TWI312339B - - Google Patents

Download PDF

Info

Publication number
TWI312339B
TWI312339B TW095105643A TW95105643A TWI312339B TW I312339 B TWI312339 B TW I312339B TW 095105643 A TW095105643 A TW 095105643A TW 95105643 A TW95105643 A TW 95105643A TW I312339 B TWI312339 B TW I312339B
Authority
TW
Taiwan
Prior art keywords
exhaust gas
micro
water
tank
drainage
Prior art date
Application number
TW095105643A
Other languages
Chinese (zh)
Other versions
TW200635862A (en
Inventor
Kazuyuki Yamasaki
Keichiro Uda
Kazumi Chuhjoh
Original Assignee
Sharp Kabushiki Kaish
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaish filed Critical Sharp Kabushiki Kaish
Publication of TW200635862A publication Critical patent/TW200635862A/en
Application granted granted Critical
Publication of TWI312339B publication Critical patent/TWI312339B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treating Waste Gases (AREA)
  • Physical Water Treatments (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

1312339 (1) 九、發明說明 【發明所屬之技術領域】 本發明是關於排氣排水處理裝置以及排氣排水處理方 法。本發明是爲了對應例如:日本於2004年4月開始實 施的水質汚濁防止法的部分修正案的「氮的總量限制」、 2001年4月開始實施的PRTR法(環境汚染物質排出. 移動登記),主要是關於可以有效率地處理從半導體工場 排出的含高濃度氮的排水(含有高濃度氨的排水等)、含 氨基乙醇的排水,同時因可節省能源而能夠削減初期成本 、營運成本以及維修成本之排氣排水處理裝置以及排氣排 水處理方法。 【先前技術】 以往,含高濃度氮的排水,具體而言,含有約 3〇00PPm程度的含高濃度氨的排水的這種含高濃度氮的排 水,生物毒性很高,所以一般而言,無法進行微生物處理 。亦即,含有氮的排水可用微生物處理的例子,一般而言 ,是屬於氨濃度僅爲數百ppm的低濃度狀態下的處理。 基於這種原因,3000ppm以上的含高濃度氨的排水’ 是使用物理方法的蒸發罐濃縮到1 /1 0程度,將其濃縮液 當作產業廢棄物來處分。這種以蒸發罐來進行濃縮’當作 產業廢棄物從工場排出的方法,濃縮物就是相當於產業廢 棄物。因此,因爲來自於事業單位的產業廢棄物的増加’ 還有該產業廢棄物也就是濃縮液的處分方法,一般而言是 -5- (2) (2)1312339 採用焚化處理’所以會有因使用重油等的燃料所導致的空 氣汚染等的課題。 此外,上述利用蒸發罐的處理方法,因消耗大量的能 源,且必須有大規模的工廠設備,所以初期成本、營運成 本以及維修成本很大,這也是其中一個課題。 又,另外一種習知技術,例如:專利文獻1 (日本特 開2000 — 3 08 900號公報)是揭示出一種生物處理法。依 據這種習知技術的生物處理法,可以防止處理含高濃度氨 性氮的排水時所產生的亞硝酸性氮所導致的處理效率低落 的問題,而可進行穩定的處理。這種生物處理法,具體而 言’是藉由使用對於亞硝酸性氮具有抗耐性的獨立營養細 菌之生物性脫氮法,來將亞硝酸性氮還原成氮氣而從排水 中去除掉。 這種含氨的排水的處理方法,是揭示出:利用硝化槽 、脫氮槽、紫外線氧化槽;或者利用硝化槽、光觸媒紫外 線氧化槽、脫氮槽、紫外線氧化槽之處理。 又,專利文獻2 (日本特許第346767 1號公報)是揭 示出另外一種習知技術的別種生物處理法。 這種生物處理方法,是將原水槽内的有機性排水利用 送液泵浦依序地送進到脫氮槽以及硝化槽,並且使其在兩 槽之間進行循環,將含在有機性排水中的氨態氮利用生物 性硝化以及脫氮反應而還原成氮氣而予以去除,進而以吸 引泵浦,利用沉浸在硝化槽内的排水中的過濾膜單元來將 污泥和處理水予以分離的硝化脫氮方法。 -6- (3) 1312339 這種硝化脫氮方法的特徵是:將從脫氮槽給送到硝化 槽的導管的中途予以分叉,讓分叉部的前端在脫氮槽内開 口,將從脫氮槽給送到硝化槽的有機性排水的一部份噴出 到脫氮槽内的有機性排水中。換言之,這種硝化脫氮方法 ,係將排水利用送液泵浦依序地送進到脫氮槽以及硝化槽 ,並且在兩槽之間進行循環。 又,專利文獻3 (日本特許第3095620號公報)係揭 示出另外一種習知技術的生物處理法。 這種生物處理方法係利用具備有:供含有機物的原水 流入的脫氮槽;供這個脫氮槽的脫氮槽混合液流入的硝化 槽;將這個硝化槽的硝化液循環到上述脫氮槽的硝化液循 環流路;配置在上述硝化槽内的硝化槽散氣裝置之生物性 除氮裝置來進行處理。 更詳細地說,這種生物性除氮裝置,係在脫氮槽内設 置了可將流入脫氮槽內的原水中的浮遊物質捕集去除的脫 氮菌固定化載體充塡區域。又,將原水導入流路以及硝化 液循環流路在脫氮槽的脫氮菌固定化載體充塡區域的下方 位置相連通,在脫氮槽的底部設置了可供脫氮菌固定化載 體充塡區域所捕集去除的浮遊物質堆積的汚泥漏斗部,且 在汚泥漏斗部設置了漏斗散氣裝置。 但是,如上所述,以往之3000ppm程度的含高濃度氨 的排水因爲生物毒性很高,一般而言係無法實施微生物處 理。亦即,因爲生物毒性很高而無法實施微生物處理的含 高濃度氨的排水係利用焚化法或濃縮法來處理。因此,濃 -7- (4) 1312339 .縮法係存有:大量消耗能與因濃縮液所導致的增加了產業 廢棄物之問題。 此外,另一種習知技術係專利文獻4(日本特開2004 ~~ 121962號公報)所揭示的利用了奈米氣泡的處理方法以 • 及處理裝置。 . 這種習知技術是活用:奈米氣泡所具有的減少浮力、 增加表面積、增大表面活性、產生局部性的高壓區域、因 > 爲達成静電分極所帶來的界面活性作用和殺菌作用等的特 性。更具體地說,這種習知技術係揭示出:藉由這些特性 的相互關連,而可發揮污垢成分的吸附機能、物體表面的 高速洗淨機能、殺菌機能,因而得以高機能且低環境負荷 的方式洗淨各種物體,進而將汚濁水予以淨化。 又,目前有一種習知技術是揭示於專利文獻5 (曰本 特開2003 — 3 34548號公報)的奈米氣泡的產生方法。 這種習知技術的奈米氣泡的產生方法,係揭示出具有 | :在液體中,(1 )將液體的一部份予以分解氣化的過程 ;(2 )在液體中施加超音波的過程;或者(3 )將液體的 一部份予以分解氣化的過程以及施加超音波的過程。 ' 但是,上述兩種習知技術,雖然是揭示出:利用奈米 • 氣泡來淨化汚濁水,或者利用奈米氣泡來去除固體表面的 污垢,但並未揭示出:有關於處理排氣和排水時的提昇處 理效率、處理水質的技術。 【發明內容】 -8 - (5) 1312339 [發明所欲解決的課題] 因此’本發明的課題係在於提供:可達成提高處理效 率、降低處理成本之排氣排水處理方法以及排氣排水處理 裝置。 [用以解決課題的手段] 爲了解決上述課題,本發明的排氣排水處理方法的特 徵是:使用含有微奈米氣泡的微奈米氣泡水作爲處理排氣 的洗淨水’將處理過上述排氣後的洗淨水再度使用於排水 的處理。 依據本發明的排氣排水處理方法,係將微奈米氣泡水 作爲洗淨水來處理排氣,所以可利用微奈米氣泡所具有的 物體表面高速洗淨機能,有效率地洗淨排氣。又,藉由將 處理過上述排氣後的洗淨水再度使用於排水的處理,可讓 這個洗淨水所含的微奈米氣泡對於排水處理具有幫助,而 可謀求提高排水處理效率。亦即,這個微奈米氣泡具有: (1 )界面活性作用和殺菌作用、(2 )污垢成分的吸附機 能、(3 )物體表面高速洗淨機能、(4 )殺菌機能、(5 )觸媒的作用•機能(6 )提高微生物的活性之作用·機 能等。 因此,依據本發明的排氣排水處理方法,可謀求提高 排氣以及排水之處理效率,亦可謀求降低處理成本。 此處將針對3種類的氣泡進行説明。 (i )通常的氣泡是會在水中上昇,然後會在水表面 -9- 1312339 ⑹ 爆裂而消滅。 (ii)微米氣泡是直徑5〇微米(^Μ)以下的細微氣 泡,會在水中逐漸縮小,最後會消滅(完全溶解)。 (iii )奈米氣泡是較之微米氣泡更小的氣泡’直徑1 微米以下(例如:直徑100〜200 η M),係被稱爲「可 一直存在於水中的氣泡」。 因此,所謂的「微奈米氣泡」係指:微米氣泡和奈米 氣泡混合在一起的氣泡。 又,一種實施形態的排水處理裝置係具備有:用以製 作含有微奈米氣泡的微奈米氣泡水之微奈米氣泡水製作部 ;和 將上述微奈米氣泡水製作部所製作的微奈米氣泡水當 作洗淨水來處理排氣的排氣處理部;和 被導入處理過上述排氣後的洗淨水的排水處理部。 依據這種實施形態的排氣排水處理裝置,係將微奈米 氣泡水製作部所製作的微奈米氣泡水當作洗淨水來處理排 氣,所以可利用微奈米氣泡所具有的物體表面高速洗淨機 能,有效率地洗淨排氣。又,藉由將處理過上述排氣後的 洗淨水再度使用於排水的處理,可讓這個洗淨水所含的微 奈米氣泡對於排水處理具有幫助,可謀求提高排水處理效 率。 因此,依據本發明的這種排氣排水處理裝置,可謀求 提高排氣以及排水之處理效率,且謀求降低處理成本。此 外,只要將排水處理部對於排水進行處理過後的處理水當 -10- (7) 1312339 作原水來製作上述微奈米氣泡水的話,就可謀求降低與排 氣處理相關的營運成本。 又’一種實施形態的排水處理裝置,上述排水處理部 係具有液中膜,上述微奈米氣泡水製作部係以上述排水處 理部的液中膜所獲得的處理水當作原水來製作上述微奈米 氣泡水。 依據這種實施形態的排氣排水處理裝置,上述微奈米 氣泡水製作部係以上述排水處理部的液中膜所獲得的處理 水當作原水,來製作上述微奈米氣泡水。因爲上述處理水 內含有許多電解質,所以可有效率地製作出微奈米氣泡。 又,一種實施形態的排水處理裝置,上述排水處理部 係具備有:調整槽、和脫氮槽、和具有液中膜的硝化槽; 上述微奈米氣泡水製作部係含有微奈米氣泡產生機的 微奈米氣泡反應槽; 上述排氣處理部係灑水滌氣塔。 依據這種實施形態的排氣排水處理裝置’因爲排氣處 理部是灑水滌氣塔,所以可比較容易構築排氣處理系統。 又,這種實施形態,微奈米氣泡反應槽係以排水處理部所 具備的硝化槽的液中膜所獲得的處理水’當作原水來製作 微奈米氣泡水,再將來自這個微奈米氣泡反應槽的微奈米 氣泡水當作上述灑水滌氣塔的洗淨水來利用。因此被導入 到排水處理部的排水的處理水’有效地回收利用作爲排氣 處理部的灑水滌氣塔的洗淨水。 又,一種實施形態的排水處理裝置,上述排水處理部 -11 - (8) 1312339 的調整槽係被導入含氮的排水,而該排水處理裝置又具備 有:可將上述排氣處理部處理過排氣之後的洗淨水當作排 水,導入到上述排水處理部的調整槽的排水導入部。 依據這種實施形態的排氣排水處理裝置,上述排水處 理部的調整槽係可利用來自上述排氣處理部的排水中所含 的微奈米氣泡,對於含高濃度氮的排水進行前段處理。這 個微奈米氣泡可在排水處理部循環使用。 亦即,微奈米氣泡係具有可在水中長時間地維持氣泡 的性質,所以從排氣處理部導入到調整槽的排水係含有微 奈米氣泡的排水。在調整槽內將含高濃度的氮的排水與含 微奈米氣泡的排水混合在一起的話,即可利用微奈米氣泡 的氧化作用來進行前段處理。藉由在這個調整槽進行前段 處理,可使得裝置整體上,特別是可使得硝化槽趨於小型 化,而對於削減初期成本具有幫助。根據這種實施形態, 在利用脫氮槽、硝化槽對於排水進行微生物處理之前,可 利用調整槽先進行微奈米氣泡處理(例如:對於氨性氮進 行部份的氧化處理而使其變成硝酸性氮)。 又,一種實施形態的排氣排水處理裝置,上述排氣處 理部係處理含氮化合物的排氣。 依據這種實施形態的排氣排水處理裝置,係可利用微 奈米氣泡的高速洗淨機能,有效率地令排氣內所含的氮移 動到洗淨水內。 又,一種實施形態的排氣排水處理裝置,上述排氣係 含氨基乙醇的排氣。 -12- 1312339 Ο) 依據這種實施形態的排氣排水處理裝置,上述排氣處 理部係以含有上述微奈米氣泡的洗淨水,根據氣液接觸的 原理’使得排氣中所含的氨基乙醇從排氣側有效率地移動 到洗淨水側,而可對於排氣進行處理。 又,一種實施形態的排氣排水處理裝置,上述排氣處 理部係具備有: 將來自上述微奈米氣泡水製作部的微奈米氣泡水當作 洗淨水來灑水的上部;和 用來儲留上述被灑水後的洗淨水的下部;和 從上述下部將洗淨水循環到上部的循環部。 依據這種實施形態的排氣排水處理裝置,排氣處理部 係利用:洗淨水;以及將這個洗淨水循環後的循環水之兩 種含有微奈米氣泡的水,來對於排氣進行洗淨,所以可提 昇排氣處理的性能。 又,一種實施形態的排氣排水處理裝置,上述硝化槽 係具有:用來產生供洗淨上述液中膜的微奈米氣泡的微奈 米氣泡產生機。 依據這種實施形態的排氣排水處理裝置,可將上述硝 化槽的液中膜,利用微奈米氣泡產生機所產生的微奈米氣 泡來於以洗淨’所以可確實地將液中膜洗淨’而可使液中 膜增加處理水量。 又,一種實施形態的排氣排水處理裝置’上述硝化槽 係具備有:用來吐出可洗淨上述液中膜的空氣之散氣管。 依據這種實施形態的排氣排水處理裝置’可同時利用 -13 - (10) 1312339 散氣管所吐出的空氣、以及微奈米氣泡產生機所產生的微 奈米氣泡的兩者,來洗淨硝化槽的液中膜。因此,可藉由 兩種氣泡的組合,更有效率地洗淨液中膜。 又,一種實施形態的排氣排水處理方法,上述排氣係 含揮發性有機化合物的排氣。 依據這種實施形態的排氣排水處理方法,因爲洗淨水 是微奈米氣泡水,所以即使對於含在排氣中的丙酮等的揮 發性有機化合物,亦可確實地實施洗淨工作。 又,一種實施形態的排氣排水處理裝置,上述排氣係 含揮發性有機化合物的排氣。 依據這種實施形態的排氣排水處理裝置,因爲洗淨水 是微奈米氣泡水,所以即使對於含在排氣中的丙酮等的揮 發性有機化合物,亦可確實地實施洗淨工作。 [發明之效果] 依據本發明的排氣排水處理方法,係以微奈米氣泡水 當作洗淨水來處理排氣,所以可利用微奈米氣泡所具有的 物體表面高速洗淨機能,有效率地洗淨排氣。又,可將處 理過上述排氣後的洗淨水再度使用於排水的處理工作上, 可讓這個洗淨水中所含的微奈米氣泡對於排水處理具有幫 助,可謀求提高排水處理效率。因此,依據本發明的排氣 排水處理方法’係可謀求提高排氣以及排水之處理效率, 進而謀求降低處理成本。 -14· (11) 1312339 【實施方式】 [發明之最佳實施形態] 茲依據圖示的實施形態更加詳細地說明本發明如下。 (第1實施形態) 第1圖是本發明的排水處理裝置之第1實施形態之示 意圖。這個第1實施形態係具備有:調整槽1、脫氮槽3 、具有液中膜16的硝化槽11、作爲微奈米氣泡水製作部 的微奈米氣泡反應槽3 1、作爲排氣處理部的滌氣塔1 8。 上述調整槽1係被導入含高濃度氮的排水,並且來自 上述滌氣塔1 8之作爲揮發性有機化合物之含氨基乙醇的 排水溢流出來之後,係經由排水導入部也就是配管L 1而 導入到上述調整槽1。在這個調整槽1係對於導入進來的 排水,調整水量和水質。被導入到這個調整槽1的含高濃 度氮的排水之一例,係有:來自半導體工場的含高濃度氨 的排水,這種含高濃度氨的排水係有:來自半導體工場的 CMP (化學機械拋光硏磨)過程的含高濃度氨的排水。 來自作爲上述排氣處理部的滌氣塔18之含氨基乙醇 的排水,係被導入到調整槽1,所以可將這種氨基乙醇當 成在調整槽1的後段處理的脫氮槽3中的氫元素供應體來 利用。如此一來,與使用甲醇作爲脫氮槽3內的氫元素供 應體的情況比較之下,可節省藥品費用。又,這種含氨基 乙醇的排水,係如後述般地,因爲有微奈米氣泡的存在, 所以這種微奈米氣泡係可對於含高濃度氮的排水,也就是 -15- (12) 1312339 ,含高濃度氨的排水中的氨進行部分的氧化處理。來自這 個調整槽1的處理水係力用調整槽泵浦2,經由配管39而 被導入到脫氮槽3的下部8。 另外,這個脫氮槽3的上部9係被導入:已經過生物 處理後的處理水或生物處理後所產生的污泥。利用這種已 經過生物處理後的處理水或生物處理後所產生的污泥中所 含的磷、鉀、鈣、鎂等的微量元素,可促進脫氮槽3、硝 化槽1 1的槽内所有的微生物的活性。特別是硝化槽1 1係 使用被設置的液中膜16來對於處理水進行高濃度微生物 處理.,所以可利用上述處理水所含有的上述微量元素,來 提高微生物的活性,可使得利用微生物的處理更爲穩定且 増強。此外,微奈米氣泡亦可提高微生物的活性。 又,因爲重力的緣故,脫氮槽3的下部8的微生物濃 度較之上部9更趨於高濃度,所以利用調整槽泵浦2將來 自調整槽1的被處理水導入到脫氮槽3的下部8 ’可抑制 被處理水帶給脫氮槽3的微生物的刺激。如此一來,可穩 定且增強微生物所作用的處理。 又,在脫氮槽3的內壁設置了可作爲上部9與下部8 的分界線的分隔壁4A。又,在脫氮槽3的槽内的横方向 的大致略中央處,配置了 一朝上下方向延伸的隔間板6。 這個隔間板6與分隔壁4A之間配置了散氣管5。這個散 氣管5係連接在脫氮槽用吹氣機7。這個脫氮槽3係可產 生:上述隔間板6與散氣管5的組合所導致的空氣上揚的 效果。換言之,利用散氣管5所吐出的空氣氣泡可產生沿 -16- (13) 1312339 著隔間板6的水流。換言之’這個脫氮槽3,在第 隔間板6的右側之設置了散氣管5的區域,會產生 流W 1,在隔間板6的左側的區域,會產生下降水孩 如此一來,脫氮槽3內的處理水的MLS S (混合液 質(Mixed Liquor Suspended Solid))濃度, 15 000ppm以上的濃度,也能夠進行槽内的攪拌。 這個脫氮槽3內,係設置了隔間板6和散氣管5 ’ 了利用空氣上揚方式來對於整個脫氮槽3進行攪拌 得脫氮槽3内不會產生無法攪拌到的部分’即所謂 角空間」。 此外,上述脫氮槽用吹氣機7基本上,係利用 等來執行所期的設定之間歇運轉。 在這個脫氮槽3的側壁係設置了分隔壁4A’ 氮槽3的上部9與脫氮槽3的下部8互相比較時’ 3的上部9的這一邊,利用上述空氣上揚效果所導 拌進行的較爲順暢。這個脫氮槽3的下部8’雖然 某種程度的攪拌,但是,脫氮槽3的下部8會因爲 降而將微生物濃縮成高濃度,所以與脫氮槽3的上 較的話,攪拌少一點較好。 經由連接在具有硝化槽1 1的半厭氣性微生物 13的下部漏斗部26的回送配管L 1〇以及回送汚 10,將來自下部漏斗部26的含微生物的闻濃度回 大量地導入到這個脫氮槽3的下部8。藉由回送配 與回送汚泥泵浦10所構成的這個回送部’可將硝 1圖之 上昇水 W2。 懸濁物 即使是 亦即, 且實施 ’以使 的「死 定時器 所以脫 脫氮槽 致的攪 也需要 自然沈 部9比 處理部 •泥泵浦 送汚泥 管L 10 化槽11 -17- (14) 1312339 的下部的半厭氣性微生物處理部13的半 全不會接觸到空氣中的氧氣,直接使其移雪 下部8。 被導入到這個脫氮槽3的含高濃度氮 氨基乙醇的排水中的氨基乙醇,當作氫元 部8進行厭氣性處理之後,流動到脫氮槽 從這個上部9自然流下,而被導入到硝化 半厭氣性微生物處理部1 3。 這個硝化槽11係具有:上部的喜氣 12與下部的半厭氣性微生物處理部13。 11,係具有安裝在槽内壁的分隔壁4 B。 係當作:喜氣性微生物處理部12與半厭 部1 3之間的分界線。這個喜氣性微生物處 置了液中膜17。又,這個硝化槽1 1在槽 央部,具有朝上下方向延伸的隔間板1 4。 係延伸存在於上下方向的略上半部。在第 板1 4的右側的區域,係設置了液中膜1 6 又連接著用來導出處理水的重力配管17。 膜16與隔間板14之間,係配置了散氣管 管15A係連接到硝化槽用吹氣機30。; 15A與隔間板14的組合,來產生空氣上 散氣管15A所吐出的空氣來產生沿著隔間 換言之,這個硝化槽11,在第1圖中的隔 區域,會產生上昇水流W1 1,在隔間板6 厭氣性汚泥,完 訪到脫氮槽3的 的排水,係以含 素供應體,在下 3的上部9,再 槽11的下部的 性微生物處理部 又,這個硝化槽 這個分隔壁4 B 氣性微生物處理 i理部1 2內係配 内的横方向的中 這個隔間板1 4 1圖的這個隔間 。這個液中膜1 6 又,在這個液中 1 5 A,這個散氣 W用這個散氣管 揚的效果,利用 板1 4的水流。 間板6的右側的 的左側的區域, -18- (15) 1312339 會產生下降水流W 1 2。如此一來,硝化槽1 1內,即使處 理水的MLSS濃度爲15000ppm以上的濃度,還是能夠進 行槽内的攪拌。 這個硝化槽11中,因爲設置了液中膜16,所以處理 水中的微生物不是滯留在硝化槽1 1內’就是被上述的回 送汚泥泵浦1 〇送回到脫氮槽3的下部8。這個回送汚泥泵 浦10將汚泥移送回去脫氮槽3的下部8的動作,係利用 平常的泵浦來作動的方法,不必讓大量的回送污泥暴露在 空氣內就可加以移送,因此可確實地維持回送汚泥的厭氣 性。 又,從這個液中膜16經由重力配管17讓處理水流出 來,另外,又經由送水泵浦22和送水配管33將水送往微 奈米氣泡反應槽31的微奈米氣泡產生機32。此外,這個 液中膜16又連接著送水泵浦23和送水配管25,這個送水 泵浦23和送水配管25又連接到配置在液中膜16的下方 的微奈米氣泡產生機27。因此,來自這個液中膜16的處 理水,係經由上述送水泵浦2 3和送水配管2 5導入到上述 微奈米氣泡產生機27。這個微奈米氣泡產生機27係連接 著空氣吸入管24,而從這個空氣吸入管24被供給空氣。 另外,被上述回送汚泥泵浦1 0從半厭氣性微生物處 理部13的下部漏斗部26送回到脫氮槽3的下部8的微生 物汚泥,係經由脫氮槽3的上部9,再度回到硝化槽1 1的 半厭氣性微生物處理部1 3,而進行循環。藉由讓微生物汚 泥在兩個槽之間循環,可使得兩個槽的微生物濃度維持在 -19- (16) 1312339 大致相同的濃度。如果微生物濃度以 MLSS ( Mixed Liquor Suspended Solid)濃度來換算,是 i〇〇〇〇pprn 以上 的高濃度的話’僅只利用平常的攪拌機、水中攪拌機以及 循環泵浦所執行的攪拌,將會產生無法完全攪拌到的死角 空間。相對於此,本實施形態則是實施:利用隔間板14 與散氣管1 5 A的組合來產生沿著隔間板1 4的水流,以及 利用空氣上揚方式對於整個槽内進行攪拌,因此可防止產 生無法攪拌到的死角空間》 又,這個硝化槽1 1也是在側壁設置了分隔壁4 B, 所以喜氣性微生物處理部1 2與半厭氣性微生物處理部1 3 比較時,喜氣性微生物處理部12這一邊的攪拌進行的較 爲順暢。半厭氣性微生物處理部1 3雖然也是需要某種程 度的攪拌,但是半厭氣性微生物處理部13會因爲自然沈 降而將微生物濃縮成高濃度,所以與喜氣性微生物處理部 12比較的話,還是攪拌少一些爲宜。這個脫氮槽3與硝化 槽 1 1的兩個槽的微生物濃度係維持在 MLSS ( Mixed L i q u 〇 r S u s p e n d e d S ο 1 i d ) 1 0 0 0 0 p p m 以上。 又,在液中膜16係安裝了作爲導引構件的液中膜外 罩28。利用這個液中膜外罩28 ’可將微奈米氣泡產生機 27所產生的微奈米氣泡朝上方集中上昇’因此可有效率地 洗淨液中膜1 6。又’在微奈米氣泡產生機27的下方’係 配置了散氣管15 B °這個散氣管15 B又連接到硝化槽用 吹氣機30。在這個散氣管15 B係安裝了作爲導引構件的 散氣管外罩29。這個散氣管外罩29係可將由硝化槽用吹 -20- (17) 1312339 氣機3〇所供給而從散氣管15 B吐出的空氣,經由上方的 微奈米氣泡產生機27,有效率地撞擊液中膜16,藉此可 更爲提高液中膜1 6的洗淨效果。 此外,用來洗淨液中膜16的微奈米氣泡產生機27的 運轉與硝化槽用吹氣機30的運轉,分別各自獨立地運轉 亦無妨,或者亦可將兩者同時運轉。若是將兩者同時運轉 的話,可藉由來自散氣管15 B的氣泡與微奈米氣泡產生 機27所產生的微奈米氣泡之兩者,更加地提高洗淨效果 。至於要選擇那一種運轉方式,只要觀察液中膜16的狀 態來決定即可。 此外,前述的脫氮槽3,係設置了用來測定微生物厭 氣性的指標的氧化還原電位計(未圖示)。在脫氮槽3内 ,被回送汚泥泵浦1 〇從硝化槽1 1的半厭氣性微生物處理 部1 3導入進來的處理水中的硝酸性氮,則是被厭氣性微 生物在於氫元素供應體也就是氨基乙醇的存在下,進行還 原處理而變成氮氣。上述處理水中的硝酸性氮,則是含高 濃度氨的排水、氨基乙醇在硝化槽11的喜氣性微生物處 理部1 2中,被微生物所分解而變化成硝酸性氮的。 又’在脫氮槽3内,氨基乙醇以外的有機物係受到厭 氣性微生物所進行的生物性分解處理。接下來,從脫氮槽 3的脫氮槽上部9流出來的處理水,係如上所述,被導入 到硝化槽1 1的下部也就是半厭氣性微生物處理部1 3。此 處,所謂的:「厭氣性微生物處理部」,係指:完全沒有 溶氧的狀態;所謂的:「喜氣性微生物處理部」係指:溶 -21 - (18) 1312339 氧維持在數ppm的狀態;所謂的:「半厭氣性微生物處理 部」係指:溶氧爲〇PPm或者即使有溶氧的存在,也不過 是0.5ppm的程度而已。 又,在硝化槽1 1的上部的喜氣性微生物處理部1 2, 雖然會藉由從散氣管1 5 A所吐出的空氣而產生水流,但是 藉由在硝化槽1 1設置了分隔壁4 B,該水流雖然會對於 下部的半厭氣性微生物處理部1 3多少帶來一點影響,但 是可將該影響的程度控制成遠比對於喜氣性微生物處理部 1 2的影響更小。因爲硝化槽1 1内的微生物濃度很高,所 以即使具有第1圖所示程度的大小的分隔壁4 B,亦可將 喜氣性微生物處理部12的水流之對於半厭氣性微生物處 理部1 3的影響抑制到最小限度。 又,這種實施形態,係在由設置於脫氮槽3與硝化槽 1 1之間的回送汚泥泵浦1 〇與回送汚泥配管L 1 0所組成的 循環系統中,將下部的半厭氣性微生物處理部13設在硝 化槽11內。因此,並不是將與在脫氮槽3內受到厭氣性 微生物所處理過的處理水一起移動到硝化槽1 1的厭氣性 微生物,直接導入到喜氣性微生物處理部1 2,而是先經過 半厭氣性微生物處理部1 3,才導入到喜氣性微生物處理部 1 2。如此一來,可以減少對於移動到硝化槽1 1來的厭氣 性微生物的環境壓力(stress )。這個對於厭氣性微生物 所造成的環境壓力(stress )愈少的話,愈可提高在進行 處理氮時的處理效率。 又,在硝化槽1 1內,除了半厭氣性微生物處理部1 3 -22- (19) 1312339 特有的微生物會繁殖之外,亦可藉由在半厭氣性微生物處 理部1 3所繁殖的厭氣性微生物以及好氣性微生物等等的 各種微生物來對於處理水進行處理,因而可綜合性地提高 微生物處理效率。而且也發現了:藉由設置這個半厭氣性 微生物處理部1 3,在半厭氣性微生物處理部1 3所繁殖的 微生物對於汚泥的容積減少具有幫助。又,這個半厭氣性 微生物處理部1 3並未設置作爲曝氣設備的散氣管,所以 並不會受到曝氣,但是多少會受到正在進行曝氣中的上部 的喜氣性微生物處理部12的水流的影響,而保持在半厭 氣性微生物處理部的條件,也就是溶氧係Oppm或者即使 有溶氧的存在,也只是0.5 ppm程度而已。如此一來,半 厭氣性微生物處理部13就可維持在半厭氣性的狀態。 此外,雖然在半厭氣性微生物處理部1 3中並未設置 有用來洗淨液中膜16的散氣管15 B和微奈米氣泡產生機 27,但是,只要調整微奈米氣泡量或來自散氣管 15的吐 出空氣量,將半厭氣性微生物處理部13維持在半厭氣狀 態即可。如此一來,即使是半厭氣狀態,還是可以調整成 溶氧濃度稍微高一點點的半厭氣狀態。又,至於液中膜1 6 係可採用市售的平膜型或者中空紗膜的其中任何一種。又 ,通過了這個液中膜1 6之後的處理水,係從與液中膜1 6 相連結的重力配管1 7 ’利用重力自然地流出來。亦即,這 個重力配管1 7是利用水壓差來令處理水流出來的方式, 所以不必使用電力,可節省能源地進行運轉。又,當液中 膜16的穿透水量降低的時候,亦即,處理水量降低的時 -23- (20) (20)1312339 (1) Description of the Invention [Technical Field] The present invention relates to an exhaust gas drainage treatment device and an exhaust gas drainage treatment method. The present invention is directed to, for example, the "Total Reduction of Nitrogen" of a partial amendment to the Water Pollution Prevention Act, which was implemented in April 2004 in Japan, and the PRTR Act (Environmental Pollutant Discharge, Mobile Registration, which was implemented in April 2001). In addition, it is possible to efficiently dispose of high-concentration nitrogen-containing wastewater (water containing high-concentration ammonia) discharged from a semiconductor factory, and ammonia-containing wastewater, and at the same time, it can reduce initial cost and operating cost by saving energy. And an exhaust gas drainage treatment device and an exhaust gas drainage treatment method for maintenance costs. [Prior Art] In the past, a wastewater containing a high concentration of nitrogen, specifically, a water containing a high concentration of ammonia containing about 3 00 ppm of water containing a high concentration of ammonia, is highly biotoxic, so generally speaking, Microbial treatment is not possible. That is, an example in which nitrogen-containing drainage can be treated with microorganisms is generally a treatment in a low concentration state in which the ammonia concentration is only several hundred ppm. For this reason, a wastewater containing a high concentration of ammonia of 3000 ppm or more is concentrated to a level of 1 / 10 using a physical evaporation tank, and the concentrate is treated as industrial waste. This method of concentrating in an evaporation canister is used as industrial waste to be discharged from a factory, and the concentrate is equivalent to industrial waste. Therefore, because of the industrial waste from the business unit, there is also the disposal method of the industrial waste, that is, the concentrated liquid. Generally, it is -5- (2) (2) 1312339 is incinerated, so there will be a cause A problem such as air pollution caused by fuel such as heavy oil is used. Further, in the above-described treatment method using the evaporation can, since a large amount of energy is consumed and large-scale plant equipment is required, initial cost, operation cost, and maintenance cost are large, which is one of the problems. Further, another conventional technique, for example, Patent Document 1 (JP-A-2000-03980) discloses a biological treatment method. According to the biological treatment method of the prior art, it is possible to prevent the problem of low processing efficiency caused by the treatment of nitrite nitrogen generated when draining water containing a high concentration of ammonia nitrogen, and to perform stable treatment. This biological treatment, specifically, is a biological denitrification method using an independent nutrient bacterium resistant to nitrite nitrogen to reduce nitrite nitrogen to nitrogen and remove it from the drainage. The treatment method of the ammonia-containing drainage is revealed by using a nitrification tank, a denitrification tank, an ultraviolet oxidation tank, or a treatment using a nitrification tank, a photocatalyst ultraviolet oxidation tank, a denitrification tank, and an ultraviolet oxidation tank. Further, Patent Document 2 (Japanese Patent No. 346767 1) is another biological treatment method which discloses another conventional technique. The biological treatment method is that the organic drainage in the raw water tank is sequentially sent to the denitrification tank and the nitrification tank by the liquid feeding pump, and is circulated between the two tanks, and is contained in the organic drainage. The ammonia nitrogen in the middle is removed by nitrogen reduction by biological nitrification and denitrification reaction, and the sludge and the treated water are separated by suction pumping and using a membrane unit immersed in the drainage tank in the nitrification tank. Nitrification and denitrification method. -6- (3) 1312339 This method of nitrification and denitrification is characterized in that the middle of the conduit fed from the denitrification tank to the nitrification tank is bifurcated, and the front end of the bifurcation portion is opened in the denitrification tank, and will be The denitrification tank discharges a portion of the organic drainage water sent to the nitrification tank into the organic drainage in the denitrification tank. In other words, the nitrification and denitrification method sequentially feeds the drainage liquid to the denitrification tank and the nitrification tank by the liquid feeding pump, and circulates between the two tanks. Further, Patent Document 3 (Japanese Patent No. 3095620) discloses another biological treatment method of the prior art. The biological treatment method utilizes a denitration tank provided with a raw water for influencing the organic matter; a nitrification tank for the denitrification tank mixed solution of the denitrification tank; and the nitrification liquid of the nitrification tank is recycled to the denitrification tank. The nitrifying liquid circulation flow path is disposed in the biological nitrogen removal device of the nitrification tank diffusing device disposed in the nitrification tank. More specifically, the biological nitrogen removal device is provided with a denitrifying bacteria immobilized carrier charging region in which a floating substance which flows into the raw water flowing into the denitrification tank can be collected and removed in the denitrification tank. Further, the raw water introduction flow path and the nitrification liquid circulation flow path are communicated at a position below the denitrification bacteria immobilized carrier charging region of the denitrification tank, and a denitrifying bacteria immobilized carrier is provided at the bottom of the denitrification tank. A sludge funnel portion in which the floating matter accumulated in the crotch region is collected and collected, and a funnel diffusing device is disposed in the sludge funnel portion. However, as described above, the conventional wastewater containing a high concentration of ammonia of about 3000 ppm is generally incapable of performing microbial treatment because of its high biological toxicity. That is, a drainage system containing a high concentration of ammonia which is highly biotoxic and cannot be subjected to microbial treatment is treated by incineration or concentration. Therefore, the concentrated -7-(4) 1312339. The reduction system has a large amount of energy consumption and the problem of increasing industrial waste caused by the concentrated liquid. Further, another conventional technique is a treatment method using a nanobubble disclosed in Patent Document 4 (JP-A-2004-~121962). This conventional technique is used in combination: the reduction of buoyancy, the increase in surface area, the increase in surface activity, the generation of localized high-pressure areas, and the interfacial activity and sterilization caused by the electrostatic polarization. Characteristics such as role. More specifically, this prior art discloses that by the correlation of these characteristics, the adsorption function of the dirt component, the high-speed washing function of the surface of the object, and the sterilization function can be exhibited, thereby achieving high performance and low environmental load. The way to wash a variety of objects, and then to clean the dirty water. Further, a conventional technique is disclosed in Patent Document 5 (Japanese Patent Laid-Open Publication No. 2003-3344). The prior art method for producing nanobubbles reveals a process in which: (1) in a liquid, (1) a part of a liquid is decomposed and gasified; and (2) a process of applying ultrasonic waves in a liquid. Or (3) the process of decomposing and vaporizing a part of the liquid and the process of applying ultrasonic waves. 'But these two conventional techniques, however, reveal that the use of nanobubbles to purify dirty water or the use of nanobubbles to remove dirt from solid surfaces does not reveal that there is treatment for exhaust and drainage. Time to improve processing efficiency and technology for water quality. [Description of the Invention] -8 - (5) 1312339 [Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide an exhaust gas drainage treatment method and an exhaust gas drainage treatment apparatus which can improve processing efficiency and reduce processing cost. . [Means for Solving the Problems] In order to solve the above problems, the exhaust gas drainage processing method of the present invention is characterized in that the micro-nano bubble water containing microneous bubbles is used as the washing water for treating the exhaust gas. The washing water after the exhaust is used again for the treatment of the drainage. According to the exhaust gas drainage treatment method of the present invention, the micro-nano bubble water is used as the washing water to treat the exhaust gas, so that the surface of the object having the micro-nano bubbles can be washed at a high speed, and the exhaust gas can be efficiently cleaned. . Further, by reusing the washing water after the exhaust gas has been used for the drainage, the micro-nano bubbles contained in the washing water can contribute to the drainage treatment, and the drainage treatment efficiency can be improved. That is, the micro-nano bubbles have: (1) interfacial activity and bactericidal action, (2) adsorption function of the dirt component, (3) high-speed washing function on the surface of the object, (4) sterilization function, and (5) catalyst. The role of function (6) to enhance the activity of microorganisms, function and so on. Therefore, according to the exhaust gas drainage processing method of the present invention, it is possible to improve the treatment efficiency of the exhaust gas and the drainage water, and to reduce the processing cost. Three types of air bubbles will be described here. (i) The usual bubbles will rise in the water and then burst on the water surface -9- 1312339 (6). (ii) Microbubbles are fine bubbles of 5 μm or less in diameter, which gradually shrink in water and eventually disappear (completely dissolve). (iii) The nanobubbles are smaller than the micron bubbles, and have a diameter of 1 μm or less (for example, a diameter of 100 to 200 η M), which is called "bubbles which can always exist in water". Therefore, the so-called "micro-nano bubble" means a bubble in which a micro-bubble and a nano-bubble are mixed together. Further, the wastewater treatment apparatus according to the embodiment includes: a micro-nano bubble water producing unit for producing micro-nano bubble water containing micro-nano bubbles; and a micro-manufactured by the micro-nano bubble water producing unit The air bubble processing unit that treats the exhaust gas by using the bubble water as the washing water; and the drain treatment unit that is introduced into the washing water after the exhaust gas is treated. According to the exhaust gas drainage treatment apparatus of the embodiment, the micro-nano bubble water produced by the micro-nano bubble water production unit is used as the washing water to treat the exhaust gas, so that the object of the micro-nano bubble can be used. The surface is washed at high speed to efficiently clean the exhaust. Further, by reusing the washing water after the exhaust gas has been used for the drainage, the micro-nano bubbles contained in the washing water can contribute to the drainage treatment, and the drainage treatment efficiency can be improved. Therefore, according to the exhaust gas drainage treatment apparatus of the present invention, it is possible to improve the treatment efficiency of the exhaust gas and the drainage water, and to reduce the processing cost. In addition, if the treatment water after the treatment of the drainage by the drainage treatment unit is used as raw water to produce the above-mentioned micro-nano bubble water, it is possible to reduce the operating cost associated with the exhaust gas treatment. In the wastewater treatment device of the embodiment, the wastewater treatment unit has a liquid medium film, and the micro-nano bubble water production unit uses the treated water obtained by the liquid film of the drainage treatment unit as raw water to prepare the micro-water. Nano bubble water. In the above-described micro-nano bubble water producing unit, the micro-nano bubble water producing unit uses the treated water obtained by the liquid film of the wastewater treatment unit as raw water to produce the micro-nano bubble water. Since the above treated water contains a large amount of electrolyte, micronized bubbles can be efficiently produced. Further, in the wastewater treatment apparatus according to the embodiment, the wastewater treatment unit includes: an adjustment tank, a denitration tank, and a nitrification tank having a liquid medium membrane; and the micronized bubble water production unit contains micronized gas bubbles. The micro-nano bubble reaction tank of the machine; the exhaust gas treatment part is a sprinkler scrubber. According to the exhaust gas drainage treatment apparatus of this embodiment, since the exhaust treatment portion is a sprinkler scrubber, it is relatively easy to construct the exhaust gas treatment system. In the embodiment, the micro-nano bubble reaction tank is made of raw water of the liquid film of the nitrification tank provided in the wastewater treatment unit, and the micro-nano bubble water is produced as the raw water, and the micro-nano bubble water is used again. The micronized bubble water of the rice bubble reaction tank is used as the washing water of the above-mentioned sprinkling scrubber. Therefore, the treated water that has been introduced into the drainage treatment unit' is effectively recovered and used as the washing water of the sprinkling and scrubbing tower as the exhaust gas treatment unit. Further, in the wastewater treatment apparatus according to the embodiment, the adjustment tank of the drainage treatment unit -11 - (8) 1312339 is introduced into the nitrogen-containing drainage water, and the drainage treatment device further includes: the exhaust treatment portion can be treated The washing water after the exhaust is discharged as a drain, and is introduced into the drain introduction portion of the adjustment tank of the drain processing unit. According to the exhaust gas drainage processing apparatus of the embodiment, the adjustment tank of the drainage treatment unit can perform the front stage treatment on the drainage water containing high concentration of nitrogen by using the micro-nano bubbles contained in the drainage from the exhaust treatment unit. This micro-nano bubble can be recycled in the drainage treatment section. In other words, since the micro-nano bubbles have the property of maintaining bubbles in the water for a long period of time, the drainage introduced into the adjustment tank from the exhaust treatment unit contains drainage of micro-nano bubbles. When the drainage containing high concentration of nitrogen is mixed with the drainage containing micron bubbles in the adjustment tank, the oxidation of the micro-nano bubbles can be used for the front treatment. By performing the front-end treatment in this adjustment tank, the apparatus as a whole can, in particular, make the nitrification tank tend to be miniaturized, which is helpful for reducing the initial cost. According to this embodiment, before the microbial treatment of the drainage by the denitrification tank or the nitrification tank, the micro-nano bubble treatment can be performed first by using the adjustment tank (for example, partial oxidation treatment of ammonia nitrogen is carried out to become nitric acid. Sexual nitrogen). Further, in the exhaust/drainage treatment apparatus according to the embodiment, the exhaust treatment unit processes the exhaust gas containing the nitrogen-containing compound. According to the exhaust gas drainage processing apparatus of this embodiment, it is possible to efficiently move the nitrogen contained in the exhaust gas into the washing water by utilizing the high-speed washing function of the micro-nano bubbles. Further, in the exhaust gas drainage treatment apparatus according to the embodiment, the exhaust gas is an exhaust gas containing aminoethanol. -12- 1312339 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气 排气The aminoethanol is efficiently moved from the exhaust side to the washing water side, and the exhaust gas can be treated. Further, in the exhaust gas drainage treatment device according to the embodiment, the exhaust gas treatment unit includes: an upper portion for spraying micro-nano bubble water from the micro-nano bubble water production unit as washing water; and The lower portion of the washing water after being sprinkled is stored; and the circulating portion that circulates the washing water from the lower portion to the upper portion. According to the exhaust gas drainage processing apparatus of the embodiment, the exhaust gas treatment unit washes the exhaust gas by using: washing water; and two kinds of water containing micron bubbles which are circulating water after circulating the washing water. Clean, so it can improve the performance of exhaust treatment. Further, in the exhaust gas drainage treatment apparatus according to the embodiment, the nitrification tank has a micro-nano bubble generator for generating micro-nano bubbles for washing the liquid medium film. According to the exhaust gas drainage treatment apparatus of the embodiment, the liquid medium film of the nitrification tank can be cleaned by the micro-nano bubbles generated by the micro-nano bubble generator, so that the liquid film can be reliably obtained. Washing 'can increase the amount of treated water in the liquid film. Further, in the exhaust gas drainage treatment apparatus of the embodiment, the nitrification tank is provided with a gas diffusion tube for discharging air which can clean the liquid medium film. The exhaust gas drainage treatment device according to this embodiment can be cleaned by both the air discharged from the -13 - (10) 1312339 diffusing pipe and the micro-nano bubbles generated by the micro-nano bubble generator. The liquid medium membrane of the nitrification tank. Therefore, the liquid medium film can be washed more efficiently by a combination of two kinds of bubbles. Further, in the exhaust gas drainage processing method according to the embodiment, the exhaust gas is an exhaust gas containing a volatile organic compound. According to the exhaust gas drainage treatment method of the embodiment, since the washing water is micronized bubble water, the cleaning operation can be surely performed even for the volatile organic compound such as acetone contained in the exhaust gas. Further, in the exhaust gas drainage treatment apparatus according to the embodiment, the exhaust gas is an exhaust gas containing a volatile organic compound. According to the exhaust gas drainage treatment apparatus of the embodiment, since the washing water is micronized bubble water, the cleaning operation can be surely performed even for the volatile organic compound such as acetone contained in the exhaust gas. [Effects of the Invention] According to the exhaust gas drainage processing method of the present invention, since the micro-nano bubble water is used as the washing water to treat the exhaust gas, the surface cleaning function of the surface of the micro-nano bubble can be utilized. Clean the exhaust efficiently. Further, the washing water after the above-described exhaust gas can be reused for the treatment of the drainage, and the micro-nano bubbles contained in the washing water can be used for the drainage treatment, and the drainage treatment efficiency can be improved. Therefore, the exhaust gas drainage treatment method according to the present invention can improve the treatment efficiency of the exhaust gas and the drainage water, and further reduce the processing cost. [14] [11] 1312339 [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the embodiments shown in the drawings. (First Embodiment) Fig. 1 is a view showing a first embodiment of a wastewater treatment apparatus according to the present invention. In the first embodiment, the adjustment tank 1, the denitrification tank 3, the nitrification tank 11 having the liquid medium membrane 16, and the micronized bubble reaction tank 3 1 as the micronized bubble water production unit are provided as exhaust gas treatment. Department of scrubber tower 18. The adjustment tank 1 is introduced into a drain containing a high concentration of nitrogen, and the ammonia-containing drain from the scrubber 18 as a volatile organic compound overflows, and then passes through the drain introduction portion, that is, the pipe L 1 . Imported into the above adjustment slot 1. In this adjustment tank 1 adjust the amount of water and water quality for the incoming drainage. An example of a high-concentration nitrogen-containing drain that is introduced into the adjustment tank 1 is a drain containing a high concentration of ammonia from a semiconductor plant. The drain containing high-concentration ammonia is: CMP from a semiconductor factory (chemical machinery) A high concentration ammonia drainage for the polishing process. The aminoethanol-containing drainage from the scrubbing tower 18 as the exhaust gas treatment unit is introduced into the adjustment tank 1, so that the aminoethanol can be regarded as hydrogen in the denitrification tank 3 treated in the subsequent stage of the adjustment tank 1. The element supplier is used. As a result, in comparison with the case where methanol is used as the hydrogen element donor in the denitrification tank 3, the cost of medicine can be saved. Further, such an aminoethanol-containing drainage is as described later, and since there is a micro-nano bubble, the micro-nano bubble can be used for drainage containing a high concentration of nitrogen, that is, -15- (12) 1312339, Ammonia in wastewater containing high concentrations of ammonia is partially oxidized. The treatment water force from the adjustment tank 1 is pumped by the adjustment tank 2 and introduced into the lower portion 8 of the denitrification tank 3 via the pipe 39. Further, the upper portion 9 of the denitrification tank 3 is introduced: treated water after biological treatment or sludge generated after biological treatment. The trace elements of phosphorus, potassium, calcium, magnesium, etc. contained in the sludge which has been subjected to biological treatment or biologically treated sludge can be promoted in the tank of the denitrification tank 3 and the nitrification tank 1 All microbial activity. In particular, the nitrification tank 11 uses the liquid intermediate film 16 to perform high-concentration microbial treatment on the treated water. Therefore, the above-mentioned trace elements contained in the treated water can be used to increase the activity of the microorganisms, and the microorganisms can be utilized. The treatment is more stable and reluctant. In addition, micro-nano bubbles can also increase the activity of microorganisms. Further, since the microbe concentration of the lower portion 8 of the denitrification tank 3 tends to be higher than that of the upper portion 9 due to the gravity, the water to be treated from the adjustment tank 1 is introduced into the denitrification tank 3 by the adjustment tank pump 2. The lower portion 8' suppresses the stimulation of microorganisms brought to the denitrification tank 3 by the treated water. In this way, the treatment of the action of microorganisms can be stabilized and enhanced. Further, a partition wall 4A which can serve as a boundary line between the upper portion 9 and the lower portion 8 is provided on the inner wall of the denitrification tank 3. Further, a partition plate 6 extending in the vertical direction is disposed substantially at the center in the lateral direction of the groove of the denitrification tank 3. A diffusing pipe 5 is disposed between the partition plate 6 and the partition wall 4A. This diffuser 5 is connected to a blower 7 for a nitrogen removal tank. This denitrification tank 3 can produce an effect of raising the air caused by the combination of the partition plate 6 and the diffusing pipe 5 described above. In other words, the air bubbles ejected by the diffusing pipe 5 can generate a water flow along the partition plate 6 of -16-(13) 1312339. In other words, 'this denitrification tank 3, in the region where the diffuser pipe 5 is provided on the right side of the partition plate 6, generates a flow W1, and in the region on the left side of the partition plate 6, a drop of water is generated, The concentration of MLS S (Mixed Liquor Suspended Solid) of the treated water in the denitrification tank 3 and the concentration of 15 000 ppm or more can also be stirred in the tank. In the denitrification tank 3, the partition plate 6 and the diffusing pipe 5' are provided, and the entire denitrification tank 3 is stirred by the air lifting method so that the portion in the denitrification tank 3 that does not stir can be generated. Corner space." Further, the above-described nitrogen removal tank blower 7 basically performs the intermittent operation of the desired setting by using or the like. The side wall of the denitrification tank 3 is provided with a partition wall 4A'. The upper portion 9 of the nitrogen tank 3 and the lower portion 8 of the denitrification tank 3 are compared with each other, and the side of the upper portion 9 of the '3 is guided by the air lifting effect described above. It's smoother. Although the lower portion 8' of the denitrification tank 3 is stirred to some extent, the lower portion 8 of the denitrification tank 3 concentrates the microorganisms to a high concentration due to the decrease, so that the agitation tank 3 is less stirred than the denitrification tank 3 better. The microbial-containing smell concentration from the lower funnel portion 26 is largely introduced into the detachment pipe L 1 〇 and the back-feeding 10 connected to the lower funnel portion 26 of the semi-anaerobic microorganism 13 having the nitrification tank 1 . The lower portion 8 of the nitrogen tank 3. The returning water portion constituting the nitrate pump 1 can be used to raise the water W2 by the returning and returning sludge pumping unit 10. Even if it is a suspension, it is necessary to carry out the "dead timer" so that the agitation caused by the denitration of the nitrogen tank requires a natural sinking portion 9 than the treatment portion. The mud pumping sludge tube L 10 tank 11 -17- (14) The semi-anaerobic microbial treatment unit 13 of the lower part of 1312339 does not come into contact with the oxygen in the air, and directly moves the lower part of the snow. 8. The high-concentration nitrogen-containing aminoethanol introduced into the denitrification tank 3 The aminoethanol in the drainage is subjected to anaerobic treatment as the hydrogen unit 8, and then flows to the denitrification tank and flows naturally from the upper portion 9 to be introduced into the nitrifying semi-anaerobic microorganism treatment unit 13. The 11th system includes an upper portion 12 and a lower semi-anaerobic microorganism treatment unit 13. 11. The partition wall 4B attached to the inner wall of the tank is used as the gas-philic microorganism treatment unit 12 and the semi-anaerobic portion 1 3 The boundary line between the gas-loving microorganisms is disposed in the liquid medium film 17. Further, the nitrification tank 1 1 has a partition plate 14 extending in the up-and-down direction at the central portion of the tank. Half. The area on the right side of the first plate 14 The liquid medium film 16 is connected to the gravity pipe 17 for discharging the treated water. The air diffusing pipe 15A is connected to the nitrifying tank air blower 30 between the film 16 and the partition plate 14. 15A is combined with the partition plate 14 to generate air discharged from the air diffusing pipe 15A to generate along the compartment. In other words, the nitrification tank 11 generates a rising water flow W1 1 in the partition area in Fig. 1 . The partitioning plate 6 is an anaerobic sludge, and the drainage of the denitrification tank 3 is completed, and the nitrification tank is the upper part of the lower part 3, and the lower part of the lower part of the tank 11 The partition 4 B gas microbe treats this compartment in the horizontal direction of the partition inside the inner compartment 1 1 1 . This liquid medium membrane 16 is, in this liquid, 15 A, This diffusing gas uses the effect of the diffused air pipe to utilize the water flow of the plate 14. The left side of the right side of the intermediate plate 6, -18-(15) 1312339, produces a descending water flow W 1 2. Thus, nitrification In the tank 1 1 , even if the MLSS concentration of the treated water is 15000 ppm or more, it is possible to carry out the inside of the tank. In this nitrification tank 11, since the liquid medium membrane 16 is provided, the microorganisms in the treated water are not retained in the nitrification tank 1 'that is sent back to the lower portion of the denitrification tank 3 by the above-mentioned return sludge pump 1 〇 8. This operation of returning the sludge pump 10 to transfer the sludge back to the lower portion 8 of the denitrification tank 3 is a method of using ordinary pumping to move, so that a large amount of return sludge can be transferred without being exposed to the air, so The anaerobic property of the returning sludge can be reliably maintained. Further, the treated liquid is discharged from the liquid intermediate film 16 via the gravity pipe 17, and the water is sent to the micronized cell reaction tank via the water pump 22 and the water supply pipe 33. A micro-nano bubble generator 32 of 31. Further, this liquid intermediate film 16 is connected to the water supply pump 23 and the water supply pipe 25, and this water supply pump 23 and the water supply pipe 25 are connected to the micro-nano bubble generator 27 disposed below the liquid medium film 16. Therefore, the treated water from the liquid medium film 16 is introduced into the above-described micro-nano bubble generator 27 via the water pump 2 3 and the water supply pipe 25. This micro-nano bubble generator 27 is connected to the air suction pipe 24, and air is supplied from this air suction pipe 24. In addition, the microbial sludge sent back to the lower portion 8 of the denitrification tank 3 from the lower funnel portion 26 of the semi-anaerobic microorganism treatment unit 13 by the return sludge pump 10 is returned to the upper portion 9 of the denitrification tank 3, and is returned again. The semi-anaerobic microorganism treatment unit 13 of the nitrification tank 1 1 is circulated. By circulating the microbial sludge between the two tanks, the microbial concentration of the two tanks can be maintained at approximately the same concentration of -19-(16) 1312339. If the microbial concentration is converted to the concentration of MLSS (Mixed Liquor Suspended Solid), if it is a high concentration above i〇〇〇〇pprn, 'only the stirring performed by the usual mixer, water mixer and circulating pump will not be complete. Stir to the dead space. On the other hand, in the present embodiment, the water flow along the partition plate 14 is generated by the combination of the partition plate 14 and the air diffusing pipe 15 A, and the entire tank is stirred by the air lifting method. In the nitrification tank 1 1 , the partition wall 4 B is also provided on the side wall. Therefore, the gas-producing microorganisms are compared with the semi-anaerobic microorganism treatment unit 13 . The agitation on the side of the treatment portion 12 is smoother. In the case of the semi-anaerobic microorganism treatment unit 13 , the semi-anaerobic microorganism treatment unit 13 concentrates the microorganisms into a high concentration due to natural sedimentation. Therefore, when compared with the gas-producing microorganism treatment unit 12 , It is better to stir less. The microbial concentration of the two tanks of the denitrification tank 3 and the nitrification tank 1 is maintained at MLSS (Mixed L i q u 〇 r S u s p e n d e d S ο 1 i d ) 1 0 0 0 0 p p m or more. Further, a liquid intermediate film cover 28 as a guiding member is attached to the liquid medium film 16. With this liquid intermediate film cover 28', the micro-nano bubbles generated by the micro-nano bubble generator 27 can be concentrated upward. Thus, the liquid film 16 can be efficiently washed. Further, the diffusing pipe 15 B is disposed below the micro-nano bubble generator 27, and the diffusing pipe 15 B is connected to the nitrifying tank blower 30. A diffuser cover 29 as a guide member is attached to this diffuser pipe 15B. The diffuser cover 29 is capable of efficiently blasting the air supplied from the diffuser pipe 15 B by the blown tank by the blown -20-(17) 1312339 air machine 3 , through the upper micro-nano bubble generator 27 The liquid medium film 16 can further improve the cleaning effect of the liquid film 16. Further, the operation of the micro-nano bubble generator 27 for washing the liquid medium film 16 and the operation of the nitrification tank air blower 30 may be performed independently of each other, or both may be simultaneously operated. If both of them are operated at the same time, the cleaning effect can be further improved by both the air bubbles from the air diffusing pipe 15 B and the micro-nano bubbles generated by the micro-nano bubble generator 27. As for the mode of operation to be selected, it is only necessary to observe the state of the film 16 in the liquid. Further, the above-described denitrification tank 3 is provided with an oxidation reduction potentiometer (not shown) for measuring an index of microbial anaerobic properties. In the denitrification tank 3, the nitrate nitrogen pumped into the treated water from the semi-anaerobic microorganism treatment unit 13 of the nitrification tank 1 is returned by the anaerobic microorganism in the hydrogen supply. In the presence of aminoethanol, the reduction treatment is carried out to become nitrogen. The nitric acid in the treated water is a wastewater containing a high concentration of ammonia, and the aminoethanol is decomposed by the microorganisms into a nitrifying nitrogen in the gas-producing microbial treatment unit 12 of the nitrification tank 11. Further, in the denitrification tank 3, an organic substance other than aminoethanol is subjected to biological decomposition treatment by an anaerobic microorganism. Then, the treated water flowing out from the upper portion 9 of the denitrification tank of the denitrification tank 3 is introduced into the lower portion of the nitrification tank 1 as the semi-anaerobic microorganism treatment unit 13 as described above. Here, the "anaerobic microorganism treatment unit" means a state in which no dissolved oxygen is present at all; the so-called "aerobic microorganism treatment unit" means: dissolved - 21 - (18) 1312339 oxygen is maintained at several The state of the ppm; the "semi-anaerobic microorganism treatment unit" means that the dissolved oxygen is 〇PPm or the presence of dissolved oxygen is only about 0.5 ppm. Further, the aerobic microorganism treatment unit 12 in the upper portion of the nitrification tank 1 1 generates a water flow by the air discharged from the air diffusion pipe 15 A, but the partition wall 4 B is provided in the nitrification tank 1 1 . Although the water flow may have little influence on the lower semi-anaerobic microorganism treatment unit 13 , the degree of the influence may be controlled to be much smaller than the influence on the gas-producing microorganism treatment unit 12 . Since the concentration of the microorganisms in the nitrification tank 1 is high, the water flow of the gas-producing microorganism treatment unit 12 can be used for the semi-anaerobic microorganism treatment unit 1 even if the partition wall 4 B having the size shown in Fig. 1 is provided. The effect of 3 is suppressed to a minimum. Further, in this embodiment, the lower half of the anaerobic gas is formed in the circulation system consisting of the return sludge pumping unit 1 and the returning sludge piping L 1 0 provided between the denitrification tank 3 and the nitrification tank 1 1 . The microorganism treating unit 13 is provided in the nitrification tank 11. Therefore, the anaerobic microorganisms that have been moved to the nitrification tank 1 together with the treated water treated by the anaerobic microorganisms in the denitrification tank 3 are not directly introduced into the gas-producing microorganism treatment unit 12, but are first The semi-anaerobic microorganism treatment unit 13 is introduced into the gas-producing microorganism treatment unit 1 2 . In this way, the environmental stress of the anaerobic microorganisms moving to the nitrification tank 1 can be reduced. The less the environmental stress caused by the anaerobic microorganisms, the more efficient the treatment when processing nitrogen. Further, in the nitrification tank 1 1 , in addition to the microorganisms specific to the semi-anaerobic microorganism treatment unit 1 3 -22-(19) 1312339, the microorganisms may be propagated in the semi-anaerobic microorganism treatment unit 13 Various microorganisms such as anaerobic microorganisms and aerobic microorganisms treat the treated water, thereby comprehensively improving the efficiency of microbial treatment. Further, it has been found that the microorganisms which are propagated in the semi-anaerobic microorganism treatment unit 13 contribute to the volume reduction of the sludge by providing the semi-anaerobic microorganism treatment unit 13 . In addition, the semi-anaerobic microorganism treatment unit 13 does not have a gas diffusion tube as an aeration device, and therefore does not receive aeration, but is somewhat affected by the upper part of the aerobic microorganism treatment unit 12 that is performing aeration. The effect of the water flow, while maintaining the condition of the semi-anaerobic microbial treatment unit, that is, the dissolved oxygen system Oppm or even the presence of dissolved oxygen, is only about 0.5 ppm. As a result, the semi-anaerobic microorganism treatment unit 13 can be maintained in a semi-anaerobic state. Further, although the diffusing tube 15 B for cleaning the liquid medium 16 and the micro-nano bubble generator 27 are not provided in the semi-anaerobic microorganism treating portion 13 , it is only necessary to adjust the amount of micro-nano bubbles or come from The amount of air to be discharged from the air diffusing pipe 15 may be maintained in a semi-anaerobic state. In this way, even in the semi-anaerobic state, it is possible to adjust to a semi-anaerobic state in which the dissolved oxygen concentration is slightly higher. Further, as for the liquid medium film 16, any one of a commercially available flat film type or a hollow fiber film may be used. In addition, the treated water which has passed through the liquid film 16 is naturally flowed out from the gravity pipe 17 7 which is connected to the liquid film 16 by gravity. In other words, the gravity piping 17 is a method in which the water pressure difference is used to make the treatment water flow out, so that it is possible to operate without saving electricity. Further, when the amount of water permeated in the liquid film 16 is lowered, that is, when the amount of treated water is lowered, -23-(20) (20)

1312339 候,就利用次亞氯酸鈉等來洗淨液中膜1 6本體。 又’這個第1實施形態,係在硝化槽11內產 米氣泡,可大幅増加硝化槽1 1內的氧氣的溶解效 可大幅地削減硝化槽用吹氣機30的運轉時間,可 省能源。亦即,利用微奈米氣泡的效果,即使是將 1 1用的吹氣機3 0進行間歇運轉的情況下,亦可維 槽1 1的上部的喜氣性微生物部1 2的溶氧。 如上所述,經液中膜1 6過濾之後的水是經由 识硝化槽11的上方的送水泵浦22與送水配管33, 到微奈米氣泡反應槽31。這個微奈米氣泡反應槽: 其内部,設置了微奈米氣泡產生機32。這個微奈米 生機32又連接著空氣吸入管34以及液中膜16的 的送水配管33。這個微奈米氣泡產生機32係被供 空氣吸入管34的空氣,而且被送水配管33供給處 微奈米氣泡產生機32就從上述處理水和空氣來產 米氣泡。 此外,這個微奈米氣泡產生機32只要是一蹈 微奈米氣泡產生機即可,不必特別限定製造廠商, 舉出具體的一種例子的話,這個微奈米氣泡產生榜 可採用「NANO PLANET (音譯)」硏究所有限公后 的。又,微奈米氣泡產生機32,亦可採用:西華适 公司的微米氣泡水製造裝置來作爲產生微氣泡的携 泡產生機使用,也不會有特別的問題。 在這個微奈米氣泡反應槽31內’係使得微穿 生微奈 率,而 達成節 硝化槽 持硝化 設置在 而導入 11是在 氣泡產 處理水 給來自 理水。 生微奈 市售的 如果要 32係 所製造 業有限 奈米氣 米氣泡 -24- (21) 1312339 產生機32所產生的微奈米氣泡存在於從液中膜16導入進 來的處理水中,而產生微奈米氣泡水。而且將這個含有微 奈米氣泡的微奈米氣泡水經由配管37,從滌氣塔18的上 側灑水管1 9 A當成滌氣塔洗淨水而灑水下來。 這個作爲排氣處理部的滌氣塔1 8內,係經過排氣入 口 20利用排氣風扇(未圖示)將生産裝置所使用過後的 含氨基乙醇的排氣,導入到滌氣塔18的下部18 B。因爲 上述滌氣塔洗淨水中係有微奈米氣泡存在,從排氣入口 20 被導入到下部18 B的排氣中的氨基乙醇可有效率地被移 行到洗淨水側。這個滌氣塔1 8 .係在上下方向中的上部 18A的區域設置了兩根灑水管19A、19 B。上側灑水管 1 9 A係較之下側灑水管1 9 B配置在更上方。上側灑水管 19A係如上所述,連接著可從微奈米氣泡反應槽31導入 滌氣塔洗淨水的配管3 7。另外,下側灑水管19 B則是將 :儲留在滌氣塔1 8内的下部區域的洗淨水,利用循環部 也就是循環泵浦35往上汲取之後,當作循環水而從下方 的灑水管1 9 B往下灑水。這個滌氣塔1 8係可利用:來自 上側灑水管1 9 A的洗淨水以及來自下側灑水管1 9 B的循 環水之兩種的含有微奈米氣泡的水,來洗淨排氣之後,才 從位於最上部的處理氣體出口 21讓處理後的氣體排出去 ,所以可提昇排氣處理的性能。 儲留在這個滌氣塔18的下部18 B的含微奈米氣泡的 洗淨水、含微奈米氣泡的循環水將成爲含氨基乙醇的排水 ,而被導入到調整槽1。 -25- (22) 1312339 此外,上述實施形態,雖然是舉出一個具體的例子, 也就是,含有揮發性有機化合物的排氣係生産裝置所使用 過的含氨基乙醇的排氣的例子,加以説明,但是,含有揮 發性有機化合物的排氣,除了含有氨基乙醇的排氣之外, 亦可舉出:含異丙醇的排氣、含丙酮的排氣、含醋酸丁酯 的排氣等。 (第2實施形態) 接下來,第2圖是顯示本發明的排氣排水處理裝置的 第2實施形態。這個第2實施形態僅只在於:在流動於上 述微奈米氣泡反應槽3 1和滌氣塔1 8之間的配管37內的 微奈米氣泡水添加入鹼性物質的這一點,係與前述的第1 實施形態不同。 這個第2實施形態,係在作爲滌氣塔1 8的滌氣塔洗 淨水的微奈米氣泡水內添加入鹼性物質,所以可提高在滌 氣塔1 8內的排氣處理性能。所添加的鹼性物質之一例, 係可舉出:苛性鈉等。 (第3實施形態) 接下來,第3圖是顯示本發明的排氣排水處理裝置的 第3實施形態。這個第3實施形態僅只在於:在流動於上 述微奈米氣泡反應槽3 1和滌氣塔1 8之間的配管3 7內的 微奈米氣泡水添加入酸性物質的這一點,係與前述的第1 實施形態不同。 -26- (23) 1312339 這個第3實施形態,係在作爲滌氣塔18的滌氣塔洗 淨水的微奈米氣泡水內添加入酸性物質,所以可提高在滌 氣塔1 8內的排氣處理性能。所添加的酸性物質之一例, 係可舉出:硫酸等。 (第4實施形態) 接下來,第4圖是顯示本發明的排氣排水處理裝置的 第4實施形態。這個第4實施形態僅只在於:在流動於上 述微奈米氣泡反應槽31和滌氣塔18之間的配管37內的 微奈米氣泡水添加入含臭氧水的這一點,係與前述的第1 實施形態不同。 這個第4實施形態,係在作爲滌氣塔18的滌氣塔洗 淨水的微奈米氣泡水內添加入含臭氧水,所以可提高在滌 氣塔1 8內的排氣處理性能。 (第5實施形態) 接下來,第5圖是顯示本發明的排氣排水處理裝置的 第5實施形態。第1圖所示的第1實施形態的脫氮槽3以 及硝化槽1 1內,並未充塡入充塡材,相對於此,這個第5 實施形態,則是在脫氮槽3 N以及硝化槽1 1 N內,充塡 入作爲充塡材的聚偏二氯乙烯充塡物36A以及36 B。因 此,這個第5實施形態中,與前述第1實施形態相同的部 分均標示同一符號,並省略其詳細的説明,僅就與第1實 施形態不同的部分進行説明。 -27- (24) 1312339 這個第5實施形態,爲了提高對於含高濃度氮的排水 的氮處理效率,係在脫氮槽3 N以及硝化槽11 N內,充 塡了聚偏二氯乙烯充塡物36A以及36 B。因爲充塡了這 個聚偏二氯乙烯充塡物36A以及36 B,與未具有充塡物 的情況比較之下,將各槽3 N,1 1 N內的整體微生物濃度 予以平均的話,該微生物濃度係趨於高濃度。此外,微生 物會附著在聚偏二氯乙烯充塡物36A,36 B而進行繁殖, 可較之不具有充塡物的狀態,微生物可更穩定,而可提高 對於含高濃度氮的排水的氮處理能力。 此外,將這種聚偏二氯乙烯充塡物36A,36 B配置在 各水槽3 N,11 N的整體內的情況下,槽整體內的微生物 濃度都會趨於高濃度,所以可提高處理效率。從這個排氣 排水處理裝置的試運轉開始,隨著時間的經過,微生物會 在聚偏二氯乙烯充塡物3 6A,36 B上進行繁殖。這個聚偏 二氯乙烯充塡物36A,36 B的表面的微生物濃度會變成 30000ppm以上,對於提高氮之處理效率很有幫助。又, 上述聚偏二氯乙烯充塡物36A,36 B的材質是堅固且不受 化學物質侵蝕的氯化亞乙烯,可半永久性地使用。這個聚 偏二氯乙烯充塡物36A,36 B,係有商品名爲:Bio-cord ;Ring-Lace ; Bio-Multireef ; Bio-Module 等的商品,只 要配合排水的性質狀態來選用即可。在上述硝化槽1 1 N 的喜氣性微生物部1 2,處理水中的氨性氮受到喜氣性微生 物的分解氧化而成爲硝酸性氮、亞硝酸性氮。 此外,在上述實施形態中,雖然是舉出一個具體的例 -28- (25) 1312339 子’也就是’含有揮發性有機化合物的排氣係生 使用過的含氨基乙醇的排氣的例子,加以説明, 有揮發性有機化合物的排氣,除了含有氨基乙醇 外,亦可舉出:含異丙醇的排氣、含丙酮的排氣 丁酯的排氣等。此外,上述排氣所含的揮發性有 ,只要是被稱爲:揮發性有機化合物(VOC Organic Compounds)的話,均屬於此處所稱的 機化合物。 (實驗例) 首先,製作一個與第1圖所示的第1實施形 處理裝置相同構造的實驗裝置。這個實驗裝置中 1的容量是50公升;脫氮槽3的容量是100公升 11的容量是200公升;微奈米氣泡反應槽31的: 公升。在這個實驗裝置內,先經過約2個月期間 生物之後,微生物濃度約爲18〇〇〇ppm。然後, 的生產裝置所排放出來的氮濃度爲3340pPm的含 的排水,與含氨基乙醇的排水一起連續地導入到 。然後,等待1個月的期間直到水質穩定之後, 從重力配管17的出口所取得的處理水,測定其 結果,係變成1 8 p p m。 此外,第6圖(A )係顯示含高濃度氮的排 度爲2000ppm的情況下,前述第1〜第5實施形 的處理水的滯留時間的時序圖(time chart )之 産裝置所 但是,含 的排氣之 、含醋酸 機化合物 〔Volatile 揮發性有 態的排水 的調整槽 ;硝化槽 §量是20 的培養微 將從工場 高濃度氨 調整槽1 在針對於 氮濃度的 水的氮濃 態的各槽 一例。又 -29 - (26) 1312339 ,第 6圖(B )係顯示含高濃度氮的排水的氮濃度爲 4000ppm的情況下,前述第1〜第5實施形態的各槽的處 理水的滯留時間的時序圖之一例。 【圖式簡單說明】 第1圖是本發明的排水處理裝置之第1實施形態之示 意圖。 第2圖是本發明的排水處理裝置之第2實施形態之示 意圖。 第3圖是本發明的排水處理裝置之第3實施形態之示 意圖。 第4圖是本發明的排水處理裝置之第4實施形態之示 意圖。 第5圖是本發明的排水處理裝置之第5實施形態之示 意圖。 第6圖(A)是上述第1〜第5實施形態中的含氮的 排水的氮濃度爲200〇ppm的情況下的時序圖(time chart )之一例。 第6圖(B)是上述第丨〜第5實施形態中的含氮的 排水的氮濃度爲4〇〇〇Ρρπι的情況下的時序圖之一例。 【主要元件之符號說明】 1 :調整槽 2 :調整槽泵浦 -30- (27) (27)1312339 3、3 N :脫氮槽 4 A、4 B :分隔壁 5 :散氣管 6 :隔間板 7 :脫氮槽用吹氣機 8 :下部 9 :上部 1 0 :回送汚泥栗浦 1 1、1 1 N :硝化槽 1 2 :喜氣性微生物處理部 1 3 :半厭氣性微生物處理部 1 4 :隔間板 15 :散氣管 16 :液中膜 17 :重力配管 1 8 :滌氣塔 18A :滌氣塔的上部 18 B :滌氣塔的下部 19A :上側灑水管 19 B :下側灑水管 2 0 :排氣入口 2 1 :處理氣體出口 22 :送水泵浦 2 3 :送水泵浦 -31 (28)13123391312339, the use of sodium hypochlorite or the like to wash the liquid membrane 16 body. Further, in the first embodiment, the air bubbles are generated in the nitrification tank 11, and the oxygen dissolving effect in the nitrification tank 1 can be greatly increased, and the operation time of the nitrification tank blowing machine 30 can be greatly reduced, thereby saving energy. In other words, even when the blower 30 for 11 is intermittently operated, the dissolved oxygen of the gas-producing microorganism portion 1 in the upper portion of the tank 1 can be maintained by the effect of the micro-nano bubbles. As described above, the water filtered through the liquid membrane 16 is passed through the water feed pump 22 and the water supply pipe 33 above the nitrification tank 11 to the micronized cell reaction tank 31. This micro-nano bubble reaction tank: inside, a micro-nano bubble generator 32 is provided. This micro-nano life machine 32 is connected to the air suction pipe 34 and the water supply pipe 33 of the liquid film 16. This micro-nano bubble generator 32 is supplied with air from the air suction pipe 34, and is supplied to the water supply pipe 33. The micro-nano bubble generator 32 generates air bubbles from the above-mentioned treated water and air. Further, the micro-nano bubble generator 32 is not limited to a manufacturer as long as it is a micro-nano bubble generator. For a specific example, the micro-nano bubble generation list can be "NANO PLANET ( Transliteration)" After the study of the limited public. Further, the micro-nano bubble generator 32 can also be used as a bubble generating machine for generating microbubbles without using a microbubble water producing device of Xihuas Co., Ltd., and there is no particular problem. In this micro-nano bubble reaction tank 31, the micro-through rate is achieved, and the nitrification tank is maintained to be nitrified, and the introduction 11 is in the bubble production treatment water to the treated water. If you want to sell in the 32-series manufacturing system, you can use the nano-gas bubble 24-- (21) 1312339. The micro-nano bubbles generated by the generator 32 are present in the treated water introduced from the liquid film 16. Produces micro-nano bubble water. Further, this micro-nano bubble water containing micro-nano bubbles is sprinkled with water from the upper side sprinkler pipe 1 9 A of the scrubber tower 18 as a scrubber wash water. In the scrubbing tower 18 as the exhaust gas treatment unit, the amino alcohol-containing exhaust gas used in the production apparatus is introduced into the scrubbing tower 18 through the exhaust gas inlet 20 through an exhaust fan (not shown). Lower part 18 B. Since the microcarbon bubbles are present in the scrubbing tower washing water, the aminoethanol introduced into the exhaust gas of the lower portion 18B from the exhaust gas inlet 20 can be efficiently moved to the washing water side. This scrubber tower 18 is provided with two sprinkler pipes 19A, 19B in the upper portion 18A in the up and down direction. The upper side sprinkler pipe 1 9 A is lower than the side sprinkler pipe 1 9 B. The upper sprinkler pipe 19A is connected to a pipe 37 which can be introduced into the scrubber washing water from the micronized cell reaction tank 31 as described above. Further, the lower sprinkler pipe 19B is a washing water that is stored in the lower portion of the scrubbing tower 18, and is taken up by the circulation portion, that is, the circulation pump 35, and is treated as circulating water from below. The sprinkler pipe 1 9 B is sprinkled down. This scrubber tower 8 can be used to wash exhaust gas from the washing water of the upper sprinkler pipe 1 9 A and the water containing micro-nano bubbles from the circulating water of the lower sprinkler pipe 1 9 B. Thereafter, the treated gas is discharged from the processing gas outlet 21 located at the uppermost portion, so that the performance of the exhaust treatment can be improved. The micro-nano bubble-containing washing water and the micro-nano-containing bubble-retained water stored in the lower portion 18B of the scrubbing tower 18 are discharged into the adjusting tank 1 as an aminoethanol-containing drain. -25- (22) 1312339 In addition, in the above embodiment, a specific example is given, that is, an example of an amino alcohol-containing exhaust gas used in an exhaust system production apparatus containing a volatile organic compound. In addition, the exhaust gas containing a volatile organic compound may include, in addition to the exhaust gas containing aminoethanol, an exhaust gas containing isopropyl alcohol, an exhaust gas containing acetone, an exhaust gas containing butyl acetate, or the like. . (Second Embodiment) Next, Fig. 2 is a view showing a second embodiment of the exhaust gas drainage processing apparatus of the present invention. This second embodiment is only for the case where the micro-nano bubble water in the pipe 37 flowing between the micro-nano bubble reaction tank 31 and the scrub column 18 is added to the alkaline substance. The first embodiment differs. In the second embodiment, the alkaline substance is added to the micro-nano bubble water which is the scrubbing water of the scrub column 18, so that the exhaust gas treatment performance in the scrubber unit 18 can be improved. An example of the alkaline substance to be added is caustic soda or the like. (Third Embodiment) Next, Fig. 3 is a view showing a third embodiment of the exhaust gas drainage treatment device of the present invention. This third embodiment is only for the case where the micro-nano bubble water in the pipe 3 7 flowing between the micro-nano bubble reaction tank 31 and the scrub column 18 is added with an acidic substance. The first embodiment differs. -26- (23) 1312339 In the third embodiment, the acidic substance is added to the micro-nano bubble water which is the scrubbing water of the scrubbing tower 18, so that the inside of the scrubber tower 18 can be improved. Exhaust treatment performance. An example of the acidic substance to be added is sulfuric acid or the like. (Fourth Embodiment) Next, Fig. 4 is a view showing a fourth embodiment of the exhaust gas drainage processing apparatus of the present invention. In the fourth embodiment, only the micro-nano bubble water in the pipe 37 flowing between the micro-nano bubble reaction tank 31 and the scrub column 18 is added to the ozone-containing water, and the above-described 1 The implementation is different. In the fourth embodiment, ozone-containing water is added to the micronized bubble water which is the scrubbing water of the scrub column 18, so that the exhaust gas treatment performance in the scrubber tower 18 can be improved. (Fifth Embodiment) Next, Fig. 5 is a view showing a fifth embodiment of the exhaust gas drainage treatment apparatus of the present invention. In the denitrification tank 3 and the nitrification tank 1 of the first embodiment shown in Fig. 1, the filling material is not filled, and in the fifth embodiment, the denitrification tank 3 N and the denitrification tank 3 N The nitrification tank 1 1 N is filled with polyvinylidene chloride-filled materials 36A and 36 B as a filling material. Therefore, in the fifth embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted, and only the portions different from the first embodiment will be described. -27- (24) 1312339 In the fifth embodiment, in order to improve the nitrogen treatment efficiency of the water containing high concentration of nitrogen, the denitrification tank 3 N and the nitrification tank 11 N are filled with polyvinylidene chloride. Booties 36A and 36 B. Since the polyvinylidene chloride-filled products 36A and 36B are filled, the microorganisms in the respective tanks 3 N, 1 1 N are averaged in comparison with the case without the charge, the microorganisms The concentration system tends to be high. In addition, the microorganisms may adhere to the polyvinylidene chloride-filled products 36A, 36B for propagation, and the microorganisms may be more stable than the non-filled state, and the nitrogen for the drainage containing the high concentration of nitrogen may be improved. Processing capacity. Further, when such polyvinylidene chloride-filled products 36A, 36B are disposed in the entire water tank 3 N, 11 N, the concentration of microorganisms in the entire tank tends to be high, so that the treatment efficiency can be improved. . From the trial operation of this exhaust gas drainage treatment device, microorganisms will multiply on the polyvinylidene chloride-filled material 3 6A, 36 B over time. The microbial concentration of the surface of the polyvinylidene chloride-filled materials 36A, 36B becomes 30,000 ppm or more, which is helpful for improving the efficiency of nitrogen treatment. Further, the polyvinylidene chloride-filled materials 36A and 36B are made of vinylidene chloride which is strong and free from chemical substances, and can be used semi-permanently. This polyvinylidene chloride-filled product 36A, 36 B is commercially available under the trade names of Bio-cord, Ring-Lace, Bio-Multireef, Bio-Module, etc., and can be selected in accordance with the nature of the drainage. In the gas-producing microorganism portion 1 2 of the nitrification tank 1 1 N, the ammonia nitrogen in the treated water is decomposed and oxidized by the gas-producing microorganisms to become nitric nitrogen and nitrite nitrogen. Further, in the above embodiment, an example of the specific example -28-(25) 1312339 sub-, that is, an example of an amino alcohol-containing exhaust gas used in an exhaust system containing a volatile organic compound, is exemplified. Incidentally, in addition to the aminoethanol, the exhaust gas having a volatile organic compound may be an exhaust gas containing isopropyl alcohol or an exhaust gas containing acetone-containing exhaust butyl ester. Further, the above-mentioned exhaust gas contains volatility as long as it is called a volatile organic compound (VOC Organic Compounds) and belongs to the organic compound referred to herein. (Experimental Example) First, an experimental apparatus having the same structure as that of the first embodiment of the processing apparatus shown in Fig. 1 was produced. The capacity of 1 in this experimental apparatus was 50 liters; the capacity of the denitrification tank 3 was 100 liters; the capacity of 11 was 200 liters; and the volume of the micronized bubble reaction tank 31: liters. In this experimental apparatus, after a period of about 2 months, the microorganism concentration was about 18 〇〇〇 ppm. Then, the discharge water containing 3340 pPm of nitrogen discharged from the production unit was continuously introduced together with the drainage containing aminoethanol. Then, after waiting for a period of one month until the water quality was stabilized, the treated water obtained from the outlet of the gravity pipe 17 was measured and found to be 1 8 p p m . In addition, Fig. 6(A) shows a time chart of a time chart of the residence time of the treated water of the first to fifth embodiments in the case where the discharge of the high concentration nitrogen is 2000 ppm. Containing exhaust gas, containing acetic acid compound [Volatile volatile state of the drainage adjustment tank; nitrification tank § amount of 20 micro-culture will be from the plant high concentration ammonia adjustment tank 1 in the nitrogen concentration of the water against the nitrogen concentration An example of each slot of the state. Further, -29 - (26) 1312339, and Fig. 6 (B) shows the residence time of the treated water in each of the first to fifth embodiments in the case where the nitrogen concentration of the drain containing the high concentration of nitrogen is 4000 ppm. An example of a timing diagram. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a first embodiment of a wastewater treatment apparatus according to the present invention. Fig. 2 is a view showing a second embodiment of the drainage treatment apparatus of the present invention. Fig. 3 is a view showing a third embodiment of the drainage treatment apparatus of the present invention. Fig. 4 is a view showing a fourth embodiment of the drainage treatment apparatus of the present invention. Fig. 5 is a view showing a fifth embodiment of the drainage treatment apparatus of the present invention. Fig. 6(A) is an example of a time chart in the case where the nitrogen concentration of the nitrogen-containing drainage in the first to fifth embodiments is 200 〇ppm. Fig. 6(B) is an example of a timing chart in the case where the nitrogen concentration of the nitrogen-containing drainage in the above-described fifth to fifth embodiments is 4 〇〇〇Ρρπι. [Symbol description of main components] 1 : Adjustment tank 2: Adjustment tank pump -30- (27) (27) 1312339 3, 3 N : Denitrification tank 4 A, 4 B : Partition wall 5 : Air duct 6 : Separation Inferior plate 7: Air blower for denitrification tank 8: Lower part 9: Upper part 10: Return sludge sludge pump 1 1 , 1 1 N : Nitrification tank 1 2 : Heterophilic microorganism treatment part 1 3 : Semi-anaerobic microorganism treatment Part 1 4: Compartment plate 15: Air diffusing pipe 16: Liquid intermediate film 17: Gravity piping 1 8 : Detergent tower 18A: Upper portion 18 B of the scrubber tower: Lower portion 19A of the scrubber tower: Upper sprinkler pipe 19 B: Lower Side sprinkler pipe 2 0 : Exhaust gas inlet 2 1 : Process gas outlet 22 : Water pump 2 3 : Water pump -31 (28) 1312339

2 4 :空氣吸入 2 5 :送水配管 26 :下部漏斗 27 :微奈米氣 2 8 :液中膜外 29 :散氣管外 3 0 :硝化槽用 31 :微奈米氣 32 :微奈米氣 3 3 :送水配管 3 4 :空氣吸入 3 5 :循環泵浦 36A、36 B : 3 7 :配管 39 :配管 W1、W1 1 :上 W2、W12 :下 管 部 泡產生機 罩 罩 吹氣機 泡反應槽 泡產生機 管 聚偏二氯乙烯充塡物 昇水流 降水流 -32-2 4 : Air intake 2 5 : Water supply pipe 26 : Lower funnel 27 : Micro-nano gas 2 8 : Out-of-liquid membrane 29 : Outside the gas pipe 3 0 : For nitrification tank 31 : Micro-nano gas 32 : Micro-nano gas 3 3 : Water supply pipe 3 4 : Air intake 3 5 : Circulating pump 36A, 36 B : 3 7 : Pipe 39 : Pipe W1 , W1 1 : Upper W2 , W12 : Lower pipe part bubble generation hood cover blower bubble Reaction bubble generation machine tube polyvinylidene chloride sputum charge liters water flow precipitation -32-

Claims (1)

(1) 1312339 十、申請專利範圍 1. 一種排氣排水處理方法,其特徵爲:係使用含有 微奈米氣泡的微奈米氣泡水,作爲處理排氣的洗淨水,並 且將處理過上述排氣後的洗淨水再度使用於排水的處理。 2. 一種排氣排水處理裝置,其特徵爲:具備有 用來製作含有微奈米氣泡的微奈米氣泡水的微奈米氣 泡水製作部;和 以上述微奈米氣泡水製作部所製作的微奈米氣泡水當 作洗淨水,來處理排氣的排氣處理部;和 被導入處理過上述排氣後.的洗淨水之排水處理部。 3 .如申請專利範圍第2項之排氣排水處理裝置,其 中,上述排水處理部係具有液中膜’上述微奈米氣泡水製 作部係以從上述排水處理部的液中膜所獲得的處理水’當 作原水來製作上述微奈米氣泡水。 4. 如申請專利範圍第3項之排氣排水處理裝置,其 中,上述排水處理部係具備有:調整槽、脫氮槽、以及含 有液中膜的硝化槽, 上述微奈米氣泡水製作部係含有微奈米氣泡產生機的 微奈米氣袍反應槽, 上述排氣處理部係灑水滌氣塔。 5. 如申請專利範圍第4項之排氣排水處理裝置,其 中,上述排水處理部的調整槽係被導入含氮的排水;而該 排氣排水處理裝置又具有:以在上述排氣處理部處理過排 氣之後的洗淨水,當作排水來導入到上述排水處理部的§周 -33- (2) 1312339 整槽的排水導入部。 6 ·如申請專利範圍第2項之排氣排水處理裝置,其 中’上述排氣處理部係處理含有氮化合物的排氣。 7.如申請專利範圍第6項之排氣排水處理裝置,其 中’上述排氣係含氨基乙醇的排氣。 8·如申請專利範圍第2項之排氣排水處理裝置,其 中,上述排氣處理部係具備有: 以來自上述微奈米氣泡水製作部的微奈米氣泡水當作 洗淨水來灑水的上部;和 用來儲留上述被灑水下來的洗淨水的下部;和 可將洗淨水從上述下部循環到上部的循環部。 9 ·如申請專利範圍第4項之排氣排水處理裝置,其 中’上述硝化槽係具有:可產生用來洗淨上述液中膜的微 奈米氣泡之微奈米氣泡產生機。 1 0.如申請專利範圍第9項之排氣排水處理裝置,其 中,上述硝化槽係具有:可吐出用來洗淨上述液中膜的空 氣之散氣管。 1 1 .如申請專利範圍第i項之排氣排水處理方法,其 中,上述排氣係含揮發性有機化合物的排氣。 1 2.如申請專利範圍第2項之排氣排水處理裝置,其 中,上述排氣係含揮發性有機化合物的排氣。 -34-(1) 1312339 X. Patent Application Area 1. An exhaust gas drainage treatment method characterized in that micro-nano bubble water containing micro-nano bubbles is used as washing water for treating exhaust gas, and the above treatment is performed The washing water after the exhaust is used again for the treatment of the drainage. 2. An exhaust gas drainage treatment apparatus comprising: a micro-nano bubble water production unit for producing micro-nano bubble water containing micro-nano bubbles; and a micro-nano bubble water production unit; The micro-nano bubble water is used as the washing water to treat the exhaust gas treatment unit; and the drainage treatment unit is introduced into the washing water after the exhaust gas has been treated. (3) The exhaust gas treatment device according to the second aspect of the invention, wherein the drainage treatment unit has a liquid medium film, wherein the micro-nano bubble water production unit is obtained from a liquid medium film of the drainage treatment unit. Treating water 'as raw water to make the above micro-nano bubble water. 4. The exhaust gas treatment device according to the third aspect of the invention, wherein the drainage treatment unit includes: an adjustment tank, a denitrification tank, and a nitrification tank containing a liquid medium membrane, and the micronized bubble water production unit The micro-nano robes reaction tank containing a micro-nano bubble generator, and the exhaust treatment unit is a sprinkler scrubber. 5. The exhaust gas drainage treatment device of claim 4, wherein the adjustment tank of the drainage treatment unit is introduced into a nitrogen-containing drainage; and the exhaust/drain treatment device further has: in the exhaust treatment unit The washing water after the exhaust gas is treated as a drain to be introduced into the drain introduction portion of the entire tank of the above-mentioned drainage treatment unit §-33-(2) 1312339. 6. The exhaust/drainage treatment apparatus according to claim 2, wherein the exhaust treatment unit processes the exhaust gas containing a nitrogen compound. 7. The exhaust gas drainage treatment device according to claim 6, wherein the exhaust gas is an exhaust gas containing aminoethanol. 8. The exhaust gas treatment device according to the second aspect of the invention, wherein the exhaust gas treatment unit is provided with: the micro-nano bubble water from the micro-nano bubble water production unit is used as a washing water An upper portion of the water; and a lower portion for storing the above-mentioned washed water to be sprinkled; and a circulation portion for circulating the washing water from the lower portion to the upper portion. 9. The exhaust gas drainage treatment apparatus of claim 4, wherein the nitrification tank has a micro-nano bubble generator capable of generating micro-nano bubbles for washing the liquid medium film. The exhaust gas drainage treatment device according to claim 9, wherein the nitrification tank has a gas diffusion tube capable of discharging air for washing the liquid medium film. The exhaust gas drainage treatment method of claim i, wherein the exhaust gas is an exhaust gas containing a volatile organic compound. 1. The exhaust gas drainage treatment device of claim 2, wherein the exhaust gas is an exhaust gas containing a volatile organic compound. -34-
TW095105643A 2005-03-04 2006-02-20 Waste gas/waste water treatment equipment and method of treating waste gas/waste water TW200635862A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005060621 2005-03-04
JP2005363794A JP3893402B2 (en) 2005-03-04 2005-12-16 Exhaust gas wastewater treatment apparatus and exhaust gas wastewater treatment method

Publications (2)

Publication Number Publication Date
TW200635862A TW200635862A (en) 2006-10-16
TWI312339B true TWI312339B (en) 2009-07-21

Family

ID=36953114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095105643A TW200635862A (en) 2005-03-04 2006-02-20 Waste gas/waste water treatment equipment and method of treating waste gas/waste water

Country Status (5)

Country Link
US (1) US7691268B2 (en)
JP (1) JP3893402B2 (en)
CN (1) CN101132994B (en)
TW (1) TW200635862A (en)
WO (1) WO2006095510A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490908B2 (en) * 2005-03-17 2010-06-30 シャープ株式会社 Wastewater treatment equipment
JP4485444B2 (en) * 2005-09-28 2010-06-23 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP5250284B2 (en) * 2008-03-26 2013-07-31 シャープ株式会社 Water treatment apparatus and water treatment method
JP5274282B2 (en) * 2009-01-30 2013-08-28 日本リファイン株式会社 Gas-liquid reaction method and gas-liquid reaction apparatus using microbubbles
JP2011000581A (en) * 2009-06-17 2011-01-06 Yamaguchi Kogyo:Kk Microbubble device
US8382983B2 (en) * 2009-10-09 2013-02-26 Christopher Ott Systems and methods for converting gaseous byproducts of wastewater treatment into energy
JP5488156B2 (en) * 2010-04-19 2014-05-14 株式会社明電舎 Membrane unit and membrane separator
DE202011000946U1 (en) * 2011-04-20 2011-08-08 Big Dutchman International Gmbh Air Cleaner
US20150203391A1 (en) * 2014-01-22 2015-07-23 Syncrude Canada Ltd. In Trust For The Owners Of The Syncrude Project Method to remove ammonia from mine depressurization water
US9724460B2 (en) 2014-03-25 2017-08-08 Oakwood Healthcare, Inc. Controlled nucleation from gas-supersaturated liquid
CN104258707B (en) * 2014-09-25 2016-12-28 佛山山象环保工程服务有限公司 A kind of processing system containing VOC gas and method
EP4066926A1 (en) 2014-10-22 2022-10-05 Koch Separation Solutions, Inc. Pulsed aeration system for submerged hollow fiber module
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP7088850B2 (en) 2016-03-11 2022-06-21 モリアー インコーポレイテッド Compositions containing nanobubbles in liquid carriers
CN106178829A (en) * 2016-07-26 2016-12-07 淮南市知产创新技术研究有限公司 A kind of air cleaner and air purification method
TW201834735A (en) * 2017-03-21 2018-10-01 大陸商昆山納諾新材料科技有限公司 Waste gas treatment method via application of nano-bubble and waste gas treatment system using the same
CN107433122A (en) * 2017-09-19 2017-12-05 重庆净空居环保科技有限公司 A kind of exhaust treatment system and method
CN108579357A (en) * 2018-05-23 2018-09-28 李园园 A kind of industrial wastewater waste gas pre-treating device
KR102543187B1 (en) * 2018-11-09 2023-06-15 삼성전자주식회사 Valve apparatus
MX2021011101A (en) 2019-03-14 2021-10-22 Moleaer Inc A submersible nano-bubble generating device and method.
CN112221343A (en) * 2020-09-28 2021-01-15 成都达源环保工程有限公司 Pharmaceutical chemical wastewater and organic waste gas desorption and cooling combined biological purification treatment method
CN112723631A (en) * 2020-12-09 2021-04-30 江苏利保科技股份有限公司 Zero-emission power plant wastewater treatment device and treatment method thereof
WO2023074681A1 (en) * 2021-10-26 2023-05-04 国立大学法人北海道大学 Wastewater treatment apparatus, and waste water treatment method

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124666A (en) * 1975-04-25 1976-10-30 Tokyo Electric Power Co Inc:The A wet tyep waste gas desulfurization method
JPS52129677A (en) * 1976-04-26 1977-10-31 Kurita Water Ind Ltd Treatment of gas containing nitrogen oxides
JPH0661559B2 (en) 1986-01-29 1994-08-17 三井石油化学工業株式会社 Organic wastewater treatment method
JPH0679715B2 (en) * 1990-07-26 1994-10-12 荏原インフイルコ株式会社 Biological treatment method of organic wastewater
US5314644A (en) * 1992-10-19 1994-05-24 Virginia Polytechnic Institute And State University Microbubble generator
JPH07195091A (en) 1994-01-10 1995-08-01 Ngk Insulators Ltd Treatment of waste water discharged from washing system
JP3095620B2 (en) 1994-06-10 2000-10-10 株式会社クボタ Biological nitrogen removal equipment
CA2160311A1 (en) * 1995-10-11 1997-04-12 Bechara Safi Method of extracting light volatile solvents from a gaseous effluent by wet-scrubbing a gaseous effluent and biomethanation of the solvent-rich liquid
JP3467671B2 (en) 1996-07-23 2003-11-17 日立造船株式会社 Nitrification denitrification method
JPH1047649A (en) * 1996-07-31 1998-02-20 Tokai Kosan:Kk Cleaning equipment of flue gas
JP3867326B2 (en) 1996-10-30 2007-01-10 富士電機システムズ株式会社 Ozone treatment method for activated sludge process water
JP3616982B2 (en) 1997-08-04 2005-02-02 株式会社豊振科学産業所 Water treatment equipment
JPH1157772A (en) * 1997-08-21 1999-03-02 Inax Corp Waste water treatment
JP3792378B2 (en) * 1997-11-21 2006-07-05 株式会社デニム Wet ozone deodorizer
JP3411210B2 (en) * 1998-03-24 2003-05-26 シャープ株式会社 Wastewater treatment device and wastewater treatment method
JPH11333490A (en) 1998-05-22 1999-12-07 Toto Ltd Operating method for submerged membrane type filtration equipment
JP2000167555A (en) 1998-09-29 2000-06-20 Nittetu Chemical Engineering Ltd Cleaning of immersion membrane
JP2000271577A (en) 1999-03-25 2000-10-03 Toshiba Corp Treatment of surfactant-containing waste solution
JP2000279975A (en) 1999-03-30 2000-10-10 Kanagawa Acad Of Sci & Technol Water treatment by using photo-catalyst and ozone in combination and its device
JP2000308900A (en) 1999-04-26 2000-11-07 Nippon Steel Corp Treatment of ammonia-containing waste water
US6209855B1 (en) * 1999-05-10 2001-04-03 Canzone Limited Gas/liquid mixing apparatus and method
JP2001038348A (en) 1999-07-28 2001-02-13 Shimadzu Corp Water cleaning method and device
JP4588175B2 (en) 1999-11-08 2010-11-24 財団法人神奈川科学技術アカデミー Method of inactivating hormone activity of female hormones with steroid skeleton
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble
JP2003033625A (en) * 2001-07-24 2003-02-04 Seikow Chemical Engineering & Machinery Ltd Biological deodorizing method
US6479276B1 (en) * 2001-08-23 2002-11-12 Bio-Reaction Industries, Llc Biological filter apparatus
JP2003071256A (en) * 2001-08-30 2003-03-11 Sumitomo Heavy Ind Ltd Membrane washing method and treating method for liquid to be treated
JP4439149B2 (en) 2001-09-26 2010-03-24 株式会社クボタ Submerged membrane separation activated sludge treatment equipment
JP2003284946A (en) 2002-03-28 2003-10-07 Meidensha Corp Photocatalyst reaction device and unit therefor
JP4016099B2 (en) 2002-05-20 2007-12-05 独立行政法人産業技術総合研究所 How to create nanobubbles
US6830690B2 (en) * 2002-09-16 2004-12-14 Lawrence A. Schmid Two-stage high synthesis activated sludge system with intermediate bio-solids removal
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP4143453B2 (en) 2003-03-25 2008-09-03 株式会社神鋼環境ソリューション Membrane separation activated sludge treatment equipment
CN1569680A (en) * 2003-07-17 2005-01-26 刘德周 Biomembrane water treatment device
JP3890063B2 (en) * 2005-03-03 2007-03-07 シャープ株式会社 Waste water treatment apparatus and waste water treatment method
JP3893396B2 (en) * 2005-03-04 2007-03-14 シャープ株式会社 Waste water treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
TW200635862A (en) 2006-10-16
JP2006272317A (en) 2006-10-12
CN101132994A (en) 2008-02-27
US7691268B2 (en) 2010-04-06
WO2006095510A1 (en) 2006-09-14
US20090127188A1 (en) 2009-05-21
CN101132994B (en) 2011-03-09
JP3893402B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
TWI312339B (en)
TWI308905B (en) Wastewater treatment device and wastewater treatment method
TWI317349B (en)
TWI302522B (en)
JP6750930B2 (en) Wastewater purification system
KR101095576B1 (en) A apparatus and treatment method for wastewater including excrementitious matter of domestic animals, and a production method of liquid fertilizer using the apparatus
CN207330633U (en) A kind of utilization system of high-ammonia nitrogen low C OD waste water
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
CN104591443B (en) A kind of recycling equipment of aquaculture agricultural effluent
JP2016043281A (en) Purification method, and purification tank
JP2006289343A (en) Method and apparatus for treating waste water
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP4113759B2 (en) Waste water treatment method and waste water treatment equipment
JP2009039620A (en) Method and system for reducing amount of excess sludge
US7713410B2 (en) Wastewater treatment apparatus
JP4490848B2 (en) Waste water treatment apparatus and waste water treatment method
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
CN106115896A (en) A kind of modularity nitration denitrification membrane bioreactor
JP2004016953A (en) Organic wastewater treatment apparatus
JP2004141865A (en) Ozone treatment method of surplus sludge, treatment apparatus for surplus sludge, and sludge-ozone mixer
CN205803118U (en) A kind of modularity nitration denitrification membrane bioreactor
JP2013043172A (en) Circulating-type sewage treatment apparatus
JP2007319819A (en) Phosphorus recovery method
KR100740580B1 (en) Advanced wastewater treatment apparatus and method having a single reaction bath improved from existing waste water treatment process using activated sludge method
JP2007029865A (en) Biological treatment apparatus for waste liquid

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees