EP2032505A2 - Process for the production of aluminum hydroxide - Google Patents
Process for the production of aluminum hydroxideInfo
- Publication number
- EP2032505A2 EP2032505A2 EP07872100A EP07872100A EP2032505A2 EP 2032505 A2 EP2032505 A2 EP 2032505A2 EP 07872100 A EP07872100 A EP 07872100A EP 07872100 A EP07872100 A EP 07872100A EP 2032505 A2 EP2032505 A2 EP 2032505A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ath
- range
- particles
- slurry
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
- C01F7/023—Grinding, deagglomeration or disintegration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/16—Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/18—Aluminium oxide or hydroxide from alkaline earth metal aluminates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/02—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/19—Oil-absorption capacity, e.g. DBP values
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to a novel process for the production of aluminum hydroxide flame-retardants.
- Aluminum hydroxide has a variety of alternative names such as aluminum hydrate, aluminum trihydrate etc., but is commonly referred to as ATH.
- ATH particles find use as a filler in many materials such as. for example, plastics, rubber, thermosets, papers, etc. These products find use in diverse commercial applications such as wire and cable compounds, conveyor belts, thermoplastics moldings, wall claddings, floorings, etc.
- ATH is typically used to improve the flame retardancy of such materials and also acts as a smoke suppressant.
- Methods for the synthesis of ATH are well known in the art. However, the demand for tailor made ATH grades is increasing, and the current processes are not capable of producing these grades. Thus, there is an increasing demand for superior methods of production for ATH.
- Figure 1 shows the specific pore volume V as a function of the applied pressure for the second intrusion test run and an ATH grade no. 1, an ATH according to the present invention, in comparison with standard grades.
- Figure 2 shows the specific pore volume V plotted against the pore radius r for the second intrusion test run and an ATH grade no. 1 , an ATH according to the present invention, in comparison with standard grades.
- Figure 3 shows the normalized specific pore volume for an ATH grade no. 1, an ATH according to the present invention, in comparison with standard grades, the graph was generated with the maximum specific pore volume for each ATH grade set at 100%, and the other specific volumes of the corresponding ATH grade were divided by this maximum value.
- Figure 4 shows the specific pore volume V as a function of the applied pressure for the second intrusion test run and an ATH grade no. 2, an ATH according to the present invention, in comparison with standard grades.
- Figure 5 shows the specific pore volume V plotted against the pore radius r for the second intrusion test ran and an ATH grade no. 2, an ATH according to the present invention, in comparison with standard grades.
- Figure 6 shows the normalized specific pore volume for an ATH grade no. 2, an ATH according to the present invention, in comparison with standard grades, the graph was generated with the maximum specific pore volume for each ATH grade set at 100%, and the other specific volumes of the corresponding ATH grade were divided by this maximum value.
- Figure 7 shows the specific pore volume V as a function of the applied pressure for the second intrusion test run and an ATH grade no. 3, an ATH according to the present invention, in comparison with a standard grade.
- Figure 8 shows the specific pore volume V plotted against the pore radius r for the second intrusion test run and an ATH grade no. 3, an ATH according to the present invention, in comparison with a standard grade.
- Figure 9 shows the normalized specific pore volume for an ATH grade no. 3, an ATH according to the present invention, in comparison with standard grades, the graph was generated with the maximum specific pore volume for each ATH grade set at 100%, and the other specific volumes of the corresponding ATH grade were divided by this maximum value.
- Figure 10 shows the power draw on the motor of a discharge extruder for the inventive aluminum hydroxide grade no.l used in the Example 1.
- Figure 1 1 shows the power draw on the motor of a discharge extruder for the comparative aluminum hydroxide grade OL- 104 LE used in Example 2.
- the present invention relates to a process that can produce ATH' s with improved wettability.
- the present invention comprises: wet-milling a slurry comprising in the range of from about 1 to about 80 wt.% ATH, based on the total weight of the slurry, thus producing a milled ATH slurry, and spray-drying said milled ATH slurry thus producing a spray dried ATH. wherein said wet-milling is conducted in the presence of a liquid using spherical milling media having a diameter in the range of from about 0.1 mm to about 1.0 mm and a density in the range of from about 1.5 to about 3 g/cm.
- ATH particles The wettability of ATH particles with resins depends on the morphology of the ATH particles, and the inventors hereof have unexpectedly discovered that by using the process of the present invention, ATH particles having an improved wettability in relation to ATH particles currently available can be produced. While not wishing to be bound by theory, the inventors hereof believe that this improved wettability is attributable Io an improvement in the morphology of the ATH particles produced by the process disclosed herein. Slurry
- the amount of ATH particles present in the slurry that is wet-milled is generally in the range of from about 1 to about 40 wt.%, based on the total weight of the slurry, preferably in the range of from about 5 to about 40 wt.%, more preferably in the range of from about 10 to about 35 wt-%, most preferably in the range of from about 20 to about 30 wt.%, all on the same basis.
- the ATH slurry that is wet-milled in the practice of the present invention can be obtained from any process used to produce ATH particles.
- the slurry is obtained from a process that involves producing ATH particles through precipitation and filtration.
- the slurry is obtained from a process that comprises dissolving crude aluminum hydroxide in caustic soda to form a sodium aluminate liquor, which is cooled and filtered thus forming a sodium aluminate liquor useful in this exemplary embodiment.
- the sodium aluminate liquor thus produced typically has a molar ratio OfNa 2 O to AI 2 O 3 in the range of from about 1.4:1 to about 1.55: 1.
- ATH seed particles are added to the sodium aluminate liquor in an amount in the range of from about 1 g of ATH seed particles per liter of sodium aluminate liquor to about 3 g of ATH seed particles per liter of sodium aluminate liquor thus forming a process mixture.
- the ATH seed particles are added to the sodium aluminate liquor when the sodium aluminate liquor is at a liquor temperature of from about 45 to about 8O 0 C.
- the process mixture is stirred for about 100 h or alternatively until the molar ratio Of Na 2 O to Al 2 O 3 is in the range of from about 2.2 : 1 to about 3.5 : 1, thus forming an ATH suspension.
- the obtained ATH suspension typically comprises from about 80 to about 160 g/1 ATH, based on the suspension. However, the ATH concentration can be varied to fall within the ranges described above.
- the obtained ATH suspension is then filtered and washed to remove impurities therefrom, thus forming a filter cake.
- the filter cake is then re-slurried with water to form a slurry, as described above, suitable for use in the wet-milling procedure described herein. However, before the filter cake is re-slurried, it can be, and in preferred embodiments is, washed one, or in some embodiments more than one, times with water, preferably de-salted water, before re- slurrying.
- a dispersing agent is added to the filter cake to form a slurry. If a dispersing agent is added to the filter cake, it is within the scope of the present invention that the dispersing agent be added at any point prior to wet-milling.
- dispersing agents include polyacrylates, organic acids, naphtalensuifonate / formaldehyde condensate, fatty-alcohol-polyglycol-ether, polypropylene-ethylenoxid, polyglycol-ester, polyamine- ethylenoxid, phosphate, polyvinylalcohole.
- the slurry may contain up to about 80 wt.% ATH, based on the total weight of the slurry, because of the effects of the dispersing agent.
- the slurry typically comprises in the range of from 1 to about 80 wt.% ATH, based on the total weight of the slurry, preferably the slurry comprises in the range of from about 40 to about 75 wt.%, more preferably in the range of from about 45 to about 70 wt.%, most preferably in the range of from about 50 to about 65 wt.%, ATH, based on the total weight of the slurry.
- the ATH particles in the slurry are generally characterized as having a BET in the range of from about 0.5 to 8 m 2 /g. In preferred embodiments, the ATH particles in the slurry have a BET in the range of from about 1.5 to about 5 m 2 /g, more preferably in the range of from about 2.0 to about 3.5 m 2 /g
- the ATH particles in the slurry are further characterized as having a dso in the range of from about 1.0 to 6.0 ⁇ m.
- the ATH particles in the slurry have a d 50 in the range of from about 1.5 to about 3.5 ⁇ m, more preferably in the range of from about 2.0 to about 3.0 ⁇ m, which is coarser than the ATH product particles.
- coarser it is meant that the dso value of the ATH particles in the slurry is generally about 0.2 - 5 ⁇ m higher than the dso of the final ATH product particles.
- Wet-milling as used herein is meant to refer to the contacting of the ATH slurry with a milling media.
- the milling media used herein can be balls, rods, or other shapes made of various materials. Some common materials of construction for the milling media include ceramic, steel, aluminum, glass or zirconium oxide (ZrO 2 ).
- spray-dried ATH particles as described herein can be more readily produced through the use of spherical milling media having a diameter in the range of from about 0.1 mm to about 1.0 mm, preferably in the range of from about 0.4 mm to about 0.7 mm. Further, it is preferred that milling media having a density in the range of from about 1.5 to about 8.0 here g/cm 3 , preferably in the range of from about 1.5 to lbout 3.0 g/cm 3 , more preferably in the range of from about 2.0 to about 2.5 g/cm 3 be used. In a particularly preferred embodiment, the milling media used herein is zirconium oxide beads.
- the contacting of the ATH slurry with the milling media occurs in the presence of a liquid.
- Liquids suitable for use in wet-milling herein are any liquids that do not substantially solubilize the ATH.
- the liquid can be added prior to wet-milling, and the amount of liquid added is any amount to adjust the ATH concentration of the slurry to within the ranges discussed above.
- the liquid is water. It should be noted that if the slurry has an ATH concentration within the range described above, there is no need to add additional liquid to it prior to wet-milling.
- the ATH concentration of the slurry is within the ranges discussed above, in some embodiments, it may still be desirable to add an additional amount of liquid to the slurry to provide for a slurry having a lower ATH concentration while still being within the ranges discussed above. It should be noted that if a dispersing agent is added to the filter cake, as described above, the contacting of the slurry with the milling media also occurs in the presence of the dispersing agent.
- mills suitable for use in the wet-milling of the slurry are readily available commercially and include Pearl Mills, agitator bead mills, disk mills or circulation mill systems as e.g. those produced by the Netzsch company.
- the wet-milling of the ATH slurry results in a milled ATH slurry that is recovered from the wet-milling operation by any technique commonly used to recover milled products from wet-milling operations.
- the recovered milled ATH slurry is then spray dried to produce an ATH product having improved morphology when compared to currently available ATH products.
- Spray drying is a technique that is commonly used in the production of aluminum hydroxide. This technique generally involves the atomization of an ATH feed, here the milled ATH slurry, through the use of nozzles and/or rotary atomizers. The atomized feed is then contacted with a hot gas, typically air, and the spray dried ATH is then recovered from the hot gas stream. The contacting of the atomized feed can be conducted in either a counter or co-current fashion, and the gas temperature, atomization, contacting, and flow rates of the gas and/or atomized feed can be controlled to produce ATH particles having desired product properties.
- a hot gas typically air
- the recovery of the spray dried ATH can be achieved through the use of recovery techniques such as filtration or just allowing the spray-dried particles to fall to collect in the spray drier where they can be removed, but any suitable recovery technique can be used.
- the ATH is recovered from the spray drier by allowing it to settle, and screw conveyors recover it from the spray-drier and subsequently convey through pipes into a silo by means of compressed air.
- the spray-drying conditions are conventional and are readily selected by one having ordinary skill in the art with knowledge of the desired ATH particle product qualities, described below. Generally, these conditions include inlet air temperatures between typically
- the spray-dried ATH particles thus produced can be used "as is" in many applications.
- the spray-dried ATH particles are further processed to reduce, or in some embodiments eliminate, agglomerates.
- Agglomerates are common in ATH particle production processes, and their presence can, and in some applications does, deleteriously affect the performance of the ATH particles in a resin.
- the number of agglomerates, or degree of agglomeration, present in the spray-dried ATH particles can be reduced by subjecting the spray-dried ATH particles to a further deagglomeration processing step.
- deagglomeration or deagglomerating it is meant that the spray-dried ATH particles are subjected to a further treatment wherein the number of agglomerates, or degree of agglomeration, present in the spray-dried ATH particles are reduced (i.e. the number of agglomerates present in the spray-dried ATH particles is greater than the number of agglomerates present in the ATH product particles), in some embodiments substantially eliminated, with little reduction in the particle size of the spray-dried ATH.
- little particle size reduction it is meant that the dso of the ATH product particles is greater than or equal to 90% of the spray-dried ATH particles.
- the rest of the properties of the spray-dried ATH particles are the same or substantially the same as the ATH product particles produced from deagglomerating the spray-dried ATH particles.
- the dso of the spray-milled ATH is in the range of from about 90% to about 95% of the spray-dried ATH particles, more preferably within the range of from about 95% to about 99% of the spray- dried ATH particles.
- the reduction in the agglomerates present in the spray-dried ATH particles can be achieved by using any technique known to be effective at reducing agglomerates.
- the deagglomeration is achieved through the use of air classifiers or pin mills.
- deagglomeration is achieved through the use of one or more pin mills, in other embodiments, one or more air classifiers.
- the a pin mill While not wishing to be bound by theory, the inventors hereof believe that the use of a pin mill may have the added benefit of producing an ATH product having a higher bulk density than the spray-dried ATH.
- Air classifiers suitable for use herein include those using gravitational forces, centrifugal forces, inertial forces, or any combination thereof, to classify the ATH product particles.
- the use of these classifiers is well known in the art, and one having ordinary skill in the art and knowledge of the desired final ATH product size can readily select classifiers containing suitable screens and/or sieves.
- Pin Mills suitable for use herein include dry and wet pin mills. As with air classifiers, the use of pin mills is well known in the art, and one having ordinary skill in the art and knowledge of the desired final ATH product particles properties can readily select the best pin mill to fit a particular application. Improved Morphology Spray Dried ATH
- the process of the present invention can be used to produce spray dried ATH having many different properties.
- the process can be used to produce spray dried ATH having an oil absorption, as determined by ISO 787-5:1980 of in the range of from about 1 to about 35%, a BET specific surface area, as determined by DIN-66132, in the range of from about 1 to 15 nrVg, and a dso in the range of from about 0.5 to 2.5 ⁇ m.
- the process of the present invention is especially well-suited to produce spray-dried ATH having an improved morphology when compared with currently available ATH.
- the inventors hereof believe that this improved morphology is attributable to the total specific pore volume and/or the median pore radius (rso) of the ATH product particles.
- the inventors hereof believe that, for a given polymer molecule, an ATH product having a higher structured aggregate contains more and bigger pores and seems to be more difficult to wet, leading to difficulties (higher variations of the power draw on the motor) during compounding in kneaders like Buss Ko-kneaders or twin-screw extruders or other machines known in the art and used to this purpose.
- the process of the present invention produces spray dried ATH characterized by smaller median pore sizes and/or lower total pore volumes, which correlates with an improved wetting with polymeric materials and thus results in improved compounding behavior, i.e. less variations of the power draw of the engines (motors) of compounding machines used to compound a flame retarded resin containing the ATH filler.
- the rso and the V max of the spray-dried ATH particles produced by the present invention can be derived from mercury porosimetry.
- the theory of mercury porosimetry is based on the physical principle that a non-reactive, non-wetting liquid will not penetrate pores until sufficient pressure is applied to force its entrance. Thus, the higher the pressure necessary for the liquid to enter the pores, the smaller the pore size. A smaller pore size and/or a lower total specific pore volume were found to correlate to better wettability of the spray-dried ATH particles produced by the present invention.
- the pore size of the ATH particles was calculated from the second ATH intrusion test run, as described in the manual of the Porosimeter 2000.
- the second test run was used because the inventors observed that an amount of mercury having the volume Vo remains in the sample of the ATH particles after extrusion, i.e. after release of the pressure to ambient pressure.
- the rso can be derived from this data as explained below with reference to Figures 1, 2, and 3.
- the first test ran a sample of spray-dried ATH particles produced by the present invention was prepared as described in the manual of the Porosimeter 2000, and the pore volume was measured as a function of the applied intrusion pressure p using a maximum pressure of 1000 bar.
- the pressure was released and allowed to reach ambient pressure upon completion of the first test run.
- a second intrusion test run (according to the manual of the Porosimeter 2000) utilizing the same ATH sample, unadulterated, from the first test run was performed, where the measurement of the specific pore volume V(p) of the second test run takes the volume VQ as a new starting volume, which is then set to zero for the second test run.
- Figure 2 shows the specific pore volume V of the second intrusion test run (using the same sample) plotted against the pore radius r.
- Figure 3 shows the normalized specific pore volume of the second intrusion test run plotted against the pore radius r, i.e. in this curve, the maximum specific pore volume of the second intrusion test run, V max , was set to 100% and the other specific volumes for that particular ATH were divided by this maximum value.
- the pore radius at 50% of the relative specific pore volume, by definition, is called median pore radius X ⁇ Q herein.
- the median pore radius rso for an ATH according to the present invention, i.e. Inventive 1 is 0.277 ⁇ m.
- the procedure described above was repeated using samples of ATH particles produced according to the present invention, and the spray-dried ATH particles produced by the present invention were found to have an rso, i.e. a pore radius at 50% of the relative specific pore volume, in the range of from about 0.09 to about 0.33 ⁇ m.
- the rso of the spray-dried ATH particles produced by the present invention is in the range of from about 0.20 to about 0.33 ⁇ m, more preferably in the range of from about 0.2 to about 0.3 ⁇ m.
- the r 5 o is in the range of from about 0.185 to about 0.325 ⁇ m, more preferably in the range of from about 0.185 to about 0.25 ⁇ m.
- the v$o is in the range of from about 0.09 to about 0.21 ⁇ m, more preferably in the range of from about 0.09 to about 0.165 ⁇ m.
- the spray-dried ATH particles produced by the present invention can also be characterized as having a V max , i.e. maximum specific pore volume at 1000 bar, in the range of from about 300 to about 700 mmVg.
- V max of the spray-dried ATH particles produced by the present invention is in the range of from about 390 to about 480 mmVg, more preferably in the range of from about 410 to about 450 rnrrrVg.
- the V max is in the range of from about 400 to about 600 mmVg, more preferably in the range of from about 450 to about 550 mm 3 /g.
- the V max is in the range of from about 300 to about 700 mmVg, more preferably in the range of from about 350 to about 550 mmVg.
- the spray-dried ATH particles produced by the present invention can also be characterized as having an oil absorption, as determined by ISO 787-5:1980 of in the range of from about 1 to about 35%.
- the spray-dried ATH particles produced by the present invention are characterized as having an oil absorption in the range of from about 23 to about 30%, more preferably in the range of from about 25% to about 28%.
- the spray-dried ATH particles produced by the present invention are characterized as having an oil absorption in the range of from about 25% to about 32%, more preferably in the range of from about 26% to about 30%.
- the spray-dried ATH particles produced by the present invention are characterized as having an oil absorption in the range of from about 25 to about 35% more preferably in the range of from about 27% to about 32%. In other embodiments, the oil absorption of the spray-dried ATH particles produced by the present invention are in the range of from about 19% to about 23%, and in still other embodiments, the oil absorption of the spray-dried ATH particles produced by the present invention is in the range of from about 21% to about 25%.
- the spray-dried ATH particles produced by the present invention can also be characterized as having a BET specific surface area, as determined by DIN-66132, in the range of from about 1 to 15 rrrVg.
- the spray-dried ATH particles produced by the present invention have a BET specific surface in the range of from about 3 to about 6 m 2 /g, more preferably in the range of from about 3.5 to about 5.5 m 2 /g. In other preferred embodiments, the spray-dried ATH particles produced by the present invention have a BET specific surface of in the range of from about 6 to about 9 m 2 /g, more preferably in the range of from about 6.5 to about 8.5 m 2 /g.
- the spray-dried ATH particles produced by the present invention have a BET specific surface in the range of from about 9 to about 15 m 2 /g, more preferably in the range of from about 10.5 to about 12.5 m 2 /g.
- the spray-dried ATH particles produced by the present invention can also be characterized as having a dso in the range of from about 0.5 to 2.5 ⁇ m.
- the spray-dried ATH particles produced by the present invention have a dso in the range of from about 1.5 to about 2.5 ⁇ m, more preferably in the range of from about 1.8 to about 2.2 ⁇ m.
- the spray-dried ATH particles produced by the present invention have a dso in the range of from about 1.3 to about 2.0 ⁇ m, more preferably in the range of from about 1.4 to about 1.8 ⁇ m.
- the spray-dried ATH particles produced by the present invention have a dso in the range of from about 0.9 to about 1.8 ⁇ m, more preferably in the range of from about 1.1 to about 1.5 ⁇ m.
- the water/dispersant solution can be prepared by first preparing a concentrate from 50O g Calgon, available from KMF Laborchemie, with 3 liters of CAL Polysalt, available from BASF. This solution is made up to 10 liters with deionized water. 100 ml of this original 10 liters is taken and in turn diluted further to 10 liters with deionized water, and this final solution is used as the water-dispersant solution described above.
- the slurry was fed into a pearl mill, type KD 200 D from Bachofen/Switzerland.
- This mill contained 270 kg of small beads made of zirconium oxide with a diameter of 0.6 mm.
- the throughput of the mill was controlled so that after drying by means of a Niro F 100 spray drier and conveying of the inventive aluminum hydroxide into a silo the resulting dso was 1.89 ⁇ m and the specific surface was 4.9 m 2 /g. In the present example, the throughput was about 3 mVh.
- Figure 1 shows the specific pore volume of the inventive aluminum hydroxide grade no. 1 as a function of the applied pressure of the second intrusion test run.
- Figure 2 shows the specific pore volume of the inventive aluminum hydroxide grade no.
- Figure 3 shows the normalized specific pore volume of the inventive aluminum hydroxide grade no. 1 as a function of the pore radius on a linear scale.
- the product properties of the inventive aluminum hydroxide grade no. 1 are contained in Table 1 , below.
- the inventive aluminum hydroxide grade no. 1 an ATH according to the present invention, has the lowest median pore radius and the lowest maximum specific pore volume.
- the slurry was fed into a pearl mill, type KD 200 D from Bachofen/Switzerland.
- This mill contained 270 kg of small beads made of zirconium oxide with a diameter of 0.6 mm.
- the throughput of the mill was controlled so that after drying by means of a Niro F 100 spray drier and conveying of the inventive aluminum hydroxide into a silo the resulting dso was 1.44 ⁇ m and the specific surface was 6.7 m 2 /g. In the present example, the throughput was about 2 mVh.
- Figure 4 shows the specific pore volume of the inventive aluminum hydroxide grade no. 2 as a function of the applied pressure of the second intrusion test run.
- Figure 5 shows the specific pore volume of the inventive aluminum hydroxide grade no.
- the inventive aluminum hydroxide grade no. 2 has the lowest median pore radius and the lowest maximum specific pore volume.
- the slurry was fed into a pearl mill, type KD 200 D from Bachofen/Switzerland.
- This mill contained 270 kg of small beads made of zirconium dioxide with a diameter of 0.6 mm.
- the throughput of the mill was controlled so that after drying by means of a Niro F 100 spray drier and conveying of the inventive aluminum hydroxide into a silo the resulting dso was 1.36 ⁇ m and the specific surface was 10.0 m 2 /g. In the present example, the throughput was about 0.75 mVh.
- Figure 7 shows the specific pore volume of the inventive aluminum hydroxide grade no. 3 as a function of the applied pressure of the second intrusion test run.
- Figure 8 shows the specific pore volume of the inventive aluminum hydroxide grade no.
- the inventive aluminum hydroxide grade no. 3 has a lower median pore radius and a lower maximum specific pore volume.
- EVA ethylene vinyl acetate
- EscoreneTM Ultra ULOOl 19 from ExxonMobil was mixed during about 20min on a two roll mill Wl 50M from the Collin company with 595.4 g (150 phr) of the inventive aluminum hydroxide grade no. 1 in a usual manner familiar to a person skilled in the art, together with 4.8 g (1.2 phr) of aminosilane AMEO from Degussa AG and 2.9 g (0.75 phr) of the antioxidant Ethanox® 310 from Albemarle Corporation.
- the aminosilane ensures better coupling of the filler to the polymer matrix.
- the temperature of the two rolls was set to 130 0 C.
- the ready compound was removed from the mill, and after cooling to room temperature, was further reduced in size to obtain granulates suitable for compression molding in a two platen press or for feeding a laboratory extruder to obtain extruded strips for further evaluation.
- the granules were extruded into 2mm thick tapes using a Haake Polylab System with a Haake Rheomex extruder. Test bars according to DIN 53504 were punched out of the tape. The results of this experiment are contained in Table 4, below.
- the temperature of the two rolls was set to 13O 0 C.
- the ready compound was removed from the mill, and after cooling to room temperature, was further reduced in size to obtain granulates suitable for compression molding in a two platen press or for feeding a laboratory extruder to obtain extruded strips for further evaluation.
- the granules were extruded into 2mm thick tapes using a Haake Polylab System with a Haake Rheomex extruder. Test bars according to DIN 53504 were punched out of the tape. The results of this experiment are contained in Table 4, below.
- EVA ethylene vinyl acetate
- the aminosilane ensures better coupling of the filler to the polymer matrix.
- the temperature of the two rolls was set to 13O 0 C.
- the ready compound was removed from the mill, and after cooling to room temperature, was further reduced in size to obtain granulates suitable for compression molding in a two platen press or for feeding a laboratory extruder to obtain extruded strips for further evaluation.
- the granules were extruded into 2mm thick tapes using a Haake Polylab System with a Haake Rheomex extruder. Test bars according to DIN 53504 were punched out of the tape. The results of this experiment are contained in Table 5, below.
- the inventive aluminum hydroxide grade no. 2 has similar mechanical, theological, electrical and flame retardant properties as the comparative grade Martinal® OL-107 LE.
- EVA ethylene vinyl acetate
- EscoreneTM Ultra ULOOl 19 from ExxonMobil was mixed during about 20min on a two roll mill Wl 50M from the Collin company with 595.4 g (150 phr) of the inventive filler no. 3 in a usual manner familiar to a person skilled in the art, together with 4.8 g (1.2 phr) of aminosilane AMEO from Degussa AG and 2.9 g (0.75 phr) of the antioxidant Ethanox® 310 from Albemarle Corporation.
- the aminosilane ensures better coupling of the filler to the polymer matrix.
- the temperature of the two rolls was set to 13O 0 C.
- the ready compound was removed from the mill, and after cooling to room temperature, was further reduced in size to obtain granulates suitable for compression molding in a two platen press or for feeding a laboratory extruder to obtain extruded strips for further evaluation.
- the granules were extruded into 2mm thick tapes using a Haake Polylab System with a Haake Rheomex extruder. Test bars according to DIN 53504 were punched out of the tape. The results of this experiment are contained in Table 6, below.
- the inventive aluminum hydroxide grade no. 3 has similar mechanical and rheological properties as the comparative grade Martinal® OL-111 LE.
- the Melt Flow Index was measured according to DIN 53735.
- the tensile strength and elongation at break were measured according to DIN 53504, and the resistivity before and after water ageing was measured according to DIN 53482 on 100x100x2 mm 3 pressed plates.
- the water pick-up in % is the difference in weight after water aging of a 100x100x2 mm 3 pressed plate in a de-salted water bath after 7 days at 70 0 C relative to the Initial weight of the plate.
- the oxygen index was measured according to ISO 4589 on 6 x 3 x 150 mm 3 samples.
- the comparative aluminum hydroxide particles Martinal® OL- 104 LE of Example 2 and the inventive aluminum hydroxide grade no. 1 of Example 1 were separately used to form a flame-retardant resin formulation.
- the synthetic resin used was a mixture of EVA Escorene® Ultra UL00328 from ExxonMobil together with a LLDPE grade Escorene® LLlOOlXV from ExxonMobil, Ethanox® 310 antioxidant available commercially from the Albemarle® Corporation, and an amino silane Dynasylan AMEO from Degussa.
- the amount of each component used in formulating the flame-retardant resin formulation is detailed in Table 7, below.
- the AMEO silane and Ethanox® 310 were first blended with the total amount of synthetic resin in a drum prior to Buss compounding.
- the resin/silane/antioxidant blend was fed into the first inlet of the Buss kneader, together with 50 % of the total amount of aluminum hydroxide, and the remaining 50% of the aluminum hydroxide was fed into the second feeding port of the Buss kneader.
- the discharge extruder was flanged perpendicular to the Buss Ko-kneader and had a screw size of 70 mm.
- Figure 10 shows the power draw on the motor of the discharge extruder for the inventive aluminum hydroxide grade no. 1.
- Figure 11 shows the power draw on the motor of the discharge extruder for the comparative aluminum hydroxide grade OL- 104 LE, produced by Martinswerk GmbH.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Glanulating (AREA)
- Filtering Materials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (22)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81542606P | 2006-06-21 | 2006-06-21 | |
US81551506P | 2006-06-21 | 2006-06-21 | |
US81867006P | 2006-07-05 | 2006-07-05 | |
US81863306P | 2006-07-05 | 2006-07-05 | |
US81863206P | 2006-07-05 | 2006-07-05 | |
US82887706P | 2006-10-10 | 2006-10-10 | |
US82890806P | 2006-10-10 | 2006-10-10 | |
US82890106P | 2006-10-10 | 2006-10-10 | |
US82891206P | 2006-10-10 | 2006-10-10 | |
US88933007P | 2007-02-12 | 2007-02-12 | |
US88932007P | 2007-02-12 | 2007-02-12 | |
US88932707P | 2007-02-12 | 2007-02-12 | |
US88931607P | 2007-02-12 | 2007-02-12 | |
US88932507P | 2007-02-12 | 2007-02-12 | |
US82833007P | 2007-02-12 | 2007-02-12 | |
US88931907P | 2007-02-12 | 2007-02-12 | |
US89147507P | 2007-02-23 | 2007-02-23 | |
US89174707P | 2007-02-27 | 2007-02-27 | |
US89174607P | 2007-02-27 | 2007-02-27 | |
US89147807P | 2007-02-27 | 2007-02-27 | |
US91647707P | 2007-05-07 | 2007-05-07 | |
PCT/IB2007/004509 WO2008090415A2 (en) | 2006-06-21 | 2007-06-21 | Process for the production of aluminum hydroxide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17165927.9A Division EP3216763A1 (en) | 2006-06-21 | 2007-06-21 | Spray-dried aluminum hydroxide particles |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2032505A2 true EP2032505A2 (en) | 2009-03-11 |
Family
ID=39645360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07872100A Ceased EP2032505A2 (en) | 2006-06-21 | 2007-06-21 | Process for the production of aluminum hydroxide |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2032505A2 (en) |
WO (1) | WO2008090415A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133331A1 (en) | 2012-03-06 | 2013-09-12 | 住友化学株式会社 | Aluminium hydroxide powder and method for producing same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268295A (en) * | 1961-10-06 | 1966-08-23 | Reynolds Metals Co | Alumina hydrate and its method of preparation |
US5306480A (en) * | 1986-07-16 | 1994-04-26 | Alcan International Limited | Alumina hydrates |
US4989794A (en) * | 1986-07-16 | 1991-02-05 | Alcan International Limited | Method of producing fine particles |
DE4024044C2 (en) * | 1990-07-28 | 1998-09-10 | Nabaltec Gmbh | Process for the production of a filler, use of the filler for flame fixing and flame-retardant plastic |
JPH0788391A (en) * | 1993-09-20 | 1995-04-04 | Showa Shell Sekiyu Kk | Production of superfine powder |
AU5686700A (en) * | 1999-06-29 | 2001-01-31 | Albemarle Corporation | Process for the production of aluminium hydroxide |
DE60100334T2 (en) * | 2000-01-10 | 2004-04-29 | Albemarle Corp. | PROCESS FOR THE PRODUCTION OF ALUMINUM HYDROXIDE WITH IMPROVED HEAT STABILITY |
EP1380540A1 (en) * | 2002-07-04 | 2004-01-14 | Albemarle Corporation | Fine aluminium hydroxide |
-
2007
- 2007-06-21 EP EP07872100A patent/EP2032505A2/en not_active Ceased
- 2007-06-21 WO PCT/IB2007/004509 patent/WO2008090415A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2008090415A4 (en) | 2009-02-12 |
WO2008090415A2 (en) | 2008-07-31 |
WO2008090415A3 (en) | 2008-12-31 |
WO2008090415A8 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2654290C (en) | Process for the production of aluminum hydroxide | |
US7959895B2 (en) | Process for the production of aluminum hydroxide | |
CN101506099B (en) | Process for the production of aluminum hydroxide | |
EP2032505A2 (en) | Process for the production of aluminum hydroxide | |
US20090131573A1 (en) | Process for the production of aluminum hydroxide | |
US8642001B2 (en) | Aluminum hydroxide | |
TWI427038B (en) | Process for the production of aluminum hydroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081215 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090422 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TOEDT, WINFRIED Inventor name: KELLER, VOLKER, ERNST, WILLI Inventor name: PUETZ, NORBERT, WILHELM Inventor name: HERBIET, RENE, GABRIEL, ERICH |
|
RAX | Requested extension states of the european patent have changed |
Extension state: RS Payment date: 20081215 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20210224 |