JP2003071256A - Membrane washing method and treating method for liquid to be treated - Google Patents

Membrane washing method and treating method for liquid to be treated

Info

Publication number
JP2003071256A
JP2003071256A JP2001261790A JP2001261790A JP2003071256A JP 2003071256 A JP2003071256 A JP 2003071256A JP 2001261790 A JP2001261790 A JP 2001261790A JP 2001261790 A JP2001261790 A JP 2001261790A JP 2003071256 A JP2003071256 A JP 2003071256A
Authority
JP
Japan
Prior art keywords
aeration
liquid
membrane
amount
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001261790A
Other languages
Japanese (ja)
Inventor
Masanobu Okata
政信 大方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001261790A priority Critical patent/JP2003071256A/en
Publication of JP2003071256A publication Critical patent/JP2003071256A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane washing method, or the like, capable of preventing local excess or lack of aeration and stably maintaining uniform washing of the whole of membrane surface of a separation film membrane. SOLUTION: In a treating apparatus 10, a monitoring device 5 for monitoring the aeration state of a liquid level part S of a liquid L0 to be treated in a treating tank 1 is provided above the treating tank 1 installed with a membrane module 2 and a diffuser 70. An image photographed by the monitoring device 5 is outputted to a control device 6 and the existence of bubbles is determines by a light and shade treatment of the image. From this determination result, an amount of aeration at a presumed area unit corresponding to a diffusing unit 7 is taken-in and adjustment of the amount of aeration is carried out based thereon when excess of or lack in the amount of aeration is generated. As a result, local excess or lack in the amount of aeration is made appropriate and a uniform membrane washing can be accomplished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理液の膜分離
に供される分離膜(ろ過膜)を洗浄するための膜洗浄方
法、及び、その方法を用いた被処理液の処理方法に関す
る。
TECHNICAL FIELD The present invention relates to a membrane cleaning method for cleaning a separation membrane (filtration membrane) used for membrane separation of a liquid to be treated, and a method of treating a liquid to be treated using the method. .

【0002】[0002]

【従来の技術】固形物、粒子状物質等を含む被処理液
(水)の浄化処理、種々の固液分離、液液分離等には、
膜分離によるろ過処理が広く用いられており、ろ過精度
(ろ別サイズ)に応じて種々の分離膜が適用される。分
離膜としては、例えば、精密ろ過(MF)膜、限外ろ過
(UF)膜、ナノフィルトレーション(NF)膜、逆浸
透(RO)膜等が挙げられる。これらの分離膜の性状・
形状は、用途に応じて多岐にわたり、特に、大量の被処
理液を生物処理しながら継続的に膜分離するような浄化
処理では、例えば、複数の膜エレメントが集合配置され
た膜モジュールが多段に設けられることが多い。
2. Description of the Related Art For purification treatment of liquid to be treated (water) containing solid matter, particulate matter, etc., various solid-liquid separation, liquid-liquid separation, etc.
The filtration treatment by membrane separation is widely used, and various separation membranes are applied according to the filtration accuracy (filter size). Examples of the separation membrane include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. Properties of these separation membranes
The shape varies widely depending on the application, and particularly in the purification treatment in which a large amount of liquid to be treated is continuously subjected to membrane separation while biological treatment, for example, a membrane module in which a plurality of membrane elements are collectively arranged is provided in multiple stages. Often provided.

【0003】このような膜分離では、その膜分離能つま
りろ過性能を長期にわたって良好に維持すべく、分離膜
表面に付着又は堆積したろ過残渣である固形分等が適宜
洗浄される。近年、浄化処理においては、処理済水(浄
水)水質の更なる向上が望まれている。また、浄水だけ
でなく、精密機器や半導体の製造に用いる洗浄液(水)
に含まれる粒子状物質の更なる低減も切望されている。
このような要求に対し、ろ過精度の高いUF膜、NF
膜、RO膜等のクロスフローろ過が可能な高性能膜が広
く採用され、これに伴い、膜洗浄の重要性が一層高まっ
ている。
In such a membrane separation, in order to maintain the membrane separation ability, that is, the filtration performance in a good condition for a long period of time, the solid matter or the like which is the filtration residue adhered to or deposited on the surface of the separation membrane is appropriately washed. In recent years, in purification treatment, further improvement in the quality of treated water (purified water) is desired. In addition to purified water, cleaning liquid (water) used for manufacturing precision equipment and semiconductors
Further reduction of the particulate matter contained in is also desired.
In response to such requirements, UF membranes and NF with high filtration accuracy
High-performance membranes capable of cross-flow filtration such as membranes and RO membranes have been widely adopted, and along with this, the importance of membrane cleaning is increasing.

【0004】従来、分離膜の洗浄方法としては多くの方
法が実用化或いは提案されており、大別すると; (1)逆洗によりろ過抵抗を回復させる方法、(2)分
離膜表面を界面活性剤等の洗浄液を用いて洗浄する方
法、(3)分離膜の下方より曝気を行って分離膜表面の
付着物又は堆積物を剥離・除去する方法、等が挙げられ
る。これらのなかでも、上記(3)に示す曝気洗浄方法
は、好気性雰囲気下で生物処理を行いながら膜分離を行
う処理槽の場合、散気装置を膜洗浄に兼用することがで
き、しかも、必ずしも薬液が要らないこともあり、簡便
性及び洗浄性に優れている。
Conventionally, many methods have been put to practical use or proposed as a method for cleaning a separation membrane, which are roughly classified; (1) a method for recovering filtration resistance by backwashing, (2) a surface-active surface of the separation membrane. Examples include a method of cleaning with a cleaning liquid such as an agent, and (3) a method of aerating from below the separation membrane to remove / remove the deposits or deposits on the surface of the separation membrane. Among these, in the aeration cleaning method described in (3) above, in the case of a treatment tank in which membrane separation is performed while biological treatment is performed in an aerobic atmosphere, the aeration device can also be used for membrane cleaning. Since it may not necessarily require a chemical solution, it is excellent in simplicity and cleanability.

【0005】[0005]

【発明が解決しようとする課題】通常、曝気洗浄による
膜洗浄は、分離膜又はそれを有する膜モジュールの下方
に設置した単数又は複数の散気ユニット、或いは、多孔
管(散気管)等で構成される散気装置から空気等を放出
させ、気泡を分離膜表面に接触させることにより行うの
が一般的である。また、被処理液を好気性雰囲気下で活
性汚泥により生物処理し、膜分離と組合わせて処理済水
(浄水)を得る方法は広く行われており、このような方
法では、分離膜又は膜モジュール全体のろ過抵抗を十分
に低く保持してろ過性能を良好に維持する必要がある。
このために、均一な曝気状態を実現すべく、膜モジュー
ルの構成、形状等、又は、曝気を行うための散気装置の
台数、気泡の整流器等が、被処理液の処理条件や処理槽
によって適宜設定される。
Generally, the membrane cleaning by aeration cleaning is composed of a single or a plurality of air diffusing units installed below a separation membrane or a membrane module having the same, or a perforated pipe (air diffusing pipe) or the like. It is general that air or the like is discharged from the air diffuser to be brought into contact with bubbles on the surface of the separation membrane. In addition, a method of biologically treating a liquid to be treated with activated sludge in an aerobic atmosphere to obtain treated water (purified water) in combination with membrane separation is widely used. In such a method, a separation membrane or a membrane is used. It is necessary to keep the filtration resistance of the entire module low enough to maintain good filtration performance.
For this reason, in order to realize a uniform aeration state, the configuration, shape, etc. of the membrane module, the number of air diffusers for performing aeration, the rectifier of bubbles, etc., depend on the treatment conditions of the liquid to be treated and the treatment tank. It is set appropriately.

【0006】しかし、このような曝気条件を達成するよ
うに装置設計及び調整を行っても、実際の被処理液の処
理においては、種々の要因が複合し、曝気状態が短期又
は長期の経時的に変化したり、場合によっては、散気装
置の一部からの気泡の放出が不足したり或いは停止する
おそれもある。こうなると、局所的な曝気不足が生じる
ことにより、分離膜やその膜モジュールの均一洗浄が困
難となり、全体的なろ過抵抗の増大を招いてしまい、結
果として被処理液の処理効率が低下するおそれがある。
However, even if the apparatus is designed and adjusted so as to achieve such aeration conditions, various factors are combined in the actual treatment of the liquid to be treated, and the aeration state is short-term or long-term. There is also a risk that the discharge of air bubbles from a part of the air diffuser may be insufficient or stopped in some cases. If this happens, local aeration shortage will occur, making uniform cleaning of the separation membrane and its membrane module difficult, leading to an increase in overall filtration resistance, and as a result, the treatment efficiency of the liquid to be treated may decrease. There is.

【0007】そこで、本発明は、このような事情に鑑み
てなされたものであり、局所的な曝気過不足を防止し、
分離膜の膜面全体の均一洗浄を安定に維持することがで
きる膜洗浄方法を提供することを目的とする。また、本
発明の膜洗浄方法を用いることにより、所望の膜分離性
能を長期にわたって安定に維持でき、処理効率の低下を
抑止できる被処理液の処理方法を提供することを目的と
する。
Therefore, the present invention has been made in view of such circumstances, and prevents local aeration excess / deficiency,
An object of the present invention is to provide a membrane cleaning method capable of stably maintaining uniform cleaning of the entire membrane surface of a separation membrane. Another object of the present invention is to provide a method for treating a liquid to be treated, which can stably maintain a desired membrane separation performance for a long period of time by using the membrane cleaning method of the present invention and can suppress a decrease in treatment efficiency.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明による膜洗浄方法は、被処理液が供給される
処理槽に浸漬された分離膜を曝気洗浄する方法であっ
て、処理槽内の被処理液に、分離膜を有する膜分離部の
略下方から曝気する曝気工程と、曝気が行われている被
処理液の液面部における曝気状態を被処理液の外部から
監視し、液面部における曝気量及び/又は曝気量分布を
取得する監視工程と、監視工程で取得した曝気量(曝気
風量)及び/又は曝気量分布に基づいて、膜分離部の一
部叉は全部に対する曝気量を調整する調整工程とを備え
ることを特徴とする。
In order to solve the above problems, a membrane cleaning method according to the present invention is a method for aeration cleaning a separation membrane immersed in a treatment tank to which a liquid to be treated is supplied. The aeration step of aerating the liquid to be treated in the tank from substantially below the membrane separation part having the separation membrane and the aeration state of the liquid surface part of the liquid to be treated are monitored from the outside of the liquid to be treated. Based on the aeration amount (aeration air amount) and / or the aeration amount distribution acquired in the monitoring process and the monitoring process for acquiring the aeration amount and / or the aeration amount distribution in the liquid surface part, part or all of the membrane separation part And an adjusting step of adjusting an aeration amount for the.

【0009】このような膜洗浄方法においては、曝気工
程において、処理槽内に浸漬された膜分離部の略下方か
ら曝気を行うと、膜分離によって膜面に付着・堆積した
ろ過残渣や固形分と気泡とが接触し、主として機械的な
作用によって膜面上の付着物が剥離・除去され、これに
より膜面の曝気洗浄が行われる。その後、気泡は、膜分
離部を通過し、被処理液の液面部へ達して気相へ放出さ
れる。こうして、液面部には気泡が連続供給され、バブ
リング状態つまり曝気状態が定常的に形成される。液面
のこのような曝気状態は、被処理液の外部(外方)から
観測可能である。
In such a membrane cleaning method, in the aeration step, when aeration is performed from substantially below the membrane separation section immersed in the treatment tank, the filtration residue and solids adhered and deposited on the membrane surface due to the membrane separation. And air bubbles come into contact with each other, and the deposits on the film surface are peeled off and removed mainly by a mechanical action, whereby the film surface is aerated and cleaned. After that, the bubbles pass through the membrane separation unit, reach the liquid surface of the liquid to be treated, and are discharged into the gas phase. Thus, the bubbles are continuously supplied to the liquid surface portion, and the bubbling state, that is, the aeration state is constantly formed. Such aeration state of the liquid surface can be observed from outside (outside) of the liquid to be treated.

【0010】上述の如く、膜分離部の構成、形状等、又
は、曝気を行うための散気装置の台数等は、被処理液の
処理条件や処理槽によって適宜設定され、膜分離部全体
を均一に曝気洗浄することが望ましいが、ときには曝気
の偏りが生じたり、万一の場合、散気装置の一部から散
気が減少又は停止することも考えられる。こうなると、
被処理液の液面部の曝気量に局所的な差異(過不足)が
生じ得る。
As described above, the configuration, shape, etc. of the membrane separation unit, or the number of air diffusers for performing aeration, etc. are appropriately set depending on the treatment conditions of the liquid to be treated and the treatment tank, and the entire membrane separation unit is set. It is desirable to perform aeration and cleaning uniformly, but sometimes aeration is unevenly distributed, and in the unlikely event that aeration is reduced or stopped from a part of the air diffuser. This happens when,
A local difference (excess or deficiency) may occur in the aeration amount of the liquid surface of the liquid to be treated.

【0011】そこで、監視工程を実施して液面部の曝気
状態を観察・監視し、その平面的な曝気量分布を取得す
ることにより、曝気量の差異が生じたことやその偏向
(偏在)の程度が検知される。また、液面部全体にわた
る曝気量を取得することにより、膜分離部への全体的な
曝気量の過不足が検知される。なお、全体の曝気量は、
曝気量分布を積分(積算)することによっても求め得
る。
Therefore, by performing a monitoring step to observe and monitor the aeration state of the liquid surface part and obtain the planar aeration amount distribution, a difference in the aeration amount occurs and its deviation (uneven distribution). Is detected. Further, by acquiring the aeration amount over the entire liquid surface part, it is possible to detect the excess or deficiency of the entire aeration amount for the membrane separation part. The total aeration amount is
It can also be obtained by integrating (integrating) the aeration amount distribution.

【0012】そして、調整工程を実施して、監視工程で
取得した液面部の曝気量分布に基づいて、例えば、膜分
離部において曝気量が相対的に少ない又は多い一部の部
位への気泡供給量を加減して曝気量を調整する。これに
より、膜分離部全体を均一に曝気洗浄でき、さらに、そ
の均一な洗浄状態を維持することができる。また、液面
部全体の曝気量を所望に加減することが可能となる。
Then, the adjustment step is performed, and based on the aeration amount distribution of the liquid surface obtained in the monitoring step, for example, air bubbles to a part of the membrane separation section where the aeration amount is relatively small or large. Adjust the aeration rate by adjusting the supply rate. As a result, the entire membrane separation section can be uniformly aerated and cleaned, and the uniform cleaning state can be maintained. In addition, it is possible to adjust the aeration amount of the entire liquid surface portion as desired.

【0013】より具体的には、監視工程が、液面部の外
部から液面部を撮像する撮像ステップと、撮像ステップ
で得た画像を仮想的な所定数の領域に分割する領域分割
ステップと、撮像ステップで得た画像の画像情報を数値
化し、該数値情報に基づいてその画像における気泡の有
無を判別する気泡判別ステップと、気泡の有無の判別結
果に基づいて、上記領域全体にわたる曝気量及び/又は
曝気量分布を取得する曝気量取得ステップと、曝気量及
び/又は曝気量分布から、膜分離部における上記各領域
に対応する部位への曝気量の調整量を算定する調整量算
定ステップとを有しており、調整工程においては、その
調整量に基づいて膜分離部の一部叉は全部に対する曝気
量を調整すると好ましい。
More specifically, the monitoring step includes an imaging step of imaging the liquid surface portion from the outside of the liquid surface portion, and an area dividing step of dividing the image obtained in the imaging step into a virtual predetermined number of areas. , A bubble determination step of digitizing the image information of the image obtained in the imaging step and determining the presence or absence of bubbles in the image based on the numerical information, and the aeration amount over the entire region based on the determination result of the presence or absence of bubbles And / or an aeration amount acquisition step of obtaining an aeration amount distribution, and an adjustment amount calculation step of calculating an adjustment amount of the aeration amount to a portion corresponding to each region in the membrane separation unit from the aeration amount and / or the aeration amount distribution. In the adjusting step, it is preferable to adjust the aeration amount to a part or all of the membrane separation section based on the adjusting amount.

【0014】なお、領域分割ステップと気泡判別ステッ
プとは、いずれを先に実施してもよく、或いは、並行し
て同時に実施してもよい。また、「画像情報」とは、画
像上の位置情報、及び、各位置における色、色相、明
度、輝度、彩度等の色調に関する情報、或いは、かかる
色調の分布に関する情報をいう。
Either the area dividing step or the bubble determining step may be performed first, or may be performed simultaneously in parallel. The "image information" refers to position information on the image, information about color tones such as color, hue, brightness, luminance, and saturation at each position, or information about distribution of such tone.

【0015】このようにすれば、被処理液の液面部を撮
像することにより、液面部の曝気状態を非接触で監視で
きると共に、得られた画像を画像処理することにより、
仮想的な領域単位の曝気量分布、及び/又は、全領域に
おける曝気量を取得できる。また、仮想領域への分割数
は特に限定されず、例えば、曝気を行うための散気装置
が複数の散気ユニットで構成される場合に、散気ユニッ
ト数に応じた分割数とすれば、散気ユニット単位の曝気
量分布が得られ得る。さらに、曝気量及び/又は曝気量
分布に基づいてその曝気量の調整量(つまり加減量)を
算定するので、曝気量の調整を確実且つ簡便に実施でき
る利点がある。
With this configuration, the aeration state of the liquid surface can be monitored in a non-contact manner by imaging the liquid surface of the liquid to be processed, and the obtained image can be image-processed.
The aeration amount distribution in virtual region units and / or the aeration amount in the entire region can be acquired. Further, the number of divisions into the virtual area is not particularly limited, for example, when the air diffuser for performing aeration is composed of a plurality of air diffusers, if the number of divisions according to the number of air diffusers, An aeration amount distribution for each aeration unit can be obtained. Furthermore, since the adjustment amount (that is, the adjustment amount) of the aeration amount is calculated based on the aeration amount and / or the distribution of the aeration amount, there is an advantage that the adjustment of the aeration amount can be performed reliably and easily.

【0016】また、気泡判別ステップにおいては、画像
情報として画像上の明度又は輝度の情報を用いると好適
である。ここで、発明者の知見によれば、曝気状態にあ
る液面部の撮像画像をグレースケールで表示したとき
に、画像上の明度が気泡の有無(存否)によって異なる
こと、具体的には、気泡が存在する画像部分の明度が、
気泡がない部分に比して大きい(白色の度合が高い)傾
向にあることが確認された。さらに、曝気量の過少に応
じて画像上の明暗の面積比率が異なること、つまり、画
像上の‘明るい’部分の面積と曝気量との間に相関関係
が存在することが確認された。
Further, in the bubble determination step, it is preferable to use information on the brightness or the brightness on the image as the image information. Here, according to the knowledge of the inventor, when a captured image of a liquid surface part in an aerated state is displayed in gray scale, the brightness on the image varies depending on the presence or absence of air bubbles (presence or absence), specifically, The brightness of the image part where bubbles are present is
It was confirmed that the size tended to be larger (the degree of white color was higher) as compared with the part without bubbles. Furthermore, it was confirmed that the area ratio of light and dark on the image differs depending on the amount of aeration, that is, there is a correlation between the area of the'bright 'part on the image and the amount of aeration.

【0017】すなわち、画像上の気泡を‘明暗’によっ
て判別でき、その結果、例えば気泡が存在するエリアの
面積から気泡量ひいては曝気量を求め得る。また、画像
処理で扱うカラーモデルによっては、明度のみならず輝
度によっても気泡の判別を行い得る。例えば、汎用のR
GBモデル(モード)での処理では、明暗を明度で規定
でき、或いは、黒白を輝度の階調で表現し得る汎用のL
**bモデル(YCbCrモデル)等では輝度による明
暗の規定が可能である。また、元の撮像画像がグレース
ケールの場合も同様であって、例えば、黒から白までの
明度を0〜256階調の数値としたり、百分率(%)の
数値としたり、モノクロ二階調の数値するといった汎用
手法を採用できる。
That is, the bubbles on the image can be identified by "brightness", and as a result, the amount of bubbles and thus the amount of aeration can be obtained from the area of the area where the bubbles are present. Further, depending on the color model used in the image processing, it is possible to discriminate the bubbles not only by the brightness but also by the brightness. For example, general-purpose R
In the processing by the GB model (mode), the brightness can be defined by the brightness, or the general-purpose L that can express black and white by the gradation of the brightness.
In the * a * b model (YCbCr model) and the like, it is possible to specify the brightness according to the brightness. The same applies to the case where the original captured image is grayscale. For example, the brightness from black to white is set to a numerical value of 0 to 256 gradations, a numerical value of a percentage (%), or a numerical value of monochrome two gradations. It is possible to adopt a general method such as

【0018】一層具体的には、例えば、まず、膜洗浄方
法の実施に先立って、曝気状態にある液面部の画像を取
得し、気泡の有無による明度又は輝度の境界値若しくは
その範囲又はしきい値(以下、これらをまとめて「判別
用設定値」という)を予め設定しておき、気泡判別ステ
ップにおいて、数値化した画像上の明度又は輝度(以
下、「明度等実測値」という)と判別用設定値とを比較
演算する。気泡実測値は、画像上の例えばピクセル単位
で数値化し、ピクセル毎に比較演算を行う。
More specifically, for example, first, before the film cleaning method is performed, an image of the liquid surface portion in an aerated state is acquired, and the boundary value of brightness or luminance depending on the presence or absence of bubbles or its range or range. A threshold value (hereinafter, collectively referred to as “discrimination setting value”) is set in advance, and in the bubble discrimination step, the digitized brightness or luminance on the image (hereinafter, referred to as “actual value such as brightness”) is set. A comparison is made with the set value for discrimination. The actual bubble value is digitized, for example, on a pixel-by-pixel basis on the image, and a comparison operation is performed for each pixel.

【0019】このとき、気泡実測値が判別用設定値より
‘明るい’(白い)値の場合に気泡部分と判別し、逆に
‘暗い’(黒い)値の場合には気泡部分ではないと判別
できる。殊に、二値化処理を採用した場合には、白又は
黒による気泡の判別が可能であり、より簡便な処理とな
る。そして、曝気量取得ステップにおいて、気泡ありと
判別されたピクセル数を領域単位又は全領域にわたって
積算し、得られた積算値を気泡量すなわち曝気量とみな
し、又は、積算値に所定のファクターを乗ずる等の補正
を行って曝気量を算出できる。
At this time, when the measured bubble value is "brighter" (white) value than the set value for determination, it is determined to be a bubble portion, and conversely, when it is "dark" (black) value, it is determined not to be a bubble portion. it can. In particular, when the binarization process is adopted, it is possible to discriminate bubbles in white or black, which is a simpler process. Then, in the aeration amount acquisition step, the number of pixels determined to have bubbles is integrated for each region or the entire region, and the obtained integrated value is regarded as the bubble amount, that is, the aeration amount, or the integrated value is multiplied by a predetermined factor. The amount of aeration can be calculated by performing correction such as.

【0020】さらに、調整量算定ステップにおいては、
各領域に対して得られた曝気量の実測値と、予め設定し
ておいた曝気量の設定値、又は、各領域に対して得られ
た曝気量の平均値との差分に応じて曝気量の調整量を算
定するとより好ましい。
Further, in the adjustment amount calculation step,
Aeration amount according to the difference between the actual measurement value of the aeration amount obtained for each area and the preset value of the aeration amount set beforehand, or the average value of the aeration amount obtained for each area It is more preferable to calculate the adjustment amount of.

【0021】このようにすれば、各領域の曝気量の実測
値が曝気量の設定値又は平均値を下回る場合には、その
領域への曝気量が増大するような調整量とし、逆に前者
が後者を上回る場合には、その領域への曝気量が減少す
るような調整量が算定される。この調整量は、曝気量の
実測値に基づく差分に応じて算定され、この調整量に従
って、膜分離部における当該領域に対応する部位への曝
気量を加減することにより、膜分離部全体に対する曝気
洗浄の均一化を促進でき、且つ、曝気量の制御をより簡
便且つ確実に行い得る。
In this way, when the measured value of the aeration amount in each region is below the set value or average value of the aeration amount, the adjustment amount is set so as to increase the aeration amount in that region, and conversely the former. If the value exceeds the latter, the adjustment amount is calculated so that the aeration amount to the area is reduced. This adjustment amount is calculated according to the difference based on the actual measurement value of the aeration amount, and according to this adjustment amount, by adjusting the aeration amount to the region corresponding to the region in the membrane separation unit, the aeration amount for the whole membrane separation unit is adjusted. The uniform cleaning can be promoted, and the aeration amount can be controlled more easily and surely.

【0022】またさらに、撮像ステップにおいては、液
面部を連続的又は断続的に撮像し、領域分割ステップ及
び/又は気泡判別ステップにおいては、画像として撮像
ステップで得た複数の画像からサンプリングした複数の
画像を用いると有用である。
Furthermore, in the imaging step, the liquid surface portion is imaged continuously or intermittently, and in the area dividing step and / or the bubble discrimination step, a plurality of images sampled from the plurality of images obtained in the imaging step are sampled. It is useful to use the image of.

【0023】被処理液の液面部の曝気状態は、通常、時
々刻々と変化し、監視工程においては、連続的又は断続
的に監視を行うことが望ましい。この場合、ある瞬間に
おける一つの画像を処理して気泡の判別ひいては曝気量
を求めると、場合によっては、経時的に一定しない液面
部の状態を正確に把握し難いことがある。
The aeration state of the liquid surface of the liquid to be treated usually changes moment by moment, and it is desirable to monitor continuously or intermittently in the monitoring step. In this case, if one image at a certain moment is processed to determine the bubbles and thus the aeration amount, it may be difficult to accurately grasp the state of the liquid surface portion which is not constant with time in some cases.

【0024】これに対し、液面部を連続的又は断続的に
撮像して得られた画像から例えば一定の時間間隔で複数
の画像をサンプリングしたものを領域分割ステップ及び
/又は気泡判別ステップで用いることにより、液面部に
おける曝気量の時間平均値が得られる。よって、液面部
の曝気状態をより正確に且つ実態により即して把握する
ことができる。また、画像サンプリングの時間間隔を短
縮することにより、曝気量を実時間に近い状態で調整す
ることが可能となる。
On the other hand, a plurality of images sampled at fixed time intervals from images obtained by continuously or intermittently capturing the liquid surface portion are used in the region division step and / or the bubble determination step. As a result, the time average value of the aeration amount at the liquid surface portion can be obtained. Therefore, it is possible to grasp the aeration state of the liquid surface portion more accurately and in accordance with the actual condition. Further, by shortening the time interval of image sampling, it becomes possible to adjust the aeration amount in a state close to real time.

【0025】また、本発明の膜洗浄方法を有効に実施す
るための装置として、被処理液が供給される処理槽内に
設けられた分離膜を有する膜分離部を曝気洗浄するため
の装置であって、膜分離部の略下方に設置され処理槽内
の被処理液に曝気する曝気部と、被処理液の外部に設け
られ曝気が行われている被処理液の液面部における曝気
状態を監視し、且つ、液面部における曝気量及び/又は
曝気量分布を取得する監視部と、曝気部と監視部とに接
続されており、監視部で取得した曝気量及び/又は曝気
量分布に基づいて、膜分離部の一部叉は全部に対する曝
気量を調整する調整部とを備えるものを用いると好適で
ある。
Further, as an apparatus for effectively carrying out the membrane cleaning method of the present invention, an apparatus for aerobically cleaning a membrane separation section having a separation membrane provided in a treatment tank into which a liquid to be treated is supplied. There is an aeration part installed below the membrane separation part to aerate the liquid to be treated in the treatment tank, and an aeration state at the liquid surface part of the liquid to be treated provided outside the liquid to be treated. And an aeration amount and / or an aeration amount distribution acquired by the monitoring unit, which are connected to the aeration unit and the monitoring unit for monitoring the aeration amount and / or acquiring the aeration amount and / or the aeration amount distribution on the liquid surface. Based on the above, it is preferable to use the one that includes an adjustment unit that adjusts the aeration amount for a part or all of the membrane separation unit.

【0026】さらには、監視部が、液面部の外部からそ
の液面部を撮像する撮像部を有しており、且つ、撮像部
により得た画像を画像処理し、その画像における気泡の
有無を判別し、判別結果に基づいて液面部における曝気
量及び/又は曝気量分布を取得するものであると好適で
ある。
Further, the monitoring section has an image pickup section for picking up an image of the liquid level section from the outside of the liquid level section, and the image obtained by the image pickup section is subjected to image processing to detect the presence or absence of bubbles in the image. It is preferable that the aeration amount and / or the aeration amount distribution in the liquid surface portion be acquired based on the determination result.

【0027】また、本発明による被処理液の処理方法
は、本発明の膜洗浄方法を用いて好適なものであり、被
処理液を活性汚泥により生物処理する方法であって、活
性汚泥を含み且つ分離膜を有する膜分離部を備える処理
槽に被処理液を供給する供給工程と、本発明による膜洗
浄方法を実施しながら、膜分離部による被処理液の膜分
離を行う処理工程とを備えることを特徴とする。
Further, the method for treating the liquid to be treated according to the present invention is suitable for using the membrane cleaning method of the present invention, and is a method for biologically treating the liquid to be treated with activated sludge, which contains activated sludge. And a supply step of supplying the liquid to be treated to a treatment tank having a membrane separation unit having a separation membrane, and a treatment process of performing the membrane separation of the liquid to be treated by the membrane separation unit while carrying out the membrane cleaning method according to the present invention. It is characterized by being provided.

【0028】さらに、本発明の被処理液の洗浄方法を有
効に実施するための装置としては、被処理液が活性汚泥
により生物処理され且つ分離膜により膜分離されるもの
であって、活性汚泥を含み且つ被処理液が供給される処
理槽と、処理槽内に配置されており分離膜を有する膜分
離部と、上述した本発明の膜洗浄方法を有効に実施する
ための膜洗浄装置とを備えるものを用いると有用であ
る。
Further, as an apparatus for effectively carrying out the method for cleaning a liquid to be treated of the present invention, the liquid to be treated is biologically treated with activated sludge and membrane-separated with a separation membrane. A treatment tank containing a liquid to be treated, a membrane separation unit arranged in the treatment tank and having a separation membrane, and a membrane cleaning apparatus for effectively implementing the above-described membrane cleaning method of the present invention. It is useful to use the one provided with.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。なお、同一の要素には同一の符号を付
し、重複する説明を省略する。また、上下左右等の位置
関係は、特に断らない限り、図面に示す位置関係に基づ
くものとする。また、図面の寸法比率は、図示の比率に
限られるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The same elements will be denoted by the same reference symbols, without redundant description. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios.

【0030】図1は、本発明による膜洗浄方法を有効に
実施するための膜洗浄装置を備える被処理液の処理装置
の好適な一実施形態の構成を模式的に示す断面図であ
り、図2は図1におけるII−II線断面図である。処理装
置10は、被処理液L0の生物処理と膜分離を並行して
実施するための浸漬型膜分離装置であり、処理槽1内
に、浸漬平膜等の分離膜を複数有する膜モジュール2
(膜分離部)が設けられたものである。
FIG. 1 is a sectional view schematically showing the configuration of a preferred embodiment of a treatment apparatus for a liquid to be treated, which is equipped with a membrane cleaning apparatus for effectively carrying out the membrane cleaning method according to the present invention. 2 is a sectional view taken along line II-II in FIG. The treatment apparatus 10 is an immersion type membrane separation apparatus for carrying out biological treatment and membrane separation of the liquid to be treated L0 in parallel, and a membrane module 2 having a plurality of separation membranes such as immersed flat membranes in the treatment tank 1.
(Membrane separation part) is provided.

【0031】この膜モジュール2は、処理槽1の外部に
設けられたろ過ポンプ3に接続されている。また、処理
槽1の底部には、電動制御弁8が設けられた配管を介し
て送風機4に接続された散気装置70(曝気部)が設置
されている。散気装置70は、所定の間隔で複数の散気
ユニット7が併設されたものであり、同方向に配置され
た複数の散気ユニット7が設けられた各配管ラインにそ
れぞれ電動制御弁8が配設されている(図2参照)。各
散気ユニット7は、多数の微細孔を有しており、処理槽
1内の被処理液L0に多数の気泡Kが放出され、膜モジ
ュール2の全体に対して曝気されるようになっている。
The membrane module 2 is connected to a filtration pump 3 provided outside the processing tank 1. Further, an air diffuser 70 (aeration unit) connected to the blower 4 via a pipe provided with the electric control valve 8 is installed at the bottom of the processing tank 1. The air diffuser 70 is provided with a plurality of air diffuser units 7 at predetermined intervals, and the electric control valve 8 is provided in each of the pipelines provided with the plurality of air diffuser units 7 arranged in the same direction. It is provided (see FIG. 2). Each air diffuser unit 7 has a large number of fine holes, and a large number of bubbles K are discharged to the liquid L0 to be treated in the treatment tank 1 so that the entire membrane module 2 is aerated. There is.

【0032】また、各電動制御弁8には、被処理液L0
の液面部Sを臨むように処理槽1の上方に設置された監
視装置5(監視部)に接続された制御装置6が接続され
ている。監視装置5は、TVカメラ等の撮像部を有して
おり、液面部Sの全体を撮像するものである。撮像部に
は、例えば、CCD、CMOS等の複数の画素を有する
撮像センサー等が採用される。撮像された画像は制御装
置6に出力される。
Further, each electric control valve 8 has a liquid L0 to be treated.
A control device 6 connected to a monitoring device 5 (monitoring part) installed above the processing tank 1 so as to face the liquid surface S of the above is connected. The monitoring device 5 has an image pickup unit such as a TV camera and picks up an image of the entire liquid surface S. The image pickup unit employs, for example, an image pickup sensor having a plurality of pixels such as CCD and CMOS. The captured image is output to the control device 6.

【0033】制御装置6は、後述するように、撮像され
た画像の記録、処理等を行うものであり、処理結果に基
づく弁開度信号を電動制御弁8へ出力するものである。
そして、電動制御弁8の弁開度に応じて散気装置70か
ら放出される気泡量が調整されるようになっている。こ
のように、制御装置6及び電動制御弁8から調整部が構
成されており、この調整部、監視装置5及び散気装置7
0から膜洗浄装置が構成されている。
As will be described later, the control device 6 records and processes the picked-up image, and outputs a valve opening signal based on the processing result to the electric control valve 8.
Then, the amount of bubbles emitted from the air diffuser 70 is adjusted according to the valve opening degree of the electric control valve 8. In this way, the control device 6 and the electric control valve 8 constitute an adjusting unit, and the adjusting unit, the monitoring device 5, and the air diffusing device 7 are provided.
A membrane cleaning device is constructed from 0.

【0034】図3は、本発明による膜洗浄方法を有効に
実施するための他の膜洗浄装置を備える被処理液の処理
装置に係る他の実施形態の要部を模式的に示す斜視図
(一部構成図)である。処理装置20は、各散気ユニッ
ト7と、その散気ユニット7が接続された配管に設置さ
れた電動制御弁8との間に電動制御弁Vijが設けられた
こと以外は、図1及び2に示す処理装置10と同様に構
成されたものである。
FIG. 3 is a perspective view schematically showing a main part of another embodiment of a treatment apparatus for a liquid to be treated, which is provided with another membrane cleaning apparatus for effectively carrying out the membrane cleaning method according to the present invention ( It is a partial configuration diagram). 1 and 2 except that an electric control valve V ij is provided between each air diffusion unit 7 and an electric control valve 8 installed in a pipe to which the air diffusion unit 7 is connected. The processing device 10 shown in FIG.

【0035】また、制御装置6は、入出力インターフェ
イス61と、これに接続された記憶・演算部63とを備
えており、各電動制御弁Vij及び監視装置5が入出力イ
ンターフェイス61に接続されている。監視装置5で取
得された撮像画像は入出力インターフェイス61を通し
て記憶・演算部63に入力され、記憶・演算部63によ
る処理信号(後述する弁開度の調節信号)が入出力イン
ターフェイス61を通して各電動制御弁Vijへ出力され
る。このように、制御装置6及び電動制御弁V ijから調
整部が構成されており、この調整部、監視装置5及び散
気装置70から膜洗浄装置が構成されている。
Further, the control device 6 has an input / output interface.
A chair 61 and a storage / calculation unit 63 connected to the chair 61 are provided.
And each electric control valve VijAnd the monitoring device 5
Interface 61. Monitoring device 5
The obtained captured image is passed through the input / output interface 61.
Is input to the storage / calculation unit 63, and stored in the storage / calculation unit 63.
Input / output of the processing signal (the valve opening adjustment signal described later)
Each electric control valve V through the interface 61ijIs output to
It In this way, the control device 6 and the electric control valve V ijFrom key
The adjusting unit is configured, and the adjusting unit, the monitoring device 5, and the scattering unit are configured.
A film cleaning device is constituted by the air device 70.

【0036】このように構成された処理装置20を用い
た本発明による膜洗浄方法及び被処理液の処理方法の一
例について説明する。ここで、図4は、本発明による被
処理液の処理方法における膜洗浄方法の具体的な手順の
一例を示すフロー図である。また、図5は、液面部Sに
おける曝気状態を模式的に示す平面図である。
An example of the method for cleaning a film and the method for treating a liquid to be treated according to the present invention using the treatment apparatus 20 thus constructed will be described. Here, FIG. 4 is a flow chart showing an example of a specific procedure of the film cleaning method in the method for treating a liquid to be treated according to the present invention. Further, FIG. 5 is a plan view schematically showing the aeration state in the liquid surface portion S.

【0037】処理装置20の運転を開始し、まず、被処
理液L0を処理槽1内に供給する(供給工程)。被処理
液L0の所定量が貯留され、膜モジュール2が被処理液
L0中に浸漬された状態で、送風機4から送風し、電動
制御弁8,Vijを所定の開度で開放して散気装置70か
らの曝気を開始する(ステップW1;曝気工程)。これ
により、被処理液L0の曝気攪拌が行われ、活性汚泥に
よる被処理液L0の好気性処理が行われる。それと共
に、ろ過ポンプ3を運転し、被処理液L0を定常的に連
続供給しながら膜モジュール2による膜分離を行い、処
理済液L1を処理槽1の外部へ排出する。処理済液L1
は、必要に応じて他の処理が施され得る。
The operation of the processing apparatus 20 is started, and first, the liquid L0 to be processed is supplied into the processing tank 1 (supply step). A predetermined amount of the liquid to be treated L0 is stored and the membrane module 2 is immersed in the liquid to be treated L0, and air is blown from the blower 4 to open the electric control valves 8 and V ij at a predetermined opening degree to scatter. Aeration from the air device 70 is started (step W1; aeration process). Thereby, the liquid L0 to be treated is aerated and agitated, and the aerobic treatment of the liquid L0 to be treated is performed by the activated sludge. At the same time, the filtration pump 3 is operated to perform the membrane separation by the membrane module 2 while continuously and continuously supplying the liquid to be treated L0, and the treated liquid L1 is discharged to the outside of the treatment tank 1. Treated liquid L1
May be subjected to other processing as necessary.

【0038】このとき、膜分離に伴って膜モジュール2
の膜面には、ろ過残渣である固形分等が付着・堆積する
が、散気装置70からの曝気により、気泡と付着物とが
接触して付着物が剥離・除去され、被処理液L0の好気
性処理(生物処理)と同時に分離膜の膜洗浄が行われ
る。
At this time, the membrane module 2 is accompanied by the membrane separation.
The solid content, which is a filtration residue, adheres to and accumulates on the film surface of No. 1, but due to aeration from the air diffuser 70, the air bubbles and the adherent come into contact with each other to remove and remove the adherent, and the liquid L0 to be treated is treated. The membrane cleaning of the separation membrane is performed at the same time as the aerobic treatment (biological treatment).

【0039】一方、散気装置70の運転とともに、監視
装置5を運転して被処理液L0の液面部Sの監視を開始
し(ステップS1)、液面部Sを上方から一定時間t
(例えば、秒単位、分単位等)撮像する(ステップS
2;撮像ステップ)。液面部Sの撮像は、例えば、連続
的又は断続的に動画を取得してもよく、又はストロボ撮
影のように静止画を連続的又は断続的に取得してもよ
い。次に、かかる撮像画像のデータを制御装置6へ入力
し、撮像画像のサンプリングを行なって複数のサンプリ
ング画像αnを得る(ステップS3)。
On the other hand, along with the operation of the air diffuser 70, the monitoring device 5 is operated to start monitoring the liquid surface portion S of the liquid L0 to be treated (step S1), and the liquid surface portion S is kept from above for a predetermined time t.
(For example, a unit of seconds, a unit of minutes, etc.) is imaged (step S
2; imaging step). For the imaging of the liquid surface portion S, for example, a moving image may be continuously or intermittently acquired, or a still image may be continuously or intermittently acquired as in stroboscopic photography. Next, the data of the captured image is input to the control device 6, and the captured image is sampled to obtain a plurality of sampled images αn (step S3).

【0040】次いで、各サンプリング画像αnについ
て、例えばピクセルP単位で明度、輝度、色相等の情報
を数値化するとともに、各ピクセルについて位置情報を
割り当てる(ステップS4)。ここでは、各ピクセルP
lm(添字l,mはピクセルの二次元位置情報を示す)に
対し、RGBモードでの画像上の明暗つまり明度Mによ
る画像処理を行う場合の例について説明する。また、各
サンプリング画像αnにおける各ピクセルPlmの明度M
を時間積分し(具体的には、全サンプリング画像αnの
情報を積算し)、時間tで除して平均値を算出する(ス
テップS4)。これにより、液面部Sの撮像時間tにお
ける撮像画像の明度Mの時間平均値を得る。
Next, for each sampled image αn, information such as brightness, luminance, and hue is digitized for each pixel P, and position information is assigned to each pixel (step S4). Here, each pixel P
An example will be described in which image processing is performed on lightness or darkness, that is, lightness M on an image in RGB mode for lm (subscripts l and m indicate two-dimensional position information of pixels). Further, the brightness M of each pixel P lm in each sampling image αn
Is integrated over time (specifically, information of all the sampled images αn is integrated) and divided by time t to calculate an average value (step S4). Thereby, the time average value of the brightness M of the captured image at the imaging time t of the liquid surface portion S is obtained.

【0041】次に、得られた明度Mの時間平均値と各ピ
クセルPlmの位置情報とから、明度Mの二次元分布情報
が抽出された画像の再構成を行う(ステップS5)。さ
らに、この再構成画像を、散気ユニット7の設置部位に
対応する仮想領域に分割する(ステップS6;領域分割
ステップ)。具体的には、例えば、図5に示す如く、液
面部Sの上方から見て個々の散気ユニット7がそれぞれ
包含されるような平面的な領域Rij(添字i,jは、仮
想領域の二次元位置を示す)に仮想的に分割する。
Next, the image in which the two-dimensional distribution information of the brightness M is extracted is reconstructed from the obtained time average value of the brightness M and the position information of each pixel P lm (step S5). Further, this reconstructed image is divided into virtual regions corresponding to the installation site of the air diffusion unit 7 (step S6; region dividing step). Specifically, for example, as shown in FIG. 5, a planar area R ij (subscripts i and j are virtual areas) in which the individual air diffusing units 7 are respectively included when viewed from above the liquid surface S. (Indicates the two-dimensional position of)).

【0042】次に、各領域Rijにおける気泡の判別、及
び、その判別結果から気泡量ひいては曝気量を算出する
(ステップS7;気泡判別ステップと曝気量取得ステッ
プとを兼ねる)。気泡の判別においては、まず、各ピク
セルPlmの明度を二値化する。通常、RGBモードで
は、0〜255の範囲内の数値とされており、予め記憶
・演算部63に記憶させておいた明暗(白黒)の判別用
設定値と、各ピクセルP lmの明度等実測値とを比較し、
判定値以上の場合、‘0:白’とし、判定値を上回る場
合、‘1:黒’とする。
Next, each region RijOf air bubbles in
And calculate the amount of bubbles and thus the amount of aeration from the discrimination result.
(Step S7; bubble determination step and aeration amount acquisition step
Also doubles as). When distinguishing bubbles, first
Cell PlmBinarizes the brightness of. Normally in RGB mode
Is a numerical value within the range of 0 to 255 and is stored in advance.
.For distinguishing between light and dark (black and white) stored in the computing unit 63
Setting value and each pixel P lmCompare the measured values such as brightness of
If it is more than the judgment value, it is set to “0: White” and exceeds the judgment value.
If this is the case, it will be “1: Black”.

【0043】次に、各領域Rij内の0値を有するピクセ
ル数を積算し、ピクセル総数で規格化して各領域Rij
気泡量の指数を得る。この指数に、領域Rijの配置、散
気ユニット7の送風機4からの距離、等を考慮したファ
クターを補正して曝気量の指数Dijを得る。こうして、
各領域Rij単位での曝気量分布を取得し、これらを積算
すれば全領域Raにわたる曝気量を取得することができ
る。
Next, the number of pixels having a 0 value in each region R ij is integrated and standardized by the total number of pixels to obtain an index of the amount of bubbles in each region R ij . A factor considering the arrangement of the region R ij , the distance of the air diffuser unit 7 from the blower 4, and the like are corrected to this index to obtain the aeration amount index D ij . Thus
It is possible to obtain the aeration amount over the entire region Ra by acquiring the aeration amount distribution in each region R ij and integrating these.

【0044】さらに、全領域Raについて各領域Rij
曝気量指数Dijを積算した値を領域数(i×j)で除し
て曝気量指数の平均値Davを算出する(ステップS
8)。次いで、各曝気量指数Dijとそれらの平均値Dav
を比較し、両者の差異を判定し、必要であれば曝気量の
調整量を算定する(ステップS9;調整量算定ステッ
プ)。判定にあたっては、両者の差分を算出し、その差
分の絶対値が所定の許容量を超える場合にその差分に応
じた曝気量の調整量を算定する。
Further, the average value Dav of the aeration amount index is calculated by dividing the value obtained by integrating the aeration amount index D ij of each region R ij for all the regions Ra by the number of regions (i × j) (step S).
8). Next, each aeration index D ij and their average value Dav
Are compared, the difference between the two is determined, and the adjustment amount of the aeration amount is calculated if necessary (step S9; adjustment amount calculation step). In the determination, the difference between the two is calculated, and when the absolute value of the difference exceeds a predetermined allowable amount, the adjustment amount of the aeration amount according to the difference is calculated.

【0045】具体的には、例えば、差分値とそれに対応
する曝気量の調整量との対応関係(テーブル、換算式
等)を記憶・演算部63に記憶させ或いは入力し、実際
に計算された差分値から調整量を算定するといった方法
が挙げられる。得られた調整量に相当する弁開度の調節
信号を記憶・演算部63から入出力インターフェイス6
1を通して該当する電動制御弁Vijに出力する。これよ
り、弁開度が調節され、電動制御弁Vijを有するライン
上の散気ユニット7からの散気量が調整される。その結
果、領域Rijにおける曝気量を調整することができる
(ステップW2;調整工程)。
Specifically, for example, the correspondence relationship (table, conversion formula, etc.) between the difference value and the adjustment amount of the aeration amount corresponding to the difference value is stored or input in the storage / calculation unit 63 and is actually calculated. One method is to calculate the adjustment amount from the difference value. The control signal of the valve opening degree corresponding to the obtained adjustment amount is input from the storage / calculation unit 63 to the input / output interface 6
1 to output to the corresponding electric control valve V ij . From this, the adjusted valve opening degree, aeration amount from the air diffuser unit 7 on the line with an electric control valve V ij is adjusted. As a result, it is possible to adjust the aeration amount in the region R ij (step W2; adjustment process).

【0046】一方、曝気量指数Dijとそれらの平均値D
avとの差分が許容量以内であれば、全領域Raについて
ステップS9を繰り返し、さらに、散気装置70の運転
期間中、ステップS2〜S9を繰り返し、その後、膜モ
ジュール2の洗浄及び被処理液L0の生物処理を終了す
る。このように、ステップS1〜S9から監視工程が構
成され、ステップS1〜S9及びステップW1,W2か
ら処理工程が構成されている。
On the other hand, the aeration amount index D ij and their average value D
If the difference from av is within the allowable amount, step S9 is repeated for all regions Ra, and further, steps S2 to S9 are repeated during the operation period of the air diffuser 70, and thereafter, cleaning of the membrane module 2 and the liquid to be treated are performed. The biological treatment of L0 is completed. In this way, the monitoring process is composed of steps S1 to S9, and the processing process is composed of steps S1 to S9 and steps W1 and W2.

【0047】このように構成された処理装置20及びこ
れによる膜洗浄方法並びに被処理液の処理方法によれ
ば、監視装置5により被処理液L0の液面部Sの全体を
非接触方式で監視し、制御装置6により撮像画像を処理
して気泡の有無を判別し、かかる判別結果に基づいて一
定時間経過後の液面部Sにおける曝気量及び領域Rij
位の曝気量分布を取得する。
According to the processing apparatus 20 thus constructed, the film cleaning method and the method for processing the liquid to be processed, the monitoring device 5 monitors the entire liquid surface S of the liquid L0 to be processed in a non-contact manner. Then, the controller 6 processes the captured image to determine the presence / absence of bubbles, and based on the determination result, the aeration amount in the liquid surface portion S after a lapse of a certain time and the aeration amount distribution in units of the region R ij are acquired.

【0048】これにより、液面部Sにおける曝気状態の
推移を把握でき、局所的な曝気量の過少判定を行うこと
ができる。そして、曝気量の過少が生じている領域Rij
に対応する散気ユニット7の曝気量を調整し、これによ
り曝気量の過少を適正化して液面部Sにおける曝気量を
平均化することができる。したがって、膜モジュール2
全体に対する曝気風量が均一化され、均一な曝気洗浄を
達成することができる。
As a result, it is possible to grasp the transition of the aeration state at the liquid surface portion S, and to make a local determination of the amount of aeration. Then, the region R ij in which the amount of aeration is insufficient
It is possible to adjust the aeration amount of the air diffuser unit 7 corresponding to the above, thereby optimizing the aeration amount to be insufficient and averaging the aeration amount in the liquid surface portion S. Therefore, the membrane module 2
The amount of aeration air to the whole is made uniform, and uniform aeration cleaning can be achieved.

【0049】また、このような曝気量の調整を行う膜洗
浄を、散気装置70の運転期間中つまり被処理液L0の
好気性処理の実施中に連続的に又は断続的に行うことに
より、均一な膜洗浄を安定に維持できる。よって、処理
装置20の膜分離性能を長期にわたって安定に発揮させ
ることが可能となり、被処理液L0の処理効率が低下し
てしまうことを有効に抑止できる。
Further, by performing the membrane cleaning for adjusting the aeration amount as described above continuously or intermittently during the operation period of the air diffuser 70, that is, during the aerobic treatment of the liquid L0 to be treated, The uniform membrane cleaning can be stably maintained. Therefore, the membrane separation performance of the processing device 20 can be stably exerted for a long period of time, and it is possible to effectively prevent the processing efficiency of the liquid L0 to be processed from decreasing.

【0050】さらに、気泡の有無を画像の明暗、すなわ
ち明度又は輝度によって簡易に判別できるので、複雑な
画像処理が不要である。よって、アルゴリズムが簡素化
されて処理時間が過度に増大することを防止できる。そ
の結果、曝気量を実時間でフィードバック制御し易くな
り、均一洗浄を一層確実に達成することができる。
Furthermore, since the presence or absence of bubbles can be easily discriminated by the brightness of the image, that is, the brightness or the brightness, complicated image processing is unnecessary. Therefore, it is possible to prevent the algorithm from being simplified and the processing time from excessively increasing. As a result, the aeration amount can be easily feedback-controlled in real time, and uniform cleaning can be achieved more reliably.

【0051】さらにまた、制御装置6による画像処理に
おいて、液面部Sの撮像画像を散気ユニット7に応じた
領域Rijに仮想分割し、その領域Rij単位の曝気量分布
を取得するとともに、散気ユニット7毎に設けた電動制
御弁Vijの弁開度調節によって散気ユニット7毎の散気
量を調整できるので、膜洗浄の均一性が一層高められ
る。
Furthermore, in the image processing by the control device 6, the imaged image of the liquid surface portion S is virtually divided into regions R ij corresponding to the diffuser unit 7, and the aeration amount distribution in units of the regions R ij is acquired. Since the amount of air diffused for each air diffuser unit 7 can be adjusted by adjusting the valve opening of the electric control valve V ij provided for each air diffuser unit 7, the uniformity of the membrane cleaning is further enhanced.

【0052】また、液面部Sを連続的又は断続的に撮像
して得られた画像からサンプリングした複数の画像を用
いて液面部Sにおける曝気量の時間平均値を算出するの
で、液面部Sの曝気状態をより正確に且つ実態に即して
把握することができる。したがって、膜モジュール2全
体の均一洗浄をより的確に実現し易くなる。また、画像
サンプリングの時間間隔又は撮像時間tを短縮すれば、
より実時間処理に近い状態で曝気量制御を行うことがで
きる。
Further, since the time average value of the aeration amount at the liquid surface S is calculated using a plurality of images sampled from the images obtained by continuously or intermittently capturing the liquid surface S, The aeration state of the part S can be grasped more accurately and according to the actual condition. Therefore, uniform cleaning of the entire membrane module 2 can be realized more accurately. Further, if the time interval of image sampling or the imaging time t is shortened,
Aeration amount control can be performed in a state closer to real-time processing.

【0053】なお、本発明は上述した実施形態に限定さ
れるものではなく、例えば、処理装置10を用いて上述
した手順(図4参照)と略同等の膜洗浄を実施すること
ができる。この場合には、曝気量の調整は、電動制御弁
8に対応する配管ライン上の散気ユニット7群単位とな
る。また、ステップS2〜S9における画像処理及び数
値処理の具体的な手法は、一般的に用いられる他のアル
ゴリズム、処理フローを適用することもでき、気泡の有
無を明度や輝度による明暗処理で行う場合の手順は特に
上述したものに限定されない。例えば、ステップS6の
領域分割をステップS4の画像情報の数値化等の前に実
施してもよい。
The present invention is not limited to the above-described embodiment, and, for example, the processing apparatus 10 can be used to carry out a film cleaning substantially equivalent to the above-described procedure (see FIG. 4). In this case, the adjustment of the aeration amount is performed in units of the air diffusing unit 7 group on the piping line corresponding to the electric control valve 8. In addition, as a concrete method of the image processing and the numerical processing in steps S2 to S9, other generally used algorithms and processing flows can be applied. In the case where the presence / absence of bubbles is determined by the brightness / darkness brightness / luminance processing. The procedure of is not particularly limited to the one described above. For example, the area division in step S6 may be performed before digitizing the image information in step S4.

【0054】さらに、領域Rijの分割数は図示に限定さ
れない。またさらに、明度又は輝度以外の画像処理パラ
メータを用いてもよく、例えば、カラー画像を用いて、
気泡形状について一般的なパターニング処理を行って気
泡を判別してもよい。加えて、気泡の判別精度を高める
べく、監視装置5の撮像部に種々の撮像用フィルターを
装備してもよい。
Further, the number of divisions of the area R ij is not limited to that shown in the figure. Furthermore, image processing parameters other than brightness or luminance may be used, for example, using a color image,
A bubble may be identified by performing a general patterning process on the bubble shape. In addition, various imaging filters may be provided in the imaging unit of the monitoring device 5 in order to improve the accuracy of bubble identification.

【0055】[0055]

【発明の効果】以上説明したように、本発明の膜洗浄方
法によれば、被処理液の液面部の曝気状態が外部から監
視され、液面部における曝気量及び/又は曝気量分布に
基づいて曝気量の調整が行われるので、局所的な曝気量
の過不足を防止し、分離膜の膜面全体の均一洗浄を安定
に維持することができる。また、本発明による被処理液
の処理方法によれば、本発明の膜洗浄方法を用いること
により、所望の膜分離性能を長期にわたって安定に維持
でき、被処理液の処理効率の低下を抑止することが可能
となる。
As described above, according to the film cleaning method of the present invention, the aeration state of the liquid surface portion of the liquid to be treated is monitored from the outside, and the aeration amount and / or distribution of the aeration amount on the liquid surface portion can be obtained. Since the aeration amount is adjusted based on the above, it is possible to prevent local excess or deficiency of the aeration amount and to stably maintain uniform cleaning of the entire membrane surface of the separation membrane. Further, according to the method for treating a liquid to be treated according to the present invention, by using the membrane cleaning method of the present invention, desired membrane separation performance can be stably maintained for a long period of time, and a reduction in treatment efficiency of the liquid to be treated can be suppressed. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による膜洗浄方法を有効に実施するため
の膜洗浄装置を備える被処理液の処理装置の好適な一実
施形態の構成を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing the configuration of a preferred embodiment of a treatment apparatus for a liquid to be treated, which is equipped with a membrane cleaning apparatus for effectively carrying out a membrane cleaning method according to the present invention.

【図2】図1におけるII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】本発明による膜洗浄方法を有効に実施するため
の他の膜洗浄装置を備える被処理液の処理装置に係る他
の実施形態の要部を模式的に示す斜視図(一部構成図)
である。
FIG. 3 is a perspective view (partially configured) schematically showing a main part of another embodiment of a treatment apparatus for a liquid to be treated, which is provided with another membrane cleaning apparatus for effectively carrying out the membrane cleaning method according to the present invention. (Figure)
Is.

【図4】本発明による被処理液の処理方法における膜洗
浄方法の具体的な手順の一例を示すフロー図である。
FIG. 4 is a flowchart showing an example of a specific procedure of a film cleaning method in the method for treating a liquid to be treated according to the present invention.

【図5】液面部における曝気状態を模式的に示す平面図
である。
FIG. 5 is a plan view schematically showing an aeration state on a liquid surface portion.

【符号の説明】[Explanation of symbols]

1…処理槽、2…膜モジュール、3…ろ過ポンプ、4…
送風機、5…監視装置(監視部)、6…制御装置(調整
部)、7…散気ユニット、8,Vij…電動制御弁(調整
部)、10,20…処理装置(被処理液の処理装置)、
70…散気措置(曝気部)、L0…被処理液、Rij…領
域、S…液面部。
1 ... Treatment tank, 2 ... Membrane module, 3 ... Filtration pump, 4 ...
Blower, 5 ... Monitoring device (monitoring part), 6 ... Control device (adjusting part), 7 ... Air diffuser unit, 8, V ij ... Electric control valve (adjusting part) 10, 20 ... Processing device (processing liquid) Processing device),
70 ... Air diffuser (aeration part), L0 ... Liquid to be treated, Rij ... Region, S ... Liquid surface part.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 HA93 JA31A JA52A KC02 KC14 KE01Q KE30P PA01 PB08 PB24 PC62 4D028 BC17 BD17 5B057 BA11 CA01 CA02 CA08 CA16 CB01 CB02 CB06 CB08 CB16 CE12 DA02 DA11 DB05 DB06 DB08 DB09 DC22 DC25 DC36 5L096 AA02 AA03 AA06 BA03 CA02 DA02 EA43 FA32 FA35 FA59 GA40 GA41 GA51    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA02 HA93 JA31A JA52A                       KC02 KC14 KE01Q KE30P                       PA01 PB08 PB24 PC62                 4D028 BC17 BD17                 5B057 BA11 CA01 CA02 CA08 CA16                       CB01 CB02 CB06 CB08 CB16                       CE12 DA02 DA11 DB05 DB06                       DB08 DB09 DC22 DC25 DC36                 5L096 AA02 AA03 AA06 BA03 CA02                       DA02 EA43 FA32 FA35 FA59                       GA40 GA41 GA51

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理液が供給される処理槽に浸漬され
た分離膜を曝気洗浄する膜洗浄方法であって、 前記処理槽内の前記被処理液に前記分離膜を有する膜分
離部の略下方から曝気する曝気工程と、 前記曝気が行われている該被処理液の液面部における曝
気状態を前記被処理液の外部から監視し、該液面部にお
ける曝気量及び/又は曝気量分布を取得する監視工程
と、 前記監視工程で取得した曝気量及び/又は曝気量分布に
基づいて、前記膜分離部の一部叉は全部に対する曝気量
を調整する調整工程と、を備える膜洗浄方法。
1. A membrane cleaning method for aeration-cleaning a separation membrane immersed in a treatment tank to which a liquid to be treated is supplied, the method comprising: a membrane separation unit having the separation membrane in the liquid to be treated in the treatment tank. An aeration step of aerating substantially from below, and an aeration state in the liquid surface portion of the liquid to be treated, which is being aerated, is monitored from the outside of the liquid to be treated, and the amount of aeration and / or the amount of aeration in the liquid surface portion. Membrane cleaning comprising: a monitoring step of acquiring a distribution; and an adjusting step of adjusting an aeration amount for a part or all of the membrane separation unit based on the aeration amount and / or the aeration amount distribution acquired in the monitoring step. Method.
【請求項2】 前記監視工程が、前記液面部の外部から
該液面部を撮像する撮像ステップと、 前記撮像ステップで得た画像を仮想的な所定数の領域に
分割する領域分割ステップと、 前記撮像ステップで得た画像の画像情報を数値化し、該
数値情報に基づいて該画像における気泡の有無を判別す
る気泡判別ステップと、 前記気泡の有無の判別結果に基づいて、前記領域全体に
わたる曝気量及び/又は曝気量分布を取得する曝気量取
得ステップと、 前記曝気量及び/又は前記曝気量分布から、前記膜分離
部における前記各領域に対応する部位への曝気量の調整
量を算定する調整量算定ステップと、 を有しており、 前記調整工程においては、前記調整量に基づいて前記膜
分離部の一部叉は全部に対する曝気量を調整する、こと
を特徴とする請求項1記載の膜洗浄方法。
2. The imaging step, wherein the monitoring step captures an image of the liquid surface portion from the outside of the liquid surface portion; and an area dividing step of dividing the image obtained in the image capturing step into a virtual predetermined number of areas. The image information of the image obtained in the imaging step is digitized, and a bubble determination step of determining the presence / absence of bubbles in the image based on the numerical information, and based on the determination result of the presence / absence of bubbles, the entire area is covered. An aeration amount acquisition step of acquiring an aeration amount and / or an aeration amount distribution, and calculating an adjustment amount of the aeration amount to a portion corresponding to each region of the membrane separation unit from the aeration amount and / or the aeration amount distribution. And an adjustment amount calculation step for adjusting the amount of aeration for part or all of the membrane separation unit based on the adjustment amount. The method for cleaning a membrane according to 1.
【請求項3】 被処理液を活性汚泥により生物処理する
被処理液の処理方法であって、 前記活性汚泥を含み、且つ、分離膜を有する膜分離部を
備える処理槽に前記被処理液を供給する供給工程と、 請求項1〜5のいずれか一項に記載の膜洗浄方法を実施
しながら、前記膜分離部による前記被処理液の膜分離を
行う処理工程と、を備える被処理液の処理方法。
3. A method of treating a liquid to be treated, which comprises biologically treating the liquid to be treated with activated sludge, wherein the liquid to be treated is contained in a treatment tank containing a membrane separation unit having a separation membrane and containing the activated sludge. A liquid to be treated comprising: a supply process of supplying; and a treatment process of performing membrane separation of the liquid to be treated by the membrane separation unit while performing the membrane cleaning method according to any one of claims 1 to 5. Processing method.
JP2001261790A 2001-08-30 2001-08-30 Membrane washing method and treating method for liquid to be treated Withdrawn JP2003071256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261790A JP2003071256A (en) 2001-08-30 2001-08-30 Membrane washing method and treating method for liquid to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261790A JP2003071256A (en) 2001-08-30 2001-08-30 Membrane washing method and treating method for liquid to be treated

Publications (1)

Publication Number Publication Date
JP2003071256A true JP2003071256A (en) 2003-03-11

Family

ID=19088778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261790A Withdrawn JP2003071256A (en) 2001-08-30 2001-08-30 Membrane washing method and treating method for liquid to be treated

Country Status (1)

Country Link
JP (1) JP2003071256A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119122A (en) * 2004-09-22 2006-05-11 Sumitomo Metal Ind Ltd Method and system for magnetic particle inspection
WO2006095509A1 (en) * 2005-03-04 2006-09-14 Sharp Kabushiki Kaisha Method of wastewater treatment and wastewater treatment equipment
WO2006095510A1 (en) * 2005-03-04 2006-09-14 Sharp Kabushiki Kaisha Waste gas/waste water treatment equipment and method of treating waste gas/waste water
US7578942B2 (en) 2005-03-03 2009-08-25 Sharp Kabushiki Kaisha Wastewater treatment equipment and method of wastewater treatment
WO2011065520A1 (en) * 2009-11-30 2011-06-03 株式会社クボタ Organic wastewater treatment device and organic wastewater treatment method
JPWO2012002427A1 (en) * 2010-06-30 2013-08-29 住友電工ファインポリマー株式会社 Immersion type membrane module unit and membrane separation activated sludge treatment device
WO2015020485A1 (en) * 2013-08-08 2015-02-12 롯데케미칼 주식회사 Air diffuser and membrane bio-reactor
JP2019188273A (en) * 2018-04-19 2019-10-31 株式会社明電舎 Washing method of diffuser tube and membrane separation apparatus
CN112774444A (en) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 Free floating ball type gas-liquid separation ultrafiltration membrane component
CN115594293A (en) * 2022-10-19 2023-01-13 成都兴天水环境治理有限公司(Cn) Aeration system for urban sewage treatment and control method
CN116135797A (en) * 2023-04-19 2023-05-19 江苏海峡环保科技发展有限公司 Intelligent control system for sewage treatment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119122A (en) * 2004-09-22 2006-05-11 Sumitomo Metal Ind Ltd Method and system for magnetic particle inspection
US7578942B2 (en) 2005-03-03 2009-08-25 Sharp Kabushiki Kaisha Wastewater treatment equipment and method of wastewater treatment
WO2006095509A1 (en) * 2005-03-04 2006-09-14 Sharp Kabushiki Kaisha Method of wastewater treatment and wastewater treatment equipment
WO2006095510A1 (en) * 2005-03-04 2006-09-14 Sharp Kabushiki Kaisha Waste gas/waste water treatment equipment and method of treating waste gas/waste water
JP2006239613A (en) * 2005-03-04 2006-09-14 Sharp Corp Method and apparatus for wastewater treatment
JP2006272317A (en) * 2005-03-04 2006-10-12 Sharp Corp Waste gas/waste water treatment equipment and method of treating waste gas/waste water
US7641802B2 (en) 2005-03-04 2010-01-05 Sharp Kabushiki Kaisha Wastewater treatment method and wastewater treatment equipment
US7691268B2 (en) 2005-03-04 2010-04-06 Sharp Kabushiki Kaisha Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater
CN102630218A (en) * 2009-11-30 2012-08-08 株式会社久保田 Organic wastewater treatment device and organic wastewater treatment method
JP2011110520A (en) * 2009-11-30 2011-06-09 Kubota Corp Apparatus for treating organic waste water and method of treating organic waste water
WO2011065520A1 (en) * 2009-11-30 2011-06-03 株式会社クボタ Organic wastewater treatment device and organic wastewater treatment method
CN102630218B (en) * 2009-11-30 2014-05-07 株式会社久保田 Organic wastewater treatment device and organic wastewater treatment method
JPWO2012002427A1 (en) * 2010-06-30 2013-08-29 住友電工ファインポリマー株式会社 Immersion type membrane module unit and membrane separation activated sludge treatment device
WO2015020485A1 (en) * 2013-08-08 2015-02-12 롯데케미칼 주식회사 Air diffuser and membrane bio-reactor
JP2016527081A (en) * 2013-08-08 2016-09-08 ロッテ ケミカル コーポレーション Air diffuser and separation membrane bioreactor
JP2019188273A (en) * 2018-04-19 2019-10-31 株式会社明電舎 Washing method of diffuser tube and membrane separation apparatus
CN112774444A (en) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 Free floating ball type gas-liquid separation ultrafiltration membrane component
CN115594293A (en) * 2022-10-19 2023-01-13 成都兴天水环境治理有限公司(Cn) Aeration system for urban sewage treatment and control method
CN116135797A (en) * 2023-04-19 2023-05-19 江苏海峡环保科技发展有限公司 Intelligent control system for sewage treatment
CN116135797B (en) * 2023-04-19 2023-07-04 江苏海峡环保科技发展有限公司 Intelligent control system for sewage treatment

Similar Documents

Publication Publication Date Title
JP2003071256A (en) Membrane washing method and treating method for liquid to be treated
JP7188078B2 (en) Wastewater treatment method, wastewater treatment equipment and wastewater treatment system management program in membrane separation activated sludge
JP7029981B2 (en) Sewage overflow detection device, sewage overflow detection method, program, and sewage treatment device
CN115760852B (en) Marine sewage discharge treatment method
Jenné et al. Towards on-line quantification of flocs and filaments by image analysis
US10478785B2 (en) Abrasion-proof filtration membrane and method of producing said membrane
KR910005632B1 (en) Apparatus for measuring the concentration of filamentous microorganisms in a mixture including microorganisms
JP3323157B2 (en) Water treatment state monitoring device
JP4341067B2 (en) Wastewater treatment abnormality detection system
CN117233164A (en) Machine vision-based waste gas turbine cleaning sewage water quality judging method and system
JP6726696B2 (en) Diluted sludge imaging system, flocculant addition amount control system, sludge concentration system, diluted sludge imaging method
JP4269345B2 (en) Wastewater treatment equipment
JP7221788B2 (en) Information processing device, information processing method, and program
JP2023081640A (en) Information processing device, operation support method, operation support program and control system
JP2003287489A (en) Flock imaging system
JPH05285308A (en) Controller for injecting flocculant
WO2021261543A1 (en) Sewage treatment device, method for controlling sewage treatment device, and program
JPH08201298A (en) Microorganism monitor
JPH0628453A (en) Microorganism recognizing device and monitoring method by the device
JPH04148849A (en) Aggregated floc monitoring apparatus
JPH0671599B2 (en) Image recognition method for activated sludge
JPH0462798B2 (en)
JPH0636187B2 (en) Image processing device
JPH0712738A (en) Micro-organism monitoring system
JP3901300B2 (en) Sludge image processing device for measuring sludge particle size

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104