TW200831414A - Aluminum hydroxide - Google Patents

Aluminum hydroxide Download PDF

Info

Publication number
TW200831414A
TW200831414A TW96122701A TW96122701A TW200831414A TW 200831414 A TW200831414 A TW 200831414A TW 96122701 A TW96122701 A TW 96122701A TW 96122701 A TW96122701 A TW 96122701A TW 200831414 A TW200831414 A TW 200831414A
Authority
TW
Taiwan
Prior art keywords
range
ath
particles
particle
flame retardant
Prior art date
Application number
TW96122701A
Other languages
Chinese (zh)
Other versions
TWI427037B (en
Inventor
Rene Gabriel Erich Herbiet
Winfried Toedt
Volker Ernst Willi Keller
Norbert Wilhelm Puetz
Original Assignee
Martinswerk Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martinswerk Gmbh filed Critical Martinswerk Gmbh
Publication of TW200831414A publication Critical patent/TW200831414A/en
Application granted granted Critical
Publication of TWI427037B publication Critical patent/TWI427037B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Novel aluminum hydroxide flame-retardants and their use.

Description

200831414 九、發明說明: 【發明所屬之技術領域】 本發明係關於新穎氫氧化鋁阻燃劑及其使用。 【先前技術】 氫氧化鋁具有各種不同名稱例如鋁水合物,鋁三 物等’但是一般稱爲ATH。ATH粒子在許多材料中用 塡料,舉例而言,例如塑膠、橡膠、熱固物、紙等。此 物供應使用在多種多樣商業應用方面例如電線和電纜 () 物、運送機帶、熱塑性塑膠模製、壁護套、地板等。一 用ATH來改良此等材料的阻燃性且亦作爲煙霧抑制劑 用於合成ATH之方法在該技藝中係眾所周知。舉 言,參閱EP 1 206 4 1 2 B1其記述製造精細沉澱級之氫 鋁,其中將自拜耳法所獲得之母液使用三羥鋁石晶體予 種。經由在結晶期間使用控制之條件,可產生具有一致 品質之特製ATH級。該等ATH級一般以兩種重要特性 以區分’中値松子大小,一*般稱爲d50s及比表面積,一* C , 爲BET比表面積,此等兩特性是選擇適合特定應用之 的主要準則。 然而,ATH並非完全基於其d5G及/或BET比表面 以選擇。相對地,ATH亦係基於含有ATH之樹脂的摻 能予以選擇,而對於更佳摻合性能之要求已然增加。 ATH樹脂的摻合性能通常經由觀察摻合含ATH之樹脂 使用之摻合機器的馬達上之輸出功率予以測定。摻合機 馬達上之輸出功率變動較少代表摻合器引擎之磨損較4 水合 作爲 等產 化合 般使 〇 例而 氧化 以晶 產物 而加 般稱 ATH 積予 合性 含有 時所 器的 卜更 200831414 佳的摻合樹脂且在摻合期間含有ATH之樹脂的產量更高。 因此,由於在摻合ΑΤΗ阻燃樹脂時,要求更高的產量 且ΑΤΗ阻燃合成樹脂的性能是重要的特性(與ΑΤΗ相關), 所以摻合商可能自其受益,而因此,有一種要求,就是在摻 ^ 合期間,在摻合機器中,例如Buss Κο捏合機,雙螺桿擠壓 機或其他適當機器中使ΑΤΗ得到更高之產量。 【發明內容】 更高之摻合產量可藉由在合成材料中選擇使用具較佳 潤濕性之ΑΤΗ而獲得。合成樹脂中具有不良潤濕性之ΑΤΗ 導致在摻合期間摻合器馬達的輸出功率之變動較大,其接著 . 導致至多降低化合物品質、低產量,且隨著時間過去,可能 、 出現摻合機器的引擎損壞之相當大風險。 一實施例中,本發明係關於具有範圍自約0.09至約 0.3 3 // m之中値孔隙半徑之ΑΤΗ粒子。 另一實施例中,本發明係關於具有範圍自約0.09至約 0.3 3 μ m之中値孔隙半徑及自約3 00至約700mm3/g之最大 ^ 比孔隙體積之ΑΤΗ粒子。 尙有另一實施例中,本發明係關於具有下列各項之 ΑΤΗ粒子: 範圍自0.5至約2.5#m之d50; 自約1至約15m2/g之BET比表面積;與 自約0.0 9至約0 · 3 3 // m之中値孔隙半徑。 更有另一實施例中,本發明係關於具有下列各項之 A T Η粒子: 200831414 i) 自約3至約6m2/g之BET比表面積;及 自約3 90至約480mm3/g之最大比孔隙體積; 或 ii) 自約6至約9m2/g之BET比表面積;及 自約400至約6〇〇mm3/g之最大比孔隙體積; 或 iii) 自約9至約15m2/g之BET比表面積;及 自約3 00至約700mm3/g之最大比孔隙體積。 ί 在更另一實施例中,本發明係關於阻燃之聚合物配方 包括至少一種合成樹脂和具有範圍自約〇.〇9至約0.33// m ^ 中値孔隙半徑之阻燃量的ATH粒子。 【實施方式】 ATH粒子對於樹脂的潤濕性係基於ATH粒子的形態, 關於此,發明人意外地發現根據本發明之ATH粒子具有相 當於現時可供利用之具有改良之潤濕性的ATH粒子。雖然 不希望受理論所約束,關於此發明人確信此改良之潤濕性係 可歸因於本文中所揭示之ATH粒子的形態改良。 再次,雖然不希望受理論所約束,關於此發明人確信 此改良之潤濕性可歸因於本發明的ATH產物粒子之比孔隙 體積及/或中値孔隙半徑(“ :r5()”)。關於此,發明人確信, 關於指定之聚合物分子,具有較高結構聚集體之ATH產物 含有較多且較大之孔隙且似乎更難以潤濕,導致在捏合機中 進行摻合期間之各種困難(馬達上輸出功率之變動較大),捏 合機例如Buss Κο捏合機成雙螺桿擠壓機或該技藝方面所 200831414 熟知且爲此目的而使用之其他機器。因此,關於此,發明人 已發現特徵爲較小之中値孔隙大小及/或較低之總孔隙體積 之ATH塡料與對於聚合材料之改良潤濕相互關連而因此導 致改良之摻合性狀,即:摻合含有ATH塡料之阻燃樹脂時 所使用之摻合機器的引擎(馬達)輸出功率變動較少)。 本發明的ATH粒子 根據本發明之氫氧化鋁粒子其特徵爲一定程度之中値 孔隙半徑及/或在1 000巴時之較低總比孔隙體積,Vmax,如 經由水銀孔隙度測定法所測定。根據本發明之ATH粒子的 r50和Vmax可自水銀孔隙度測定法得到。水銀孔隙度測定法 的理論係基於物理原理就是:不具反應性、非潤濕之液體不 會穿透孔隙直至施加充分壓力來強制它進入。因此,使液體 進入孔隙所必須之壓力愈高,細孔大小愈小。較小之細孔大 小及/或較低之總比孔隙體積被發現係與氫氧化鋁粒子的較 佳潤濕性相互關聯。本發明的氫氧化鋁粒子的細孔大小可使 用來自義大利,Carlo Erba Strumentazione之孔隙計 2000 進行之水銀孔隙度測定法所衍生之數據予以計算。根據孔隙 計2000的手冊,使用下列方程式自所測得之壓力來計算細 孔半徑r : p: r= -2 7C〇s(0 )/p 其中0是潤濕角,r是表面張力。本文中所取得之量 測係使用0 = 141.3°並將r設定爲480dyn/cm。 爲了改良測量的再現性,ATH粒子的細孔大小自第二 ATH注入試驗操作予以計算,如孔隙計2000的手冊中所述 200831414 。使用第二試驗操作因爲發明人注意到有一定量之具有體積 Vc之汞在擠壓之後,即:在放釋壓力至周圍壓力之後,依 然在ATH粒子的樣品中。因此,r5G可自此數據衍生出,如 參照第1、2圖和第3圖下文中所解釋。 第一試驗操作中,ATH樣品係如孔隙計2000的操作手 冊中所述予以製備,使用1 〇〇〇巴的最大壓力,量測孔隙體 積爲所施加之注入壓力P的函數。於完成第一試驗操作時, 釋放壓力並容許達到周圍壓力。利用來自第一試驗操作。無 摻雜之相同 ATH樣品實施第二注入試驗操作(根據孔隙計 2 000的操作手冊),於此情況,第二試驗操作的比孔隙體積 V(p)之量測採用體積Vo作爲新起始體積,然後將它設定爲 零供第二試驗操作用。 在第二注入試驗操作時,使用1 000巴之最大壓力,樣 品的比孔隙體積V(P)之測量係所施加之注入壓力的函數。 第1圖顯示與目前商業上可供應之ATH產物比較,關於第 二注入試驗操作和根據本發明ATH級No. 1,比孔隙體積V 係所施加之壓力的函數。在1 〇〇〇巴時之孔隙體積,即:量 測時所使用之最大壓力本文中稱爲Vmax。 自第二ATH注入試驗操作,細孔半徑r經由孔隙計2000 根據下式予以計算: r = -2 7 cos(0 )/p 其中θ是潤濕角r是表面張力和p是注入壓力。關於 本文中所記錄之所有r量測,使用θ = 141.3°並將r設定爲 4 8 0dyn/Cm。因此可將比孔隙體積對細孔半徑r繪圖。第2 200831414 圖顯示第二注入試驗操作(使用相同樣品)的比孔隙體積V 對細孔半徑r之繪圖。 第3圖顯示第二注入試驗操作的正規化比孔隙體積對 細孔半徑r之繪圖,即,此曲線中,將第二注入試驗操作的 最大比孔隙體積Vmax設定爲100%,並將此特定ATH之其 他比容除以此最大値。按照定義將在50%的相對比孔隙體積 時的細孔半徑本文中稱爲中値孔隙半徑r5G。舉例而言,根 據第3圖,根據本發明之ATH,即發明1之中値孔隙半徑 i r50 是 0.277/zm° 上述之步驟使用根據本發明之ATH粒子的樣品予以重 複,並發現ATH粒子具有範圍自約0.09至約0.33 // m之r50 # ,即,在50%的相對比孔隙體積時之細孔半徑。本發明的較 佳實施例中,ATH粒子的r5〇是在自約0.20至約0.33 // m之 範圍內。更佳在自約0.2至約0.3 // m之範圍內。其他較佳 實施例中,r 5 〇是在自約0.1 8 5至約0.3 2 5 // m之範圍內,更 佳在自約0.185至約0.25 // m之範圍內。更有其他實施例中 I ; ,該r5G是在自約0.09至約0.21 // m之範圍內,更佳在自約 0.09至約0.165/zm之範圍內。 本發明的ATH粒子亦可述其特徵爲具有自約3 00至約 700mm3/g範圍內之Vmax,良P在1 000巴時之最大比孔隙體積 。本發明之較佳實施例中,ATH粒子的Vmax是在自約390 至約480mm3/g之範圍內,更佳在自約410至約450mm3/g 之範圍內。在其他較佳實施例中,該Vmax是在約400至約 6 0 0mm3/g之範圍內,更佳在自約450至約5 5 0mm3/g之範圍 -10- 200831414 內。尙有其他較佳實施例中,該Vmax是在約3 00至約 700mm3/g之範圍內,更佳在約350至約550mm3/g之範圍內 〇 本發明的 ATH粒子亦可述其特徵爲具有如經由 IS Ο 7 8 7 - 5 : 1 9 8 0所測定,在自約1至約3 5 %範圍內之油吸 收。某些較佳實施例中,本發明的A T Η粒子特徵爲具有約 23至約30%範圍內之油吸收,更佳在約25%至約28 %範圍 內。其他較佳實施例中,本發明的ΑΤΗ粒子之特徵爲具有 f ^ 約25%至約3 2%範圍內之油吸收,更佳在約26%至約30%之 範圍內。尙有其他較佳實施例中,本發明的ATH粒子之特 徵爲具有自約2 5至約3 5 %範圍內之油吸收,更佳在約27% 至約32%之範圍內。其他實施例中,根據本發明之ATH粒 子的油吸收是在約19%至約23 %之範圍內,更有其他實施例 中,根據本發明之ATH粒子的油吸收是在約21%至約25% 之範圍內。 根據本發明之 ATH粒子亦可述其特徵爲具有如經由 ί, DIN-66 1 32所測定,自約1至約15m2/g範圍內之BET比表 面積。較佳實施例中,根據本發明之ATH粒子具有自約3 至約6m2/g範圍內之BET比表面積,更佳在約3.5至約 5.5m2/g之範圍內。其他較佳實施例中,根據本發明之ATH 粒子具有約6至約9m2/g範圍內之BET比表面積,更佳在 約6.5至約8.5m2/g之範圍內。更有其他較佳實施例中,根 據本發明之ATH粒子具有在約9至約15m2/g範圍內之BET 比表面積,更佳在約10.5至約12.5m2/g之範圍內。 -11- 200831414 根據本發明之ATH粒子亦可述其特徵爲具有自約0.5 至2.5 // m範圍內之d5G。較佳實施例中,根據本發明之AT Η 粒子具有自約1 . 5至約2.5 // m範圍內之d5 ο,更佳在約;ι · 8 至約2 · 2 // m的範圍內。其他較佳實施例中,根據本發明之 ATH粒子具有自約1.3至約2.0 // m範圍內之d5G,更佳在約 1 · 4至約1 · 8 // m的範圍內。更有其他較佳實施例中,根據本 發明之ATH粒子具有自約0.9至約1 .8 // m範圍內之d50, 更佳在約1 . 1至約1 . 5 // m的範圍內。 Ο 應特別述及:本文中所揭示之所有粒子直徑量測,即 dso,係使用來自Quantachrome公司之Cilas 1064L雷射分 光計之雷射繞射予以量測。通常,爲了量測d 5 〇,本文中所 使用之步驟可經由首先將適當的水-分散劑溶液(製備見下 文)導入裝置的樣品製備容器中予以實施。然後選擇稱爲> 粒子專家〃之標準量測,並選擇量測模式''範圍1 〃 ,然後 選擇適用於預期之粒子大小分佈之裝置內部參數。應特別述 及,在量測時一般將樣品於,在分散期間和量測期間暴露至 ϋ 超音 波歷約60秒。在背景量測實施之後,將約75至約10Omg 之欲分析樣品連同水/分散劑溶液置入樣品容器中並開始量 測。該水/分散劑溶液可經由首先使用得自BASF之3升的 CAL Polysalt 和得自 KMF Laborchemie 之 Calgon 500g 製備 一種濃縮物予以製備。將此溶液加入去離子水至成爲1 0升 。自此原始的1 〇升溶液取出100毫升’接著使用去離子水 進一步稀釋至10升,並使用此最後溶液作爲上述之水一分 散劑溶液。 -12- 200831414 製造本發明之ATH粒子 本發明之ΑΤΗ粒子可經由數種方法予以製造,舉例而 言,例如藉由將漿液(例如以後述之方式製造者)加以噴霧乾 燥並予以乾式硏磨;將漿液或濾餅(例如以後述之方式製造 者)加以硏磨乾燥,並視情況予以去黏聚;及濕式硏磨繼以 噴霧乾燥。舉例而言,參閱眾所皆知的共同申請中之下列申 請案中所揭示之那些方法:60/8 1 8,63 2 ; 60/899,3 1 6 ; 60/89 1,746 ; 60/89 1,745 ; 60/8 1 8,63 3 ;及 60/8 1 8,670 » 將其 全部倂入本文以供參考。某些實施例中,本發明的A Τ Η粒 子係由一種方法製成,其包括將含有基於漿液之總重量範圍 約1至約40wt%ATH粒子之ΑΤΗ漿液予以濕式硏磨。本文 中所使用之,'"濕式硏磨〃意指述及在一種液體之存在時, ATH漿液與硏磨介質的接觸。適合使用於本文中濕式硏磨之 液體是不會實質上溶解ATH之任何液體,較佳之液體是水 。在適於製造根據本發明之ATH粒子之部分濕式硏磨方法 中,黎液亦可含有適當之分散劑。 濕式硏磨中所使用之硏磨介質可能是由各種材料製成 之球、桿或其他形狀。部分常見硏磨介質之構造材料包括陶 瓷、鋼、鋁、玻璃或氧化锆(Zr02)。關於陶瓷硏磨介質,密 度應高於2.5g/cm3。較佳,使用具有至少1.5g/cm3的密度之 金屬爲基底之硏磨介質,其較佳在約2.0至約2.5g/cm3之範 圍內。較佳之濕式硏磨方法中,硏磨介質係選自具有一般圓 球形狀之那些介質,更佳具有範圍自約0.1mm至約l.〇mm 直徑之圓球形硏磨介質,更佳,該硏磨介質是鉻硏磨介質, -13- 200831414 最佳是氧化錐。 於實施本發明時,予以濕式硏磨之ATH漿液可自製造 ATH粒子所使用之任何方法獲得。該漿液較佳係自包括通過 沉澱和過濾來產生ATH粒子之方法而獲得。 ATH漿液之濕式硏磨導致硏磨之ATH漿液其經由通常 使用自濕式硏磨操作回收硏磨產物之任何技術自濕式硏磨 操作予以回收。然後將回收之經硏磨之ATH漿液加以乾燥 。可使用適於乾燥ATH漿液之該技藝中所熟知之任何乾燥 方法。乾燥方法的非限制實施例包括噴霧乾燥,例如使用得 自瑞典之Niro公司的噴霧乾燥器,驟沸乾燥或乾燥破碎使 用自 Atritor公司商業上可供應之硏磨乾燥器或自 Altenburger Maschinen Jaeckering 公司可供應。某些實施例 中,將硏磨之ATH漿液噴霧乾燥,在其他實施例中,使用 硏磨乾燥器將硏磨之ATH漿液乾燥。 使用作爲阳燃劑 根據本發明之ATH粒子可使用在各種合成樹脂中作爲 阻燃劑。在其中使用ATH粒子之熱塑性樹脂的非限制實施 例包括聚乙烯,乙烯-丙烯共聚物,C2至C8烯烴(α烯烴) 的聚合物和共聚物,例如聚丁烯,聚(4-甲基戊烯-1)等,此 等烯烴和二烯之共聚物,乙烯-丙烯酸酯共聚物,聚苯乙烯 ,ABS樹脂,AAS樹脂,AS樹脂,MBS樹脂,乙烯/氯乙烯 共聚物樹脂,乙烯/醋酸乙烯酯共聚物樹脂,乙烯-氯乙烯 -醋酸乙烯酯接枝聚合物樹脂,偏氯乙烯,聚氯乙烯,氯化 聚乙烯,氯乙烯-丙烯共聚物,醋酸乙烯酯樹脂,苯氧基樹 -14- 200831414 脂等。適當合成樹脂之另外實施例包括熱固性樹脂例如環氧 樹脂,酚樹脂,三聚氰胺樹脂,不飽和聚酯樹脂,醇酸樹脂 和 樹脂,及天然或合成橡膠例如EPDM 丁基橡膠,異戊二 烯橡膠,SBR,NIR,胺甲酸乙酯橡膠,聚丁二烯橡膠,丙 烯酸系橡膠,矽氧橡膠,氟彈性體,且亦包括NBR和氯磺 化聚乙烯。另外包括者是聚合之懸浮液(乳膠)。 合成樹脂較佳是以聚乙烯爲基底之樹脂例如高密度聚 乙烯,低密度聚乙烯,線性低密度聚乙烯,超低密度聚乙烯 ,EVA(乙烯-醋酸乙烯酯樹脂,EEA(乙烯/丙烯酸乙酯樹脂 )、EMA(乙烯/丙烯酸甲酯共聚物樹脂)、EAA(乙烯-丙烯酸 共聚物樹脂)及超高分子量聚乙烯;及C2至C8烯烴(α烯烴 )的聚合物和共聚物例如聚丁烯和聚(4 -甲基戊烯-1 ),聚 氯乙烯和橡膠。更佳之實施例中,合成樹脂是以聚乙烯爲基 底之樹脂。 發明人發現:經由使用根據本發明之ΑΤΗ粒子在合成 樹脂中作爲阻燃劑,可獲得含有氫氧化鋁之合成樹脂的較佳 摻合性能。製造高塡充之阻燃化合物及從含ΑΤΗ之合成樹 脂製造最後擠壓或模製製品之那些摻合商、製造商等人極需 要較佳之摻合性能。按高塡充,其意指含有阻燃數量的ΑΤΗ 之那些製品,下文予以討論。 按較佳摻合性能,係意指爲了混合含有根據本發明ΑΤΗ 粒子之合成樹脂所需要之摻合機器例如Buss Κο-捏合機或 雙螺桿擠壓機的能階振幅之變更係小於混合含有習用ΑΤΗ 粒子合成樹脂所使用之摻合機器的能階振幅變更。能階之較 -15- 200831414 小變更容許被混合或擠壓之含ATH之合成樹脂的較高產量 及/或更均勻(勻相)物料。 因此,一實施例中,本發明係關於包含自上文所述那些 樹脂中所選出之至少一種合成樹脂,在某些實施例中僅包含 一種和一定阻燃量的根據本發明ATH粒子之阻燃性聚合物 配方’及自該阻燃性聚合物配方所製成之擠塑及/或模製製 品。 按一定阻燃數量的ATH,通常係意指基於阻燃性聚合物 配方的重量,範圍約5wt%至約90wt%,更佳基於相同基礎 約20wt%至約70wt%。在大多數較佳實施例中,阻燃量是基 於相同基礎,約30wt%至約65wt%的ATH粒子。 該阻燃性聚合物配方亦可含有該項技藝中通常所使用 之其他添加劑。適合使用於本發明的阻燃性聚合物配方中之 其他添加劑之非限制性實施例包括擠壓助劑例如聚乙烯蠟 、以Si爲基底之擠壓助劑、脂肪酸;偶合劑例如胺基、乙 烯基-或烷基矽烷或馬來酸接枝聚合物;硬脂酸鈉或硬脂酸 鈣;有機過氧化物;染料;顏料;塡料;發泡劑;除臭劑; 熱安定劑;抗氧化劑;抗靜電劑;增強劑;金屬清除劑或去 活化劑;衝擊改良劑;加工助劑;脫模助劑;潤滑劑;防阻 塞劑;其他阻燃劑;UV穩定劑;塑化劑;流動助劑等等。 若需要,成核劑例如矽酸鈣或靛藍亦可包括在阻燃性聚合物 配方中。其他視需要添加劑的比例是習用的,且可予以變更 來適合任何指定情況的需要。 實施摻合和添加阻燃性聚合物配方的成分之方法對於 -16- 200831414 本發明並不重要且可能是該項技藝中所熟知之任何方法,只 要所選擇之方法包括實質上均勻混合。舉例而言,如果使用 ,各上述成分和視需要添加劑可使用下列設備予以混合: Buss Κο -捏合機,密閉混合器,Farrel連續混合器或雙螺 杆擠壓機或在某些情況中亦使用單螺杆擠壓機或兩輥磨機 。然後,如果如此需要,可將阻燃性聚合物配方在隨後之處 理步驟中模製。在某些實施例中,可使用裝置來充分混合該 等成分以形成阻燃性聚合物配方及亦從該阻燃性聚合物配 方來模製成製品。此外,在製造後可使用阻燃性聚合物配方 的模製製品作爲各種應用例如伸展加工,壓紋加工,塗裝、 印刷、電鍍、打孔或切割。亦可將模製製品附加至除了本發 明的阻燃聚合物配方以外之材料上,例如糊牆紙板、木、塊 料板、金屬材料或石。然而,亦可將捏和之混合物充氣模製 ,射出成型、擠壓模製、吹製成型、壓製模製、旋轉模製或 壓延模製。 在擠壓製品的情況中,可使用對於上述合成樹脂混合物 係有效之所熟知之任何擠壓技術。一例示之技術中,將合成 樹脂,氫氧化鋁粒子及如果選擇,視需要成分在摻合機器中 摻合以形成如上所述之阻燃樹脂配方。然後將該阻燃樹脂配 方在擠壓機中加熱至熔融狀態,然後將熔融之阻燃樹脂配方 通過一選擇之模擠壓以形成擠壓之製品或舉例而言,用於塗 覆使用於數據傳輸之金屬線或玻璃纖維。 上文敘述係關於本發明的數個實施例。精於該項技藝之 人士應確認可設計同等有效之其他方法用於實行此發明的 -17- 200831414 要旨。亦應述及,本發明的較佳實施例考慮:本文中所論述 之所有範圍係包括自任何較低量至任何較高量之範圍。舉例 而言,阻燃數量的ATH亦可包括約70至約90wt°/〇的範圍內 及20至約65 wt%的範圍內之數量等。 下列實施例將舉例說明本發明,但是並無意欲以任何方 式限制本發明。 實施例 如上文所述,下列實施例中所敘述之r5〇和Vmax係使用 €' 孔隙計2000進行之水銀孔隙度測定法予以衍生出。除非在 其他情況下指示,所有d5G,BET,油吸收等係根據上述之 各種技術來量測。又,如實施例中所使用之術語 ''發明級之 氫氧化鋁〃和''發明之塡料〃意指述及根據本發明之ATH ,及'^比較級氫氧化鋁〃係意指商業上可供應且並非根據本 發明之ATH。 實施例1200831414 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a novel aluminum hydroxide flame retardant and use thereof. [Prior Art] Aluminum hydroxide has various names such as aluminum hydrate, aluminum trisate, etc. but is generally referred to as ATH. ATH particles are used in many materials such as plastics, rubber, thermosets, paper, and the like. This product is used in a variety of commercial applications such as wire and cable (), conveyor belts, thermoplastic molding, wall coverings, flooring, etc. A method for improving the flame retardancy of such materials using ATH and also as a smoke suppressant for the synthesis of ATH is well known in the art. In the case of EP 1 206 4 1 2 B1, it is described that the fine precipitation grade of aluminum hydroxide is produced, wherein the mother liquor obtained from the Bayer process is seeded with bayerite crystals. A tailored ATH grade with consistent quality can be produced by using controlled conditions during crystallization. These ATH grades generally have two important characteristics to distinguish 'the size of the Chinese pine nuts, one is called d50s and the specific surface area, one * C, is the BET specific surface area. These two characteristics are the main criteria for selecting a specific application. . However, ATH is not based entirely on its d5G and/or BET specific surface. In contrast, ATH is also selected based on the doping of ATH-containing resins, and the requirements for better blending performance have increased. The blending properties of the ATH resin are typically determined by observing the output power on a motor incorporating a blending machine for the ATH-containing resin. Less variation in output power on the blender motor means that the wear of the blender engine is better than that of the four-water mixture, and that the oxidized product is oxidized to form a crystallization product. More 200831414 Better blending resin and higher yield of resin containing ATH during blending. Therefore, since a higher yield is required when blending a ruthenium flame retardant resin and the properties of the ruthenium flame retardant synthetic resin are important characteristics (related to ruthenium), the blender may benefit from it, and therefore, there is a requirement That is, during blending, higher yields are achieved in blending machines, such as Buss Κο kneaders, twin screw extruders or other suitable machines. SUMMARY OF THE INVENTION A higher blending yield can be obtained by selectively using a niobium having a better wettability in a synthetic material. The poor wettability of the synthetic resin results in a large variation in the output power of the blender motor during blending, which in turn leads to at most a reduction in compound quality, low yield, and, over time, possible blending There is a considerable risk of engine damage to the machine. In one embodiment, the invention is directed to ruthenium particles having a ruthenium radius ranging from about 0.09 to about 0.33 // m. In another embodiment, the present invention is directed to ruthenium particles having a ruthenium pore radius ranging from about 0.09 to about 0.33 μm and a maximum ^ specific pore volume from about 300 to about 700 mm 3 /g. In another embodiment, the invention relates to ruthenium particles having the following: d50 ranging from 0.5 to about 2.5 #m; BET specific surface area from about 1 to about 15 m2/g; and from about 0.09 to A pore radius of about 0 · 3 3 // m. In still another embodiment, the invention relates to AT Η particles having the following: 200831414 i) a BET specific surface area from about 3 to about 6 m 2 /g; and a maximum ratio from about 3 90 to about 480 mm 3 /g Pore volume; or ii) a BET specific surface area from about 6 to about 9 m2/g; and a maximum specific pore volume of from about 400 to about 6 mm3/g; or iii) from about 9 to about 15 m2/g of BET Specific surface area; and maximum specific pore volume from about 300 to about 700 mm 3 /g. In still another embodiment, the present invention relates to a flame retardant polymer formulation comprising at least one synthetic resin and a flame retardant amount of ATH having a pore radius ranging from about 〇.〇9 to about 0.33//m ^ particle. [Embodiment] The wettability of the ATH particles to the resin is based on the morphology of the ATH particles. Accordingly, the inventors have unexpectedly found that the ATH particles according to the present invention have ATH particles having improved wettability equivalent to those currently available. . While not wishing to be bound by theory, it is believed by the inventors that this improved wettability is attributable to the morphological improvement of the ATH particles disclosed herein. Again, although not wishing to be bound by theory, it is believed by the inventors that the improved wettability can be attributed to the specific pore volume and/or the median pore radius (":r5()") of the ATH product particles of the present invention. . In this regard, the inventors believe that with respect to the specified polymer molecules, the ATH product with higher structural aggregates contains more and larger pores and appears to be more difficult to wet, resulting in various difficulties during blending in the kneader. (The variation in output power on the motor is large), the kneading machine such as Buss Κο kneader is a twin-screw extruder or other machine well known and used for this purpose in 200831414. Accordingly, in this regard, the inventors have discovered that ATH sputum characterized by a smaller ruthenium pore size and/or a lower total pore volume correlates with improved wetting of the polymeric material and thus results in improved blending traits, That is, the engine (motor) of the blending machine used in blending the flame retardant resin containing ATH tantalum has less variation in output power. The ATH particles of the present invention are characterized in that the aluminum hydroxide particles according to the present invention are characterized by a certain degree of pore radius and/or a lower total specific pore volume at 1000 bar, Vmax, as determined by mercury porosimetry. . The r50 and Vmax of the ATH particles according to the present invention can be obtained from mercury porosimetry. The theory of mercury porosimetry is based on the physical principle that a non-reactive, non-wetting liquid does not penetrate the pores until sufficient pressure is applied to force it into. Therefore, the higher the pressure necessary to bring the liquid into the pores, the smaller the pore size. Smaller pore sizes and/or lower total pore volume were found to correlate with better wettability of the aluminum hydroxide particles. The pore size of the aluminum hydroxide particles of the present invention can be calculated from data derived from mercury porosimetry by Porosimeter 2000 from Carlo Erba Strumentazione. According to the manual of the Pore Meter 2000, the pore radius r is calculated from the measured pressure using the following equation: p: r = -2 7C 〇 s (0 ) / p where 0 is the wetting angle and r is the surface tension. The measurement obtained in this paper uses 0 = 141.3 ° and r is set to 480 dyn / cm. In order to improve the reproducibility of the measurement, the pore size of the ATH particles is calculated from the second ATH injection test operation, as described in the Handbook 2000 of the Pore Meter 2000. The second test procedure was used because the inventors noticed that a certain amount of mercury having a volume Vc was after extrusion, i.e., after the release pressure to ambient pressure, still in the sample of ATH particles. Therefore, r5G can be derived from this data, as explained below with reference to Figures 1, 2 and 3. In the first test run, the ATH sample was prepared as described in the manipulator of the Pore Meter 2000, using a maximum pressure of 1 Torr to measure the pore volume as a function of the applied injection pressure P. Upon completion of the first test operation, the pressure is released and the ambient pressure is allowed to reach. Utilize from the first test operation. The second injection test operation is performed on the same ATH sample without doping (according to the operation manual of the pore meter 2000). In this case, the measurement of the specific pore volume V(p) of the second test operation uses the volume Vo as a new start. Volume, then set it to zero for the second test operation. In the second injection test operation, a maximum pressure of 1000 bar is used, and the measurement of the specific pore volume V(P) of the sample is a function of the injection pressure applied. Figure 1 shows the function of the second injection test operation and the pressure applied to the pore volume V system according to the invention, ATH grade No. 1, as compared to the currently commercially available ATH product. The pore volume at 1 bar, i.e., the maximum pressure used in the measurement, is referred to herein as Vmax. From the second ATH injection test operation, the pore radius r is calculated via the porosimeter 2000 according to the following equation: r = -2 7 cos(0) / p where θ is the wetting angle r is the surface tension and p is the injection pressure. For all r measurements recorded herein, use θ = 141.3° and set r to 4 8 0dyn/Cm. Therefore, the specific pore volume can be plotted against the pore radius r. The second 200831414 graph shows the plot of the specific pore volume V versus the pore radius r for the second injection test operation (using the same sample). Figure 3 shows the normalization of the second injection test operation as a plot of the pore volume versus the pore radius r, i.e., in this curve, the maximum specific pore volume Vmax of the second injection test operation is set to 100%, and this specific The other specific ratio of ATH is divided by this maximum. The pore radius at 50% relative pore volume by definition is referred to herein as the median pore radius r5G. For example, according to Fig. 3, the ATH according to the present invention, that is, the enthalpy aperture radius i r50 of the invention 1 is 0.277 / zm. The above steps are repeated using the sample of the ATH particles according to the present invention, and it is found that the ATH particles have R50# ranging from about 0.09 to about 0.33 // m, that is, the pore radius at 50% relative pore volume. In a preferred embodiment of the invention, the r5 ATH of the ATH particles is in the range of from about 0.20 to about 0.33 // m. More preferably in the range of from about 0.2 to about 0.3 // m. In other preferred embodiments, r 5 〇 is in the range of from about 0.1 8 5 to about 0.3 2 5 // m, more preferably in the range of from about 0.185 to about 0.25 // m. In still other embodiments, the r5G is in the range of from about 0.09 to about 0.21 // m, more preferably in the range of from about 0.09 to about 0.165/zm. The ATH particles of the present invention may also be characterized as having a Vmax in the range of from about 300 to about 700 mm3/g and a maximum specific pore volume of good P at 1000 bar. In a preferred embodiment of the invention, the Vmax of the ATH particles is in the range of from about 390 to about 480 mm3/g, more preferably in the range of from about 410 to about 450 mm3/g. In other preferred embodiments, the Vmax is in the range of from about 400 to about 600 mm3/g, more preferably in the range of from about 450 to about 550 mm3/g -10- 200831414. In other preferred embodiments, the Vmax is in the range of from about 300 to about 700 mm 3 /g, more preferably in the range of from about 350 to about 550 mm 3 /g. The ATH particles of the present invention may also be characterized as Oil absorption in the range from about 1 to about 35 % as determined by IS Ο 7 8 7 - 5 : 1 9 8 0. In certain preferred embodiments, the A T Η particles of the present invention are characterized by having an oil absorption in the range of from about 23 to about 30%, more preferably in the range of from about 25% to about 28%. In other preferred embodiments, the ruthenium particles of the present invention are characterized by having an oil absorption in the range of from about 25% to about 32%, more preferably from about 26% to about 30%. In other preferred embodiments, the ATH particles of the present invention are characterized by having an oil absorption in the range of from about 25 to about 35 %, more preferably in the range of from about 27% to about 32%. In other embodiments, the oil absorption of the ATH particles according to the present invention is in the range of from about 19% to about 23%, and in still other embodiments, the oil absorption of the ATH particles according to the present invention is from about 21% to about Within 25%. The ATH particles according to the present invention may also be characterized as having a BET specific surface area ranging from about 1 to about 15 m2/g as determined by ί, DIN-66 1 32. In a preferred embodiment, the ATH particles according to the present invention have a BET specific surface area in the range of from about 3 to about 6 m2/g, more preferably in the range of from about 3.5 to about 5.5 m2/g. In other preferred embodiments, the ATH particles according to the present invention have a BET specific surface area in the range of from about 6 to about 9 m2/g, more preferably in the range of from about 6.5 to about 8.5 m2/g. In still other preferred embodiments, the ATH particles according to the present invention have a BET specific surface area in the range of from about 9 to about 15 m2/g, more preferably in the range of from about 10.5 to about 12.5 m2/g. -11- 200831414 The ATH particles according to the present invention may also be characterized as having d5G ranging from about 0.5 to 2.5 // m. In a preferred embodiment, the AT 粒子 particles according to the present invention have a d5 ο in the range of from about 1.5 to about 2.5 // m, more preferably in the range of from about ι 8 to about 2 · 2 // m. . In other preferred embodiments, the ATH particles according to the present invention have a d5G ranging from about 1.3 to about 2.0 // m, more preferably in the range of from about 1/4 to about 1. 8 // m. In still other preferred embodiments, the ATH particles according to the present invention have a d50 in the range of from about 0.9 to about 1.8 m, more preferably in the range of from about 1.1 to about 1.5. . Ο It should be specifically mentioned that all particle diameter measurements disclosed in this paper, dso, are measured using laser diffraction from a Citras 1064L laser spectrometer from Quantachrome. Generally, to measure d 5 〇, the steps used herein can be carried out by first introducing a suitable water-dispersant solution (prepared as described below) into a sample preparation vessel of the apparatus. Then select the standard measurement called Particle Experts and select the measurement mode '' Range 1 〃 and then select the device internal parameters that apply to the expected particle size distribution. It should be specifically mentioned that the sample is typically exposed to ϋ ultrasonic waves for about 60 seconds during the measurement and during the measurement. After background measurement is carried out, about 75 to about 10 mg of the sample to be analyzed is placed in the sample container along with the water/dispersant solution and measurement is started. The water/dispersant solution can be prepared by first preparing a concentrate using 3 liters of CAL Polysalt from BASF and Calgon 500g from KMF Laborchemie. This solution was added to deionized water to become 10 liters. From this, the original 1 liter solution was taken out of 100 ml' and then further diluted to 10 liters using deionized water, and this final solution was used as the above-mentioned water-dispersion solution. -12- 200831414 Making ATH Particles of the Invention The cerium particles of the present invention can be produced by several methods, for example, by spray drying a slurry (for example, as described later) and dry honing; The slurry or filter cake (for example, as described hereinafter) is honed and dried, and optionally deagglomerated; and wet honing followed by spray drying. For example, refer to the methods disclosed in the following common applications in commonly known applications: 60/8 1 8,63 2 ; 60/899,3 1 6 ; 60/89 1,746 ; 60/89 1,745 60/8 1 8,63 3 ; and 60/8 1 8,670 » All of which are incorporated herein by reference. In certain embodiments, the A Η Η particle system of the present invention is made by a process comprising wet honing a mash slurry containing from about 1 to about 40 weight percent ATH particles based on the total weight of the slurry. As used herein, '"wet honing refers to the contact of an ATH slurry with a honing medium in the presence of a liquid. A liquid suitable for use in the wet honing herein is any liquid which does not substantially dissolve ATH, and preferably the liquid is water. In a partial wet honing method suitable for the manufacture of ATH particles according to the present invention, the liquid may also contain a suitable dispersing agent. The honing medium used in wet honing may be a ball, rod or other shape made of various materials. Some common honing medium materials include ceramic, steel, aluminum, glass or zirconia (Zr02). For ceramic honing media, the density should be higher than 2.5g/cm3. Preferably, a metal-based honing medium having a density of at least 1.5 g/cm3 is used, preferably in the range of from about 2.0 to about 2.5 g/cm3. In a preferred wet honing method, the honing medium is selected from those having a general spherical shape, more preferably a spherical honing medium having a diameter ranging from about 0.1 mm to about 1.0 mm, more preferably, The honing medium is a chrome honing medium, and -13- 200831414 is the best oxidizing cone. In the practice of the invention, the wet honing ATH slurry can be obtained by any of the methods used to make the ATH particles. The slurry is preferably obtained by a process comprising producing ATH particles by precipitation and filtration. Wet honing of the ATH slurry results in a honed ATH slurry which is recovered by any technique self-wetting honing operation which typically recovers the honed product using a self-wetting honing operation. The recovered honed ATH slurry is then dried. Any drying method well known in the art suitable for drying ATH slurries can be used. Non-limiting examples of drying methods include spray drying, for example using a spray dryer from Niro, Sweden, by bomb drying or dry crushing using a commercially available honing drier from Atritor or from Altenburger Maschinen Jaeckering. supply. In some embodiments, the honed ATH slurry is spray dried, and in other embodiments, the honed ATH slurry is dried using a honing dryer. Use as a yang igniter The ATH particles according to the present invention can be used as a flame retardant in various synthetic resins. Non-limiting examples of thermoplastic resins in which ATH particles are used include polyethylene, ethylene-propylene copolymers, polymers and copolymers of C2 to C8 olefins (alpha olefins), such as polybutene, poly(4-methylpentyl) Alkene-1), etc., copolymer of such olefin and diene, ethylene-acrylate copolymer, polystyrene, ABS resin, AAS resin, AS resin, MBS resin, ethylene/vinyl chloride copolymer resin, ethylene/acetic acid Vinyl ester copolymer resin, ethylene-vinyl chloride-vinyl acetate graft polymer resin, vinylidene chloride, polyvinyl chloride, chlorinated polyethylene, vinyl chloride-propylene copolymer, vinyl acetate resin, phenoxy tree-14 - 200831414 Fat and so on. Further examples of suitable synthetic resins include thermosetting resins such as epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, alkyd resins and resins, and natural or synthetic rubbers such as EPDM butyl rubber, isoprene rubber, SBR, NIR, urethane rubber, polybutadiene rubber, acrylic rubber, silicone rubber, fluoroelastomer, and also includes NBR and chlorosulfonated polyethylene. Also included are polymeric suspensions (latex). The synthetic resin is preferably a polyethylene-based resin such as high density polyethylene, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, EVA (ethylene vinyl acetate resin, EEA (ethylene/acrylic acid B) Ester resin), EMA (ethylene/methyl acrylate copolymer resin), EAA (ethylene-acrylic copolymer resin) and ultrahigh molecular weight polyethylene; and polymers and copolymers of C2 to C8 olefins (alpha olefins) such as polybutylene Alkene and poly(4-methylpentene-1), polyvinyl chloride and rubber. In a more preferred embodiment, the synthetic resin is a polyethylene-based resin. The inventors have found that by using the ruthenium particles according to the invention As a flame retardant in a synthetic resin, a preferable blending property of a synthetic resin containing aluminum hydroxide can be obtained. A high-filled flame retardant compound is produced and those blended from a synthetic resin containing cerium to produce a final extruded or molded article Manufacturers, manufacturers, etc., are in great need of better blending properties. Highly charged, which means those products containing a flame retardant amount of rhodium, as discussed below. The blending machine required to mix the synthetic resin containing the ruthenium particles according to the present invention, such as a Buss Κο-kneader or a twin-screw extruder, has a change in energy level amplitude smaller than that of a blending machine for mixing synthetic resin containing conventional cerium particles. Energy level change. Energy level -15- 200831414 Small change allows higher yield and/or more uniform (homogeneous) material of ATH-containing synthetic resin to be mixed or extruded. Therefore, in one embodiment, The invention relates to at least one synthetic resin selected from the resins described above, and in certain embodiments comprises only one and a certain flame retardant amount of the ATH particle-based flame retardant polymer formulation' and Extruded and/or molded articles made from the flame retardant polymer formulation. ATH in a certain flame retardant amount generally means a weight ranging from about 5 wt% to about 90 wt% based on the weight of the flame retardant polymer formulation. More preferably from about 20% by weight to about 70% by weight based on the same base. In most preferred embodiments, the amount of flame retardant is based on the same basis, from about 30% by weight to about 65% by weight of ATH particles. Can contain Other additives commonly used in the art. Non-limiting examples of other additives suitable for use in the flame retardant polymer formulations of the present invention include extrusion aids such as polyethylene wax, Si-based extrusion Auxiliaries, fatty acids; coupling agents such as amine, vinyl- or alkyl decane or maleic acid graft polymers; sodium stearate or calcium stearate; organic peroxides; dyes; pigments; Foaming agent; deodorant; thermal stabilizer; antioxidant; antistatic agent; reinforcing agent; metal scavenger or deactivator; impact modifier; processing aid; mold release aid; lubricant; anti-blocking agent; Flame retardant; UV stabilizer; plasticizer; flow aid, etc. If desired, a nucleating agent such as calcium citrate or indigo may also be included in the flame retardant polymer formulation. Other ratios of additives as needed are customary and can be modified to suit any given situation. A method of carrying out the incorporation and addition of a component of a flame retardant polymer formulation is not critical to the invention and may be any method well known in the art, as long as the method selected includes substantially uniform mixing. For example, if used, each of the above ingredients and optional additives can be mixed using the following equipment: Buss Κο - kneader, closed mixer, Farrel continuous mixer or twin screw extruder or, in some cases, single Screw extruder or two-roll mill. Then, if so desired, the flame retardant polymer formulation can be molded in a subsequent physical step. In certain embodiments, the device can be used to thoroughly mix the components to form a flame retardant polymer formulation and also to mold the article from the flame retardant polymer formulation. Further, a molded article of a flame retardant polymer formulation can be used after manufacture as various applications such as stretching, embossing, painting, printing, plating, punching or cutting. The molded article may also be attached to a material other than the flame retardant polymer formulation of the present invention, such as a plaster board, wood, block board, metal material or stone. However, the kneaded mixture may also be inflated, injection molded, extrusion molded, blow molded, compression molded, rotational molded or calendered molded. In the case of an extruded article, any extrusion technique well known to be effective for the above synthetic resin mixture can be used. In one exemplary technique, a synthetic resin, aluminum hydroxide particles, and, if desired, optional ingredients are blended in a blending machine to form a flame retardant resin formulation as described above. The flame retardant resin formulation is then heated to a molten state in an extruder, and then the molten flame retardant resin formulation is extruded through a selective die to form an extruded article or, for example, for coating use in data. Transmission of metal wire or fiberglass. The foregoing description relates to several embodiments of the invention. Those skilled in the art should confirm that other methods that are equally effective can be designed to implement the invention -17-200831414. It should also be noted that the preferred embodiment of the invention contemplates that all ranges discussed herein are inclusive of any range from any lower amount to any higher amount. For example, the flame retardant amount of ATH may also include a range of from about 70 to about 90 wt/hr and a range of from 20 to about 65 wt%, and the like. The following examples are intended to illustrate the invention, but are not intended to limit the invention in any way. EXAMPLES As described above, the r5 and Vmax described in the following examples were derived using a mercury porosimetry performed on a perforator 2000. All d5G, BET, oil absorption, etc. are measured according to the various techniques described above, unless otherwise indicated. Further, as used in the examples, the terms 'the inventive grade of aluminum hydroxide 〃 and 'the invention' are intended to mean ATH according to the invention, and '^ comparative grade aluminum hydroxide 意 means business ATH is available and not according to the invention. Example 1

經由加種晶至鋁酸鈉母液,例如EP 1 206 4 1 2 B1中所 I, 揭示,產生具有d5G= 2.43 // m之中値粒子大小及2.6m2/g 比表面積之合成級氫氧化鋁。使用一般分離和過濾技術來分 離該合成之氫氧化鋁;在隨後的帶濾機上之洗滌步驟後,經 由添加足量的Ciba公司之分散劑Antiprex A40,將具有 6 1 wt%固體含量之生成的氫氧化鋁過濾糊液化直至漿液的 黏度是約150 cPoise。將該漿液飼入來自瑞士,Bachofen之 KD 200D型珠磨機中。此磨機含有270仟克的氧化銷所製成 之具有直徑〇.6mm之小珠。控制磨機的產量使得藉由Niro F -18- 200831414 1 〇〇噴霧乾燥器進行乾燥並運送發明的氫氧化鋁入筒倉中之 後,所產生之d5G是1.89//m和比表面積是4.9m2/g。本實 施例中,產量是每小時約3m3/h。第2圖顯示發明級氫氧化 鋁No · 1的比孔隙體體積係第二注入試驗操作的所施加壓力 的函數。第2圖顯示發明級氫氧化鋁No. 1的比孔隙體積係 細孔半徑之函數。第3圖顯示發明級氫氧化鋁No. 1的正規 化比孔隙體積係細孔半徑的線性繪製函數。發明級氫氧化鋁 No . 1的產物性質列入下表1中。 (% 實施例2 -比較例 經由 Martinswerk公司所製造之比較級氫氧化銘 Martinal OL-104 LE的產物性質及兩比較級氫氧化鋁''比較 例1 〃和 ''比較例2〃的產物性質亦顯示於表1中。 表1 中値孔隙半徑 最大比孔隙體積 中値粒子大小ώ〇 BET比表面積 (“n。”)(//m) Vnax(mmVg) (卿) (m2/g) 比較例 ATH OL-104 LE 0.419 529 1.83 3.2 比較例1 0.353 504 1.52 3.2 比較例2 0.303 615 1.61 4.0 發明級ATHNo.l 0.277 439 1.89 4.9 如自表1中可見,發明級氫氧化鋁No · 1,根據本發明 之ATH,具有最低之中値孔隙半徑和最低之最大比孔隙體積 實施例3 經由加種晶至鋁酸鈉母液,例如EP 1 2 0 6 4 1 2 B 1中所 -19- 200831414 揭示,產生具有d5(p 2·43 μ m之中値粒子大小及2.6m2/g比 表面積之合成級氫氧化鋁。使用一般分離和過濾技術來分離 該合成之氫氧化鋁;隨後在帶濾機上之洗滌步驟後,經由添 加足量的Ciba公司之分散劑An-tiprex A 40,將具有61 wt% 固體含量之生成的氫氧化鋁過濾糊液化直至漿體的黏度是 約150 cPoise。將該漿體飼入來自瑞士,Bachofen之KD 200D 型珠磨機中。此磨機含有270仟克由氧化锆所製成之具有直 徑0.6mm之小珠。控制磨機的產量以使得藉由Niro F 100 噴霧乾燥器進行乾燥並運送發明之氫氧化鋁入筒倉中之後 ,所產生之d5〇是1.44 // m和比表面積是6.7m2/g。本實施例 中,產量是約2m3/h。第4圖顯示發明級氫氧化鋁No .2的 比孔隙體積係第二注入試驗操作的所施加壓力的函數。第5 圖顯示發明級氫氧化鋁No.2之比孔隙體積係細孔半徑之函 數。第6圖顯示發明級氫氧化鋁No .2的正規化比孔隙體積 係細孔半徑的線性繪製函數。發明級氫氧化鋁No · 2的產物 性質列入下表2中。 實施例4 -比較例 經由 Martinswerk公司所製造之比較級氫氧化錦 Martinal OL-1 07 LE的產物性質及比較級氫氧化鋁 ''比較例 3 〃的產物性質亦顯示於表2中。 -20- 200831414 表2 中値孔隙半徑 最大比孔隙體積 中値粒子大小ώ〇 BET比表面積 (“no”)(#m) Vnax(mmVg) (/m) (m2/g) 比較例 ATH OL-104 LE 0.266 696 1.35 6.2 比較例3 0.257 679 1.23 6.3 發明級ATH No.2 0.242 479 1.44 6.7 如自表2中可見,發明級氫氧化鋁No.2具有最低之中 値孔隙半徑和最低之最大比孔隙體積。 實施例5 經由加種晶至鋁酸鈉母液,例如EP 1 206 4 1 2 B 1中所 揭示,產生具有d5G= 2.43//m之中値粒子大小及2.6m2/g 比表面積之合成級氫氧化鋁。使用一般分離和過濾技術來分 離該合成之氫氧化鋁;隨後在帶濾機上之洗滌步驟後,經由 添加足量的Ciba公司之分散劑Antiprex A40,將具有61 wt% 固體含量之生成的氫氧化鋁過濾糊液化直至漿液的黏度是 約150cPcise。將該漿液進給入來自瑞士,Bachofen之KD 200D型珠磨機中。此磨機含有270仟克由氧化锆所製成之 具有直徑〇.6mm小珠。控制磨機的產量以使得藉由Niro F 100噴霧乾燥器進行乾燥及運送發明之氫氧化鋁入筒倉中 之後,所產生之d5G是1.36//m和比表面積是l〇.〇m2/g,本 實施例中產量是約〇 · 7 5 m3 /h第7圖顯示發明級氫氧化鋁 No. 3的比孔隙體積係第二注入試驗操作的所施加壓力的函 數。第8圖顯示發明級氫氧化鋁No · 3的比孔隙體積係細孔 -21 - 200831414 半徑之函數。第9圖顯示發明級氫氧化鋁Νο·3的正規化比 孔隙體積係細孔半徑線性繪製函數。發明級氫氧化鋁Nck 3 的產物性質列入下表3中。 實施例6 -比較例 經由 Martinswerk公司所製造之比較級氫氧化錦 Martinal OL-1 1 1 LE的產物性質亦顯示於表3中。 表3 中値孔隙半徑 最大比孔隙體積 中値粒子大小cb〇 BET比表面積 (“r,)(_) Vnax(mmVg) (#m) (m2/g) 比較例 ATHOL-111LE 0.193 823 1.23 10.1 發明 ATHNo.3 0.175 588 1.36 10.0 如自表3中可見,發明級氫氧化鋁No. 3具有較低之中 値孔隙半徑及較低之最大比孔隙體積。 將來自Exxon Mobil公司之396.9克(lOOphr)的乙嫌醋 酸乙烯酯(EVA)EscoreneTM Ultra UL00119在約20分鐘期間 與 595.4克(150ph〇之發明級氫氧化鋁 No.l連同來自 Degussa公司之4.8克(1.2phr)的胺基砂院 AMEO和來自 Al-bemarle 公司之 2.9 克(0.75phr)的抗氧化劑 Ethanox®310 以精於此項技藝人士熟悉之通常方式在來自Collin公司之 雙輥磨機W150M上混合。胺基矽烷確保塡料的較佳偶合至 聚合物基體。將兩輥的溫度設定至1 30 °C。將已製好的化合 物自磨機中移出。並在冷卻至室溫之後,採其尺寸進一步減 小而獲得顆粒狀物適合於在兩壓板壓機中進行壓縮成型或 進給至實驗室擠壓機中來獲得擠壓之條件以便進一步評估 -22- 200831414 。爲了測定阻燃樹脂配方之機械性質,使用具有Haake Poly lab系統將顆粒擠壓成爲2mm厚之帶。根據DIN 5 3 5 04 ,將試驗棒在帶上穿孔。此實驗之結果列於下表4中。 實施例8 -比較例 將來自Exxon Mohil公司之396.9克(lOOphr)的乙烯醋 酸乙烯酯(EVA) EscoreneTM Ulstra UL00119 在約 20 分鐘期 間與595.4克(150phr)的由Martinswlrk公司所製造之商業上 可供應ATH OL-104 LE級連同來自Degussa公司之4.8克 Γ (1.2phr)的胺基矽烷AMEO和來自Albemarle公司之2.9克 (0.75phr)的抗氧化劑EthanOX®310以精於此項技藝人士熟悉 之通常方式在來自Collin公司之雙輥磨機W150M上混合。 胺基矽烷確保塡料的較佳偶合至聚合物基體。將兩輥的溫度 設定至1 3 0 °C。將已製好的化合物自磨機中移出,並在冷卻 至室溫後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩 壓板壓機中進行壓縮成型或進給至實驗室擠壓機中來獲得 擠壓之條片以便進一步評估。爲了測定阻燃樹脂配方之機械 性質,使用具有Haake Rheomex擠壓機之Haake Polylab系 統將顆粒擠壓成爲2mm厚之帶。根據DIN 5 3 5 04 ’將試驗桿 在帶上穿孔。此實驗的結果列於下表4中。 -23- 200831414 表4 比較例OL-104 LE 發明之塡料Ναΐ 熔融流動指數 @150〇C/21.6kg(g/10 min) 1.8 1.5 抗拉強度(MPa) 12.9 13.4 斷裂仲長率(%) 221 214 L0I(%02) 36.2 38 水老化之前,電阻率 (Ohm · cm) 3·1χ1012 1·7χ1012 在7天@70°C水老化之後電 阻率(Ohm · cm) 8.1Χ1011 8.4xlOu 水吸液率(〇/〇) 1.25 1.67 如自表4中可見 ,在實驗誤差以內, 本發明級氫氧化鋁By adding a seed crystal to a sodium aluminate mother liquor, such as I of EP 1 206 4 1 2 B1, it is disclosed that a synthetic grade aluminum hydroxide having a ruthenium particle size of d5G = 2.43 // m and a specific surface area of 2.6 m 2 /g is produced. . The synthetic aluminum hydroxide is separated using general separation and filtration techniques; after a subsequent washing step on the belt filter, a solids content of 61% by weight is added via the addition of a sufficient amount of Ciba's dispersant Antiprex A40. The aluminum hydroxide filter paste is liquefied until the viscosity of the slurry is about 150 cPoise. The slurry was fed into a KD 200D bead mill from Bachofen, Switzerland. This mill contained 270 g of an oxidation pin made of beads having a diameter of 66 mm. The yield of the mill was controlled so that after drying by the Niro F -18-200831414 1 〇〇 spray dryer and transporting the inventive aluminum hydroxide into the silo, the d5G produced was 1.89 / / m and the specific surface area was 4.9 m 2 /g. In this embodiment, the yield is about 3 m3/h per hour. Figure 2 shows the specific pore volume of the inventive grade aluminum hydroxide No. 1 as a function of the applied pressure for the second injection test operation. Figure 2 shows the specific pore volume of the inventive grade aluminum hydroxide No. 1 as a function of pore radius. Fig. 3 is a graph showing the linear drawing function of the normalized specific pore size of the pore size system of the inventive grade aluminum hydroxide No. 1. The product properties of inventive grade aluminum hydroxide No. 1 are listed in Table 1 below. (% Example 2 - Comparative Example of Product Properties of Comparative Grade Hydrogen Martinal OL-104 LE Manufactured by Martinswerk Company and Product Properties of Two Comparative Aluminium Hydroxides'' Comparative Example 1 〃 and ''Comparative Example 2〃 Also shown in Table 1. Table 1 is the largest pore radius in the pore volume than the pore volume in the pore volume ώ〇 BET specific surface area ("n.") (/ / m) Vnax (mmVg) (Qing) (m2 / g) comparison Example ATH OL-104 LE 0.419 529 1.83 3.2 Comparative Example 1 0.353 504 1.52 3.2 Comparative Example 2 0.303 615 1.61 4.0 Inventive Grade ATHNo.l 0.277 439 1.89 4.9 As can be seen from Table 1, the inventive grade aluminum hydroxide No. 1, according to The ATH of the present invention has the lowest intermediate pore radius and the lowest maximum specific pore volume. Example 3 is disclosed by seeding to a sodium aluminate mother liquor, for example, EP 1 2 0 6 4 1 2 B 1 -19-200831414 , producing synthetic grade aluminum hydroxide having d5 (p 2 · 43 μ m in the ruthenium particle size and 2.6 m 2 /g specific surface area. The separation and synthesis techniques are used to separate the synthesized aluminum hydroxide; then in the belt filter After the washing step, by adding a sufficient amount of Ciba's dispersion An-tiprex A 40, liquefying the resulting aluminum hydroxide filter paste with a solids content of 61 wt% until the viscosity of the slurry is about 150 cPoise. The slurry is fed into a KD 200D bead mill from Bachofen, Switzerland. The mill contains 270 g of beads made of zirconia with a diameter of 0.6 mm. The mill is controlled to dry and deliver the inventive aluminum hydroxide into the silo by a Niro F 100 spray dryer. After the middle, the resulting d5〇 is 1.44 // m and the specific surface area is 6.7 m 2 /g. In this example, the yield is about 2 m 3 /h. Figure 4 shows the specific pore volume of the inventive grade aluminum hydroxide No. 2. Is a function of the applied pressure of the second injection test operation. Figure 5 shows the pore size of the inventive grade aluminum hydroxide No. 2 as a function of the pore radius. Figure 6 shows the regularity of the inventive grade aluminum hydroxide No. 2. The linear plot function of the pore volume of the pore volume system. The product properties of the inventive grade aluminum hydroxide No. 2 are listed in the following Table 2. Example 4 - Comparative Example Martinal OL, a comparative grade Hydroxide manufactured by Martinswerk -1 07 LE product properties and comparative hydrogen The product properties of aluminum's Comparative Example 3 are also shown in Table 2. -20- 200831414 Table 2 The maximum pore radius of the crucible in the pore volume 値 BET specific surface area ("no") (#m) Vnax (mmVg) (/m) (m2/g) Comparative Example ATH OL-104 LE 0.266 696 1.35 6.2 Comparative Example 3 0.257 679 1.23 6.3 Invention Grade ATH No. 2 0.242 479 1.44 6.7 As can be seen from Table 2, the inventive grade hydrogen Alumina No. 2 has the lowest intermediate pore radius and the lowest maximum specific pore volume. Example 5 Synthesis of a synthetic grade hydrogen having a ruthenium particle size of d5G = 2.43 / / m and a specific surface area of 2.6 m 2 / g by seeding to a sodium aluminate mother liquor, such as disclosed in EP 1 206 4 1 2 B 1 Alumina. The synthetic aluminum hydroxide was separated using a general separation and filtration technique; then, after a washing step on the belt filter, a hydrogen having a solid content of 61 wt% was added via the addition of a sufficient amount of Ciba's dispersant Antiprex A40. The alumina filter paste is liquefied until the viscosity of the slurry is about 150 cpcise. The slurry was fed into a KD 200D bead mill from Bachofen, Switzerland. This mill contained 270 g of beads having a diameter of 6.6 mm made of zirconia. The mill yield was controlled so that after drying and transporting the inventive aluminum hydroxide into the silo by a Niro F 100 spray dryer, the d5G produced was 1.36 / / m and the specific surface area was l 〇 〇 m 2 / g The yield in this example is about 〇7 5 m3 /h. Figure 7 shows the specific pore volume of the inventive grade aluminum hydroxide No. 3 as a function of the applied pressure of the second injection test operation. Figure 8 shows the specific pore volume of the inventive grade aluminum hydroxide No. 3 as a function of the radius of the pores -21 - 200831414. Figure 9 shows the normalized ratio of the inventive grade aluminum hydroxide Νο·3 to the pore volume system. The product properties of the inventive grade aluminum hydroxide Nck 3 are listed in Table 3 below. Example 6 - Comparative Example The product properties of the comparative grade hydrazine Martinate OL-1 1 1 LE manufactured by Martinswerk Company are also shown in Table 3. Table 3: The maximum pore radius of the crucible in the pore volume cb〇BET specific surface area ("r,) (_) Vnax (mmVg) (#m) (m2 / g) Comparative Example ATHOL-111LE 0.193 823 1.23 10.1 Invention ATHNo.3 0.175 588 1.36 10.0 As can be seen from Table 3, the inventive grade aluminum hydroxide No. 3 has a lower intermediate pore radius and a lower maximum specific pore volume. 396.9 grams (100 phr) from Exxon Mobil Ethylene acetate (EVA) EscoreneTM Ultra UL00119 with 595.4 grams (150 ph of inventive grade aluminum hydroxide No. 1 along with 4.8 grams (1.2 phr) of amine sand yard AMEO from Degussa and during about 20 minutes) The 2.9 g (0.75 phr) antioxidant Ethanox® 310 from Al-bemarle was mixed on a two-roll mill W150M from Collin in the usual way familiar to those skilled in the art. Amino decane ensures the comparison of the mash Coupling to the polymer matrix. The temperature of the two rolls was set to 1 30 ° C. The prepared compound was removed from the mill and after cooling to room temperature, the size was further reduced to obtain a pellet. Suitable for two presses Compression molding or feeding to a laboratory extruder to obtain extrusion conditions for further evaluation -22- 200831414. To determine the mechanical properties of the flame retardant resin formulation, the particles were extruded to a thickness of 2 mm using a Haake Poly lab system. The test rod was perforated on the belt according to DIN 5 3 5 04. The results of this experiment are listed in the following Table 4. Example 8 - Comparative Example 396.9 g (100 phr) of ethylene vinyl acetate from Exxon Mohil Ester (EVA) EscoreneTM Ulstra UL00119 with 595.4 grams (150 phr) of commercially available ATH OL-104 LE grade manufactured by Martinswlrk Company along with 4.8 grams of hydrazine (1.2 phr) from Degussa Corporation over a period of about 20 minutes. The decane AMEO and the 2.9 gram (0.75 phr) antioxidant EthanOX® 310 from Albemarle were mixed on a two-roll mill W150M from Collin in the usual manner familiar to those skilled in the art. Amino decane ensures the mash Preferably, it is coupled to the polymer matrix. The temperature of the two rolls is set to 130 ° C. The prepared compound is removed from the mill and further reduced in size after cooling to room temperature. Small pellets are suitable for compression molding or feeding into a laboratory extruder in a two plate press to obtain extruded strips for further evaluation. To determine the mechanical properties of the flame retardant resin formulation, the particles were extruded into a 2 mm thick tape using a Haake Polylab system with a Haake Rheomex extruder. The test rod is perforated on the belt according to DIN 5 3 5 04 '. The results of this experiment are listed in Table 4 below. -23- 200831414 Table 4 Comparative Example OL-104 LE Inventive Ναΐ Melt Flow Index @150〇C/21.6kg(g/10 min) 1.8 1.5 Tensile Strength (MPa) 12.9 13.4 Breakage Length (%) 221 214 L0I(%02) 36.2 38 Before water aging, resistivity (Ohm · cm) 3·1χ1012 1·7χ1012 Resistivity (Ohm · cm) after 7 days @70°C water aging 8.1Χ1011 8.4xlOu water aspirate Rate (〇/〇) 1.25 1.67 As can be seen from Table 4, within the experimental error, the inventive grade aluminum hydroxide

No.l具有與比較級Martinal OL-104LE相似之機械、流變、 電氣和阻燃等性質。 實施例9 將來自Exxon Mohil公司之3 96.9克(100ph〇之乙烯醋 酸乙烯酯(EVA) EscoreneTM Ultra UL0019在約20分鐘期間 與595.4克(150phr)之發明之塡料Νο·2連同來自Degussa公 司之4.8克(1.2phr)的胺基矽烷AMEO和來自Albemarle公 司之2.9克(〇.75phr)之抗氧化劑Ethanox®3 10以精於此項技 藝人士熟悉之通常方式在來自 Collin公司之雙輥磨機 W 1 5 0M上混合。胺基矽烷確保塡料的較佳偶合至聚合物基 -24- 200831414No.l has mechanical, rheological, electrical and flame retardant properties similar to those of the comparative grade Martinal OL-104LE. Example 9 36.96.9 g (100 ph of ethylene vinyl acetate (EVA) EscoreneTM Ultra UL0019 from Exxon Mohil Corporation was supplied with 595.4 g (150 phr) of the invention 约ο. 2 during the period of about 20 minutes together with the company from Degussa 4.8 g (1.2 phr) of amino decane AMEO and 2.9 g (〇.75 phr) of antioxidant Ethanox® 3 10 from Albemarle are in the usual manner familiar to those skilled in the art in a two-roll mill from Collin Mixing at W 1 500 M. Amino decane ensures better coupling of the tanning material to the polymer group-24- 200831414

體。將兩輥的溫度設定至1 3 0 °C。將已製好的化合物自磨機 中移出並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆 粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗 室擠壓機中來獲得擠壓之條片以便進一步評估。爲了測定阻 燃樹脂配方之機械性質,使用具有Haake Rheomex擠壓機之 Haake Poly lab系統將顆粒擠壓成爲2mm厚之帶。根據DIN 5 3 5 04,將試驗棒在帶上穿孔。此實驗的結果列於下表5中 〇 ί 實施例1 〇 -比較例 將來自Exxon Mobil公司之396.9克(lOOphr)之乙儲醋 酸乙烯酯(EVA) Escorene Ultra UL00119在約20分鐘期間與 595.4克(15(^]11>)之由1^31^113〜€11<:公司所製造之商業上可供 應ATH OL-107 LE級連同來自Degussa公司之4.8克(1.2phr) 的胺基矽烷AMEO和來自Albemarle公司之2.9克(=0.75phr) 之抗氧化劑Ethan〇x®310以精於此項技藝人士熟悉之通常方 式在來自Collin公司之雙輥磨機W150M上混合。胺基矽烷 確保塡料的較佳偶合至聚合物基體。將兩輥之溫度設定至 1 3 0 °C。將已製好的化合物自磨機中移出,並在冷卻至室溫 之後,將其尺寸進一步減小而獲得顆粒狀物適合於在兩壓板 壓機中進行壓縮成型成進給至實驗室擠壓機中來獲得擠壓 之條片以便進一步評估。爲了測定阻燃樹脂配方之機械性質 ,使用具有Haake Rheomex擠壓機之Haake Polylab系統將 顆粒擠壓成爲2mm厚之帶。根據DIN5 3 5 04,將試驗桿在帶 上穿孔。此實驗的結果列於下表5中。 -25- 200831414 表5 比較例OL-107 LE 發明之塡料Νο.2 熔融流動指數 @150〇C/21.6kg(g/10min) 1.1 1.25 抗拉強度(MPa) 13.9 13.6 斷裂仲長率(%) 204 203 L0I(%02) 38.7 38.2 水老化之前,電阻率 (Ohm · cm) 2.6xl012 1·5χ1012 在7天@70°C水老化之後 電阻率(Ohm · cm) 6.3xlOu 7·9χ10η 水吸液率(%) 2.78 1.67 如自表5中可見 ,在實驗誤差以內, 本發明之氫氧化鋁 2具有與比較級Martinal® OL-107 LE相似之機械,流變、 電氣和阻燃等性質。 實施例1 1 將來自Exxon Mobil公司之396.9克(lOOphr)之乙嫌醋 酸乙烯酯(EVA) EscoreneTM Ultra UL00119在約20分鐘期間 與595.4克(150phr)之發明之塡料Νο·3連同來自Demarle公 司之4.8克(1.2ph〇的胺基矽烷AM EO和來自Albemarle公 司之2.9克(0.75phr)之抗氧化劑Ethanox®310以精於此項技 藝人士熟悉之通常方式在來自Collin公司之雙輥磨機 W 1 5 0M上混合。胺基矽烷確保塡料的較佳偶合至聚合物基 體。將兩輥的溫度設定至1 30°C。將已製好的化合物自磨機 -26- 200831414body. The temperature of the two rolls was set to 130 °C. The prepared compound is removed from the mill and after cooling to room temperature, its size is further reduced to obtain a pellet suitable for compression molding or feeding to a laboratory extruder in a two plate press. The squeezing strips were obtained for further evaluation. To determine the mechanical properties of the flame retardant resin formulation, the pellets were extruded into 2 mm thick strips using a Haake Poly lab system with a Haake Rheomex extruder. The test rod was perforated on the belt according to DIN 5 3 5 04. The results of this experiment are listed in Table 5 below. Example 1 〇 - Comparative Example 396.9 g (100 phr) of ethyl acetate (EVA) Escorene Ultra UL00119 from Exxon Mobil was used during about 20 minutes with 595.4 g. (15(^]11>) by 1^31^113~€11<: Commercially available ATH OL-107 LE grade manufactured by the company together with 4.8 g (1.2 phr) of amino decane AMEO from Degussa The 2.9 g (=0.75 phr) antioxidant Ethan〇x® 310 from Albemarle was mixed on a two-roll mill W150M from Collin in the usual manner familiar to those skilled in the art. Amino decane ensures Preferably, the coupling is carried out to the polymer matrix. The temperature of the two rolls is set to 130 ° C. The prepared compound is removed from the mill and further reduced in size after cooling to room temperature. The pellets are suitable for compression molding in a two-plate press to be fed into a laboratory extruder to obtain extruded strips for further evaluation. To determine the mechanical properties of the flame retardant resin formulation, use Haake Rheomex extrusion Press Haake Polylab System The granules were extruded into a 2 mm thick strip. The test rod was perforated on the belt according to DIN 5 3 5 04. The results of this experiment are listed in Table 5 below. -25- 200831414 Table 5 Comparative Example OL-107 LE Νο.2 Melt Flow Index @150〇C/21.6kg(g/10min) 1.1 1.25 Tensile Strength (MPa) 13.9 13.6 Breakage Length (%) 204 203 L0I(%02) 38.7 38.2 Resistivity before water aging (Ohm · cm) 2.6xl012 1·5χ1012 Resistivity (Ohm · cm) after 7 days @70°C water aging 6.3xlOu 7·9χ10η Water absorption rate (%) 2.78 1.67 As can be seen from Table 5, in the experiment Within the error, the aluminum hydroxide 2 of the present invention has mechanical, rheological, electrical and flame retardant properties similar to those of the comparative grade Martinal® OL-107 LE. Example 1 1 396.9 g (100 phr) from Exxon Mobil Ethyl Acetate (EVA) EscoreneTM Ultra UL00119 with 595.4 g (150 phr) of the invented Νο·3 together with 4.8 g from Demarle (1.2 ph 胺 amino decane AM EO and from Albemarle) over a period of about 20 minutes The company's 2.9 g (0.75 phr) antioxidant Ethanox® 310 is used by those skilled in the art. The usual way of mixing is to mix on a two-roll mill W 1 500 M from Collin. The amino decane ensures a preferred coupling of the dip to the polymer matrix. The temperature of the two rolls was set to 1 30 °C. The prepared compound is self-grinding machine -26- 200831414

中移出並在冷卻至室溫之後,將其尺寸進一步減小而獲得顆 粒狀物適合於在兩壓板壓機中進行壓縮成型或進給至實驗 室擠壓機中來獲得擠壓之條片以便進一步評估。爲了測定阻 燃樹脂配方之機械性質,使用具有Haake Rheemex擠壓機之 Haake Poly lab系統將顆粒擠壓成爲2mm厚之帶。根據DIN 5 3 5 04,將試驗棒在帶上穿孔。此實驗的結果列於下表6中 〇 實施例12 -比較例 f) 將來自Exxon Mobil公司之3 96.9克(lOOphr)的乙烯醋 酸乙烯酯(EVA) EscoreneTM Ultra UL 00119 在約 20 分鐘期 間與595.4克(150phr)的由Martinswerk公司所製造之商業 上可供應ATH,OL-111 LE級連同來自Degussa公司之4.8 克(1.2phr)的胺基矽烷AMEO及來自Albemarde公司之2.9 克(0.75phr)之抗氧化劑Ethanox®310以精於此項技藝人士熟 悉之通常方式,在來自Collin公司之雙輥磨機W15 0M上混 合。胺基矽烷確保塡料的較佳偶合至聚合物基體。將兩輥的 溫度設定至130°C。將已製好的化合物自磨機中移出並在冷 卻至室溫後,將其尺寸進一步減小而獲得顆粒狀物適合於在 兩壓板壓機中進行壓縮成型或進給至實驗室擠壓機中來獲 得擠壓之條片以便進一步評估。爲了測定阻燃樹脂配方的機 械性質,使用具有Haake Rheomex擠壓機之Haake Polylab 系統將顆粒擠壓成爲2mm厚之帶。根據DIN 53 504,將試驗 桿在帶上穿孔。此實驗的結果列於下表6中。 -27- 200831414 表6 比較例〇L_lll LE 發明之塡料Νο·3 熔融流動指數@ 150〇C/21.6kg(g/10min) 1.13 1.22 抗拉強度(MPa) 15.7 15.2 斷裂伸長率(%) 183 185 LOI(%02) 38.6 39.6 如自表 6中可見, 在實驗誤差以內, 發明級氫氧化鋁 Νο·3具有與比較級Martina®OL-l 1 1 LE相似之機械和流變 等性質。 應特別述及:該熔融流動指數係根據DIN 53 73 5予以量 測。抗拉強度和斷裂伸長率係根據DIN 5 3 504予以量測及水 老化之前和之後的電阻率係根據DIN 5 3482在ΙΟΟχΙΟΟχ 2mm3壓板在去鹽之水浴中水老化歷7天後之重量差。氧指 數係根據ISO 45 89在6x3x1 50mm3樣品上予以量測。 實施例1 3 將實施例2的比較例氫氧化鋁粒子Martinal®OL-104 LE 和實施例1的發明級氫氧化鋁No. 1分開使用來形成阻燃之 樹脂配方。所使用之合成樹脂是來自Exxon Mobile之EVA Escorene®Ultra UL 00328 連同來自 Exxon Mohile 之 LLDPE 級Escorene®LL 1001 XV,自Albemarle®公司商業上可供應 之Ethanox®310抗氧化劑和來自Degussa公司之胺基矽烷 Dynasylan AMEO之混合物。使用以精於該項技藝人士熟悉 之通常方式所選擇之溫度設定和螺桿速率,將該等成分在 -28- 200831414 46mm Buss Ko捏合機(L/D比=(11)上混合,產量是每小時 25仟克,於調配阻燃樹脂配方時所使用之各成分的數量詳 列於下表7中。 表7 Phr(每一百份總樹脂中的份數) Escorene Ultra UL 0 0 3 2 8 80 Escorene LL 10 0 1 XV 20 氫氧化鋁 150 AMEO矽烷 1.6 Ethanox 310 0.6 在形成阻燃之樹脂配方時,在Buss捏合機中摻合之前 ,首先將AMEO矽烷和Ethanox⑧310與總數量的合成樹脂 在圓桶中摻合。依靠重量進料器之減少,將樹脂/矽烷/抗氧 化劑摻合物連同50%之氫氧化鋁總量進給入Buss捏合機的 第一進口中並將其餘50%的氫氧化鋁進給入Buss捏合機之 第二進料口中。將卸料擠壓機安裝凸緣垂直於Buss Ko捏合 機並具有70mm的螺桿尺寸。第10圖顯示發明級氫氧化鋁 No · 1之卸料擠壓機的馬達上之輸出功率。第1 1圖顯示經由 Martinswerk公司所製造之比較級氫氧化銘OL-104 LE之卸 料濟壓機的馬達上之輸出功率。 如第10圖和第11圖中所顯示,當使用根據本發明之氫 氧化鋁粒子在阻燃之樹脂配方中時,顯著減少卸料擠壓機的 輸出能量(功率)。如上文所述,能階之較小變更容許較大之 產量及/或更均勻(勻相)之阻燃樹脂配方。 -29- 200831414 【圖式簡單說明】 第1圖顯示與標準等級比較,關於第二注入試驗操作 和ATH級No.l,根據本發明之ATH,比孔隙體積V係所施 加之壓力的函數所繪之圖。 第2圖顯示與標準等級比較,關於第二注入試驗操作 和ATH級No.l,根據本發明之ATH,比孔隙體積V對細孔 半徑r所繪之圖。 第3圖顯示與標準等級比較,ATH級No.l,根據本發 (' 明之ATH的正規化比孔隙體積,該圖係以特各ATH級之最 大比孔隙體積設定在100%所產生並將相對應ATH等級的其 他比容除以此最大値。 第4圖顯示與標準等級比較,關於第二注入試驗操作 和ATH級Νο·2,根據本發明之ATH,比孔隙體積V係所施 加之壓力的函數所繪之圖。 第5圖顯示與標準等級比較,關於第二注入試驗操作 和ΑΤΗ級Νο·2,根據本發明之ΑΤΗ,比孔隙體積V對細孔 I 半徑r所繪之圖。 第6圖顯示與標準等級比較,ATH級No .2,根據本發 明之ATH的正規化比孔隙體積,該圖係以特各ATH級之最 大比孔隙體積設定在100 %所產生,並將相對應ATH等級的 其他比容除以此最大値。 第7圖顯示與標準等級比較,關於第二注入試驗操作 和ATH級Νο·3,根據本發明之ATH,比孔隙體積V係所施 加之壓力的函數所繪之圖。 -30- 200831414 第8圖顯示與標準等級比較,關於第二注入試驗操作 和ATH級Νο·3,根據本發明之ATH,比孔隙體積V對細孔 半徑r所繪之圖。 第9圖顯示與標準等級比較,ATH級No.3,根據本發 明之ATH的正規化比孔隙體積,該圖係以特各ATH級之最 大比孔隙體積設定在1 00%所產生,並將相對應ATH等級的 其他比容除以此最大値。 第1 〇圖顯示實施例1中所使用之發明級氫氧化鋁No. 1 之卸料擠壓機的馬達上之輸出功率。 第1 1圖顯示實施例2中所使用之比較例〇 l -1 0 4 L E級 氫氧化鋁之卸料擠壓機的馬達上之輸出功率。 【主要元件符號說明】The medium is removed and after cooling to room temperature, the size is further reduced to obtain a pellet suitable for compression molding or feeding into a laboratory extruder in a two platen press to obtain extruded strips. Further evaluation. To determine the mechanical properties of the flame retardant resin formulation, the pellets were extruded into 2 mm thick strips using a Haake Poly lab system with a Haake Rheemex extruder. The test rod was perforated on the belt according to DIN 5 3 5 04. The results of this experiment are listed in Table 6 below. Example 12 - Comparative Example f) 3 96.9 g (100 phr) of ethylene vinyl acetate (EVA) EscoreneTM Ultra UL 00119 from Exxon Mobil Corporation over a period of about 20 minutes with 595.4克 (150 phr) of the commercially available ATH, OL-111 LE grade manufactured by Martinswerk, together with 4.8 g (1.2 phr) of amino decane AMEO from Degussa and 2.9 g (0.75 phr) from Albemarde The antioxidant Ethanox® 310 was mixed on a two-roll mill W15 0M from Collin in the usual manner familiar to those skilled in the art. The amino decane ensures a preferred coupling of the dip to the polymer matrix. The temperature of the two rolls was set to 130 °C. The prepared compound is removed from the mill and after cooling to room temperature, its size is further reduced to obtain a pellet suitable for compression molding or feeding to a laboratory extruder in a two plate press. The squeezing strips were obtained for further evaluation. To determine the mechanical properties of the flame retardant resin formulation, the pellets were extruded into 2 mm thick strips using a Haake Polylab system with a Haake Rheomex extruder. The test rod is perforated on the belt according to DIN 53 504. The results of this experiment are listed in Table 6 below. -27- 200831414 Table 6 Comparative Example _L_lll LE Inventive Νο·3 Melt Flow Index @ 150〇C/21.6kg(g/10min) 1.13 1.22 Tensile Strength (MPa) 15.7 15.2 Elongation at Break (%) 183 185 LOI (%02) 38.6 39.6 As can be seen from Table 6, within the experimental error, the inventive grade aluminum hydroxide Νο.3 has mechanical and rheological properties similar to those of the comparative grade Martina® OL-l 1 1 LE. It should be specifically mentioned that the melt flow index is measured in accordance with DIN 53 73 5. The tensile strength and elongation at break are measured according to DIN 5 3 504 and the electrical resistivity before and after water aging is the weight difference according to DIN 5 3482 after 7 days of water aging in a 2 mm3 platen in a desalted water bath. The oxygen index was measured on a 6x3x1 50mm3 sample according to ISO 45 89. Example 1 3 The comparative example aluminum hydroxide particles Martinal® OL-104 LE of Example 2 and the inventive grade aluminum hydroxide No. 1 of Example 1 were used separately to form a flame retardant resin formulation. The synthetic resins used were EVA Escorene® Ultra UL 00328 from Exxon Mobile together with LLDPE grade Escorene® LL 1001 XV from Exxon Mohile, Ethanox® 310 antioxidants commercially available from Albemarle® and amines from Degussa Mixture of decane Dynasylan AMEO. The ingredients were mixed on a -28-200831414 46mm Buss Ko kneader (L/D ratio = (11) using a temperature setting and screw speed selected in a manner that is familiar to those skilled in the art, yielding is per The amount of each component used in formulating the flame retardant resin formulation is shown in Table 7 below. Table 7 Phr (parts per hundred parts of total resin) Escorene Ultra UL 0 0 3 2 8 80 Escorene LL 10 0 1 XV 20 Aluminium Hydroxide 150 AMEO decane 1.6 Ethanox 310 0.6 In the formation of a flame retardant resin formulation, the AMEO decane and Ethanox 8310 are first combined with the total amount of synthetic resin before blending in a Buss kneader. Blending in the barrel. Relying on the weight feeder, the resin/decane/antioxidant blend is fed into the first inlet of the Buss kneader along with a total of 50% aluminum hydroxide and the remaining 50% hydrogen The alumina was fed into the second feed port of the Buss kneader. The discharge extruder mounting flange was perpendicular to the Buss Ko kneader and had a screw size of 70 mm. Figure 10 shows the inventive grade aluminum hydroxide No. 1 Output power on the motor of the discharge extruder Figure 1 shows the output power on the motor of the unloading press machine of the comparative grade KOH-OL LE manufactured by Martinswerk. As shown in Figures 10 and 11, when using the invention according to the present invention The aluminum hydroxide particles significantly reduce the output energy (power) of the discharge extruder when in flame retardant resin formulations. As noted above, smaller changes in energy levels allow for greater yield and/or more uniformity ( A homogeneous phase flame retardant resin formulation. -29- 200831414 [Simplified Schematic] Figure 1 shows a second injection test operation and ATH grade No. 1, compared to the standard grade, ATH, specific pore volume according to the present invention. Figure 2 is a plot of the pressure applied by the V system. Figure 2 shows the comparison of the standard level with respect to the second injection test operation and ATH grade No. 1, according to the invention ATH, specific pore volume V versus pore radius r Figure 3. Figure 3 shows the ATH grade No.1 compared to the standard grade. According to the normalized specific pore volume of the ATH, the maximum specific pore volume of the ATH grade is set at 100. % generated and will correspond to other ATH grades This is the maximum enthalpy. Figure 4 shows a plot of the ATH grade according to the present invention as a function of the pressure applied by the pore volume V system with respect to the second injection test operation and the ATH grade Νο·2 compared to the standard grade. Figure 5 shows a plot of specific pore size R versus pore volume V versus pore volume V for a second injection test operation and a Ν grade Νο. 2 compared to a standard grade. Figure 6 shows the ATH grade No. 2 compared to the standard grade, the normalized specific pore volume of the ATH according to the present invention, which is generated at 100% of the maximum specific pore volume of each ATH grade, and The other specific volume corresponding to the ATH level is divided by this maximum. Figure 7 shows a plot of the ATH grade according to the present invention as a function of the pressure applied by the pore volume V system, as compared to the standard grade, with respect to the second injection test operation and the ATH grade Νο. -30- 200831414 Figure 8 shows a plot of specific pore size r versus pore volume V versus pore size V for a second injection test operation and ATH grade Νο·3 compared to the standard grade. Figure 9 shows the normalized specific pore volume of ATH according to the present invention compared to the standard grade, ATH grade No. 3, which is generated at 100% of the maximum specific pore volume of each ATH grade, and The other specific volume corresponding to the ATH level is divided by this maximum. Fig. 1 is a view showing the output power on the motor of the discharge extruder of the inventive grade aluminum hydroxide No. 1 used in Example 1. Fig. 1 1 shows the output power of the motor of the comparative example 〇 l -1 0 4 L E-class aluminum hydroxide discharge extruder used in Example 2. [Main component symbol description]

U -31-U -31-

Claims (1)

C 200831414 十、申請專利範圍: 1· 一種ATH粒子具有範圍自約〇.〇9至約< 隙半徑(、、r5〇〃)及如經由DIN-66 1 3 2所; 至 1 5m2/g 之 BET。 2.如申請專利範圍第丨項之ath粒子,其 最大比孔隙體積(、、V m ax 〃)是在約3 0 0至 圍內。 3. 如申請專利範圍第1項之ATH粒子,其 Vmax是在約390至約480mm3/g之範圍P 4. 如申請專利範圍第3項之ATH粒子,其 f 5 〇是在約0.2 0至約0.3 3 // m的範圍內。 5. 如申請專利範圍第1項之ATH粒子,其 Vmax是在約400至約600mm3/g之範圍P 6. 如申請專利範圍第5項之ATH粒子,其 r50是在約0.185至約0.325/zm的範圍 7. 如申請專利範圍第1項之ATH粒子,其 Vmax是在約450至約550mm3/g之範圍 0.185至約0.25# m的範圍內。 8. 如申請專利範圍第1項之ATH粒子,其 r5〇是在約〇.〇9至約0.21/zm的範圍內。 9. 如申請專利範圍第1項之ATH粒子,其 Vmax是在約3 5 0至約5 50mm3/g之範圍 10. 如申請專利範圍第9項之ATH粒子,其 r5〇是在約〇.〇9至約0.165// m的朝圍p 11. 一種ATH粒子具有: a)約3至約6m2/g的BET比表面_ 〕.3 3 // m之中値孔 則定之範圍自約1 中該ATH粒子的 約7 0 0 m m3 / g之範 中該ATH粒子的 ]° 中該ATH粒子之 中該ATH粒子之 3 ° 中該ATH粒子之 3 ° 中該ATH粒子之 3,及r 5 0是在自約 中該ATH粒子之 中該ATH粒子之 3 ° 中該ATH粒子之 3 ° ί ;及約3 90至約 -32- 200831414 480mm3/g之最大比孔隙體積; 或 b)約6至約9m2/g的BET比表面積;及約400 600mm3/g之最大比孔隙體積; 或 — c)約9至約15m2/g的BET比表面積;及約300 7 0 0 m m3 / g之最大比孔隙體積。 1 2.如申請專利範圍第1 1項之ATH粒子,其中如經由 7 8 7-5 ; 1 9 8 0所測定之a)、b)或〇的油吸收是在約1 ' 3 5 %的範圍內。 1 3 ·如申請專利範圍第1 1項之ΑΤΗ粒子,其中如經由 7 87-5 ; 1 980所測定之a)、b)或〇的油吸收是在約 約3 0 %的範圍內。 1 4.如申請專利範圍第1 1項之ATH粒子,其中如經由 787-5 ; 1 980所測定之a)、b)或〇的油吸收是在約 約3 2 %的範圍內。 15·如申請專利範圍第11項之ATH粒子,其中如經住 C./ 787-5 ; 1 980所測定之a)、b)或c)的油吸收是在約 約3 5 %的範圍內。 1 6 ·如申請專利範圍第1 1項之ATH粒子,其中如經挂 7 8 7 - 5 ; 1 9 8 0所測定之a)、b)或c)的油吸收是在約 約2 3 %的範圍內。 1 7 ·如申請專利範圍第1 1項之ATH粒子,其中如經注 7 8 7 - 5 ; 1 9 8 0所測定之a )、b )或c)的油吸收是在約 約2 5 %的範圍內。 至約 至約 I iso 至約 I ISO 23至 I ISO 25至 I ISO 25至 J ISO 19至 3 ISO 21至 -33- 200831414 18. 如申請專利範圍第12項之ATH粒子,其中a)、b)或c) 的d 5 ο是在約〇 . 5至約2.5 // m的範圍內。 19. 如申請專利範圍第12項之ATH粒子,其中a)的d5〇是在 約1 . 3至約2.0 // m的範圍內。 2 0.如申請專利範圍第12項之ATH粒子,其中b)的d5〇是在 約0.9至約1 . 8 // m的範圍內。 21.如申請專利範圍第16項之ATH粒子,其中a)的d5G是在 約〇. 5至約1 . 8 // m的範圍內。 (' 22.如申請專利範圍第17項之ATH粒子,其中b)的d5〇是在 約〇. 5至約1 .3 // m的範圍內。 23 . —種阻燃之聚合物配方,包括至少一種合成樹脂及約 5 w t %至約9 0 w t %的範圍內之A T Η粒子具有: a) 約0.0 9至約0.3 3 # m的範圍內之中値孔隙半徑;或 b) 約3至約6m2/g之BET比表面積;及自約390至約 480mm3/g之最大比孔隙體積; 或 C)約6至約9m2/g之BET比表面積;及自約400至約 600mm3/g之最大比孔隙體積; 或 d)約9至約15m2/g之BET比表面積;及自約3 00至約 700mm3/g之最大比孔隙體積。 24.如申請專利範圍第23項之阻燃聚合物配方,其中該合成 樹脂係選自熱塑性樹脂、熱固性樹脂、聚合懸浮液(乳膠) 及以聚乙烯爲基底之樹脂。 -34- 200831414 2 5 ·如申請專利範圍第24項之阻燃聚合物配方,其中合成樹 脂是以聚乙烯爲基底之樹脂。 26·如申請專利範圍第24項之阻燃聚合物配方,其中ATH 粒子具有約0.5至約2.5 // m範圍內之d50。 27·如申請專利範圍第24項之阻燃聚合物配方,其中b)具有 約0.185至約0.325/zm範圍內之r5〇, 約450至約5 50mm3/g範圍內之Vmax, Γ 約6.5至約8.5 m2/g範圍內之BET比表面積, 約25%至約32%範圍內之油吸收,及 約1.3至約2.0 // m範圍內之d50。 28. 如申請專利範圍第24項之阻燃聚合物配方,其中〇具有 約〇.〇9至約0.2 1 // m範圍內之r50, 約3 5 0至約5 5 0mm3/g範圍內之Vmax, 約10.5至約12.5m2/g範圍內之BET比表面積, 約25%至約3 5%範圍內之油吸收,及 約0.9至約1 .8 // m範圍內之d50。 29. 如申請專利範圍第24項之阻燃聚合物配方,其中a)具有 約0.2至約0.3 // m範圍內之r50 ’ 約410至約45 0mm3/g範圍內之Vmax ’ 約3.5至約5.5m2/g範圍內之BET比表面積, 約2 3 %至約3 0 %範圍內之油吸收,及 -35- 200831414 ^ 約1·3至約2.5//m範圍內之d50。 30.如申請專利範圍第26項之阻燃聚合物配方,其 粒子的油吸收係在約1至約3 5 °/。之範圍內。 3 1.如申請專利範圍第23或27至30項中任一項之Pi ~ 物配方,其中該阻燃聚合物配方含有選自下列5 種額外添加劑:擠壓助劑;偶合劑;染料;顏养 ;發泡劑;除臭劑;熱穩定劑;抗氧化劑;抗_ 增強劑;金屬清潔劑或去活化劑;衝擊改良劑; ( 劑;脫模助劑、潤滑劑;防阻塞劑;其他阻燃劑 定劑;塑化劑;流動助劑等等。 3 2 . —種如申請專利範圍第3 1項之阻燃聚合物配方戶J 模製或擠塑製品。 3 3 ·—種ATH粒子,具有約0.2至約0.3 # m範圍內 約0.1 8 5至約〇 . 2 5 // m範圍內之r 5 〇,約0.0 9至 //m範圍內之r5G,或約0.09至約0.165//m範圍 〇 I 34·—種ATH粒子,具有約〇·〇9至約0.33/zm範圍 及約300至約700mm3/g範圍內之Vmax。 中 ATH :燃聚合 .至少一 •;塡料 ί電劑; 加工助 ;UV穩 ί形成之 之 r50, 約 0.21 內之r5〇 內之r5o -36 -C 200831414 X. Patent application scope: 1. An ATH particle has a range from about 〇.〇9 to about < a gap radius (, r5〇〃) and as per DIN-66 1 3 2; to 15 m2/g BET. 2. The ath particle according to the scope of the patent application, the maximum specific pore volume (, V m ax 〃) is in the range of about 30,000. 3. The ATH particle of claim 1 wherein the Vmax is in the range of from about 390 to about 480 mm3/g. P. 4. The ATH particle of claim 3, wherein f 5 〇 is at about 0.20 to It is in the range of about 0.3 3 // m. 5. The ATH particle of claim 1 wherein Vmax is in the range of from about 400 to about 600 mm 3 /g. P 6. The ATH particle of claim 5, the r50 is from about 0.185 to about 0.325/ Range of zm 7. The ATH particles of claim 1 wherein Vmax is in the range of from about 450 to about 550 mm 3 /g ranging from 0.185 to about 0.25 # m. 8. The ATH particle of claim 1 of the patent, wherein r5 〇 is in the range of from about 〇.〇9 to about 0.21/zm. 9. The ATH particle of claim 1 wherein the Vmax is in the range of from about 305 to about 5 50 mm 3 /g. 10. The ATH particle of claim 9 is r5 〇 is about 〇.朝9 to about 0.165 / / m of the circumference p 11. An ATH particle has: a) BET specific surface of about 3 to about 6m2 / g _]. 3 3 / / m in the pupil is determined to range from about 1 The ATH particle is about 700 mm m3 / g in the range of the ATH particle in the ATH particle of the ATH particle of 3 ° in the 3 ° of the ATH particle in the 3 ° of the ATH particle, and r 50 is a maximum specific pore volume of the ATH particles of 3 ° ί of the ATH particles in the ATH particles, and a maximum specific pore volume of about 3 90 to about -32 to 200831414 480 mm 3 /g; or b) a BET specific surface area of from 6 to about 9 m 2 /g; and a maximum specific pore volume of about 400 600 mm 3 /g; or - c) a BET specific surface area of from about 9 to about 15 m 2 /g; and about 300 7 0 m m 3 /g Maximum specific pore volume. 1 2. ATH particles as claimed in claim 11 wherein the oil absorption of a), b) or hydrazine as determined by 7 8 7-5; 1 890 is about 1 ' 3 5 % Within the scope. 1 3 · The ruthenium particles as claimed in claim 11 wherein the oil absorption of a), b) or ruthenium as determined by 7 87-5; 1 980 is in the range of about 30%. 1 4. The ATH particles of claim 1 wherein the oil absorption of a), b) or hydrazine as determined via 787-5; 1 980 is in the range of about 32%. 15. The ATH particles of claim 11 wherein the oil absorption of a), b) or c) as determined by C./787-5; 1 980 is in the range of about 35%. . 1 6 · ATH particles as claimed in item 11 of the patent scope, wherein the oil absorption of a), b) or c) as determined by hanging 7 8 7 - 5 ; 1 890 is about 2 3 % In the range. 1 7 · ATH particles as claimed in item 11 of the patent application, wherein the oil absorption of a), b) or c) as determined by Note 7 8 7 - 5 ; 1 9 8 is about 25% In the range. Up to about I iso to about I ISO 23 to I ISO 25 to I ISO 25 to J ISO 19 to 3 ISO 21 to -33- 200831414 18. ATH particles according to claim 12, wherein a), b Or d) of c) is in the range of about 〇. 5 to about 2.5 // m. 19. The ATH particle of claim 12, wherein d) of a) is in the range of from about 1.3 to about 2.0 // m. 2 0. The ATH particle of claim 12, wherein d) of b) is in the range of from about 0.9 to about 1.8. 21. The ATH particle of claim 16 wherein the d5G of a) is in the range of from about 0.5 to about 1.8. (' 22. The d5 ATH of the ATH particles of claim 17 of the patent range, b) is in the range of from about 55 to about 1.3/m. 23 . A flame retardant polymer formulation comprising at least one synthetic resin and an AT Η particle in the range of from about 5 wt % to about 90 wt % having: a) from about 0.0 9 to about 0.3 3 # m a crucible radius; or b) a BET specific surface area of from about 3 to about 6 m 2 /g; and a maximum specific pore volume of from about 390 to about 480 mm 3 /g; or C) a BET specific surface area of from about 6 to about 9 m 2 /g And a maximum specific pore volume of from about 400 to about 600 mm 3 /g; or d) a BET specific surface area of from about 9 to about 15 m 2 /g; and a maximum specific pore volume of from about 300 to about 700 mm 3 /g. 24. The flame retardant polymer formulation of claim 23, wherein the synthetic resin is selected from the group consisting of thermoplastic resins, thermosetting resins, polymeric suspensions (latex), and polyethylene based resins. -34- 200831414 2 5 · A flame retardant polymer formulation as claimed in claim 24, wherein the synthetic resin is a polyethylene based resin. 26. The flame retardant polymer formulation of claim 24, wherein the ATH particles have a d50 in the range of from about 0.5 to about 2.5 // m. 27. A flame retardant polymer formulation according to claim 24, wherein b) has a r5 范围 in the range of from about 0.185 to about 0.325/zm, a Vmax in the range of from about 450 to about 5 50 mm 3 /g, Γ about 6.5 to The BET specific surface area in the range of about 8.5 m2/g, the oil absorption in the range of from about 25% to about 32%, and the d50 in the range of from about 1.3 to about 2.0 // m. 28. The flame retardant polymer formulation of claim 24, wherein the ruthenium has an r50 in the range of from about 〇.〇9 to about 0.2 1 // m, and is in the range of from about 350 to about 550 mm3/g. Vmax, a BET specific surface area in the range of from about 10.5 to about 12.5 m2/g, an oil absorption in the range of from about 25% to about 35%, and a d50 in the range of from about 0.9 to about 1.88 m. 29. A flame retardant polymer formulation according to claim 24, wherein a) has a vmax of from about 0.2 to about 0.3 // m in the range of from about 410 to about 45 0 mm 3 /g of from about 0.5 to about 0.5 to about BET specific surface area in the range of 5.5 m2/g, oil absorption in the range of about 23% to about 30%, and -50-200831414^ d50 in the range of about 1.3 to about 2.5/m. 30. The flame retardant polymer formulation of claim 26, wherein the particles have an oil absorption of from about 1 to about 35 °/. Within the scope. 3. The Pi~ formulation according to any one of claims 23 or 27 to 30, wherein the flame retardant polymer formulation contains five additional additives selected from the group consisting of: extrusion aids; coupling agents; dyes; Yan Yang; foaming agent; deodorant; heat stabilizer; antioxidant; anti-intensifier; metal cleaner or deactivator; impact modifier; (agent; mold release aid, lubricant; anti-blocking agent; Other flame retardant fixatives; plasticizers; flow aids, etc. 3 2 - A flame retardant polymer formula J. Molded or extruded product as claimed in claim 31. 3 3 · ATH particles having r 5 范围 in the range of from about 0.2 to about 0.3 # m in the range of from about 0.5 8 to about 2 2 5 // m, r5G in the range of about 0.0 9 to ///m, or about 0.09 to about 0.165 / / m range 〇 I 34 · ATH particles, with a range of about 〇 · 〇 9 to about 0.33 / zm and Vmax in the range of about 300 to about 700 mm 3 / g. Medium ATH: fuel polymerization. At least one; ίElectrical agent; Processing aid; UV stabilized by r50, r5o -36 in r5〇 within about 0.21
TW96122701A 2006-07-05 2007-06-22 Aluminum hydroxide TWI427037B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81867006P 2006-07-05 2006-07-05
US81863206P 2006-07-05 2006-07-05

Publications (2)

Publication Number Publication Date
TW200831414A true TW200831414A (en) 2008-08-01
TWI427037B TWI427037B (en) 2014-02-21

Family

ID=44766413

Family Applications (3)

Application Number Title Priority Date Filing Date
TW96122704A TW200811047A (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide
TW96122701A TWI427037B (en) 2006-07-05 2007-06-22 Aluminum hydroxide
TW96122707A TWI427038B (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW96122704A TW200811047A (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW96122707A TWI427038B (en) 2006-07-05 2007-06-22 Process for the production of aluminum hydroxide

Country Status (1)

Country Link
TW (3) TW200811047A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989794A (en) * 1986-07-16 1991-02-05 Alcan International Limited Method of producing fine particles
US5306480A (en) * 1986-07-16 1994-04-26 Alcan International Limited Alumina hydrates
EP0807603B2 (en) * 1996-05-16 2007-08-29 Sumitomo Chemical Company, Limited Aluminum hydroxide, method for producing the same, and use of the same
EP1206412B1 (en) * 1999-06-29 2003-09-24 Albemarle Corporation Process for the production of aluminium hydroxide
JP4997675B2 (en) * 2001-09-14 2012-08-08 住友化学株式会社 Thermoplastic resin composition
JP4081600B2 (en) * 2002-03-29 2008-04-30 住友化学株式会社 Polyolefin resin injection molding
DE10248174C1 (en) * 2002-10-16 2003-11-13 Nabaltec Gmbh Flame-retardant thermoplastic, thermoset or thermosetting and/or elastomeric polymer composition, for producing coated electrical wire or cable by extrusion, contains aluminum hydroxide with specified properties as flame retardant

Also Published As

Publication number Publication date
TW200811047A (en) 2008-03-01
TWI427038B (en) 2014-02-21
TWI427037B (en) 2014-02-21
TW200806582A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
JP5317970B2 (en) Aluminum hydroxide
JP2009532315A (en) Magnesium hydroxide with improved kneading and viscosity characteristics
JP2011515307A (en) Method for producing nanodispersible boehmite and its use in flame retardant synthetic resin
MX2008012369A (en) Magnesium hydroxide with improved compounding and viscosity performance.
TW200831414A (en) Aluminum hydroxide
US8642001B2 (en) Aluminum hydroxide
TW200811044A (en) Process for producing magnesium hydroxide
TW200808658A (en) A process for producing thermally stable aluminum trihydroxide particles by wet-milling with subsequent spray drying
TW200812913A (en) Thermally stable aluminum trihydroxide particles produced by spray drying with subsequent dry-milling and their use
TW200808657A (en) The use of mill-drying and deagglomeration to product thermally stable aluminum trihydroxide particles from an ATH-containing slurry
TW200812910A (en) Process for producing magnesium hydroxide
TW200815290A (en) A process for producing aluminum hydroxide particles
TW200811046A (en) Aluminum hydroxide particles produced from an organic acid containing aluminum hydroxide slurry
TW200811045A (en) The use of mill-drying and deagglomeration to produce thermally stable aluminum trihydroxide particles from an ATH-containing filter cake