上穿孔。此實驗的結果列於下列表4中。
如自表4中可見,在實驗誤差以內,本發明氫氧化鋁第1級具有與比較級Martinal OL-104 LE相似之機械、流變學、電和阻燃等性質。
實施例9
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間與595.4克(150phr)之本發明填料第2連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克(0.75phr)的抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機中來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方的機械性質,使用具有Haake Rheomex擠壓機之Haake Polylab系統將顆粒擠壓成2mm厚之帶。根據DIN 53504,將試驗棒在帶上穿孔。此實驗的結果列於下表5中。
實施例10-比較性
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)Escorene Ultra UL00119在約20分鐘期間與595.4克(150phr)之經由Mantinswerk公司所製造之商業上可供售之ATH級OL-107LE連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克(=0.75phr)的抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方的機械性質,使用具有Haake Rheomex擠壓機之Hake Polylab系統將顆粒擠壓成2mm厚之帶。根據DIN 53504,將試驗棒在帶上穿孔。此實驗的結果列於下列表5中。
如自表5中可見,在實驗誤差以內,本發明氫氧化鋁第2級具有與比較級MartinalOL-107 LE相似之機械、流變學、電和阻燃等性質。
實施例11
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間與595.4克(150phr)之本發明填料第3連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克(0.75phr)的抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方的機械性質,使用具有Haake Rheomex擠壓機之Harke Polylab系統將顆粒擠壓成為2mm厚之帶。根據DIN 53504,將試驗棒在帶上穿孔。此實驗的結果列於下表6中。
實施例12-比較件
將來自ExxonMobil公司之396.9克(100phr)的乙烯醋酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間與595.4克(150phr)之經由Mantinswerk公司所製造之商業上可供售之ATH級OL-111 LE連同來自Degussa AG公司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克(0.75phr)之抗氧化劑Ethanox310以為精於此項技藝人士熟悉之通常方式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷保證填料的較佳偶合至聚合物基體。將兩輥的溫度設定至130℃。將已製好的化合物自磨機中移出,並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機來獲得擠壓之條片以便進一步評估。為了測定阻燃樹脂配方之機械性質,使用具有Haake Rheomex擠壓機之Hake Polylab系統將顆粒擠壓成為2mm厚之帶。根據DIN 53504,將試驗棒在帶上穿孔。此實驗的結果列於下列表6中。
如自表6中可見,在實驗誤差以內,本發明氫氧化鋁第3級具有與比較級Martinal OL-111 LE相似之機械和流變學等性質。
應特別述及,該熔融流動指數係根據DIN 53735予以量測。抗拉強度和斷裂伸長率係根據DIN 53504予以量測及水老化之前和之後的電阻率係根據DIN 53482在100×100×2mm3 壓板上予以量測。以%計之水吸液率為相對於該板的初始重量,在70℃時將100×100×2mm3 壓板在去鹽之水浴中水老化歷7天後之重量差。氧指數係根據ISO 4589在6×3×150mm3 樣品上予以量測。
實施例13
將實施例2的比較性氫氧化鋁粒子MartinalOL-104和實施例1的本發明之氫氧化鋁第1級分開使用來形成阻燃之樹脂配方。所使用之合成樹脂為來自ExxonMobil之EVA EscoreneUltra UL00328連同來自ExxonMobil之LLDPE級EscoreneLL1001XV,自Albemarle公司商業上可供售之Ethanox310抗氧化劑和來自Degussa公司之胺基矽烷Dynasylan AMEO的混合物。使用以精於該項技藝人士熟悉之通常方式所選擇之溫度設定和螺桿速率,將該等成分在46mm Buss Ko-捏和機(L/D比=11)上混合,產量為每小時25公斤。於調配阻燃樹脂配方時所使用之各成分之數量詳列於下列表7中。
在形成阻燃之樹脂配方時,在Buss捏和機中合成之前,首先將AMEO矽烷和Ethanox310與總數量的合成樹脂在圓桶中摻合。依靠重量進料器之減小,將樹脂/矽烷/抗氧化劑摻合物連同50%的氫氧化鋁總量進給入Buss捏和機的第一進料口中並將其餘50%的氫氧化鋁進給入Buss捏和機的第二進料口中。將卸料擠壓機安裝凸緣垂直於Buss Ko捏和機並具有70mm的螺桿尺寸。第10圖顯示本發明氫氧化鋁第1級之卸料擠壓機的電動機上之功率吸進。第11圖顯示經由Martinswerk公司所製造之比較性氫氧化鋁級OL-104 LE之卸料擠壓機的電動機上之功率吸進。
如第10圖和第11圖中所顯示,當使用根據本發明之氫氧化鋁粒子在阻燃之樹脂配方中時,顯著減少卸料擠壓機的能量(功率)吸進。如上文所述,能階之較小變更容許較大之產量及/或更均勻(勻相)之阻燃樹脂配方。
第1圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第1級ATH,孔體積比V對所施加之壓力的函數所繪之圖。
第2圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第1級ATH,孔體積比V對孔半徑r所繪之圖。
第3圖顯示與標準等級比較,根據本發明之ATH之第1級ATH的正規化孔體積比,該圖係以將各ATH級之最大孔體積比設定在100%所產生,並將相對應ATH等級的其他體積比除以此最大值。
第4圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第2級ATH,孔體積比V係所施加之壓力的函數所繪之圖。
第5圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第1級ATH,孔體積比V對孔半徑r所繪之圖。
第6圖顯示與標準等級比較,根據本發明之ATH之第2級ATH的正規化孔體積比,該圖係以各ATH級之最大孔體積比設定在100%所產生,並將相對應ATH等級的其他體積比除以此最大值。
第7圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第3級ATH,孔體積比V係所施加之壓力的函數所繪之圖。
第8圖顯示與標準等級比較,關於第二注入試驗操作和根據本發明之ATH之第3級ATH,孔體積比V對細孔半徑r所繪之圖。
第9圖顯示與標準等級比較,根據本發明之ATH之第3級ATH的正規化孔體積比,該圖係以將各ATH級之最大孔體積比設定在100%所產生,並將相對應ATH等級的其他體積比除以此最大值。
第10圖顯示實施例1中所使用之本發明第1級氫氧化鋁之卸料擠壓機的電動機上之功率吸進。
第11圖顯示實施例2中所使用之比較性OL-104 LE級氫氧化鋁之卸料擠壓機的電動機上之功率吸進。

Claims (15)

  1. 一種用於製造經噴霧乾燥之ATH粒子之方法,其係包括:a)濕式研磨漿體其包括基於該漿體的總重量範圍自約1至約80wt%之ATH,因此產生研磨之ATH漿體,及b)噴霧乾燥該研磨之ATH漿體,因此產生經噴霧乾燥之ATH;c)其中濕式研磨係在一種液體存在時使用球形研磨介質予以實施,此球形研磨介質具有範圍自約0.1mm至約1.0mm之直徑及範圍自約1.5至約8g/cm3 之密度;其中漿體自一種方法獲得,此方法包括:溶解氫氧化鋁在苛性鈉中以形成鋁酸鈉液;過濾該鋁酸鈉溶液來移除雜質;冷卻並稀釋鋁酸鈉液至適當溫度和濃度;添加ATH晶種粒子至鋁酸鈉溶液;容許ATH粒子自溶液中沉澱,因此形成ATH懸浮液,其含有基於懸浮液,範圍自約80至約160g/l的ATH,且含有自1.0至6.0μm之ATHd50 粒徑;過濾該ATH懸浮液因此形成濾餅;及將濾餅再成為漿體而形成漿體,包括基於漿體的總重量範圍自約1至約80wt%的ATH;在將它再成為漿體之前,視需要用水洗滌濾餅一或數次;及視需要減少存在於該噴霧乾燥之ATH中之任何黏聚物數目。
  2. 如申請專利範圍第1項之方法,其中該液體為水。
  3. 如申請專利範圍第1項之方法,其中將濾餅使用水、分散劑、或其組合再形成為漿體。
  4. 如申請專利範圍第1項之方法,其中該漿體含有:i)範圍自約1至約40wt%ATH粒子;ii)範圍自約5至約40wt%ATH粒子;iii)範圍自約10至約35wt%ATH粒子;iv)範圍自約20至約30wt%ATH粒子;基於漿體或濾餅的總重量。
  5. 如申請專利範圍第1項之方法,其中漿體中之ATH粒子之特徵為具有範圍自約0.5至8m2 /g之BET。
  6. 如申請專利範圍第1項之方法,其中經噴霧乾燥之ATH具有範圍自約390至約480mm3 /g之最大比孔隙體積("Vmax "),及範圍自約0.185至約0.33μm之中值孔隙半徑("r50 ")。
  7. 如申請專利範圍第1項之方法,其中研磨介質為氧化鋯珠。
  8. 如申請專利範圍第1項之方法,其中研磨介質係由陶瓷、鋼、鋁、玻璃或氧化鋯(ZrO2 )構成且研磨介質的形狀為球、桿、圓球等。
  9. 如申請專利範圍第1項之方法,其中研磨介質的直徑為在自約0.4mm至約0.7mm的範圍內。
  10. 如申請專利範圍第1項之方法,其中使用之研磨介質的密度為:i)範圍自約1.5至約3.0g/cm3 ,或ii)範圍自約2.0至約2.5g/cm3
  11. 如申請專利範圍第1項之方法,其中經噴霧乾燥之ATH具有 :a)範圍自約3至約6m2 /g之BET、範圍自約1.5至約2.5μm之d50 、範圍自約23至約30%之油吸收、範圍自約0.2至約0.33μm之r50 、及範圍自約390至約480mm3 /g之Vmax ;b)範圍自約6至約9m2 /g之BET、範圍自約1.3至約2.0μm之d50 、範圍自約25至約40%之油吸收、範圍自約0.185至約0.325μm之r50 、及範圍自約400至約600mm3 /g之Vmax ;或c)範圍自約9至約15m2 /g之BET、範圍自約0.9至約1.8μm之d50 、範圍自約25至約50%之油吸收、範圍自約0.09至約0.21μm之r50 、及範圍自約300至約700mm3 /g之Vmax
  12. 如申請專利範圍第1項之方法,其中經噴霧乾燥之ATH具有範圍自約0.09至約0.33μm之r50
  13. 如申請專利範圍第1項之方法,其中c)係存在且c)係在空氣類析器或針磨機中予以實施。
  14. 如申請專利範圍第13項之方法,其中自c)所產生之ATH產物粒子的d50 係大於或等於90%的經噴霧乾燥之ATH粒子,及來自c)之ATH產物粒子的餘項性質大體上與噴霧乾燥之ATH的性質相同。
  15. 如申請專利範圍第14項之方法,其中來自c)之ATH產物粒子的體密度係高於經噴霧乾燥之ATH的體密度。
TW96122707A 2006-07-05 2007-06-22 氫氧化鋁之製造方法 TWI427038B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81867006P 2006-07-05 2006-07-05
US81863206P 2006-07-05 2006-07-05

Publications (2)

Publication Number Publication Date
TW200806582A TW200806582A (en) 2008-02-01
TWI427038B true TWI427038B (zh) 2014-02-21

Family

ID=44766413

Family Applications (3)

Application Number Title Priority Date Filing Date
TW96122707A TWI427038B (zh) 2006-07-05 2007-06-22 氫氧化鋁之製造方法
TW96122701A TWI427037B (zh) 2006-07-05 2007-06-22 氫氧化鋁
TW96122704A TW200811047A (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW96122701A TWI427037B (zh) 2006-07-05 2007-06-22 氫氧化鋁
TW96122704A TW200811047A (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide

Country Status (1)

Country Link
TW (3) TWI427038B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989794A (en) * 1986-07-16 1991-02-05 Alcan International Limited Method of producing fine particles
US5306480A (en) * 1986-07-16 1994-04-26 Alcan International Limited Alumina hydrates
EP1206412B1 (en) * 1999-06-29 2003-09-24 Albemarle Corporation Process for the production of aluminium hydroxide
JP2003286372A (ja) * 2002-03-29 2003-10-10 Sumitomo Chem Co Ltd ポリオレフィン樹脂射出成形体
US20040147659A1 (en) * 2002-10-16 2004-07-29 Nabaltec Nabwerk Aluminiumhydroxid Technologie GmbH Flame retardant polymer composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807603B2 (en) * 1996-05-16 2007-08-29 Sumitomo Chemical Company, Limited Aluminum hydroxide, method for producing the same, and use of the same
JP4997675B2 (ja) * 2001-09-14 2012-08-08 住友化学株式会社 熱可塑性樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989794A (en) * 1986-07-16 1991-02-05 Alcan International Limited Method of producing fine particles
US5306480A (en) * 1986-07-16 1994-04-26 Alcan International Limited Alumina hydrates
EP1206412B1 (en) * 1999-06-29 2003-09-24 Albemarle Corporation Process for the production of aluminium hydroxide
JP2003286372A (ja) * 2002-03-29 2003-10-10 Sumitomo Chem Co Ltd ポリオレフィン樹脂射出成形体
US20040147659A1 (en) * 2002-10-16 2004-07-29 Nabaltec Nabwerk Aluminiumhydroxid Technologie GmbH Flame retardant polymer composition

Also Published As

Publication number Publication date
TW200806582A (en) 2008-02-01
TWI427037B (zh) 2014-02-21
TW200811047A (en) 2008-03-01
TW200831414A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP5350232B2 (ja) 水酸化アルミニウムの製造方法
KR0176250B1 (ko) 단분산된 바테라이트형 탄산칼슘 및 그 제조방법과 입자성장형태 제어방법
MX2007003113A (es) Metodo para producir una bohemita de estructura cristalina fino y uso de la bohemita como ignifugo en materiales sinteticos.
JP2011515307A (ja) ナノ分散可能なベーマイトの製造方法および難燃性合成樹脂におけるその使用方法
US7959895B2 (en) Process for the production of aluminum hydroxide
CN101506099B (zh) 用于生产氢氧化铝的方法
TWI427038B (zh) 氫氧化鋁之製造方法
JPH0640717A (ja) 板状塩基性炭酸カルシウム
US8642001B2 (en) Aluminum hydroxide
EP2032505A2 (en) Process for the production of aluminum hydroxide
TW200811044A (en) Process for producing magnesium hydroxide
JP2008169086A (ja) アルカリ土類金属炭酸塩粒子の製造方法
TW200812913A (en) Thermally stable aluminum trihydroxide particles produced by spray drying with subsequent dry-milling and their use
TW200808658A (en) A process for producing thermally stable aluminum trihydroxide particles by wet-milling with subsequent spray drying
WO2008035538A1 (fr) Procédé de fabrication de particules de carbonate de métal alcalino-terreux et particules de carbonate de métal alcalino-terreux
TW200806581A (en) Coated aluminum hydroxide particles produced by mill drying