JP4143453B2 - Membrane separation activated sludge treatment equipment - Google Patents

Membrane separation activated sludge treatment equipment Download PDF

Info

Publication number
JP4143453B2
JP4143453B2 JP2003083241A JP2003083241A JP4143453B2 JP 4143453 B2 JP4143453 B2 JP 4143453B2 JP 2003083241 A JP2003083241 A JP 2003083241A JP 2003083241 A JP2003083241 A JP 2003083241A JP 4143453 B2 JP4143453 B2 JP 4143453B2
Authority
JP
Japan
Prior art keywords
membrane
membrane separation
activated sludge
sludge treatment
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083241A
Other languages
Japanese (ja)
Other versions
JP2004290735A (en
Inventor
浩 内田
誠亮 中田
剛 織田
円 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Kobelco Eco Solutions Co Ltd filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003083241A priority Critical patent/JP4143453B2/en
Publication of JP2004290735A publication Critical patent/JP2004290735A/en
Application granted granted Critical
Publication of JP4143453B2 publication Critical patent/JP4143453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、気泡を効率的に利用できる膜分離活性汚泥処理装置に関する。
【0002】
【従来の技術】
従来、微生物の働き(活性汚泥)を利用した廃水処理装置における固液分離(活性汚泥と処理水とに分離)手段として、膜分離装置が提案されている。
【0003】
この膜分離装置として、分離膜に中空糸膜を利用して多段に設置するものがある(例えば、特許文献1参照)。
【0004】
かかる装置では、多段に設置した中空糸膜の最下部にエア供給(曝気)装置を配置して、このエア供給装置で発生する気泡で中空糸膜を洗浄するようにしている。
【0005】
【特許文献1】
特開平11−534号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1では、気泡が浮上するにつれて散逸して、特に上段となる中空糸膜には充分な気泡が供給されにくいので、洗浄効率が悪くなって中空糸膜の洗浄作業を頻繁に行う必要があった。
【0007】
なお、多段に設置した中空糸膜をケーシングで囲んで気泡の散逸を防止することが考えられるが、ケーシングコストが高くつくという問題がある。また、上下に長い筒形状に形成した中空糸膜を利用することによって、多段設置と同様に気泡を効率的に利用できるが、中空糸膜自体が長くなってハンドリングが悪くなるとともに、物理強度も弱くなるという問題がある。
【0008】
本発明は、上記問題を解消するためになされたもので、気泡の散逸を防止して気泡を効率的に利用するとともに、コスト安に製造できる膜分離活性汚泥処理装置を提供することを課題とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、中空糸膜を用いて活性汚泥を固液分離する膜分離活性汚泥処理装置であって、活性汚泥の処理槽内に、膜分離装置が上下方向に多段で設置され、これらの膜分離装置は、それぞれ、上下方向に所定の間隔を隔てて対向配置された下端側の散気部と上端側の集水部とを備えているとともに、それらの散気部と集水部との間に、上下方向に支持されてなる中空糸膜束を備え、上記散気部は、中空短長円筒状に形成されているとともに、その上面部に多数個の散気穴が形成されることにより、散気部に供給されたエアが各散気穴から中空糸膜束の間に放出されて中空糸膜洗浄用気泡となって浮上して中空糸膜束を洗浄し、上段となる膜分離装置と下段となる膜分離装置との間に、気泡回収手段が配置され、上記気泡回収手段は、上段となる膜分離装置の散気部に、下段となる膜分離装置に供給された上記中空糸膜洗浄用気泡を回収して、上段となる膜分離装置の散気部に再供給するように取付けられていることを特徴とする膜分離活性汚泥処理装置を提供するものである。
【0010】
請求項2のように、上記気泡回収手段の入口開口面積は、この気泡回収手段の真下の膜分離装置から浮上する気泡分布範囲以上に設定されている構成が好ましい。
【0012】
請求項のように、上記気泡回収手段は、フード形状である構成が好ましい。
【0013】
請求項のように、上段となる膜分離装置と下段となる膜分離装置とを相互に連結する連結手段が設けられている構成が好ましい。
【0014】
請求項のように、上記膜分離装置は筒形状に構成されている構成が好ましい。
【0015】
【発明の作用および効果】
本発明によれば、上段となる膜分離装置と下段となる膜分離装置との間に配置した気泡回収手段によって、下段となる膜分離装置に供給された中空糸膜洗浄用気泡を散逸する前に回収して、上段となる膜分離装置に再供給することができるから、気泡を効率的に利用できるので、エア供給(曝気)量が低減してランニングコストが安価になる。
【0016】
また、従来のようなケーシングが無くても気泡の散逸を防止できるので、製造コストも安価になる。又、気泡回収手段を上段となる膜分離装置に取付けると、上段となる膜分離装置と気泡回収手段とを一体物として取り扱えるので、設置コストやメンテナンスコストが安価になる。
【0017】
請求項2のように、気泡回収手段の入口開口面積を、気泡回収手段の真下の膜分離装置から浮上する気泡分布範囲以上に設定すると、気泡のほぼ全量を回収できるので、気泡をより効率的に利用できるようになる。
【0019】
請求項のように、気泡回収手段は、フード形状とすると、構造が極めて簡易で製造コストが安価になる。
【0020】
請求項のように、上段となる膜分離装置と下段となる膜分離装置とを相互に連結する連結手段を設けると、処理槽内における設置高さの位置決めや処理槽外への取出しを同時に行うことができる。
【0021】
請求項のように、膜分離装置が筒形状であると、コンパクトになって処理槽内への設置が容易になるとともに、処理槽外での取り扱いも容易になる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
【0023】
図1(a)(b)に示すように、活性汚泥処理槽1内には、膜分離装置2A,2Bが上下方向に多段(本例では2段)で設置されて、入口側配管3から活性汚泥処理槽1内に供給された廃水原水は活性汚泥処理槽1内で浄化処理され、この処理水は各膜分離装置2A,2Bでろ過され、このろ過水は出口側配管4に設けられたポンプ5で吸引されて、次工程に排出されるようになる。
【0024】
図2および図3に詳細に示すように、上記膜分離装置2A,2Bは、それぞれが短長円筒状の散気部7A,7Bと集水部8A,8Bとが上下方向に所定の間隔L1を隔てて対向配置されて、この散気部7A,7Bと集水部8A,8Bとは、上下方向に延在する支持棒(図示せず)で、所定の間隔L1に保持されている。
【0025】
上記各散気部7A,7Bは中空に形成され、上面部7aには多数個の散気穴7bが形成されるとともに〔図2(b)参照〕、この散気穴7bを避けた上面部7aと上記集水部8A,8Bの下面部8bとの間には、上下方向に伸張状態で多数本の中空糸膜9aを集束して、これらの下端と上端とがそれぞれ固定支持されてなる中空糸膜束9が設けられている。この中空糸膜束9は、処理水を浸透させてろ過するものであり、精密膜(MF膜)や限外ろ過膜(UF膜)を好適に使用することができる。
【0026】
上記膜分離装置2A,2Bは、散気部7A,7Bと集水部8A,8Bとの間に中空糸膜束9が固定支持された状態では、図2(a)に示したような円筒形状に構成されることになる。
【0027】
上記散気部7A,7Bは、下面が開口されていて、下段側の膜分離装置2Aの散気部7Aには、エア配管10のエアaが下面開口7cから供給されるようになる。この散気部7Aに供給されたエアaは、上面部7aの各散気穴7bから中空糸膜束9の間に放出されることにより無数の気泡bとなって、矢印cのように浮上することによって中空糸膜束9を洗浄するようになる。
【0028】
上記集水部8A,8Bは中空に形成され、上面部8aには上記出口側配管4がそれぞれ接続されて、ポンプ5の吸引力で負圧にされることにより、中空糸膜束9に処理水が強制的に浸透されながら、ろ過水fが中空糸膜束9の上端から集水部8A,8B内に集められて、出口側配管4から次工程に排出されるようになる。
【0029】
下段側の膜分離装置2Aの真上には、上段側の膜分離装置2Bが上下方向に所定の間隔L2を隔てて対向配置されている。
【0030】
そして、上段側の膜分離装置2Bの散気部7Bの下面開口7cには、フード状の気泡回収手段12が固定されて、この気泡回収手段12は、下段側の膜分離装置2Aの散気部7Aに供給されて浮上してきた気泡bを回収して、上段側の膜分離装置2Bの散気部7Bに、下面開口7cから再供給するようになる。
【0031】
上記気泡回収手段12は、図5に対比して示すように、(a)のような末広がりの浅いラッパ状であるが、(b)のような円柱状や(c)のような末広がりの深いラッパ状として、下段側の膜分離装置2Aの集水部8Aを覆うようにしても良い。
【0032】
上記気泡回収手段12の入口開口12aの面積は、真下の下段側の膜分離装置2Aから浮上してきた気泡bの分布範囲以上に設定されている。
【0033】
図9は、各膜分離装置2A,2Bにおいて、中空糸膜束9の中心部から最外面までの距離L3を75mmとし、散気部7A,7Bと集水部8A,8Bとの間隔L1(中空糸膜束9の有効全長)を1〜2mとして、散気部7A,7Bから200NL/分〜600NL/分のエアを供給した場合に、集水部8A,8Bにおける気泡分布測定(ボイド率測定)の結果を示したグラフである。なお、白抜きと黒べたは、図2(a)に示すX軸方向とY軸方向の測定結果である。
【0034】
このグラフからも明らかなように、散気部7A,7Bから放出された気泡bは、集水部8A,8Bにおいて、中空糸膜束9の中心部から200mm程度の範囲に収まっている。
【0035】
したがって、気泡回収手段12の入口開口12aの寸法L4は、中心部から最外面までの距離L3の3倍、これを面積で考えると、気泡回収手段12の水平面への投影面積(S1)が中空糸膜束9の水平面へ投影面積(S2)の9倍とすれば充分であることが分かる。
【0036】
図4に示すように、上段側の膜分離装置2Bは、上記活性汚泥処理槽1の躯体や施設天井13等に固定されるとともに、下段側の膜分離装置2Aは、下段側の膜分離装置2Aの集水部8Aと上段側の膜分離装置2Bの散気部7Bとがチェーンやワイヤーロープのような連結手段14で相互に連結されて、上段側の膜分離装置2Bで下段側の膜分離装置2Aを吊り下げることにより、上記所定の間隔L2が保持されるようになる。
【0037】
上記のように構成した膜分離活性汚泥処理装置の作用を図3を用いて説明する。
【0038】
下段側の膜分離装置2Aの散気部7Aに、エア配管10からエアaが供給されると、散気部7Aの散気穴7bから中空糸膜束9の間に放出されることにより無数の気泡bとなって、矢印cのように浮上することによって下段側の膜分離装置2Aの中空糸膜束9が洗浄されるようになる。
【0039】
この気泡bが下段側の膜分離装置2Aの集水部8Aに達すると、この集水部8Aで一旦遮られるが、矢印dのように集水部8Aの外回りに沿ってさらに浮上するようになる。
【0040】
そして、この気泡bは、上段側の膜分離装置2Bの気泡回収手段12で回収されて散気部7Bに再供給されると、散気部7Bの散気穴7bから中空糸膜束9の間に放出されることにより再び無数の気泡bとなって、矢印eのように浮上することによって上段側の膜分離装置2Bの中空糸膜束9が洗浄されるようになる。
【0041】
図4に示すように、この気泡bが上段側の膜分離装置2Bの集水部8Bに達すると、この集水部8Bで一旦遮られるが、矢印gのように集水部8Bの外回りに沿ってさらに浮上して、活性汚泥処理槽1内の処理水の水面から大気中に放出されるようになる。このように、活性汚泥処理槽1内に多量の気泡bが供給されることにより、活性汚泥処理槽1内は好気状態に保たれることになる。
【0042】
一方、各集水部8A,8Bは、ポンプ5の吸引力で負圧にされているから、各膜分離装置2A,2Bの中空糸膜束9に処理水が強制的に浸透されながら、ろ過水fが中空糸膜束9の上端から集水部8A,8B内に集められて、出口側配管4から次工程に排出されるようになる。
【0043】
上記実施形態においては、上段側の膜分離装置2Bと下段側の膜分離装置2Aとの間に配置した気泡回収手段12によって、下段側の膜分離装置2Aに供給された中空糸膜束洗浄用の気泡bを散逸する前に回収して、上段側の膜分離装置2Bに再供給することができるから、気泡bを効率的に利用できるので、エア供給(曝気)量が低減してランニングコストが安価になる。
【0044】
ここで、膜分離装置を単段で設置して気泡回収をしない場合と、膜分離装置をn段で設置して全量の気泡回収をする場合とのエア供給(曝気)量の比較を行うと、下式のように表される。
【0045】
単段設置の場合のエア供給(曝気)量
Qa=(1−x)Q+xQ=Q
n段設置の場合のエア供給(曝気)量
Qb=(1−x)Q+xQ/n=(1+((1−n)/n)x)Q
ここで、xは、総エア供給(曝気)量のうち散気部7A,7Bから気泡bとして放出されるエア量の割合であり、Qは、気泡回収をしない場合に必要なエア供給(曝気)量である。
【0046】
これを実際の条件に当てはめると、x=0.7程度が想定されるので、n=2(2段設置)とすると、Qa/Qb=0.65となり、n=3(3段設置)とすると、Qb/Qa=0.53となって、通気倍率(曝気空気体積流量と流入下水体積流量の比)を容易に低減できることが分かる。
【0047】
また、簡易な気泡回収手段12を設けることで、従来のようなケーシングが無くても気泡bの散逸を防止できるので、製造コストも安価になる。
【0048】
さらに、気泡回収手段12の入口開口面積を、気泡回収手段12の真下の下段側の膜分離装置2Aから浮上する気泡分布範囲以上に設定しているから、気泡bのほぼ全量を回収できるので、気泡bをより効率的に利用できるようになる。
【0049】
さらにまた、気泡回収手段12を上段側の膜分離装置2Bの散気部7Bに取付けているから、上段側の膜分離装置2Bと気泡回収手段12とを一体物として取り扱えるので、設置コストやメンテナンスコストが安価になる。
【0050】
また、気泡回収手段12はフード形状であるから、構造が極めて簡易で製造コストが安価になる。
【0051】
さらに、上段側の膜分離装置2Bと下段側の膜分離装置2Aとを連結手段14で相互に連結しているから、活性汚泥処理槽1内における設置高さの位置決めや活性汚泥処理槽1外への取出しを同時に行うことができる。
【0052】
また、膜分離装置2A,2Bを円筒形状としているから、コンパクトになって活性汚泥処理槽1内への設置が容易になるとともに、活性汚泥処理槽1外での取り扱いも容易になる。なお、膜分離装置2A,2Bは円筒形状に限られるものではなく、四角や六角のような多角筒形状であっても良い。
【0053】
上記実施形態では、図6(a)のように、上段側の膜分離装置2Bの散気部7Bに気泡回収手段12を取付けたものであったが、図6(b)のように、散気部7Bを省略して、気泡回収手段12のみを取付けることも可能である。この場合には、散気部7Bの上面部7aに相当する部材を設ければ良い。
【0054】
図7は、各膜分離装置2A,2Bを水平方向に位置決めする機構である。すなわち、活性汚泥処理槽1内に2本の支持棒16を平行に立設するとともに、各膜分離装置2A,2Bの集水部8A,8Bの左右位置に、U字部17aを有する支持部材17をそれぞれ固定して、この支持部材17のU字部を上記2本の支持棒16にそれぞれ上下移動可能に係合させる。
【0055】
これにより、各膜分離装置2A,2Bの水平方向の位置決めを正確に行うことができる。
【0056】
上記実施形態では、上下2段の膜分離装置2A,2Bであったが、それ以上の段数、例えば、図8に示すような上下3段の膜分離装置2A,2B,2Cとすることができる。
【0057】
この場合、図8のように、中段と最上段の膜分離装置2B,2Cのそれぞれに気泡回収手段12を取付けるのが好ましい。
【0058】
また、上記実施形態では、上下2段の膜分離装置2A,2Bを同径、同長としたが、異径、異長としても良い。例えば、上段側ほど径を大きくすれば、下段側の膜分離装置から放出される気泡bを効率的に回収することができる。この場合には、気泡回収手段12の入口開口面積を小さくすることができる。
【図面の簡単な説明】
【図1】 (a)は、膜分離活性汚泥処理装置の側面図、(b)は、上下2段の膜分離装置の詳細側面図である。
【図2】 (a)は、下段側の膜分離装置の斜視図、(b)は、散気部の斜視図である。
【図3】 上下2段の膜分離装置の要部側面断面図である。
【図4】 連結手段で連結した上下2段の膜分離装置の側面図である。
【図5】 (a)〜(c)は、気泡回収手段の形状例を示す側面図である。
【図6】 (a),(b)は、気泡回収手段の取付け例を示す側面図である。
【図7】 上下2段の膜分離装置の水平位置決め機構であり、(a)は平面図、(b)は側面図である。
【図8】 上下3段の膜分離装置の側面図である。
【図9】 ボイド率と中空糸膜束の中心部からの距離との関係を示すグラフである。
【符号の説明】
1 活性汚泥処理槽
2A〜2C 膜分離装置
7A,7B 散気部
8A,8B 集水部
9 中空糸膜束
9a 中空糸膜
10 エア配管
12 気泡回収手段
14 連結手段
a エア
b 気泡
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane separation activated sludge treatment apparatus that can efficiently use bubbles.
[0002]
[Prior art]
Conventionally, a membrane separation apparatus has been proposed as a solid-liquid separation (separation into activated sludge and treated water) means in a wastewater treatment apparatus utilizing the action of microorganisms (activated sludge).
[0003]
As this membrane separation apparatus, there is an apparatus installed in multiple stages using a hollow fiber membrane as a separation membrane (see, for example, Patent Document 1).
[0004]
In such an apparatus, an air supply (aeration) device is arranged at the lowermost part of the hollow fiber membranes installed in multiple stages, and the hollow fiber membranes are washed with bubbles generated by the air supply device.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-534
[Problems to be solved by the invention]
However, in Patent Document 1, since the bubbles are dissipated as they rise, and particularly, it is difficult to supply sufficient bubbles to the upper hollow fiber membrane, so that the washing efficiency is deteriorated and the hollow fiber membrane is frequently washed. There was a need.
[0007]
Although it is conceivable to prevent the dissipation of bubbles by surrounding the hollow fiber membranes installed in multiple stages with a casing, there is a problem that the casing cost is high. In addition, by using a hollow fiber membrane formed in a vertically long cylindrical shape, air bubbles can be used efficiently as in the case of multistage installation, but the hollow fiber membrane itself becomes longer and handling becomes worse, and physical strength is also increased. There is a problem of weakening.
[0008]
The present invention was made to solve the above problems, and it is an object of the present invention to provide a membrane separation activated sludge treatment apparatus that can efficiently use bubbles by preventing the dissipation of bubbles and can be manufactured at low cost. To do.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is a membrane separation activated sludge treatment apparatus for solid-liquid separation of activated sludge using a hollow fiber membrane, wherein the membrane separation apparatus is vertically arranged in the activated sludge treatment tank. These membrane separation devices are installed in multiple stages, and each includes a lower end side air diffuser and an upper end side water collecting portion opposed to each other at a predetermined interval in the vertical direction. A hollow fiber membrane bundle that is supported in the vertical direction is provided between the air portion and the water collection portion, and the air diffusion portion is formed in a hollow short cylindrical shape, and a plurality of pieces are formed on the upper surface portion thereof . By forming the air diffuser holes, the air supplied to the air diffuser is discharged between the air diffuser holes between the hollow fiber membrane bundles and floats as bubbles for cleaning the hollow fiber membranes to wash the hollow fiber membrane bundles. In addition, an air bubble recovery means is disposed between the upper membrane separator and the lower membrane separator. The bubble recovery means recovers the above-mentioned air bubbles for cleaning the hollow fiber membrane supplied to the lower membrane separator to the upper diffuser of the membrane separator, and supplies the upper air separator to the diffuser of the upper membrane separator. The present invention provides a membrane separation activated sludge treatment apparatus which is attached so as to be re-supplied.
[0010]
According to a second aspect of the present invention, the inlet opening area of the bubble recovery means is preferably set to be equal to or larger than the bubble distribution range that rises from the membrane separation device directly below the bubble recovery means.
[0012]
According to a third aspect of the present invention, the bubble recovery means preferably has a hood shape.
[0013]
As in claim 4, the configuration is coupling means for coupling the membrane separation device comprising an upper and lower and the film separator to each other are provided are preferable.
[0014]
According to a fifth aspect of the present invention, the membrane separation device is preferably configured in a cylindrical shape.
[0015]
Operation and effect of the invention
According to the present invention, before the air bubbles for washing the hollow fiber membranes supplied to the lower membrane separator are dissipated by the bubble recovery means disposed between the upper membrane separator and the lower membrane separator. Since the bubbles can be used efficiently, the amount of air supply (aeration) is reduced and the running cost is reduced.
[0016]
Moreover, since the dissipation of bubbles can be prevented without a conventional casing, the manufacturing cost is also reduced. Further, when the bubble recovery means is attached to the upper membrane separation device, the upper membrane separation device and the bubble recovery means can be handled as an integrated object, so that installation costs and maintenance costs are reduced.
[0017]
If the inlet opening area of the bubble recovery means is set to be larger than the bubble distribution range rising from the membrane separation device directly below the bubble recovery means as in claim 2, almost all of the bubbles can be recovered, so that the bubbles are more efficient. Will be available to you.
[0019]
As in claim 3, the bubble collecting means, when the hood shape, structure manufacturing cost decreases in very simple.
[0020]
If the connection means which mutually connects the membrane separation apparatus used as an upper stage and the membrane separation apparatus used as a lower stage is provided like Claim 4 , positioning of the installation height in a processing tank and taking out out of a processing tank will be carried out simultaneously It can be carried out.
[0021]
When the membrane separation device is cylindrical as in claim 5 , it is compact and easy to install in the treatment tank and easy to handle outside the treatment tank.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
As shown in FIGS. 1 (a) and 1 (b), membrane separation devices 2A and 2B are installed in the activated sludge treatment tank 1 in multiple stages (two stages in this example) in the vertical direction, and from the inlet side pipe 3 The wastewater raw water supplied into the activated sludge treatment tank 1 is purified in the activated sludge treatment tank 1, and this treated water is filtered by the membrane separation devices 2A and 2B. This filtered water is provided in the outlet side pipe 4. Then, it is sucked by the pump 5 and discharged to the next process.
[0024]
As shown in detail in FIG. 2 and FIG. 3, the membrane separation devices 2A and 2B each have a short cylindrical cylindrical air diffuser 7A and 7B and a water collecting portion 8A and 8B, each having a predetermined interval L1 in the vertical direction. The air diffusers 7A and 7B and the water collectors 8A and 8B are held at a predetermined interval L1 by a support rod (not shown) extending in the vertical direction.
[0025]
Each of the air diffusers 7A and 7B is formed hollow, and a large number of air diffusers 7b are formed in the upper surface 7a [see FIG. 2 (b)], and an upper surface that avoids the air diffusers 7b. A large number of hollow fiber membranes 9a are converged in a vertically extended state between the lower surface portion 8b of the water collecting portions 8A and 8B and the lower end and the upper end thereof are fixedly supported. A hollow fiber membrane bundle 9 is provided. This hollow fiber membrane bundle 9 permeates and filters treated water, and a precision membrane (MF membrane) or an ultrafiltration membrane (UF membrane) can be suitably used.
[0026]
In the state where the hollow fiber membrane bundle 9 is fixedly supported between the air diffusers 7A and 7B and the water collecting portions 8A and 8B, the membrane separators 2A and 2B have a cylindrical shape as shown in FIG. It will be configured in shape.
[0027]
The lower surfaces of the air diffusers 7A and 7B are opened, and the air a of the air pipe 10 is supplied to the air diffuser 7A of the lower membrane separator 2A from the lower surface opening 7c. The air a supplied to the air diffuser 7A is released between the air diffuser holes 7b of the upper surface 7a between the hollow fiber membrane bundles 9 to become innumerable bubbles b, and floats as indicated by an arrow c. By doing so, the hollow fiber membrane bundle 9 is washed.
[0028]
The water collecting portions 8A and 8B are formed in a hollow shape, and the outlet pipe 4 is connected to the upper surface portion 8a, and the negative pressure is generated by the suction force of the pump 5, whereby the hollow fiber membrane bundle 9 is treated. While the water is forcibly permeated, the filtered water f is collected from the upper end of the hollow fiber membrane bundle 9 into the water collecting portions 8A and 8B and discharged from the outlet side pipe 4 to the next step.
[0029]
Immediately above the lower membrane separator 2A, an upper membrane separator 2B is disposed to face each other at a predetermined interval L2 in the vertical direction.
[0030]
A hood-like bubble recovery means 12 is fixed to the lower surface opening 7c of the air diffuser 7B of the upper membrane separator 2B. The air bubble recovery means 12 is a diffuser of the lower membrane separator 2A. The bubbles b that have been supplied and floated to the part 7A are collected and re-supplied from the lower surface opening 7c to the diffuser part 7B of the upper membrane separator 2B.
[0031]
As shown in comparison with FIG. 5, the bubble recovery means 12 has a shallow trumpet shape as shown in (a), but a cylindrical shape as shown in (b) or a deep end shape as shown in (c). As a trumpet shape, the water collecting portion 8A of the lower membrane separation device 2A may be covered.
[0032]
The area of the inlet opening 12a of the bubble recovery means 12 is set to be equal to or larger than the distribution range of the bubbles b floating from the lower membrane separation device 2A directly below.
[0033]
FIG. 9 shows that in each membrane separation device 2A, 2B, the distance L3 from the center of the hollow fiber membrane bundle 9 to the outermost surface is 75 mm, and the distance L1 between the air diffusers 7A, 7B and the water collectors 8A, 8B ( Bubble distribution measurement (void ratio) in the water collection sections 8A and 8B when air of 200 NL / min to 600 NL / min is supplied from the diffuser sections 7A and 7B with an effective total length of the hollow fiber membrane bundle 9 of 1 to 2 m. It is the graph which showed the result of measurement. In addition, white and black solid are measurement results in the X-axis direction and the Y-axis direction shown in FIG.
[0034]
As is clear from this graph, the bubbles b released from the air diffusers 7A and 7B are within a range of about 200 mm from the center of the hollow fiber membrane bundle 9 in the water collecting portions 8A and 8B.
[0035]
Accordingly, the dimension L4 of the inlet opening 12a of the bubble recovery means 12 is three times the distance L3 from the center to the outermost surface, and considering this in terms of area, the projected area (S1) of the bubble recovery means 12 on the horizontal plane is hollow. It can be seen that 9 times the projected area (S2) on the horizontal plane of the thread membrane bundle 9 is sufficient.
[0036]
As shown in FIG. 4, the upper membrane separator 2B is fixed to the casing of the activated sludge treatment tank 1, the ceiling 13 of the facility, etc., and the lower membrane separator 2A is a lower membrane separator. The water collecting part 8A of 2A and the diffuser part 7B of the upper membrane separator 2B are connected to each other by a connecting means 14 such as a chain or wire rope, and the lower membrane is separated by the upper membrane separator 2B. The predetermined distance L2 is maintained by suspending the separation device 2A.
[0037]
The operation of the membrane separation activated sludge treatment device configured as described above will be described with reference to FIG.
[0038]
When air a is supplied from the air pipe 10 to the air diffuser 7A of the lower membrane separator 2A, the air diffuser 7b discharges the air between the hollow fiber membrane bundles 9b. The air bubbles b become floating as shown by the arrow c, and the hollow fiber membrane bundle 9 of the lower membrane separator 2A is washed.
[0039]
When this bubble b reaches the water collecting section 8A of the lower membrane separation device 2A, it is once blocked by this water collecting section 8A, but as it further floats along the outer circumference of the water collecting section 8A as indicated by the arrow d. Become.
[0040]
And when this bubble b is collect | recovered by the bubble collection | recovery means 12 of the membrane separation apparatus 2B of the upper stage side, and is re-supplied to the diffuser part 7B, the hollow fiber membrane bundle 9 of the hollow fiber membrane bundle 9 will be from the diffuser hole 7b of the diffuser part 7B By being released in the meantime, the air bubbles b become countless again, and by rising as indicated by the arrow e, the hollow fiber membrane bundle 9 of the upper membrane separator 2B is washed.
[0041]
As shown in FIG. 4, when this bubble b reaches the water collecting part 8B of the upper membrane separator 2B, it is once blocked by the water collecting part 8B, but around the water collecting part 8B as indicated by the arrow g. Then, it floats further along and is discharged into the atmosphere from the surface of the treated water in the activated sludge treatment tank 1. Thus, by supplying a large amount of bubbles b into the activated sludge treatment tank 1, the inside of the activated sludge treatment tank 1 is kept in an aerobic state.
[0042]
On the other hand, since each water collection part 8A, 8B is made into the negative pressure with the suction force of the pump 5, filtration is carried out while the treated water is forcibly permeating into the hollow fiber membrane bundle 9 of each membrane separation device 2A, 2B. Water f is collected in the water collecting portions 8A and 8B from the upper end of the hollow fiber membrane bundle 9, and discharged from the outlet side pipe 4 to the next step.
[0043]
In the above embodiment, for cleaning the hollow fiber membrane bundle supplied to the lower membrane separator 2A by the bubble recovery means 12 disposed between the upper membrane separator 2B and the lower membrane separator 2A. Air bubbles b can be recovered before being dissipated and re-supplied to the membrane separator 2B on the upper side, so that the air bubbles (aeration) can be reduced and the running cost can be reduced. Becomes cheaper.
[0044]
Here, when the amount of air supply (aeration) is compared between the case where the membrane separator is installed in a single stage and bubbles are not collected and the case where the membrane separator is installed in n stages and the total amount of bubbles is collected It is expressed as the following formula.
[0045]
Air supply (aeration) amount Qa = (1-x) Q + xQ = Q in single-stage installation
Air supply (aeration) amount Qb = (1-x) Q + xQ / n = (1 + ((1-n) / n) x) Q in the case of n-stage installation
Here, x is the ratio of the amount of air released as bubbles b from the diffusers 7A and 7B out of the total air supply (aeration) amount, and Q is the air supply (aeration) required when bubbles are not recovered. ) Amount.
[0046]
If this is applied to actual conditions, x = about 0.7 is assumed. Therefore, when n = 2 (two-stage installation), Qa / Qb = 0.65, and n = 3 (three-stage installation). Then, Qb / Qa = 0.53, and it can be seen that the aeration ratio (ratio of aeration air volume flow rate and inflow sewage volume flow rate) can be easily reduced.
[0047]
Further, by providing the simple bubble recovery means 12, the dissipation of the bubbles b can be prevented even without a conventional casing, and the manufacturing cost is also reduced.
[0048]
Furthermore, since the inlet opening area of the bubble recovery means 12 is set to be equal to or greater than the bubble distribution range that rises from the lower membrane separation device 2A directly below the bubble recovery means 12, almost all of the bubbles b can be recovered. The bubbles b can be used more efficiently.
[0049]
Furthermore, since the bubble recovery means 12 is attached to the air diffuser 7B of the upper membrane separation device 2B, the upper membrane separation device 2B and the bubble recovery means 12 can be handled as an integrated object, so that installation costs and maintenance are possible. Cost is low.
[0050]
Further, since the bubble recovery means 12 has a hood shape, the structure is extremely simple and the manufacturing cost is low.
[0051]
Further, since the upper membrane separation device 2B and the lower membrane separation device 2A are connected to each other by the connecting means 14, the installation height positioning in the activated sludge treatment tank 1 and the outside of the activated sludge treatment tank 1 are performed. Can be taken out simultaneously.
[0052]
In addition, since the membrane separation devices 2A and 2B are cylindrical, it is compact and easy to install in the activated sludge treatment tank 1, and easy to handle outside the activated sludge treatment tank 1. The membrane separation devices 2A and 2B are not limited to a cylindrical shape, and may be a polygonal cylindrical shape such as a square or a hexagon.
[0053]
In the above embodiment, the bubble recovery means 12 is attached to the air diffuser 7B of the upper membrane separator 2B as shown in FIG. 6A. However, as shown in FIG. It is also possible to omit the gas portion 7B and attach only the bubble recovery means 12. In this case, a member corresponding to the upper surface portion 7a of the diffuser portion 7B may be provided.
[0054]
FIG. 7 shows a mechanism for positioning the membrane separation devices 2A and 2B in the horizontal direction. That is, two support rods 16 are set up in parallel in the activated sludge treatment tank 1, and support members having U-shaped portions 17a at the left and right positions of the water collecting portions 8A and 8B of the membrane separation devices 2A and 2B. 17 is fixed, and the U-shaped portion of the support member 17 is engaged with the two support rods 16 so as to be vertically movable.
[0055]
Thereby, horizontal positioning of each membrane separator 2A, 2B can be performed correctly.
[0056]
In the above embodiment, the upper and lower two-stage membrane separators 2A and 2B are used. However, a larger number of stages, for example, upper and lower three-stage membrane separators 2A, 2B and 2C as shown in FIG. .
[0057]
In this case, it is preferable to attach the bubble recovery means 12 to each of the middle and uppermost membrane separation devices 2B and 2C as shown in FIG.
[0058]
In the above embodiment, the upper and lower two-stage membrane separation apparatuses 2A and 2B have the same diameter and the same length, but may have different diameters and different lengths. For example, if the diameter is increased toward the upper stage, the bubbles b emitted from the lower-side membrane separation device can be efficiently recovered. In this case, the inlet opening area of the bubble recovery means 12 can be reduced.
[Brief description of the drawings]
FIG. 1 (a) is a side view of a membrane separation activated sludge treatment apparatus, and FIG. 1 (b) is a detailed side view of a two-stage membrane separation apparatus.
FIG. 2A is a perspective view of a lower membrane separator, and FIG. 2B is a perspective view of an air diffuser.
FIG. 3 is a side sectional view of an essential part of a two-stage upper and lower membrane separation apparatus.
FIG. 4 is a side view of an upper and lower two-stage membrane separator connected by a connecting means.
FIGS. 5A to 5C are side views showing an example of the shape of the bubble recovery means.
FIGS. 6A and 6B are side views showing an example of attaching the bubble recovery means.
7A and 7B are horizontal positioning mechanisms of the upper and lower two-stage membrane separation apparatus, wherein FIG. 7A is a plan view and FIG. 7B is a side view.
FIG. 8 is a side view of the upper and lower three-stage membrane separation apparatus.
FIG. 9 is a graph showing the relationship between the void ratio and the distance from the center of the hollow fiber membrane bundle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Activated sludge treatment tank 2A-2C Membrane separator 7A, 7B Air diffuser 8A, 8B Water collecting part 9 Hollow fiber membrane bundle 9a Hollow fiber membrane 10 Air piping 12 Bubble recovery means 14 Connection means a Air b Bubble

Claims (5)

中空糸膜を用いて活性汚泥を固液分離する膜分離活性汚泥処理装置であって、
活性汚泥の処理槽内に、膜分離装置が上下方向に多段で設置され、
これらの膜分離装置は、それぞれ、上下方向に所定の間隔を隔てて対向配置された下端側の散気部と上端側の集水部とを備えているとともに、それらの散気部と集水部との間に、上下方向に支持されてなる中空糸膜束を備え、
上記散気部は、中空短長円筒状に形成されているとともに、その上面部に多数個の散気穴が形成されることにより、散気部に供給されたエアが各散気穴から中空糸膜束の間に放出されて中空糸膜洗浄用気泡となって浮上して中空糸膜束を洗浄し、
上段となる膜分離装置と下段となる膜分離装置との間に、気泡回収手段が配置され、
上記気泡回収手段は、上段となる膜分離装置の散気部に、下段となる膜分離装置に供給された上記中空糸膜洗浄用気泡を回収して、上段となる膜分離装置の散気部に再供給するように取付けられていることを特徴とする膜分離活性汚泥処理装置。
A membrane separation activated sludge treatment device for solid-liquid separation of activated sludge using a hollow fiber membrane,
In the activated sludge treatment tank, membrane separation devices are installed in multiple stages in the vertical direction,
Each of these membrane separation devices includes a lower end side air diffuser and an upper end water collector disposed opposite to each other at a predetermined interval in the vertical direction, and the air diffuser and the water collector. A hollow fiber membrane bundle that is supported in the vertical direction between the two parts,
The air diffuser is formed in a hollow short cylindrical shape, and a large number of air diffuser holes are formed on the upper surface of the air diffuser so that air supplied to the air diffuser is hollow from each air diffuser. The hollow fiber membrane bundle is washed by being released between the yarn membrane bundles and rising as air bubbles for hollow fiber membrane washing,
A bubble recovery means is arranged between the upper membrane separator and the lower membrane separator,
The bubble recovery means recovers the hollow fiber membrane cleaning bubbles supplied to the lower membrane separator to the upper air separator of the upper membrane separator, and the upper air diffuser of the membrane separator. A membrane-separated activated sludge treatment apparatus, which is attached so as to be re-supplied to the apparatus.
上記気泡回収手段の入口開口面積は、この気泡回収手段の真下の膜分離装置から浮上する気泡分布範囲以上に設定されている請求項1に記載の膜分離活性汚泥処理装置。  2. The membrane separation activated sludge treatment apparatus according to claim 1, wherein an inlet opening area of the bubble recovery unit is set to be equal to or greater than a bubble distribution range that floats from a membrane separation device directly below the bubble recovery unit. 上記気泡回収手段は、フード形状である請求項1又は2に記載の膜分離活性汚泥処理装置。  The membrane separation activated sludge treatment apparatus according to claim 1 or 2, wherein the bubble recovery means has a hood shape. 上段となる膜分離装置と下段となる膜分離装置とを相互に連結する連結手段が設けられている請求項1〜3のいずれか1項に記載の膜分離活性汚泥処理装置。  The membrane separation activated sludge treatment apparatus according to any one of claims 1 to 3, further comprising a connecting means for mutually connecting the upper membrane separation device and the lower membrane separation device. 上記膜分離装置は筒形状に構成されている請求項1〜4のいずれか1項に記載の膜分離活性汚泥処理装置。  The membrane separation activated sludge treatment apparatus according to any one of claims 1 to 4, wherein the membrane separation device is configured in a cylindrical shape.
JP2003083241A 2003-03-25 2003-03-25 Membrane separation activated sludge treatment equipment Expired - Fee Related JP4143453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083241A JP4143453B2 (en) 2003-03-25 2003-03-25 Membrane separation activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083241A JP4143453B2 (en) 2003-03-25 2003-03-25 Membrane separation activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2004290735A JP2004290735A (en) 2004-10-21
JP4143453B2 true JP4143453B2 (en) 2008-09-03

Family

ID=33398766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083241A Expired - Fee Related JP4143453B2 (en) 2003-03-25 2003-03-25 Membrane separation activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP4143453B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890063B2 (en) 2005-03-03 2007-03-07 シャープ株式会社 Waste water treatment apparatus and waste water treatment method
JP3893396B2 (en) * 2005-03-04 2007-03-14 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP3893402B2 (en) 2005-03-04 2007-03-14 シャープ株式会社 Exhaust gas wastewater treatment apparatus and exhaust gas wastewater treatment method
JP5425394B2 (en) * 2007-12-27 2014-02-26 月島機械株式会社 Filtration module, filtration module laminate, and filtration device
JP2010188278A (en) * 2009-02-18 2010-09-02 Kobelco Eco-Solutions Co Ltd Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method

Also Published As

Publication number Publication date
JP2004290735A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4906269B2 (en) Filtration device
KR100661935B1 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtering device using the module unit, and method of operating the membrane filtering device
EP1043276B1 (en) Apparatus and method for treating water
CN103442789B (en) Filter plant and the hollow fiber membrane module for this filter plant
JP5038038B2 (en) Hollow fiber membrane module and hollow fiber membrane unit using the same
KR20060049347A (en) Filter device
KR100569681B1 (en) Submerged hollow fiber membrane module
JP5472312B2 (en) Membrane module, membrane unit and membrane separator
JP4143453B2 (en) Membrane separation activated sludge treatment equipment
KR102055679B1 (en) Membrane unit for immersion type membrane separation system
JP5425394B2 (en) Filtration module, filtration module laminate, and filtration device
JP2007203254A (en) Membrane module for membrane separation type water-purifying apparatus
KR100624154B1 (en) Submerged hollow fiber membrane module
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP5065506B2 (en) Filtration device
KR100881629B1 (en) Apparatus for purifying sewage using micro porous hollow fiber membrane
JP4464660B2 (en) Filtration device
JP2003144864A (en) Immersing type membrane filtering device
KR100813890B1 (en) A submerged hollow fiber membrane module
JP6910850B2 (en) An air diffuser, a hollow fiber membrane module including the air diffuser, and a water treatment method.
JP2017196600A (en) Hollow fiber membrane cassette
JP3897419B2 (en) Filtration method and filtration apparatus using hollow fiber membrane module
JP4217281B2 (en) Septic tank
JP2011005361A (en) Membrane filtration apparatus
JP4818508B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4143453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees