JP2000271577A - Treatment of surfactant-containing waste solution - Google Patents

Treatment of surfactant-containing waste solution

Info

Publication number
JP2000271577A
JP2000271577A JP11080824A JP8082499A JP2000271577A JP 2000271577 A JP2000271577 A JP 2000271577A JP 11080824 A JP11080824 A JP 11080824A JP 8082499 A JP8082499 A JP 8082499A JP 2000271577 A JP2000271577 A JP 2000271577A
Authority
JP
Japan
Prior art keywords
waste liquid
surfactant
containing waste
added
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080824A
Other languages
Japanese (ja)
Inventor
Kenji Fujihata
健二 藤畑
Manabu Sakurai
学 桜井
Hideji Seki
秀司 関
Koichi Hiruta
広一 蛭田
Takao Takada
孝夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11080824A priority Critical patent/JP2000271577A/en
Publication of JP2000271577A publication Critical patent/JP2000271577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily treat a surfactant-containing waste soln. at ambient temp. under atmospheric pressure to obtain water capable of being discharged to environment. SOLUTION: Ozone gas 5 is added to a surfactant-containing waste soln. 1 to reduce the foamability of the waste soln. to enhance the filterability thereof and hydrogen gas 7 is added to this waste soln. to rapidly decompose a corrosive oxidizing substance such as ozone or the like remaining in the waste soln. Further, the removal of a suspended solid component by filtering, the enhancement of light permeability, the generation of steam from the waste soln. by heating and the removal of an org. component by activated carbon or ultraviolet rays can be achieved. By this constitution, water capable of being discharged to environment can be obtained by easy treatment matched with the properties of the surfactant-containing waste soln.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば洗濯排水等に
おける界面活性剤を含んだ廃液を処理するための界面活
性剤含有廃液の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of treating a surfactant-containing waste liquid for treating a waste liquid containing a surfactant in, for example, washing wastewater.

【0002】[0002]

【従来の技術】界面活性剤を含有する廃液には例えば機
器ドレン水,床ドレン水,シャワー水からのシャワード
レン水,衣類の洗濯により発生する洗濯排水等がある。
従来、これらの廃液を処理する方法として例えば原子力
および火力発電施設や下水処理施設などから発生する界
面活性剤含有廃液を処理する場合には、蒸発濃縮法,活
性炭吸着法,紫外線分解法などが知られている。
2. Description of the Related Art Waste liquids containing a surfactant include, for example, equipment drain water, floor drain water, shower drain water from shower water, and washing waste water generated by washing clothes.
Conventionally, as a method for treating these waste liquids, for example, when treating a waste liquid containing a surfactant generated from a nuclear power plant, a thermal power generation facility, a sewage treatment facility, or the like, an evaporative concentration method, an activated carbon adsorption method, an ultraviolet ray decomposition method, etc. are known. Have been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、界面活
性剤含有廃液は発泡性が高く、難溶性であり、有機成分
が多く、懸濁固体(SS)分も高い。蒸発濃縮法では発
泡性が高い廃液を処理できず、活性炭吸着法では活性炭
自体が二次廃棄物となり、紫外線分解法では産業用水ま
たは排水に光透過性が低い場合十分な処理効果が得られ
ないなどの課題がある。
However, the surfactant-containing waste liquid has a high foaming property, is hardly soluble, has a large amount of organic components, and has a high suspended solid (SS) content. The evaporative concentration method cannot treat waste liquid with high foaming properties, the activated carbon itself becomes secondary waste in the activated carbon adsorption method, and the ultraviolet light decomposition method does not provide sufficient treatment effects when the light transmittance to industrial water or wastewater is low. There are issues such as.

【0004】本発明は、これらの課題を解決するために
なされたもので、常温,常圧において界面活性剤含有廃
液を容易に処理して環境放出可能な水質にできる処理方
法を提供することを目的とする。
[0004] The present invention has been made to solve these problems, and an object of the present invention is to provide a treatment method capable of easily treating a surfactant-containing waste liquid at normal temperature and pressure to obtain water quality that can be discharged to the environment. Aim.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、界面
活性剤を含む廃液に対し、最初にオゾンガスを添加し、
次に水素ガスを添加して腐食性酸化物を分解したのち、
環境放出することを特徴とする。請求項1の発明では、
まず、界面活性剤含有廃液にオゾンガスを添加すると、
オゾンが界面活性剤に対して、1)疎水基を酸化して有機
酸とする、2)親水基と疎水基の結合を解裂する、3)親水
基を酸化分解する等の反応を起こし、この結果、界面活
性剤の発泡性(あるいは界面活性能)が低減され、また
ろ過性が向上される。
According to a first aspect of the present invention, an ozone gas is first added to a waste liquid containing a surfactant,
Next, after adding hydrogen gas to decompose corrosive oxides,
It is characterized by release to the environment. In the invention of claim 1,
First, when ozone gas is added to the surfactant-containing waste liquid,
Ozone reacts with the surfactant to cause reactions such as 1) oxidizing a hydrophobic group to an organic acid, 2) breaking a bond between a hydrophilic group and a hydrophobic group, and 3) oxidatively decomposing a hydrophilic group, As a result, the foaming property (or surfactant activity) of the surfactant is reduced, and the filtration property is improved.

【0006】次に、水素ガスを添加することで廃液中に
残留するオゾンや過酸化水素などの酸化剤を迅速に分解
する。ここで、オゾンガスおよび水素ガスは電解装置に
より生成したものを用いることができる。
Next, oxidizing agents such as ozone and hydrogen peroxide remaining in the waste liquid are rapidly decomposed by adding hydrogen gas. Here, as the ozone gas and the hydrogen gas, those generated by an electrolytic device can be used.

【0007】請求項2の発明は、前記水素ガスを添加し
た廃液をろ過処理することを特徴とする。請求項2の発
明では、請求項1の発明において、オゾンガスに続いて
水素ガスを添加した廃液をろ過処理することにより廃液
中の不溶解成分を取り除くことができる。また、ろ過処
理する前段に中和処理を行えば液中の金属水酸化物も同
時に取り除くことができる。
[0007] The invention of claim 2 is characterized in that the waste liquid to which the hydrogen gas has been added is subjected to a filtration treatment. According to the second aspect of the present invention, in the first aspect of the present invention, the insoluble components in the waste liquid can be removed by filtering the waste liquid to which hydrogen gas has been added subsequently to the ozone gas. Further, if the neutralization treatment is performed before the filtration treatment, the metal hydroxide in the liquid can be removed at the same time.

【0008】請求項3の発明は、前記水素ガスを添加し
た廃液を加熱蒸発処理することを特徴とする。請求項3
の発明では、請求項1の発明において、オゾンガスに続
いて水素ガスを添加した廃液を加熱蒸発処理することに
より、廃液中の水分を取り除く。また、蒸発した水分を
凝縮処理することで蒸留水を得ることができ、さらに蒸
留水を活性炭あるいはイオン交換樹脂で処理することで
再利用が可能な水を得ることができる。
A third aspect of the present invention is characterized in that the waste liquid to which the hydrogen gas has been added is heated and evaporated. Claim 3
According to the invention of the first aspect, the waste liquid to which the hydrogen gas has been added subsequently to the ozone gas is heated and evaporated to remove the moisture in the waste liquid. Further, distilled water can be obtained by condensing the evaporated water, and reusable water can be obtained by treating the distilled water with activated carbon or an ion exchange resin.

【0009】請求項4の発明は前記水素ガスを添加した
廃液を活性炭処理することを特徴とする。請求項4の発
明によれば廃液中の有機成分を取り除くことができる。
請求項5の発明は、前記水素ガスを添加した廃液を中和
処理した後ろ過処理することを特徴とする。請求項5の
発明によれば、残留する金属水酸化物と有機成分を完全
に取り除くことができる。
The invention according to claim 4 is characterized in that the waste liquid to which the hydrogen gas is added is treated with activated carbon. According to the invention of claim 4, the organic component in the waste liquid can be removed.
The invention according to claim 5 is characterized in that the waste liquid to which the hydrogen gas has been added is subjected to a filtration treatment after a neutralization treatment. According to the fifth aspect of the invention, the remaining metal hydroxide and organic components can be completely removed.

【0010】請求項6の発明は、前記水素ガスを添加し
た廃液を粉末活性炭処理した後ろ過処理することを特徴
とする。請求項6の発明によれば、請求項1の発明にお
いて、オゾンガスに続いて水素ガスを添加した廃液を活
性炭処理することにより、廃液中の有機成分を取り除く
ことができる。
The invention according to claim 6 is characterized in that the waste liquid to which the hydrogen gas has been added is subjected to a powdered activated carbon treatment and then a filtration treatment. According to the invention of claim 6, in the invention of claim 1, an organic component in the waste liquid can be removed by subjecting the waste liquid to which hydrogen gas has been added subsequently to the ozone gas to activated carbon treatment.

【0011】請求項7の発明は、前記ろ過処理した廃液
を紫外線照射することを特徴とする。請求項7の発明に
よれば、請求項1の発明において、オゾンガスに続いて
水素ガスを添加した廃液を紫外線照射するとにより、廃
液中の有機成分を取り除く。ここで、紫外線源としては
低圧水銀ランプ(内圧<1mmHg)を用いることができ
る。
The invention according to claim 7 is characterized in that the filtered waste liquid is irradiated with ultraviolet rays. According to the seventh aspect of the present invention, in the first aspect of the present invention, the organic component in the waste liquid is removed by irradiating the waste liquid to which the hydrogen gas is added subsequently to the ozone gas with ultraviolet rays. Here, a low-pressure mercury lamp (internal pressure <1 mmHg) can be used as the ultraviolet light source.

【0012】請求項8の発明は、前記蒸発した水分を凝
縮処理することを特徴とする。請求項8の発明によれ
ば、加熱蒸発により水蒸気となった水分を凝縮器により
蒸留水とすることができる。蒸留水量は加熱する電力量
の増加に伴い増加し蒸留水の回収を速やかに行うことが
でき、再利用可能な水とすることができる。
The invention according to claim 8 is characterized in that the evaporated water is subjected to a condensation treatment. According to the eighth aspect of the present invention, the water that has been converted into steam by heating and evaporation can be converted into distilled water by the condenser. The amount of distilled water increases with an increase in the amount of electric power to be heated, so that distilled water can be quickly recovered, and water can be reused.

【0013】請求項9の発明は、前記オゾンガスおよび
水素ガスは水電解セル中純水を供給して電気分解する方
式により生成したガスからなることを特徴とする。請求
項9の発明によれば、数ボルトの電圧で、イオン交換水
を原料として、ほぼ20%のオゾンを含む高濃度のオゾン
水溶液が得られるので、効率よく界面活性剤を酸化させ
ることができる。また、放電方式のような副生成物(N
x 等)がない。水素ガスの方は電解によりオゾンを生
成するのと同時に生成する余りものを有効に利用するこ
とができる。
A ninth aspect of the present invention is characterized in that the ozone gas and the hydrogen gas are gases generated by a method of supplying pure water in a water electrolysis cell and performing electrolysis. According to the ninth aspect of the present invention, a high-concentration ozone aqueous solution containing approximately 20% ozone can be obtained using ion-exchanged water as a raw material at a voltage of several volts, so that the surfactant can be efficiently oxidized. . In addition, by-products (N
O x, etc.) it is not. As for the hydrogen gas, the surplus generated at the same time as the generation of ozone by electrolysis can be effectively used.

【0014】請求項10の発明は、前記オゾンガスと同時
に鉄分を添加することを特徴とする。請求項10の発明に
よれば、オゾンガスと界面活性剤との反応に伴って発生
する発泡を低減することができるとともにろ過性を向上
させる。オゾンと同時に鉄分を添加すると、鉄分のない
場合より発泡性の効果が優れる。オゾンを添加しないと
発泡性の低減に殆ど効果がない。
A tenth aspect of the present invention is characterized in that iron is added simultaneously with the ozone gas. According to the invention of claim 10, foaming generated due to the reaction between the ozone gas and the surfactant can be reduced, and the filterability is improved. When iron is added simultaneously with ozone, the foaming effect is better than when iron is not present. If ozone is not added, there is almost no effect in reducing foaming.

【0015】請求項11の発明は、前記ろ過材として中空
糸膜を用いることを特徴とする。請求項11の発明によれ
ば、中空糸膜をろ過材とすることにより、非常に多数の
糸が膜の役目をしているため、処理面積が大きくなり、
装置規模を小さくできる。また、微小な粒子まで除去で
きる(〜0.1 μm)、不溶解成分を捕集した後の逆洗が
簡便となる。
An eleventh aspect of the present invention is characterized in that a hollow fiber membrane is used as the filter. According to the invention of claim 11, by using a hollow fiber membrane as a filter material, a very large number of threads serve as a membrane, so that a processing area is increased,
The device scale can be reduced. In addition, even fine particles can be removed (up to 0.1 μm), which facilitates backwashing after collecting insoluble components.

【0016】請求項12の発明は、前記紫外線源として低
圧水銀ランプ(内圧<1mmHg)を用いることを特徴とす
る。請求項12の発明によれば、界面活性剤のような有機
物(TOC)の分解を行うことができる。水銀ランプに
ついては高圧と低圧のものがあるが、低圧水銀ランプが
優れる。
A twelfth aspect of the present invention is characterized in that a low-pressure mercury lamp (internal pressure <1 mmHg) is used as the ultraviolet light source. According to the invention of claim 12, it is possible to decompose an organic substance (TOC) such as a surfactant. There are high and low pressure mercury lamps, and low pressure mercury lamps are superior.

【0017】請求項13の発明は、前記紫外線照射と同時
にオゾンガスを添加することを特徴とする。請求項13の
発明によれば、紫外線と同時にオゾンガスを添加すれ
ば、添加しない場合より優れた分解効果を得ることがで
きる(図18参照)。
The invention of claim 13 is characterized in that ozone gas is added simultaneously with the irradiation of the ultraviolet rays. According to the invention of claim 13, when ozone gas is added simultaneously with ultraviolet light, a more excellent decomposition effect can be obtained than when no ozone gas is added (see FIG. 18).

【0018】請求項14の発明は、前記凝縮処理した蒸留
水を活性炭処理することを特徴とする。請求項14の発明
によれば、凝縮処理した蒸留水を活性炭処理することに
より不溶解成分と同時に有機成分(TOC)を除去する
ことができる。
The invention of claim 14 is characterized in that the condensed distilled water is treated with activated carbon. According to the invention of claim 14, the organic component (TOC) can be removed at the same time as the insoluble component by subjecting the condensed distilled water to the activated carbon treatment.

【0019】請求項15の発明は、前記凝縮処理した蒸留
水をイオン交換樹脂処理することを特徴とする。請求項
15の発明によれば、凝縮処理した蒸留水をイオン交換樹
脂処理することにより導電率および有機成分(TOC)
濃度を純水レベルにすることができる。
The invention of claim 15 is characterized in that the condensed distilled water is treated with an ion exchange resin. Claim
According to the fifteenth aspect, the conductivity and the organic component (TOC) are obtained by subjecting the condensed distilled water to an ion exchange resin treatment.
The concentration can be at the pure water level.

【0020】[0020]

【発明の実施の形態】本発明に係る処理方法の第1の実
施の形態を図1〜6に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a processing method according to the present invention will be described with reference to FIGS.

【0021】第1の実施の形態は、図1の工程図に示す
ように、最初に界面活性剤含有廃液1をオゾン反応槽4
に入れ、オゾンガス5を吹き込んで界面活性剤を酸化
し、界面活性剤の発泡性(あるいは界面活性能)を低減
すると同時に、ろ過性を向上させた酸化処理廃液2とす
る。次いで、この酸化処理した酸化処理廃液2を水素還
元槽6に入れ、水素ガス7を吹き込んでオゾンや過酸化
水素などの酸化剤を分解して還元処理廃液3とする。
In the first embodiment, as shown in the process diagram of FIG.
And the ozone gas 5 is blown therein to oxidize the surfactant, thereby reducing the foaming property (or surface activity) of the surfactant and, at the same time, obtaining an oxidized waste liquid 2 having improved filterability. Next, the oxidized waste liquid 2 is placed in a hydrogen reduction tank 6, and hydrogen gas 7 is blown therein to decompose an oxidizing agent such as ozone or hydrogen peroxide to form a reduced waste liquid 3.

【0022】図2および図3は、第1の実施の形態にお
いて、界面活性剤含有廃液1をオゾン反応槽4に入れ、
オゾンガス5を吹き込んだ際の界面活性剤含有廃液1の
発泡性およびろ過性の経時変化を測定した結果を示すプ
ロット図である。
FIG. 2 and FIG. 3 show that in the first embodiment, the surfactant-containing waste liquid 1 is put into an ozone reaction tank 4,
FIG. 4 is a plot diagram showing the results of measuring the change over time in the foaming property and filterability of the surfactant-containing waste liquid 1 when ozone gas 5 is blown.

【0023】ここで、界面活性剤濃度を800ppmとして作
業着を洗濯して3日間放置した廃液量を1.5 L,水電解
製造のオゾン発生量を0.6 g/h,初期溶液pHを6〜
7,溶液温度を15〜20℃とした。また、発泡性は直径5
cmの円筒状トールビーカを加熱により、ろ過性は孔径を
0.45μm,ろ過面積を9.6 cm2 として吸引ろ過により調
べた。この図2および図3から、第1の実施の形態によ
り、界面活性剤含有廃液1中の発泡性を低減し、ろ過性
を向上できることがわかる。
Here, the concentration of the surfactant was 800 ppm, the work clothes were washed, the amount of waste liquid left after being left for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the initial solution pH was 6 to 6 L.
7. The solution temperature was 15-20 ° C. The foamability is 5
By heating a cylindrical tall beaker of cm, filterability increases the pore size.
The filtration area was set to 0.45 μm, and the filtration area was set to 9.6 cm 2 . 2 and 3 that the first embodiment can reduce the foaming property in the surfactant-containing waste liquid 1 and improve the filterability.

【0024】図4は、第1の実施の形態において、溶解
オゾンを水素還元槽6に入れ、水素ガス7を吹き込んだ
際の溶解オゾン濃度の経時変化を測定した結果を示すプ
ロット図である。ここで、界面活性剤濃度を800ppmとし
て作業着を洗濯して3日間放置した廃液量を1.5 L,水
素ガス吹き込み量を5L/min ,初期溶液pHを6〜
7,溶液温度を15〜20℃とした。この図4から、第1の
実施の形態により、界面活性剤含有廃液1中のオゾンな
どの酸化剤を分解できることがわかる。
FIG. 4 is a plot showing the results of measuring the change over time in the concentration of dissolved ozone when the dissolved ozone is introduced into the hydrogen reduction tank 6 and the hydrogen gas 7 is blown in the first embodiment. Here, the surfactant concentration was 800 ppm, the work clothes were washed, and the amount of waste liquid left for 3 days was 1.5 L, the amount of hydrogen gas blown was 5 L / min, and the initial solution pH was 6 to 5 L / min.
7. The solution temperature was 15-20 ° C. FIG. 4 shows that the oxidizing agent such as ozone in the surfactant-containing waste liquid 1 can be decomposed by the first embodiment.

【0025】表1は、第1の実施の形態において、オゾ
ンガス5の生成方法を放電方式と電気分解方式とで比較
した表である。表1中、放電方式には発生器として無声
放電管とセラミックス板を使用する2種類あるが、表1
から明らかなように、電気分解方式の電解装置によるオ
ゾンガスの生成が放電方式より優れていることがわか
る。
Table 1 is a table comparing the generation method of the ozone gas 5 between the discharge method and the electrolysis method in the first embodiment. In Table 1, there are two types of discharge systems that use silent discharge tubes and ceramic plates as generators.
As is clear from FIG. 7, generation of ozone gas by the electrolysis-type electrolysis apparatus is superior to that of the discharge-type electrolysis apparatus.

【0026】[0026]

【表1】 [Table 1]

【0027】図5および図6は、第1の実施の形態にお
いて、界面活性剤含有廃液1をオゾン反応槽4に収容し
て、鉄分を添加した後、オゾンガス5を吹き込んだ際の
界面活性剤含有廃液1の発泡性およびろ過性の経時変化
を測定した結果をそれぞれプロット図で示している。
FIG. 5 and FIG. 6 show the surfactant when the ozone gas 5 was blown after the surfactant-containing waste liquid 1 was accommodated in the ozone reaction tank 4 and iron was added thereto in the first embodiment. The results of measuring the changes over time of the foaming property and the filterability of the waste liquid 1 are shown in plots.

【0028】ここで、界面活性剤濃度を800ppmとして作
業着を洗濯して3日間放置した廃液量を1.5 L,水電解
製造のオゾン発生量を0.6 g/h,鉄分添加量を100ppm
‐Fe3+,初期溶液pHを6〜7,溶液温度を15〜20℃
とした。この図5,6から、鉄分の添加によって界面活
性剤含有廃液1の発泡性の低減およびろ過性の向上を促
進できることがわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid after washing the work clothes and left for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm.
-Fe 3+ , initial solution pH 6-7, solution temperature 15-20 ° C
And 5 and 6 that the addition of iron can promote the reduction of the foaming property and the improvement of the filterability of the surfactant-containing waste liquid 1.

【0029】次に図7および図8により本発明に係る第
2の実施の形態を説明する。図7は、本発明の第2の実
施の形態を説明するための工程図で、図1と同一部分に
は同一符号を付している。第2の実施の形態では、図7
に示すように、界面活性剤含有廃液1をオゾン反応槽4
に入れ、オゾンガス5を吹き込んで界面活性剤を酸化
し、界面活性剤のろ過性を向上させた酸化処理廃液2と
する。
Next, a second embodiment according to the present invention will be described with reference to FIGS. FIG. 7 is a process diagram for explaining the second embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In the second embodiment, FIG.
As shown in FIG.
And the ozone gas 5 is blown therein to oxidize the surfactant to obtain an oxidized waste liquid 2 having improved surfactant filterability.

【0030】次いで、この酸化処理した酸化処理廃液2
を水素還元槽6に入れ、水素ガス7を吹き込んでオゾン
や過酸化水素などの酸化剤を分解して還元処理廃液3と
する。次に、この還元処理した還元処理廃液3をろ過器
9に入れ、ろ過することにより不溶解成分を取り除いた
ろ過処理液8とする。
Next, this oxidized waste liquid 2
Into a hydrogen reduction tank 6, and blowing hydrogen gas 7 to decompose an oxidizing agent such as ozone or hydrogen peroxide to obtain a waste liquid 3 for reduction treatment. Next, the reduced liquid waste 3 subjected to the reduction treatment is put into a filter 9 and filtered to obtain a filtered liquid 8 from which insoluble components have been removed.

【0031】表2は、第2の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れ、オゾンガス
5を吹き込んだ後、ろ過器9によりろ過した際の界面活
性剤含有廃液1のろ過性および不溶解成分除去性を測定
した結果を示している。
Table 2 shows that, in the second embodiment, the surfactant-containing waste liquid 1 obtained by putting the surfactant-containing waste liquid 1 into the ozone reaction tank 4, blowing the ozone gas 5, and filtering it with the filter 9. 3 shows the results of measuring the filterability and the insoluble component removing property of the sample.

【0032】[0032]

【表2】 [Table 2]

【0033】ここで、界面活性剤濃度を800ppmとして作
業着を洗濯して3日間放置した廃液量を1.5 L,水電解
製造のオゾン発生量を0.6 g/h,鉄分添加量を100ppm
‐Fe3+,オゾン処理時間を60min ,初期溶液pHを6
〜7,溶液温度を15〜20℃とした。また、ろ過性は孔径
を0.45μm,ろ過面積を9.6 cm2 として吸引ろ過により
調べた。この表2から、第2の実施の形態により、界面
活性剤含有廃液1の不溶解成分を取り除くことができる
ことがわかる。
Here, the concentration of the surfactant was 800 ppm, the work clothes were washed, and the amount of waste liquid left after standing for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm.
-Fe 3+ , ozone treatment time 60 min, initial solution pH 6
~ 7, solution temperature was 15-20 ° C. The filterability was determined by suction filtration with a pore size of 0.45 μm and a filtration area of 9.6 cm 2 . From Table 2, it is understood that the insoluble components of the surfactant-containing waste liquid 1 can be removed according to the second embodiment.

【0034】図8は、第2の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れ、オゾンガス
5を吹き込んだ後、ろ過器9のろ過材として中空糸膜を
用いてろ過した際の中空糸膜の差圧上昇性を測定した結
果を示す波形図である。
FIG. 8 shows that, in the second embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction tank 4, and the ozone gas 5 is blown into the ozone reaction tank 4. It is a waveform diagram which shows the result of having measured the differential pressure | voltage rise property of the hollow fiber membrane at the time of.

【0035】ここで、界面活性剤濃度を800ppmとして作
業着を洗濯して3日間放置した廃液量を1.5 L,水電解
製造のオゾン発生量を0.6 g/h,鉄分添加量を100ppm
‐Fe3+,オゾン処理時間を60min ,初期溶液pHを6
〜7,溶液温度を15〜20℃とした。また、中空糸膜の差
圧上昇性は線流速を0.1 m/hr,ろ過面積を0.1 m2
として調べた。この図8から、ろ過材として中空糸膜を
用いることができることがわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid after washing the work clothes and left for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm.
-Fe 3+ , ozone treatment time 60 min, initial solution pH 6
~ 7, solution temperature was 15-20 ° C. The differential pressure increasing property of the hollow fiber membrane is such that the linear velocity is 0.1 m / hr and the filtration area is 0.1 m 2.
I investigated. FIG. 8 shows that a hollow fiber membrane can be used as the filter medium.

【0036】表3は、第2の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れオゾンガス5
を吹き込み、酸およびアルカリを添加して中和し、ろ過
器9によりろ過した際の界面活性剤含有廃液1の不溶解
成分を測定した結果を示している。
Table 3 shows that, in the second embodiment, the surfactant-containing waste liquid 1 was placed in the ozone reactor 4 and the ozone gas 5 was discharged.
And the results obtained by measuring the insoluble components of the surfactant-containing waste liquid 1 when the mixture was neutralized by adding an acid and an alkali and filtered by the filter 9.

【0037】[0037]

【表3】 [Table 3]

【0038】ここで、界面活性剤濃度を800ppmとして作
業着を洗濯して3日間放置した廃液量を1.5 L,水電解
製造のオゾン発生量を0.6 g/h,オゾン処理時間を60
min,初期溶液pHを6〜7,溶液温度を15〜20℃とし
た。また、中和には酸として0.1 N‐H2 SO4 ,アル
カリとして0.1 N−NaOHを用い、ろ過処理はろ材孔
径を0.45μm,ろ過面積を9.6 cm2 として吸引ろ過によ
り調べた。この表3から、中和処理により溶解金属成分
を不溶解成分の金属水酸化物として除去できることがわ
かる。
Here, the concentration of the surfactant was 800 ppm, the work clothes were washed, the amount of waste liquid left after standing for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the ozone treatment time was 60 hours.
min, the initial solution pH was 6-7, and the solution temperature was 15-20 ° C. For neutralization, 0.1 N-H 2 SO 4 was used as an acid and 0.1 N-NaOH was used as an alkali. Filtration was performed by suction filtration with a filter medium pore size of 0.45 μm and a filtration area of 9.6 cm 2 . From Table 3, it can be seen that the dissolved metal component can be removed as a metal hydroxide as an insoluble component by the neutralization treatment.

【0039】表4は、第2の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れオゾンガス5
を吹き込み、粉末活性炭を添加した後、ろ過器9により
ろ過した際の界面活性剤含有廃液1のろ過性および不溶
解成分,有機成分(TOC)除去性を測定した結果を示
している。
Table 4 shows that in the second embodiment, the surfactant-containing waste liquid 1 was charged into the ozone reactor 4 and the ozone gas 5 was discharged.
The results obtained by measuring the filterability of the surfactant-containing waste liquid 1 and the removability of insoluble components and organic components (TOC) when filtration was performed by the filter 9 after blowing activated carbon powder were added.

【0040】[0040]

【表4】 [Table 4]

【0041】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を1.5L,水電解製造のオ
ゾン発生量を0.6 g/h,鉄分添加量を100ppm‐F
3+,オゾン処理時間を60min ,初期溶液pHを6〜
7,溶液温度を15〜20℃とした。また、活性炭処理は粉
末活性炭添加量を1000ppm ,処理時間を60min とし、ろ
過処理はろ材孔径を0.45μm,ろ過面積を9.6 cm2 とし
て吸引ろ過により調べた。この表4から、粉末活性炭処
理により不溶解成分と同時に有機成分を除去できること
がわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid left after leaving the work clothes for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm-F.
e 3+ , ozone treatment time 60min, initial solution pH 6 ~
7. The solution temperature was 15-20 ° C. The activated carbon treatment was performed by suction filtration with the powdered activated carbon addition amount set to 1000 ppm and the treatment time set to 60 min. The filtration treatment was performed with a filter material pore diameter of 0.45 μm and a filtration area of 9.6 cm 2 . From Table 4, it can be seen that the organic component can be removed simultaneously with the insoluble component by the powdered activated carbon treatment.

【0042】次に図9〜図13により本発明の第3の実施
の形態を説明する。第3の実施の形態では、図9に示す
ように、界面活性剤含有廃液1をオゾン反応槽4に入
れ、オゾンガス5を吹き込んで界面活性剤の発泡性を低
減させ酸化処理廃液2とする。次いで、この酸化処理し
た酸化処理廃液2を水素還元槽6に入れ、水素ガス7を
吹き込んでオゾンや過酸化水素などの酸化剤を分解して
還元処理廃液3とする。次に、この還元処理した還元処
理廃液3を加熱器11に入れ加熱蒸発することで水蒸気10
とする。
Next, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, as shown in FIG. 9, a surfactant-containing waste liquid 1 is put into an ozone reaction tank 4, and an ozone gas 5 is blown to reduce the foaming property of the surfactant to obtain an oxidation treatment waste liquid 2. Next, the oxidized waste liquid 2 is placed in a hydrogen reduction tank 6, and hydrogen gas 7 is blown therein to decompose an oxidizing agent such as ozone or hydrogen peroxide to form a reduced waste liquid 3. Next, the reduced waste liquid 3 subjected to the reduction treatment is put into a heater 11 and heated and evaporated to thereby form steam 10
And

【0043】図10は、第3の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れ、オゾンガス
5を吹き込んだ後、加熱器11により加熱蒸発した際の界
面活性剤含有廃液1の発泡性を測定した結果を示す特性
図である。
FIG. 10 shows a surfactant-containing waste liquid when the surfactant-containing waste liquid 1 is put into an ozone reaction tank 4 and ozone gas 5 is blown and then heated and evaporated by a heater 11 in the third embodiment. FIG. 4 is a characteristic diagram showing the result of measuring the foamability of Sample No. 1.

【0044】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を12L,水電解製造のオゾ
ン発生量を0.6 g/h,鉄分添加量を100ppm‐Fe3+
オゾン処理時間を140min,初期溶液pHを6〜7,溶液
温度を15〜20℃とした。また、加熱蒸発処理は蒸発面積
を19.6cm2 ,発泡部内径を5cm,加熱液量を6.8 L,加
熱部電気量を〜3kWとした。この図10から第3の実施の
形態によれば、界面活性剤含有廃液1を加熱蒸発できる
ことがわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid in which the work clothes were left for 3 days was 12 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, the amount of iron added was 100 ppm-Fe 3+ ,
The ozone treatment time was 140 min, the initial solution pH was 6-7, and the solution temperature was 15-20 ° C. In the heating and evaporating treatment, the evaporating area was 19.6 cm 2 , the inner diameter of the foaming portion was 5 cm, the amount of the heating liquid was 6.8 L, and the amount of electricity in the heating portion was 33 kW. From FIG. 10, it can be seen that according to the third embodiment, the surfactant-containing waste liquid 1 can be heated and evaporated.

【0045】図11は、第3の実施の形態において、界面
活性剤含有廃液1をオゾン反応層4に入れ、オゾンガス
5を吹き込み、加熱器11により加熱蒸発して水蒸気10と
した後、その水蒸気10を凝縮器により蒸留水とした際の
加熱器11の電力量と蒸留水量の関係を測定した結果を示
すプロット図である。
FIG. 11 shows that in the third embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction layer 4, the ozone gas 5 is blown in, and the mixture is heated and evaporated by the heater 11 to form steam 10, FIG. 6 is a plot diagram showing a result of measuring a relationship between an electric energy of a heater 11 and an amount of distilled water when 10 is distilled water by a condenser.

【0046】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を12L,水電解製造のオゾ
ン発生量を0.6 g/h,鉄分添加量を100ppm‐Fe3+
オゾン処理時間を140min,初期溶液pHを6〜7,溶液
温度を15〜20℃とした。また、加熱蒸発処理は蒸発面積
を19.6cm2 ,発泡部内径を5cm,加熱液量を6.8 L,加
熱部電気量を〜3kWとした。この図11から、加熱蒸発に
より水蒸気となった水分を凝縮器により蒸留水とするこ
とができることがわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid in which the work clothes were left for 3 days was 12 L, the amount of ozone generated by water electrolysis production was 0.6 g / h, the amount of iron added was 100 ppm-Fe 3+ ,
The ozone treatment time was 140 min, the initial solution pH was 6-7, and the solution temperature was 15-20 ° C. In the heating and evaporating treatment, the evaporating area was 19.6 cm 2 , the inner diameter of the foaming portion was 5 cm, the amount of the heating liquid was 6.8 L, and the amount of electricity in the heating portion was 33 kW. From FIG. 11, it can be seen that water converted into steam by heating and evaporation can be converted into distilled water by the condenser.

【0047】図12は、第3の実施の形態において、界面
活性剤含有廃液1をオゾン反応層4に入れ、オゾンガス
5を吹き込み、加熱器11により加熱蒸発して水蒸気10と
し、凝縮器により蒸留水とした後、この蒸留水に活性炭
を添加した際のTOC濃度を測定した結果を示すプロッ
ト図である。
FIG. 12 shows that in the third embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction layer 4, the ozone gas 5 is blown in, the water vapor is heated and evaporated by the heater 11, and the water vapor 10 is distilled by the condenser. FIG. 4 is a plot showing the results of measuring the TOC concentration when activated carbon was added to this distilled water after water conversion.

【0048】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を12L,水電解製造のオゾ
ン発生量を0.6 g/h,鉄分添加量を100ppm‐Fe3+
オゾン処理時間を140min,初期溶液pHを6〜7,溶液
温度を15〜20℃とした。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid in which the work clothes were left for 3 days was 12 L, the amount of ozone generated by water electrolysis production was 0.6 g / h, the amount of iron added was 100 ppm-Fe 3+ ,
The ozone treatment time was 140 min, the initial solution pH was 6-7, and the solution temperature was 15-20 ° C.

【0049】また、加熱蒸発処理は蒸発面積を19.6c
m2 ,発泡部内径を5cm,加熱液量を6.8 L,加熱部電
気量を〜3kWとした。活性炭処理は蒸留水量を200 ml,
活性炭添加量を1gとして粒状活性炭を添加した。この
図12から、蒸留水を活性炭処理することで有機成分(T
OC)濃度を純水レベルにできることがわかる。
The heating and evaporating treatment reduces the evaporation area to 19.6 c.
m 2 , the inner diameter of the foaming section was 5 cm, the amount of the heating liquid was 6.8 L, and the amount of electricity in the heating section was 33 kW. Activated carbon treatment uses 200 ml of distilled water,
Granular activated carbon was added with the amount of activated carbon added as 1 g. From FIG. 12, the organic component (T) was obtained by treating distilled water with activated carbon.
It can be seen that the OC) concentration can be set to the level of pure water.

【0050】図13は、第3の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れ、オゾンガス
5を吹き込み、加熱器11により加熱蒸発して水蒸気10と
し、凝縮器により蒸留水とした後、この蒸留水にイオン
交換樹脂を添加した際の導電率およびTOC濃度を測定
した結果を示すプロット図である。
FIG. 13 shows a third embodiment in which a surfactant-containing waste liquid 1 is put into an ozone reaction tank 4, ozone gas 5 is blown in, and heated and evaporated by a heater 11 into steam 10, and distilled by a condenser. FIG. 9 is a plot diagram showing the results of measuring the conductivity and the TOC concentration when an ion-exchange resin is added to distilled water after water conversion.

【0051】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を12L,水電解製造のオゾ
ン発生量を0.6 g/h,鉄分添加量を100ppm‐Fe3+
オゾン処理時間を140min,初期溶液pHを6〜7,溶液
温度を15〜20℃とした。また、加熱蒸発処理は蒸発面積
を19.6cm2 ,発泡部内径を5cm,加熱液量を6.8 L,加
熱部電気量を〜3kWとした。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid in which the work clothes were left for 3 days was 12 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, the amount of iron added was 100 ppm-Fe 3+ ,
The ozone treatment time was 140 min, the initial solution pH was 6-7, and the solution temperature was 15-20 ° C. In the heating and evaporating treatment, the evaporating area was 19.6 cm 2 , the inner diameter of the foaming portion was 5 cm, the amount of the heating liquid was 6.8 L, and the amount of electricity in the heating portion was 33 kW.

【0052】イオン交換樹脂処理は蒸留水量を200 ml,
イオン交換樹脂添加量をカチオン2ml,アニオン4mlと
して強酸性および強アルカリ性樹脂を添加した。この図
13から、蒸留水をイオン交換樹脂処理することで導電率
および有機成分(TOC)濃度を純水レベルにすること
ができることがわかる。
In the ion exchange resin treatment, the amount of distilled water was 200 ml,
Strongly acidic and strongly alkaline resins were added with the ion exchange resin added at 2 ml for cations and 4 ml for anions. This figure
From FIG. 13, it is understood that the conductivity and the organic component (TOC) concentration can be brought to the level of pure water by treating the distilled water with the ion exchange resin.

【0053】次に図14,図15により本発明の第4の実施
の形態を説明する。第4の実施の形態では、図14に示す
ように、界面活性剤含有廃液1をオゾン反応槽4に入
れ、オゾンガス5を吹き込んで界面活性剤のろ過性を向
上させた酸化処理廃液2とする。次いで、この酸化処理
した酸化処理廃液2を水素還元槽6に入れ、水素ガス7
を吹き込んでオゾンや過酸化水素などの酸化剤を分解し
て還元処理廃液3とする。次に、この還元処理した還元
処理廃液3を活性炭反応槽13に入れ、活性炭14を添加す
ることにより有機成分を取り除いた活性炭処理液12とす
る。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. In the fourth embodiment, as shown in FIG. 14, a surfactant-containing waste liquid 1 is placed in an ozone reaction tank 4 and an ozone gas 5 is blown into an oxidation treatment waste liquid 2 having improved surfactant filterability. . Next, the oxidized waste liquid 2 subjected to the oxidation treatment is put into a hydrogen reduction tank 6 and hydrogen gas 7
Is blown to decompose an oxidizing agent such as ozone or hydrogen peroxide to produce a reduction treatment waste liquid 3. Next, the reduced waste liquid 3 subjected to the reduction treatment is put into an activated carbon reaction tank 13, and an activated carbon 14 is added to form an activated carbon treated liquid 12 from which organic components have been removed.

【0054】図15は、第4の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れオゾンガス5
を吹き込んだ後、活性炭反応槽12に入れ活性炭14を添加
した際のTOC濃度を測定した結果を示すプロット図で
ある。
FIG. 15 shows that, in the fourth embodiment, the surfactant-containing waste liquid 1 is put into the ozone reactor 4 and the ozone gas 5
FIG. 6 is a plot diagram showing the results of measuring the TOC concentration when activated carbon 14 was added into activated carbon reaction tank 12 after blowing.

【0055】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を1.5L,水電解製造のオ
ゾン発生量を0.6 g/h,鉄分添加量を100ppm‐F
3+,オゾン処理時間を60min ,初期溶液pHを6〜
7,溶液温度を15〜20℃とした。また、活性炭処理は活
性炭添加量を10g/Lとして粒状活性炭を添加した。こ
の図15から、第4の実施の形態により、界面活性剤含有
廃液1の有機成分(TOC)を取り除くことができるこ
とがわかる。
Here, the concentration of the surfactant was 800 ppm, the amount of the waste liquid left after leaving the work clothes for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm-F.
e 3+ , ozone treatment time 60min, initial solution pH 6 ~
7. The solution temperature was 15-20 ° C. In the activated carbon treatment, granular activated carbon was added at an activated carbon addition amount of 10 g / L. From FIG. 15, it can be seen that according to the fourth embodiment, the organic component (TOC) of the surfactant-containing waste liquid 1 can be removed.

【0056】次に図16から図19により本発明の第5の実
施の形態を説明する。第5の実施の形態では、図16に示
すように、界面活性剤含有廃液1をオゾン反応槽4に入
れ、オゾンガス5を吹き込んで界面活性剤のろ過性を向
上させた酸化処理廃液2とする。次いで、この酸化処理
した酸化処理廃液2を水素還元槽6に入れ、水素ガス7
を吹き込んでオゾンや過酸化水素などの酸化剤を分解し
て還元処理廃液3とする。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. In the fifth embodiment, as shown in FIG. 16, a surfactant-containing waste liquid 1 is put into an ozone reaction tank 4 and an ozone gas 5 is blown into an oxidation treatment waste liquid 2 having improved surfactant filterability. . Next, the oxidized waste liquid 2 subjected to the oxidation treatment is put into a hydrogen reduction tank 6 and hydrogen gas 7
Is blown to decompose an oxidizing agent such as ozone or hydrogen peroxide to produce a reduction treatment waste liquid 3.

【0057】次に、この還元処理した還元処理廃液3を
ろ過器9に入れ、ろ過することにより不溶解成分を取り
除いたろ過処理液8とする。さらに、このろ過処理した
液8を紫外線槽16に入れ、紫外線ランプ17から紫外線照
射することにより有機成分を分解して紫外線処理液15と
する。
Next, the reduced waste liquid 3 subjected to the reduction treatment is placed in a filter 9 and filtered to obtain a filtered liquid 8 from which insoluble components have been removed. Further, the filtered liquid 8 is placed in an ultraviolet ray tank 16 and irradiated with ultraviolet rays from an ultraviolet ray lamp 17 to decompose organic components to obtain an ultraviolet ray treated liquid 15.

【0058】図17は、第5の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れオゾンガス5
を吹き込み、ろ過器9によりろ過した後、このろ過した
液8を紫外線槽16に入れ、紫外線ランプ17により紫外線
照射した際のTOC濃度を測定した結果を示すプロット
図である。
FIG. 17 shows that, in the fifth embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction tank 4 and the ozone gas 5
FIG. 5 is a plot showing the results of measuring the TOC concentration when the filtered liquid 8 was put into an ultraviolet ray tank 16 and irradiated with ultraviolet rays by an ultraviolet ray lamp 17 after blowing through the filter 9 and filtering.

【0059】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を1.5L,水電解製造のオ
ゾン発生量を0.6 g/h,鉄分添加量を100ppm‐F
3+,オゾン処理時間を60min ,初期溶液pHを5〜
6,溶液温度を20〜25℃とした。
Here, the surfactant concentration was 800 ppm, the amount of waste liquid left after leaving work clothes for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm-F.
e 3+ , ozone treatment time 60min, initial solution pH 5 ~
6. The solution temperature was 20-25 ° C.

【0060】また、ろ過処理は孔径を0.45μm,ろ過面
積を9.6 cm2 として吸引ろ過し、紫外線照射は紫外線源
を32W低圧水銀ランプ(内圧<1mmHg)を用いた。この
図17から、第5の実施の形態により、界面活性剤含有廃
液1の有機成分(TOC)を取り除くことができること
がわかる。
The filtration treatment was carried out by suction filtration with a pore size of 0.45 μm and a filtration area of 9.6 cm 2 , and the ultraviolet irradiation was performed using a 32 W low-pressure mercury lamp (internal pressure <1 mmHg) as an ultraviolet light source. From FIG. 17, it can be seen that according to the fifth embodiment, the organic component (TOC) of the surfactant-containing waste liquid 1 can be removed.

【0061】図18は、第5の実施の形態において、界面
活性剤含有廃液1をオゾン反応槽4に入れオゾンガス5
を吹き込み、ろ過器9によりろ過した後、このろ過した
液8を紫外線槽16に入れ、紫外線ランプ17により紫外線
照射すると同時にオゾンガスを添加した際のTOC濃度
を測定した結果を示すプロット図である。
FIG. 18 shows that in the fifth embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction tank 4 and the ozone gas 5
FIG. 6 is a plot showing the result of measuring the TOC concentration when ozone gas was added at the same time that the filtered liquid 8 was put into an ultraviolet ray tank 16 and irradiated with ultraviolet rays by an ultraviolet ray lamp 17 after filtering with a filter 9.

【0062】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を1.5L,水電解製造のオ
ゾン発生量を0.6 g/h,鉄分添加量を100ppm‐F
3+,初期溶液pHを5〜6,溶液温度を20〜25℃とし
た。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid left after leaving the work clothes for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm-F.
e3 + , the initial solution pH was 5-6, and the solution temperature was 20-25C.

【0063】また、ろ過処理は孔径を0.45μm,ろ過面
積を9.6 cm2 として吸引ろ過し、紫外線照射は紫外線源
を32W低圧水銀ランプ(内圧<1mmHg)、オゾンガス添
加量を0.6 g/Lとした。この図18から明らかなよう
に、紫外線照射と同時にオゾンガスを添加することで、
有機成分(TOC)をより効率的に除去できることが認
められる。
The filtration was carried out by suction filtration with a pore size of 0.45 μm and a filtration area of 9.6 cm 2 , and the ultraviolet irradiation was carried out with a low-pressure mercury lamp of 32 W low pressure (internal pressure <1 mmHg) and an ozone gas addition amount of 0.6 g / L. . As is clear from FIG. 18, by adding the ozone gas simultaneously with the ultraviolet irradiation,
It is recognized that the organic component (TOC) can be removed more efficiently.

【0064】図19は、第5の実施の形態において界面活
性剤含有廃液1をオゾン反応槽4に入れオゾンガス5を
吹き込み、ろ過器9によりろ過した後、このろ過した液
8を紫外線照射槽16に入れ、高圧水銀ランプおよび低圧
水銀ランプ(内圧<1mmHg)を照射した際のTOC濃度
を測定した結果を比較して示すプロット図である。
FIG. 19 shows that, in the fifth embodiment, the surfactant-containing waste liquid 1 is put into the ozone reaction tank 4, the ozone gas 5 is blown therein, and the ozone gas 5 is filtered by the filter 9. FIG. 4 is a plot diagram comparing the results of measuring the TOC concentration when irradiating a high-pressure mercury lamp and a low-pressure mercury lamp (internal pressure <1 mmHg).

【0065】ここで、界面活性剤濃度を800ppmとして作
業着を3日間放置した廃液量を1.5L,水電解製造のオ
ゾン発生量を0.6 g/h,鉄分添加量を100ppm‐F
3+,初期溶液pHを5〜6,溶液温度を20〜25℃とし
た。
Here, the concentration of the surfactant was 800 ppm, the amount of waste liquid left after leaving the work clothes for 3 days was 1.5 L, the amount of ozone generated in water electrolysis production was 0.6 g / h, and the amount of iron added was 100 ppm-F.
e3 + , the initial solution pH was 5-6, and the solution temperature was 20-25C.

【0066】また、ろ過処理は孔径を0.45μm,ろ過面
積を9.6 cm2 として吸引ろ過し、紫外線照射は紫外線源
を100 W高圧水銀ランプ(内圧1〜数atm )/32W低圧
水銀ランプ(内圧<1mmHg),オゾンガス添加量を0.6
g/Lとした。この図19から、低圧水銀ランプ(内圧<
1mmHg)が優れていることがわかる。
The filtration was carried out by suction filtration with a pore size of 0.45 μm and a filtration area of 9.6 cm 2 , and the ultraviolet irradiation was performed by using an ultraviolet light source of 100 W high-pressure mercury lamp (internal pressure of 1 to several atm) / 32 W low-pressure mercury lamp (internal pressure < 1mmHg), the amount of added ozone gas is 0.6
g / L. From FIG. 19, it can be seen that the low-pressure mercury lamp (internal pressure <
1 mmHg).

【0067】[0067]

【発明の効果】本発明によれば、第1に界面活性剤含有
廃液にオゾンガスを添加することで、界面活性剤に対し
て疎水基を酸化分解し、親水基と疎水基を解裂し、親水
基を酸化分解して発泡性を低減し、ろ過性を向上させ
る。第2に水素ガスを添加することで、廃液中に残留す
るオゾンなどの腐食性酸化物を迅速に分解する。第3に
ろ過,加熱蒸発,活性炭吸着,紫外線分解などの処理方
法を任意に適用できる。
According to the present invention, first, ozone gas is added to a surfactant-containing waste liquid to oxidatively decompose a hydrophobic group with respect to the surfactant and to cleave the hydrophilic group and the hydrophobic group. It oxidatively decomposes hydrophilic groups to reduce foaming properties and improve filterability. Second, by adding hydrogen gas, corrosive oxides such as ozone remaining in the waste liquid are quickly decomposed. Third, treatment methods such as filtration, heat evaporation, activated carbon adsorption, and UV decomposition can be arbitrarily applied.

【0068】したがって、ろ過による懸濁固体(SS)
成分の除去,光透過度の向上,加熱による廃液の蒸気
化,活性炭および紫外線により有機成分の除去ができ
る。よって、界面活性剤含有廃液の性状に合わせた容易
な処理により環境放出可能な水質を得ることができる。
Therefore, suspended solids (SS) by filtration
Removal of components, improvement of light transmittance, vaporization of waste liquid by heating, and removal of organic components by activated carbon and ultraviolet rays. Therefore, it is possible to obtain water quality that can be released to the environment by easy treatment according to the properties of the surfactant-containing waste liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1の実施の形態を説明するため
の概略工程図。
FIG. 1 is a schematic process diagram for explaining a first embodiment according to the present invention.

【図2】第1の実施の形態において、水中の発泡性の経
時変化を示すプロット図。
FIG. 2 is a plot diagram showing a change with time in effervescence in water in the first embodiment.

【図3】第1の実施の形態において、水中のろ過性の経
時変化を示すプロット図。
FIG. 3 is a plot diagram showing a change over time in filterability in water in the first embodiment.

【図4】第1の実施の形態において、水中の溶解オゾン
濃度の経時変化を示すプロット図。
FIG. 4 is a plot diagram showing a change over time of a dissolved ozone concentration in water in the first embodiment.

【図5】第1の実施の形態において、鉄分を添加した際
の水中の発泡性の経時変化を示すプロット図。
FIG. 5 is a plot diagram showing a change over time in foamability in water when iron is added in the first embodiment.

【図6】第1の実施の形態において、鉄分を添加した際
の水中のろ過性の経時変化を示すプロット図。
FIG. 6 is a plot diagram showing a change with time in filterability in water when iron is added in the first embodiment.

【図7】本発明に係る第2の実施の形態を説明するため
の概略工程図。
FIG. 7 is a schematic process diagram for explaining a second embodiment according to the present invention.

【図8】第2の実施の形態において中空糸膜ろ過した際
の差圧上昇性を示す波形図。
FIG. 8 is a waveform diagram showing a differential pressure increasing property when performing hollow fiber membrane filtration in the second embodiment.

【図9】本発明に係る第3の実施の形態を説明するため
の概略工程図。
FIG. 9 is a schematic process diagram for explaining a third embodiment according to the present invention.

【図10】第3の実施の形態において、加熱蒸発した際
の発泡性を示す特性図。
FIG. 10 is a characteristic diagram showing foamability when heated and evaporated in the third embodiment.

【図11】第3の実施の形態において、加熱器の電力量
と蒸留水量の関係を示すプロット図。
FIG. 11 is a plot diagram showing a relationship between a power amount of a heater and a distilled water amount in a third embodiment.

【図12】第3の実施の形態において、蒸留水に活性炭
を添加した際のTOC濃度の経時変化を示すプロット
図。
FIG. 12 is a plot diagram showing a change over time in the TOC concentration when activated carbon is added to distilled water in the third embodiment.

【図13】第3の実施の形態において、蒸留水にイオン
交換樹脂を添加した際の導電率およびTOC濃度の経時
変化を示すプロット図。
FIG. 13 is a plot diagram showing changes over time in the electrical conductivity and the TOC concentration when an ion exchange resin is added to distilled water in the third embodiment.

【図14】本発明に係る第4の実施の形態を説明するた
めの概略工程図。
FIG. 14 is a schematic process diagram for explaining a fourth embodiment according to the present invention.

【図15】第4の実施の形態において水中のTOC濃度
の経時変化を示すプロット図。
FIG. 15 is a plot diagram showing the change over time in the TOC concentration in water in the fourth embodiment.

【図16】本発明に係る第5の実施の形態を説明するた
めの概略工程図。
FIG. 16 is a schematic process diagram for explaining a fifth embodiment according to the present invention.

【図17】第5の実施の形態において水中のTOC濃度
の経時変化を示すプロット図。
FIG. 17 is a plot diagram showing the change over time in the TOC concentration in water in the fifth embodiment.

【図18】第5の実施の形態において、オゾンガスを添
加した際の水中のTOC濃度の経時変化を示すプロット
図。
FIG. 18 is a plot diagram showing a change over time in the TOC concentration in water when ozone gas is added in the fifth embodiment.

【図19】第5の実施の形態において、高圧および低圧
水銀ランプ(内圧<1mmHg)による水中のTOC濃度の
経時変化を示すプロット図。
FIG. 19 is a plot diagram showing the change over time of the TOC concentration in water by a high-pressure and low-pressure mercury lamp (internal pressure <1 mmHg) in the fifth embodiment.

【符号の説明】[Explanation of symbols]

1…界面活性剤含有廃液、2…酸化処理廃液、3…還元
処理廃液、4…オゾン反応槽、5…オゾンガス、6…水
素還元槽、7…水素ガス、8…ろ過処理液、9…ろ過
器、10…水蒸気、11…加熱器、12…活性炭処理液、13…
活性炭反応槽、14…活性炭、15…紫外線処理液、16…紫
外線槽、17…紫外線ランプ。
DESCRIPTION OF SYMBOLS 1 ... Waste liquid containing surfactant, 2 ... Oxidation waste liquid, 3 ... Reduction treatment waste liquid, 4 ... Ozone reaction tank, 5 ... Ozone gas, 6 ... Hydrogen reduction tank, 7 ... Hydrogen gas, 8 ... Filtration treatment liquid, 9 ... Filtration Vessel, 10… steam, 11… heater, 12… activated carbon treatment liquid, 13…
Activated carbon reaction tank, 14 ... Activated carbon, 15 ... UV treatment liquid, 16 ... UV tank, 17 ... UV lamp.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/70 C02F 1/70 Z G21F 9/06 551 G21F 9/06 551Z (72)発明者 関 秀司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 蛭田 広一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 高田 孝夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 4D006 GA07 KB04 KB11 KB12 KB14 KB18 KB30 MA01 MB02 PB08 PB70 4D024 AA04 AB04 BA02 DB05 DB06 DB10 DB19 DB22 DB24 4D034 AA26 CA12 4D037 AA11 AB02 BA18 BB06 CA01 CA03 CA09 CA12 CA14 CA15 4D050 AA12 AA15 AB02 BA14 BB02 BC07 BD02 BD04 BD06 CA01 CA02 CA06 CA07 CA08 CA09 CA13 CA15 CA20 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/70 C02F 1/70 Z G21F 9/06 551 G21F 9/06 551Z (72) Inventor Hideji Seki Kanagawa 1 Toshiba Research and Development Center, Komukai Toshiba-cho, Kawasaki-shi, Kawasaki-shi (72) Inventor Koichi Hiruta 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture In-house Toshiba Yokohama Office (72) Inventor Takao Takada 8F Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term in the Toshiba Yokohama office (reference) 4D006 GA07 KB04 KB11 KB12 KB14 KB18 KB30 MA01 MB02 PB08 PB70 4D024 AA04 AB04 BA02 DB05 DB06 DB10 DB19 DB22 DB24 4D034 AA26 CA12 4D037A BA18 BB06 CA01 CA03 CA09 CA12 CA14 CA15 4D050 AA12 AA15 AB02 BA14 BB02 BC07 BD02 BD04 BD06 CA01 CA02 CA06 CA07 CA08 CA 09 CA13 CA15 CA20

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤を含む廃液に対し、最初にオ
ゾンガスを添加し、次に水素ガスを添加して腐食性酸化
物を分解したのち、環境放出することを特徴とする界面
活性剤含有廃液の処理方法。
1. A surfactant-containing waste liquid characterized in that an ozone gas is first added to a waste liquid containing a surfactant, and then a hydrogen gas is added to decompose corrosive oxides and then release it to the environment. Waste liquid treatment method.
【請求項2】 前記水素ガスを添加した廃液をろ過処理
することを特徴とする請求項1記載の界面活性剤含有廃
液の処理方法。
2. The method for treating a surfactant-containing waste liquid according to claim 1, wherein the waste liquid to which the hydrogen gas is added is subjected to a filtration treatment.
【請求項3】 前記水素ガスを添加した廃液を加熱蒸発
処理することを特徴とする請求項1記載の界面活性剤含
有廃液の処理方法。
3. The method for treating a surfactant-containing waste liquid according to claim 1, wherein the waste liquid to which the hydrogen gas has been added is heated and evaporated.
【請求項4】 前記水素ガスを添加した廃液を活性炭処
理することを特徴とする請求項1記載の界面活性剤含有
廃液の処理方法。
4. The method for treating a surfactant-containing waste liquid according to claim 1, wherein the waste liquid to which the hydrogen gas has been added is treated with activated carbon.
【請求項5】 前記水素ガスを添加した廃液を中和処理
した後ろ過処理することを特徴とする請求項2記載の界
面活性剤含有廃液の処理方法。
5. The method for treating a surfactant-containing waste liquid according to claim 2, wherein the waste liquid to which the hydrogen gas is added is subjected to a neutralization treatment and then a filtration treatment.
【請求項6】 前記水素ガスを添加した廃液を粉末活性
炭処理した後ろ過処理することを特徴とする請求項2記
載の界面活性剤含有廃液の処理方法。
6. The method for treating a surfactant-containing waste liquid according to claim 2, wherein the waste liquid to which the hydrogen gas is added is subjected to a powdered activated carbon treatment and then a filtration treatment.
【請求項7】 前記ろ過処理した廃液を紫外線照射する
ことを特徴とする請求項2記載の界面活性剤含有廃液の
処理方法。
7. The method for treating a surfactant-containing waste liquid according to claim 2, wherein the filtered waste liquid is irradiated with ultraviolet rays.
【請求項8】 前記蒸発した水分を凝縮処理することを
特徴とする請求項3記載の界面活性剤含有廃液の処理方
法。
8. The method for treating a surfactant-containing waste liquid according to claim 3, wherein the evaporated water is subjected to a condensation treatment.
【請求項9】 前記オゾンガスおよび水素ガスは水電解
セル中純水を供給して電気分解する方式により生成した
ガスからなることを特徴とする請求項1ないし8記載の
界面活性剤含有廃液の処理方法。
9. The treatment of a surfactant-containing waste liquid according to claim 1, wherein the ozone gas and the hydrogen gas comprise gas generated by a method of supplying pure water in a water electrolysis cell and performing electrolysis. Method.
【請求項10】 前記オゾンガスと同時に鉄分を添加す
ることを特徴とする請求項1ないし9記載の界面活性剤
含有廃液の処理方法。
10. The method for treating a surfactant-containing waste liquid according to claim 1, wherein iron is added simultaneously with the ozone gas.
【請求項11】 前記ろ過材として中空糸膜を用いるこ
とを特徴とする請求項2および5ないし7記載の界面活
性剤含有廃液の処理方法。
11. The method for treating a surfactant-containing waste liquid according to claim 2, wherein a hollow fiber membrane is used as the filter medium.
【請求項12】 前記紫外線源として低圧水銀ランプ
(内圧<1mmHg)を用いることを特徴とする請求項7記
載の界面活性剤含有廃液の処理方法。
12. The method for treating a surfactant-containing waste liquid according to claim 7, wherein a low-pressure mercury lamp (internal pressure <1 mmHg) is used as the ultraviolet light source.
【請求項13】 前記紫外線照射と同時にオゾンガスを
添加することを特徴とする請求項7記載の界面活性剤含
有廃液の処理方法。
13. The method for treating a surfactant-containing waste liquid according to claim 7, wherein the ozone gas is added simultaneously with the irradiation of the ultraviolet rays.
【請求項14】 前記凝縮処理した蒸留水を活性炭処理
することを特徴とする請求項8記載の界面活性剤含有廃
液の処理方法。
14. The method for treating a surfactant-containing waste liquid according to claim 8, wherein the condensed distilled water is treated with activated carbon.
【請求項15】 前記凝縮処理した蒸留水をイオン交換
樹脂処理することを特徴とする請求項8記載の界面活性
剤含有廃液の処理方法。
15. The method for treating a surfactant-containing waste liquid according to claim 8, wherein the condensed distilled water is treated with an ion exchange resin.
JP11080824A 1999-03-25 1999-03-25 Treatment of surfactant-containing waste solution Pending JP2000271577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080824A JP2000271577A (en) 1999-03-25 1999-03-25 Treatment of surfactant-containing waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080824A JP2000271577A (en) 1999-03-25 1999-03-25 Treatment of surfactant-containing waste solution

Publications (1)

Publication Number Publication Date
JP2000271577A true JP2000271577A (en) 2000-10-03

Family

ID=13729186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080824A Pending JP2000271577A (en) 1999-03-25 1999-03-25 Treatment of surfactant-containing waste solution

Country Status (1)

Country Link
JP (1) JP2000271577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092920A1 (en) * 2005-03-03 2006-09-08 Sharp Kabushiki Kaisha Wastewater treatment equipment and method of wastewater treatment
CN100417601C (en) * 2005-09-01 2008-09-10 上海化工研究院 Purifying method of removing bacteria and organic compound in heavy oxygen water
JP2009244089A (en) * 2008-03-31 2009-10-22 Toden Kogyo Co Ltd Removing method and removing device of radioactive material and toc
US7641802B2 (en) 2005-03-04 2010-01-05 Sharp Kabushiki Kaisha Wastewater treatment method and wastewater treatment equipment
US7691268B2 (en) 2005-03-04 2010-04-06 Sharp Kabushiki Kaisha Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater
JP2013006155A (en) * 2011-06-24 2013-01-10 Mitsubishi Heavy Ind Ltd Defoaming device and method of used discharged seawater and discharge system of used discharged seawater
JP2014111232A (en) * 2012-12-05 2014-06-19 Industria:Kk Drainage purifying apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092920A1 (en) * 2005-03-03 2006-09-08 Sharp Kabushiki Kaisha Wastewater treatment equipment and method of wastewater treatment
JP2006239584A (en) * 2005-03-03 2006-09-14 Sharp Corp Apparatus and method for wastewater treatment
US7578942B2 (en) 2005-03-03 2009-08-25 Sharp Kabushiki Kaisha Wastewater treatment equipment and method of wastewater treatment
US7641802B2 (en) 2005-03-04 2010-01-05 Sharp Kabushiki Kaisha Wastewater treatment method and wastewater treatment equipment
US7691268B2 (en) 2005-03-04 2010-04-06 Sharp Kabushiki Kaisha Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater
CN100417601C (en) * 2005-09-01 2008-09-10 上海化工研究院 Purifying method of removing bacteria and organic compound in heavy oxygen water
JP2009244089A (en) * 2008-03-31 2009-10-22 Toden Kogyo Co Ltd Removing method and removing device of radioactive material and toc
JP2013006155A (en) * 2011-06-24 2013-01-10 Mitsubishi Heavy Ind Ltd Defoaming device and method of used discharged seawater and discharge system of used discharged seawater
JP2014111232A (en) * 2012-12-05 2014-06-19 Industria:Kk Drainage purifying apparatus

Similar Documents

Publication Publication Date Title
JPH10323664A (en) Wastewater-recovering apparatus
WO2013146852A1 (en) Method for membrane-treating formaldehyde-containing discharge water
KR101585143B1 (en) Method and apparatus for treating 1,4-dioxane in waste water
EP0766647B1 (en) Photoelectrochemical reactor
JP2000271577A (en) Treatment of surfactant-containing waste solution
JP3657747B2 (en) Decomposition method of ion exchange resin
JP4224817B2 (en) Method for treating 1,4-dioxane
JP2001038391A (en) Treatment of waste liquid containing surfactant
JP3667597B2 (en) Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing processes
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
JP3560631B2 (en) Water treatment equipment
JP6036011B2 (en) Method and apparatus for treating wastewater containing formaldehyde
JP7247343B2 (en) Method for conditioning ion exchange resin and apparatus for carrying it out
CN103951141A (en) Garbage leachate treatment process and device
JP2002361269A (en) Method for treating water containing phosphorus
JP3941535B2 (en) Method and apparatus for decomposing organic matter
TWI534096B (en) Wastewater recovery and treatment system and its treatment method
JP4541776B2 (en) Purification method for wastewater containing organic substances
JP3325921B2 (en) Printed board cleaning water reclamation equipment
JPS63145995A (en) Method of treating phosphoric acid aqueous solution
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JP3558378B2 (en) Water treatment method
JPS6082892A (en) Method of treating organic group chemical decontaminated radioactive waste liquor
JPS58216998A (en) Method and device for removing ammonia in radioactive liquid waste
CN106276814A (en) The recovery and treatment method of useless persulfate solution