TWI305228B - - Google Patents

Download PDF

Info

Publication number
TWI305228B
TWI305228B TW094108959A TW94108959A TWI305228B TW I305228 B TWI305228 B TW I305228B TW 094108959 A TW094108959 A TW 094108959A TW 94108959 A TW94108959 A TW 94108959A TW I305228 B TWI305228 B TW I305228B
Authority
TW
Taiwan
Prior art keywords
sic
light
phosphor
concentration
wavelength
Prior art date
Application number
TW094108959A
Other languages
English (en)
Other versions
TW200604331A (en
Inventor
Hiroyuki Kinoshita
Hiromu Shiomi
Makoto Sasaki
Toshihiko Hayashi
Hiroshi Amano
Satoshi Kamiyama
Motoaki Iwaya
Isamu Akasaki
Original Assignee
Univ Meijo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004087110A external-priority patent/JP4153455B2/ja
Application filed by Univ Meijo filed Critical Univ Meijo
Publication of TW200604331A publication Critical patent/TW200604331A/zh
Application granted granted Critical
Publication of TWI305228B publication Critical patent/TWI305228B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/63Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0838Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • C09K11/655Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • H01L21/203
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Description

1305228 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種SiC製螢光體及其製造方法、以及包含 , 該螢光體之半導體用之基板及粉末,該SiC製螢光體藉由電 ‘ 子束、X射線、紫外線或藍色-紫色之可視光線等之電磁波 ' 激發、並發光。又,本發明係關於一種作為新固體照明裝 置有望今後普及之發光二極體,該發光二極體包含ΙΠ族氮 化物半導體。 φ 【先前技術】 PDP面板之開發正在盛行,其使用藉由稀有氣體放電放 ’ 射之真空紫外線’使螢光體激發、發光。PDP面板藉由配 , 置為矩陣狀之多個顯示單元而形成,於各顯示單元設有放 電電極。又’於其内部塗布有螢光體,並封入有1^_以或 Ne-Xe等之稀有氣體。其結構係,施加電壓至放電電極後, 放射真空紫外線,藉此螢光體激發,並發出可視光線。 於螢光燈之情形時,於封入有水銀與氬氣之混合氣體之 • 放電管中開始放電後,位於放電空間之電子藉由電場得以 加速,並向著陽極漂行》此期間,電子激發螢光燈管内之 水銀原子,藉由自激發之水銀原子放出之波長253 7 nm之 紫外線發出可視光。 « 藉由紫外線激發並發光之螢光體(以下稱為「紫外線激發 螢光體」)除PDP之外,廣泛運用於螢光燈、高壓水銀燈、 以及室内外使用之螢光性壁材與螢光性瓷磚等之裝飾等 中。螢光性之壁材或瓷磚等藉以紫外線中,特別是365 nm I00544.doc 1305228 左右之長波長之紫外線激發,明亮地發出各種顏色。 又’眾所周知藉由自半導體發出之光激發之裝置。於該 裝置中’來自半導體之光之波長越長越可減輕對半導體之 負載。因此’激發光之波長為360 nm以上較好,380 nm以 上更好,400 nm以上特別好。 先前作為藉由長波長之紫外線激發之螢光體,有藍色發 光之EU活化鹼土類鹵磷酸鹽螢光體、Eu活化鹼土類鋁酸鹽 榮光體、Eu活化Lno螢光體等。又有綠色發光之zn2Ge〇4:Mn 螢光體等,黃色發光之YAG:Ce(添加鈽之釔鋁石榴石)螢光 體、進而紅色發光之¥2〇28:如螢光體、yv〇4:Eu螢光體等 得以實用化。 …、而,隨著顯示之多樣化與高功能化,要求發光色之多 色化、高亮度化、以及耐久性之提高與耐候性之提高。進 而,盛行研究使用ZnSe、Zn〇等之π_νι族半導體之螢光體 (參照曰本專利特開2〇〇1_2288〇9號公報(專利文獻卩卜
另一方面,眾所周知一種螢光體,其將Sic作為母材,添 加Yb、㈣之稀土類元素,藉由稀土類元素自身之激發, 發出_ nm以上之紅外光(參照曰本專利特開平丄㈣議7 號公報(專利文獻2))。該螢光體之母材係、时,原理上以稀 土類元素之發光為中心,機構與將氧化物作為母材、藉由 添加稀土類元素發光相H结晶可藉由改 料 作,該方法將SiC單結晶作為籽晶進 二= 叮升華再結晶(參照 Y.M.Tairov and V.F.Tsvctkov, Journal 〇f r , n〇c1, , 〇t Crystal Growth. (1981)V〇1.52 PP.l46_15〇(非專利文獻。 100544.doc 1305228 友近年來’氮化物半導體之結晶成長方法急速發展,使用 1化物半導體之尚亮度之藍色與綠色發光二極體得以實用 化。藉由組合自先前存在之紅色發光二極體、與此等藍色 及綠色發光二極體,便齊聚光之三種原色,可實現全彩之 顯不裝置。即’混合光之三種原色之全部後,亦可獲得白 色光,從而亦可應用於白色照明用之裝置。
作為使用發光二極體之白色光源,業者提出有幾種構 成其中一部分知以實用化。於圖9表示使用發光二極體之 白色光源之例。該白色光源如圖9所示’於導電性散熱片9〇2 之金屬層903上形成紅色發光二極體911、綠色發光二極體 912、以及藍色發光二極體913之3種原色之發光二極體,並 藉由環氧樹脂908固定於莖幹905上。 於該白色光源中,將連接於各個發光二極體之引線連接 於個別之端子,獨立地控制各個流動之電流,藉此不僅顯 示白色,亦可顯示全彩’能量轉換效率亦高。其反面是, 裝置或驅動電路複雜,成本亦高,故而作為單純照明用之 裝置不合適。 於圖10表示使用發光二極體之白色光源之其他例。該白 色光源如圖10所示’於導電性散熱片102之金屬層1〇3上形 成藍色發光二極體101,於藍色發光二極體1〇1上形成包含 YAG系材料之黃色螢光體層1〇4,並藉由環氧樹脂1 〇8固定 於莖幹105上。 於該白色光源中,自藍色發光二極體1〇1放出之、峰值波 長約為450 nm之光的一部分藉以YAG系黃色螢光體層1〇4 100544.doc 1305228 得以吸收,轉換為波長570 nm附近之黃色之螢光。故而於 元件外部,放出透過YAG系黃色螢光體層1〇4之藍色光、與 YAG系黃色螢光體層104發出之黃色光之兩方。黃色相對於 藍色係補色之關係,故而混合黃色與藍色之2種光,可獲得 白色光。 圖ίο所示之白色光源藉由單一之發光二極體ιοί構成,故 而可以比較低之成本製作。又,現在已實現最高之發光效 率,於研究層次上實現亮度效率701 m/W左右,與現存之螢 光燈幾乎相同。 [專利文獻1]曰本專利特開2001-228809號公報 [專利文獻2]日本專利特開平10-270807號公報 [非專利文獻]Y.M.Tairov and V.F.Tsvetkov,Journal 〇f
Crystal Growth,(1981)vol.52 pp.146-150 [發明所欲解決之問題] 藉由長波長之光源激發,將氧化物為母材之先前之螢 體中,激發之光之波長越長,螢光之發光效率越低,特 是紅色之發光效率差。一般地,氧化物之帶隙非常寬, 而於藉由長波長之光源激發之情形時,無法利用氧化物 身之激發。因此,便利用稀土類元素自身之激發,但藉 長波長激發添加有稀土類元素之材料之情形時,螢光 光效率非常低,發光效率無法提高。 β 使用H-VI族半導體之螢光體容易製作混晶或固溶體, 而亦可使用帶工程等之方法’發光效率亦非常高。铁而 Π族㈣之陰電性均高,故而_族半導體結晶 100544.doc -10· I3〇5228 合性两’容易隨時間產生變化。 於SiC添加稀土類元素,利用藉由稀土類元素之激發發出 之紅外光的方法中,sic之格子常數非常小,與此相對地, 稀土類元素之原子半徑較大,故而藉由稀土類元素之添 加’ Sic之結晶性明顯惡化。因此,稀土類元素之添加量受 到限制,無法提高發光強度。 又,於Sic同時添加N與B,將N作為施體、B作為受體發 揮作用之施體/受體(d〇noracceptor)(以下稱為「DA」)對發 出之光於波長650 nm附近具有峰值,但發光強度極小故 而無法作為螢光體使用。 另一方面,關於使用發光二極體之白色光源,例如於圖9 所示之例中,存有如下需解決之各種問題:由於驅動電路 與裝置複雜,因而安裝困難、良率低之問題,以及由於光 之放射角度產生色斑。 又於圖10所示之例中,自藍色發光二極體1〇1放出之藍色 光之一部分藉由激發黃色螢光體層1〇4轉換為黃色光,從而 一併放出藍色與黃色至外部,藉此獲得白色光。於此情形 時,需適宜地設定藍色光與黃色光之強度比,否則顏色發 生變化。因此,必須適宜且均一地調整形成於藍色發光二 極體101上之黃色螢光體層104的膜厚與螢光體濃度。故 而,需要將黃色螢光體粉末均一地混入於樹脂製之黏合劑 中,並以均一之膜厚塗布之技術。 又,即使螢光體層104均一,自藍色發光二極體101放出 之光依據放出角度的不同,其通過螢光體層之行路長亦不 100544.doc -11 - 1305228 相同。故而,無法避免因發光角度而造成之白色顏色的變 化。進而,於如圖10所示之藍色發光二極體101與黃色榮光 體層104之組合中,紅色成分極少,故而亦存有如下課題: 作為照明光源較為重要之顯色性差,紅色之再現性低。 本發明之課題在於提供一種螢光體,其藉由紫外區域或 藍色-紫色之可視區域之長波長光源激發,主要於紫色·藍色 -黃色-紅色之可視區域發光。又,在於提供一種螢光體,其 藉由來自水銀放電管、高壓水銀燈、LED(laser emitting diode’發光二極體)等之光源之一次光、與藉由pDp面板之 放電產生之真空紫外線或電子束等,高效率地發出特性高 之螢光。 又,本發明之進一步之課題在於提供一種容易安裝、優 於顯色性之低成本之發光二極體。進而,在於提供一種因 放射角而造成顏色變化較少之發光二極體。 【發明内容】 、 仰™ w 7G鎅救發; 發光,藉由_A1中一種以上之元素η摻雜。於該螢光; 中,藉由Β與辦-種以上之元素摻雜之濃度、與藉由叫 雜之濃度均為WW至102W之態樣較好,Μ、〆: 102G/cm3之態樣更好。 _ 於本發明之SiC製榮光體中,包含發出波長5〇〇nm至” nm之螢光’於遍㈣至㈣咖具有峰值波長者。較好 該SiC藉由N與B掺雜’ N或B中任何—士 —、曲α 18 , 7 方之濃度為1015/cn 至10 /cm,他方之濃度為1〇16/_3至1〇19/^3。 100544.doc •12· 1305228 又於本發明之SiC製螢光體中’包含發出波長400 11111至 75 0 nm之螢光’於400 nm至550 nm具有峰值波長者。較好 的疋’該SiC藉由N與A1推雜,N或A1中任何一方之濃度為 l〇15/cm3至 l〇18/cm3,他方之濃度為 10i6/cm3至 1〇19/cm3。 本發明之SiC製螢光體之製造方法的特徵在於··該Sic製 螢光體藉由外部光源激發,發出波長500 nm至75 0 nm之螢 光,於500 nm至650 run具有峰值波長,並藉由1^與6摻雜, N或B中任何一方之濃度為10i5/cm3至1〇18/cm3,他方之濃度 為l〇16/cm3至l〇19/Cm3 ’且依據本發明之某局面,將LaB6、
B4C、TaB2、NbB2、ZrB2、tifB2、BN、或含有 B 之碳作為 B 源’藉由昇華再結晶法形成SiC結晶。 又’依據該發明之其他局面’其特徵在於:將B單體、
LaB6、B4C、TaB2、NbB2、ZrB2、HfB2或 BN作為 B 源,於真 空下或惰性氣體環境下以15〇〇°C以上之溫度熱擴散至siC。 本發明之半導體用之基板之特徵在於包含6H型SiC單結 晶螢光體’該螢光體藉由外部光源激發並發光,並藉由B 與A1中一種以上之元素及N摻雜。於該半導體基板中,包含 由如下6H型SiC單結晶螢光體構成者:藉由]^與;8掺雜,發 出波長500 nm至750 nm之螢光,並於5〇〇 11111至65〇 nm具有 峰值波長。進而,包含由如下611型§1(:單結晶螢光體構成之 半導體基板:藉由N與A1摻雜,發出波長4〇〇 nm至750 nm 之螢光,並於400 nm至550 nm具有峰值波長。 本發明之半導體用之基板之製造方法的特徵在於:係包 含6H型SiC單結晶螢光體之基板之製造方法,該螢光體藉由 100544.doc •13· 1305228 外部光源激發,發出波長500 nm至750 nm之螢光,於500 nm 至650 nm具有峰值波長,並藉由n與b摻雜,N或B中任何一 方之濃度為l〇15/cm3至l〇18/cm3,他方之濃度為1〇i6/cm3至 l〇19/cm3,且依據本發明之某局面,該製造方法具備熱擴散 步驟與去除表面層之步驟,該熱擴散步驟將B單體、、 B4C、TaB2、NbB2、ZrB2、HfB2或BN作為B源,於真空下或 惰性氣體環境下以150(TC以上之溫度熱擴散至sic。 又依據本發明之其他局面,藉由具有如下特徵之昇華再 結晶法形成SiC結晶:結晶成長時之環境氣體中包含氣體分 壓為1°/。至3%之N2氣體,原料sic包含〇.〇5 mol%至15 mol% 之B源。 本發明之半導體用之粉末之特徵在於:包含Sic單結 晶螢光體,粒徑為2 μιη至10 μιη,中心粒徑為3 μιη至6 μπι, 該螢光體藉由外部光源激發,發出波長5〇〇 nm至75〇 螢光’並於500 nm至650 nm具有峰值波長。 本發明之發光二極體之特徵在於具備包含6h型Sic單結 晶螢光體之半導體用之基板、與基板上包含氮化物半導體 之發光το件,該6H型SiC單結晶螢光體係由B與Α1ψ 一種以 上之元素及Ν所摻雜。 又依據本發明之其他局面,其特徵在於:於SiC製半導體 用之基板上具有包含6HSSic單結晶螢光體(由8與八丨中一 種以上之元素及N所摻雜)之1或2以上之層,並於6HsSic 單結晶螢光體層上具備包含氮化物半導體之發光元件。於 該發光一極體中,包含氮化物半導體之發光元件的發光波 100544.doc -14· 1305228 長為408 nm以下者較合適。 於該發光二極體中,6_SiC單結晶榮光體之中一 種以上之元素之摻雜濃度及\之摻雜濃度均為i〇16/cm3至 l〇19/cm3較好,i〇17/cml1〇i9/cm3更好。 [發明之效果] 依據本發明,可提供如下螢光體:可控制Μ内之雜質濃 度,藉由紫外區$或藍色-紫色之可視區域之長波長光或電 子束等激發’於紫色·藍色-黃色-紅色之可視區域高效率地 發光。 又依據本發明’可以低成本提供如下白色光源:容易調 整顯色性’又包含一個發光二極體,&而安裝簡單。該白 色光源於内部產生白色光,故而由放射角產生之色調變化 小至可忽略不計,且發光效率佳。 【實施方式】 (SiC製螢光體) 本發明之SiC製螢光體的特徵在於:由8與八丨中一種以上 ^元素及N所摻雜。MSic製螢光體藉由紫外區域或藍色_ 紫色之可視區域之長波長光源或電子束等之外部光源激 發’主要於紫色-藍色_黃色_紅色之可視區域發光。 例如,由B與N所摻雜之SiC:製螢光體藉由外部光源激 發發出波長500 nm至750 nm之螢光,並於50〇 11111至65〇 nm 八有峰值波長。又,由八丨與^^所摻雜之“匸製螢光體發出波 長400 nm至750 nm之螢光,並於4〇〇 11111至55〇 11111具有峰值 波長再者’由Al、B&N所摻雜之Sic製螢光體發出4〇〇 nm 100544.doc 1305228 至750⑽之營光’並於_—具有峰值波長。 純南螢光之發光效率,雜質位準之狀態密度必須足以 接文自SlC之帶端緩和之電子電簡。於此點上,b與辦 一種以上之元素之雜質渡度與N之雜質漢度均以 上之態樣較好,10、m3以上之態樣更好,i〇lw以上特 别好$方面’於雜質濃度過高之情形時,螢光之發光 效率有下降之傾向,故l〇2〇/Cm3以下較好。
又’於藉由N與B摻雜時’ 中任何一方之濃度為 1〇15/Cm3至 1〇18/cm3 ’ 他方之濃度為 l〇16/cm3至 10I9/cm3之態 樣較好。另-方面’於藉由賴A1摻雜時,賊ai中任何一 方=濃度為1〇15/(^3至10iVcm3,他方之濃度為1〇16/cm3至 l〇19/cm3之態樣較好。於本說明書中,藉以掘場製作所所製 PHOTOLUM卿R_s測定之數值表示入射波長4〇4 7⑽之 光線(紫色)時之發光。又,N、A1*B之濃度藉以由SIMs(二 次離子質§昝儀)測定之數值表示。 本發明中’可利用之外部光源係放射藍色-紫色等之可視 光線、紫外線、X射線或電子束之光源,特別是波長為1〇〇 nm 至500 nm之藍色-紫色等之可視光線與紫外線,因具有發出 發光強度較大之螢光之傾向’故而較好。Sic半導體具有3 eV左右之較寬禁帶寬,藉由添加雜質可於帶中製作各種順 位。特別是於6H型之sic中,帶端之波長為408 nm,若利用 SiC之帶隙’可藉由比該帶端之波長短之波長激發,可將比 較長波長之光作為激發源加以利用。 本發明者等反覆銳意研究之結果,發現於6H型之多型Sic 100544.doc -16- 1305228 結晶中’於使成為受體之B充分地活性化之條件下,將N作 為施體摻雜,於DA對之濃度為1015/cm3至1018/cm3時,發光 強度變成十分高。於發光強度提高之方面,DA對之濃度之 下限為5 X l〇15/cm3以上較好,i〇16/cm3以上特別好,2χ l〇16/cm3以上更加好。另一方面,同樣地於提高發光強度之 方面’上限為8x1017/cm3以下更好。 若DA對之濃度於此種範圍内,於獲得良好之發光之方 面’ B或N中任何一方之濃度之下限為1〇i6/cm3以上更好,5 X10 /cm以上特別好。另一方面,同樣地於獲得良好之發 光之方面’上限為l〇19/cm3以下更好,5xl〇i8/cm3以下特別 好0 B與N之濃度於該範圍内之sic製螢光體的發光如圖3所 例示’展示出寬廣之光譜’發出紅色_黃色之良好之螢光。 即本發明之SiC製螢光體發出500 nm至750 nm之螢光,於波 長550 nm至680 nm處發光強度較大。又,於5〇〇⑽至65〇 nm 具有峰值波長,於570 nm至630 nm具有峰值波長者較好。 發光波長與其相對強度藉由sic内之3與N之摻雜濃度而有 所不同。 又,本發明者等同樣地關於A丨與N之da對,發現發光強 度增強之濃度條件。即發現:m6h型之聚Sic結晶中,藉以 使成為受體之A1充分地活性化之條件,將^^作為施體摻雜, =da對之/辰度為1()in1()18/cm3時,*光強度便充分 同。於發光強度提高之方面,Da對之濃度之下限為& l〇15/cm3以上較好,1〇iVcm3以上特別好,2xi〇i6/cm3以上更 100544.doc -17- 1305228 好。另一方面,同樣地於提高發光強度之方面,上限為 l〇17/cm3以上更好。 若DA對之濃度於此種範圍内,於獲得良好之發光之方 面,A1或N中任何一方之濃度之下限為1〇i6/cm3以上較好,5 X10 /cm3以上特別好。另一方面,同樣地於獲得良好之發 光之方面,上限為l〇19/cm3以下較好,5xl018/cm3以下特別 好。 A1與N之濃度於相關範圍内之SiC製螢光體的發光如圖6 所例示,展現出寬廣之光譜’發出藍色之寬螢光。即本發 明之SiC製螢光體發出4〇〇 nm至750 nm之螢光,於波長400 nm至5 50 nm處發光強度較大。又,於400 nm至5 50 nm具有 峰值波長,於410 nm至470 nm具有峰值波長者較好《發光 波長與其相對強度藉由SiC内之A1與N之摻雜濃度而有所不 同。 (SiC製螢光體之製造方法) 本發明之SiC製螢光體之製造方法的特徵在於:將LaB6、 B4C、TaB2、NbB2、ZrB2、HfB2、BN、或含有 B 之碳作為 B 源,藉由昇華再結晶法形成SiC結晶。藉由該方法,可製造 如下SiC製螢光體:可藉由N與B摻雜SiC,以N或B中任何一 方之濃度為l〇15/cm3至l〇18/cm3,他方之濃度為l〇16/cm3至 1019/cm3之方式調整摻雜濃度,並藉由外部光源激發,發出 波長500 nm至750 nm之螢光,於500 nm至650 nm具有峰值 波長9
該濃度調整可藉由於SiC之結晶產生過程中積極地添加N I00544.doc -18- 1305228 與B而達成。可藉由改良型之瑞利法製作We結晶,該方法 使用籽晶’故而可控制結晶之核形成過程,又可藉由惰性 氣體將氣體環境控制為刚W15kpa左右’再現性較好地 控制結晶之產生逮度等。 改良型瑞利法如圖2所示,首先將成為杆晶21之训單社 晶安裝於㈣23之蓋24,將作為昇華再結晶之原料22之训 :晶粉末加於石墨製之_ ’於Ar等之惰性氣體之氣體
衣兄中以133 Pa至13.3 kPa加熱至2〇〇〇°c至24〇(rc。加熱 時’如圖2之箭頭所示’以作為原料22之Μ結晶性粉末: 稍高溫(H)、籽晶21為稍低溫(L)之方式設定溫度傾斜。原料 22昇華後’藉由基於溫度傾斜形成之濃度傾斜,擴散、輸 送至籽明21之方向。到達籽晶21之原料氣體於籽晶上再結 晶,藉此實現SiC單結晶20之成長。 藉由添加雜質氣體至結晶成長時之環境氣體中、與添加 雜質兀•素或其化合物至原料粉末,可控制Sic結晶之摻雜濃 度。特別是添加A氣體並昇華再結晶後,於5xl〇1S/cm3以上 之N濃度之控制較容易之方面較好。又,於穩定 以下之DA對之濃度控制,提高再現性,並提高發光強度之 方面,較好的是,以積極地添之方式設定,並以穩定地 添加B至結晶中之方式設定條件。 例如,藉由將結晶成長時之環境氣體中n2氣體之分壓設 為1%至30%,可製造N濃度為1〇15/(^3至1〇18/£^3之Sic製螢 光體。於此情形時,於提高螢光之發光強度方面,n2氣體 之分壓為5°/。至10%較好。 100544.doc •19· 1305228 B之添加有將B單體(金屬侧)混合於原料之方法,該方法 具有如下缺點.於結晶化之初期B濃度高,於結晶化之後半 期B濃度下降,從而B濃度不穩定。故而,將M作為B化合物 添加後,可減少B濃度於結晶成長過程中之變化,故而該方 法較好,該B化合物作為包含Ta、Nb、Zr或Hf之任何至少 一個之金屬,由MB2表示》又,作為LaB6或B4C添加亦同樣 地抑制B濃度之變化,故而較好。藉由該方法,可容易地穩 定添加1017/cm3至l〇18/cm3左右之濃度之b。 兔具有谷易浸潰B單體(金屬棚),即使於2〇〇〇。〇以上之昇 華再結晶溫度中亦慢慢放出B之特徵,故而將含有b單體之 碳用作B源,昇華再結晶之方法作為形成添加有8之sic結 晶之方法具有優越性。預先將以150(rc以上之高溫浸潰B 單體之碳添加於原料,藉此可基本消除結晶中之B濃度之變 化,該方法非常有利。 於SiC之原料中添加粉末狀或固態狀之bn,保持於2〇〇〇 C左右之較低溫度並昇華再結晶,藉此無需添加仏氣體, 可將N與B之雙方同時添加於Sic内。於此情形時,B之添加 量有相對下降之傾向,故而併用上述之任何方法,積極地 添加B較好。藉由使用BN之昇華再結晶法,可穩定地獲得 DA對濃度為lxl〇18/cm3至gxl〇18/cm3之Sic製螢光體。 昇華再結晶後,若以l3〇(TC以上之溫度實施i小時以上之 熱退火處理,於可以提高螢光之發光強度之方面較好。藉 由熱處理,能量性地以非活性之態樣混入之3與1^固定於si 或c之位置,並活性化,其結果係DA對之濃度得以提高。 100544.doc -20 · 1305228 B源之混合量藉由B源之種類等之其他條件而有所不 同’藉由將相對於SiC粉末為0.05 mol%至15 mol%之方式混 合者作為原料,可容易地、穩定地將l〇16/cm3i1〇”/cm3之 濃度之B添加於SiC結晶中。於此情形時,作為B源,混合 MB2、BN或LaB6等B單體(金屬硼)以外之材料時,將關於b 源中所含之B之換算量作為混合量。於提高螢光之發光強度 之方面,B源之混合量相對於SiC粉末為2.5 mol%至5 mol% 較好。
本發明之SiC製螢光體之其他製造方法的特徵在於:將B
單體、LaB6、B4C、TaB2、NbB2、ZrB2、HfB2 或 BN作為 B 源’於真空下或惰性氣體環境下以1500°c以上之溫度熱擴 散至SiC。藉由該方法’可製造如下SiC製螢光體:藉 與B摻雜SiC ’可以N或B中任何一方之濃度為iob/cm3至 l〇18/cm3、他方之濃度為i〇16/cml 10i9/cm3之方式調整摻雜 濃度’且藉由外部光源激發並發光,發出波長5〇〇 11111至75〇 nm之螢光’於500 nm至650 nm具有峰值波長。 B與N之濃度調整亦可藉由控制熱擴散之條件而達成。實 施熱擴散之SiC例如可使用藉由昇華再結晶法,摻雜 l〇17/cm3左右之N者。又於熱擴散時,若使B源直接接觸於 SiC結晶’則有B源與SiC結晶發生反應,SiC結晶被侵蝕之 情形’故而B源距SiC結晶0.1 mm左右熱擴散之態樣較好。 於熱擴散中,可使用Ar氣體等之惰性氣體,加熱至15〇〇 。(:以上’較好的是至170(TC至2000。(:,保持3小時至5小時, 藉此於SiC結晶之表面形成厚度3 μηι左右之b擴散層。例如 I00544.doc 21 1305228 照射輸出30W、波長250 nm之紫外線,則該擴散層發出可 以肉眼確認之螢光。 藉由熱擴散之條件,有時於SiC結晶之表面會形成擴散 層,其中B以1019/cm3以上之高濃度存在。發出強烈螢光之 區域距SiC結晶之表面2 μιη至4 μιη,因此較好的是,去除厚 度2 μιη之表面之高濃度β層,提高發光強度。較好的是,例 如熱擴散之後,於氧化氣體環境下,以1〇〇〇t以上,較好 的疋1200 C至140(TC之溫度,加熱2小時至4小時,形成氧 化膜,繼而例如藉由氟酸等進行化學處理,去除氡化膜之 表面。除此以外,亦可藉由研磨、或藉由反應性離子蝕刻 (RIE)較好地實施表面層之去除。進而,與昇華再結晶之情 形同樣,若熱擴散之後以13〇〇〇c以上之溫度實施丨小時以上 之熱退火處理,於可提高螢光之發光強度方面較好。
以上之實施形態例示有1^之濃度為1〇I5/cm3至i〇18km3,B 之濃度為WW至10丨W之Sic製螢光體的製造方法 '然 而,本發明於B與N對之濃度為101%〇13至1018/(^3,B或N 中任何一方之濃度為1〇16/cm3至l〇19/cm3之SiC製螢光體中 具,顯,效果,因此本發明亦包含濃度為i〇16/cm3至 /cm B之丨辰度為1〇is/cm3之sic製螢光體及 其製造方法。 (半導體用之基板及粉末) 本毛明之半導體用之基板及粉末之特徵在於包含6H型 lC單、”《曰0螢光體,該螢光體藉由外部光源激發並發光,並 藉由B與Μ中一種以上之元素及N摻雜。 100544.doc 22- 1305228 例如,包含藉由B與N摻雜之6H型SiC單結晶螢光體之半 導體基板及粉末藉由外部光源激發,發出波長500 nm至750 nm之螢光,於500 nm至650 nm具有峰值波長。又,包含藉 由A1與N摻雜之6H型SiC單結晶螢光體之半導體基板及粉 末發出波長400 nm至750 nm之螢光,於400 nm至550 nm具 有峰值波長。進而’包含藉由A1、B以及N摻雜之6H型SiC 單結晶螢光體之半導體基板及粉末發出4〇〇 nm至750 nm之 螢光,於400 nm至650 nm具有峰值波長。 於藍色-紫外光之區域發光之GaN系化合物半導體等之半 導體中使用之基板或粉末等,若使用本發明之SiC製螢光 體,獲得之發光裝置之6HMSi(:單結晶螢光體藉由來自半導 體之藍色-紫外光之一次光激發,發出紫色_藍色-黃色_紅色 之可視區域之2次光,故而藉由來自半導體之直接光與來自
SiC製螢光體之2次光之混合光、或者2次光之混合光,可獲 得高品質之白色光。 包含藉由B與N摻雜之6H型SiC單結晶螢光體之半導體基 板及泰末可藉由具備如下步驟之方法製造:熱擴散步驟與 去除表面層之步驟,熱擴散步驟係將B單體、LaB6、B4C、 2 ❿2、ZrBz、UfB2或BN作為B源,於真空下或惰性 氣體裒&下’以150()<>C以上之溫度熱擴散至SiC。如上所 述β表面層之去除較好的是’使用於1000°C以上之氧化氣 體衣竟ΤΆ成氧化膜’藉由氟酸等去除已形成之氧化膜之 表面之方法、七益 現錯由研磨去除之方法、或藉由反應性離子 蝕刻去除之方法。 100544.doc -23- 1305228 包含藉由B與N摻雜之6H型SiC單結晶螢光體之半導體基 板及粉末亦可藉由昇華再結晶法製造,該昇華再結晶法之 特徵在於:結晶成長時之環境氣體包含氣體分壓為1%至 3〇%之&氣體’原料SiC包含〇 〇5则1%至15则1%之8源。 於該態樣中,較好的是’於昇華再結晶之後或熱擴散之後, 以1300°C以上之溫度實施熱退火處理。 將MB2、BN、B4c或LaB6等作為B源,封入於碳製之膠囊, 並犯入於以1〇丨6/(^3至1〇17/(;1113之濃度含有N2Sic粉末,於 碳製之坩堝内、真空下、加熱至1300t至200(TC,並保持3 小時至5小時。獲得之Sic粉末由於表面存在高濃度B,故而 於氧化氣體環境下、將SiC粉末加熱至1〇〇〇。〇至1400°C,保 持2小時至4小時,其後,例如藉由氟酸等進行化學處理’ 去除表面之氧化膜後,可觀察到強烈之螢光。 使用BN作為B源時,使用BN製之坩堝取代碳製之坩堝, 於BN製之时禍中放入原料sic粉末,並加熱燒成,藉此亦 可實現特定之摻雜,若原料之Sic粉末為純度98%以上,則 製造方法不受限制,不一定使用單結晶sic。 又於相關擴散條件下’發出良好之螢光之層距表面1 μπι 至4 μιη ’故而SiC粉末之粒徑之下限為2 μιη,2.5 μιη以上較 好又’發出良好之螢光之層距表面1 μιη至4 μιη,距表面4 μιη以上之深處發光強度減弱,故而Sic粉末之粒徑之上限 為10 μιη’ 8 μιη以下較好。基於同樣之理由,中心粒徑為3 μιη 至6 μιη較好,4 μιη至5 μιη更好。 (發光二極體) 100544.doc -24· 1305228 本發明之發光二極體之特徵在於:具備包含6h型單結 曰曰螢光體之半導體用基板與基板上包含氮化物半導體之發 光元件,該6H型SiC單結晶螢光體藉由丑與八丨中一種以上之 元素與N摻雜。 將SiC製基板上之氮化物半導體發出之藍色光-紫外光作 為激發光使用之SiC製基板發出螢光,與來自氮化物半導體 之光混合後,可實現固體白色光源。又,可以提供如下光 源.無需困難之安裝技術,白色光之色溫度再現性亦高, 並優於顯色性。 例如’於包含藉由B與N摻雜之6H型Sic單結晶螢光體之 基板上,具有發出波長400 nm&右之紫色光之GaN系半導 體的發光二極體將來自GaN系半導體之紫色光作為激發光 源,sic基板發出黃色之螢光,因此藉由利用來自Sic之黃 色之螢光、與來自GaN系半導體之紫色光,可獲得再現性 高、顯色性良好之白色光。 又,一種發光二極體,於包含SiC之半導體用基板上,具 有包含6H型SiC單結晶螢光體之1或2以上之層,於6]^型Sic 單結晶螢光體層上,具有包含氮化物半導體之發光元件, s亥6H型SiC單結晶螢光體藉由A1中一種以上之元素及N 摻雜,該態樣之發光二極體將氮化物半導體發出之藍色光 或紫色光作為激發光,Sic基板上之1或2以上之螢光體層相 應於添加之雜質發出螢光,因此藉由混合此等螢光,或藉 由混合來自氮化物半導體之光與螢光,可提供高質量之固 體白色光源。 100544.doc 25· 1305228 例如,一種發光二極體,於藉摻雜之卜§冗基板上, 形成摻雜A1與N之第ISiC層,於第iSiC層上,形成摻雜3與 N之第2SiC層,於第2SiC上,具有發出波長4〇〇nm左右之紫 色光之GaN系半導體,該發光二極體將來自GaN系半導體之 紫色光作為激發光源,第2SiC層發出黃色之螢光,第lsic 層發出藍色之螢光,因此藉由利用來自sic層之黃色與藍色 之營光’可獲得再現性高、顯色性良好之白色光。 作為SiC半導體基板,使用6H型單結晶,藉以B、A卜以 及N摻雜,可將siC基板作為本發明之螢光體加以利用,獲 得白色光。另一方面,不將SiC基板作為螢光體使用,而利 用形成於基板上之SiC螢光體層與氮化物半導體層,可獲得 良好之白色光。本發明之發光二極體中,6H型SiC單結晶螢 光體之藉由B與A1中一種以上之元素摻雜之濃度、與藉 掺雜之濃度於提高發光效率之方面,任何一個濃度均為 l〇16/cm3 至 l〇19/cm3 較好,10i7/cm3 至 1〇19/cm3 更好。 於圖4表示本發明之發光二極體之典型構製一例。於該例 中’例如藉由CVD法於SiC基板401上,磊晶成長添加有A1 與N之第1雜質添加siC層402、與添加有B與N之第2雜質添 加SiC層403。進而,於SiC層403上,例.如藉由有機金屬化 合物氣相形成法磊晶成長AlGaN緩衝層404、η-GaN第1接觸 層405、n-AlGaN第1包層406、GalnN/GaN多重量子井活性 層407、p-AlGaN電子塊層408、p-AlGaN第2包層409、以及 p-GaN第2接觸層410。繼而,於p-GaN第2接觸層410上形成 包含Ni/Au之p電極411之後,如圖4所示,蝕刻直至露出 I00544.doc -26- 1305228 n-GaN第1接觸層405,於n-GaN第1接觸層405上形成η電極 4U ’藉此獲得本發明之發光二極體。於該例中,包含氮化 物半導體之發光元件指位於第2雜質添加SiC層403上之各 層。 來自氮化物半導體之激發光一旦於SiC之吸收端被吸 收’電子電洞對緩和於雜質位準。從而,摻雜有雜質之sic 層配置於SiC基板401與AlGaN緩衝層404之間之態樣較 好。氮化物半導體可自GaN等III族氮化物半導體等適當選 擇’較好的是以如下方式選擇半導體:成為激發波長之發 光元件之發光波長為作為6H型SiC之吸收端波長之408 nm 以下的波長。 添加有A卜B、以及N之SiC層可藉由磊晶成長而形成, 亦可藉由擴散而形成。例如,於氮化物半導體蟲晶成長之 前’將濺鍍於添加有N之SiC基板之碳作為掩模,局部性地 擴散B或A1,部分性地分開黃色部、藍色部,亦可獲得可以 單一製程控制顯色性之複合二極體。又,除形成2層以上之 雜質添加層之態樣之外,於1層同時添加B、A卜以及n亦 可獲得同樣之效果。 (實施例1) 如圖1所示’藉由改良型瑞利法製作sic製螢光體。首先, 將包含SiC單結晶之基板丨安裝於石墨製坩堝3之蓋4的内 面’該SiC單結晶作為籽晶。又,混合作為原料2之高純度 SiC粉末(JIS粒徑# 250)與B源之後,充填於石墨製坩禍3之 内部。 100544.doc -27- 1305228 繼而,以篕4封閉充填有原料2之石墨製甜〶,藉由石墨 製支持棒6將柳設置於石英管5之内部,並藉 屏蔽罩7覆蓋石墨製㈣3之周圍。作為環境氣體,介心 1表1〇’藉由導入管9使^氣體與乂氣體流至石英管5之内 部(Ar氣體之流量為i公升/分鐘)。繼而,於工作線,流過 高頻率電流,以原料2之溫度成為2鳩。c,基板以溫度成 為2200°C之方式加以調節。 繼而,調節Ar氣體與A氣體之流量,同時使用真空泵n, 使石英管5之内部減壓。花費20分鐘時間自大氣壓逐漸減壓 直至133 Pa ’並於133 Pa保持5小時,藉此獲得直徑55 mm、 厚度10 mm之SiC結晶。 將結晶成長時之環境氣體中N2氣體之分壓設為1%。又, 作為B源’使用浸潰有5 mol%之B單體(金屬硼)之碳,以b 單體相對於SiC粉末為0.05 mol%之方式,將該碳混合於sic 粉末,作為原料粉末。 藉由SIMS測定獲得之SiC結晶之B與N的濃度,則N為5X 1017/cm3,B為3xl016/Cm3。又,自獲得之SiC單結晶切出直 徑55 mm、厚度0.3 mm之結晶之後,對單面進行研磨加工, 並就平坦面測定其螢光。測定之結果係,呈現出如圖3所示 之寬闊光譜,其峰值波長為620 nm,並發出波長500 nm至 750 nm之螢光。 繼而,以1850°C將測定後之結晶保持4小時,實施熱退火 處理,其結果係光譜之形狀大致相同,但發光之相對強度 與熱退火處理前相比,提高至2倍以上。 100544.doc -28· 1305228 (實施例2) 除將結晶成長時之環境氣體中氣體之分壓設為5%,B 單體相對於sic粉末之濃度設為0·5 mol%之外,與實施例i 同樣地製造sic結晶。獲得之Sic結晶之N與B之濃度係:N 為3xl018/cm3,B為lxi〇17/cm3。又,螢光光譜之形狀與實 施例1相同,但發光之相對強度與實施例1中熱退火處理前 之結晶相比,大致提高至3倍。 (實施例3) 除將結晶成長時之環境氣體中]^2氣體之分壓設為1〇%,B 單體相對於SiC粉末之濃度設為5 mol%之外,與實施例1同 樣地製造SiC結晶。獲得之sic結晶之N與B的濃度係:n為8 xl018/cm3,B為5xl〇17/cm、又,螢光光譜之形狀與實施例 1相同’但發光之相對強度與實施例1中熱退火處理前之結 晶相比’大致提高至5倍。 (實施例4) 除將結晶成長時之環境氣體中N2氣體之分壓設為3 〇%,b 單體相對於SiC粉末之濃度設為15 mol%之外,與實施例i 同樣地製造SiC結晶。獲得之SiC結晶之N與B的濃度係:N 為lxl〇19/cm3,B為lxl〇18/cm3。又,螢光光譜之形狀與實 施例1相同,但發光之相對強度與實施例1中熱退火處理前 之結晶相比,大致下降至1/1 〇。 自實施例1至4之結果可知:藉由將結晶成長時之環境氣 體中Nz氣體之分壓設為1%至3〇%,b單體相對於Sic粉末之 濃度設為〇.〇5 mol%至15 mol%,獲得N為1χ 100544.doc -29- 1305228 10 /cm ’B為 3xl016/cm3至 lxioU/cm3 之 SiC 製螢光體,該 螢光體發出波長500 nm至750 nm之螢光,於500 nm至650 nm具有峰值波長。 (實施例5) 除原料粉末中未混合B源之外,與實施例1同樣地,藉由 改良型瑞利法獲得直徑55 mm、厚度1 〇 mm之SiC單結晶。 與實施例1同樣地,自獲得之Sic單結晶切出直徑55 mm、厚 度0.3 mm之結晶之後,研磨加工其單面。繼而’將^匕作 為B源,將相對於SiC粉末為3 mol%之TaB2混合於SiC粉末之 後,固疋於夹具。於§玄夹具安裝已研磨加工之上述之sic結 晶,並以SiC結晶之平坦面與TaB2之間隔為〇1 mm之方式加 以調節。 繼而’將該夾具放入碳製之坩堝内,於沿氣體之環境下, 加熱至1800 C,並保持4小時。就獲得之結晶測定螢光之結 果係,與實施例1同樣地,呈現如圖3所示之寬闊光譜,其 發出峰值波長為620 nm,波長500 nm至750 nm之螢光。又, 藉由SIMS測定獲得之SiC結晶之B與N的濃度,N為5 X l〇17/cm3 ’ B為 5xl016/cm3至 8xl018/cm3。 進而,以1800°C進行4小時熱退火處理之後,螢光光譜之 形狀無變化,但發光之相對強度提高至2倍。繼而,藉由RIE 將結晶之表面削落2 μιη,則螢光光譜之形狀相同,與削落 前相比’發光之相對強度提高至1.5倍。 (實施例6) 藉以乳缽粉碎於實施例5中獲得之Sic單結晶,並分級, 100544.doc -30- 1305228 獲得粒徑為2 μηι至3 μπι之粉末,將該粉末放入包含白色之 ΒΝ燒結體之坩堝,加熱燒成。於%氣體環境下,減壓至 Pa進行燒成,並以1800〇c保持4小時。燒成後,藉以乳缽粉 碎sic粉末,於大氣環境下(氧化性氣體環境)、以12〇〇它加 熱3小時,於表面形成氧化膜。藉以7〇%之氟酸處理獲得之 燒結體,將表面去除1 μιη左右,並乾燥,從而獲得粉末。 就獲得之粉末測定其螢光之結果係,呈現與實施例5同樣 之寬闊光譜’其發出峰值波長為64〇 nm,波長500 nm至750 nm之螢光》又,藉由SIMS測定獲得之粉末之3與1^的濃度, N為 7xl017/cm3,B為 9xl017/cm3。 (實施例7) 於圖4表示本實施例之發光二極體之構造。於Sic基板4〇1 上’例如藉由CVD法蟲晶成長添加有A1與N之第1雜質添加
SiC層402、與添加有B與N之第2雜質添加SiC層403。進而 於SiC層403上,例如藉由有機金屬化合物氣相形成法,形 成AlGaN緩衝層404、n-GaN第1接觸層405、n-AlGaN第1包 層406、GalnN/GaN多重量子井活性層4〇7、p_A1GaN電子塊 層408、p-AlGaN第2包層409、以及p-GaN第2接觸層410。 繼而’於p-GaN第2接觸層410上,形成包含Ni/Al^p電極4n 之後,如圖4所示,蝕刻直至露出n_GaN第1接觸層4〇5,於 n-GaN第1接觸層405上形成n電極412,從而獲得發光二極 體。 繼而如圖5所示,將該發光二極體5〇1安裝於莖幹5〇5上。 於形成於至幹505上之絕緣性散熱片502之金屬層503a、 100544.doc •31- 13〇5228 503b上,介以金凸塊504以外側向下方式進行安裝。其後, 藉以金線507a連接金屬層503a與配線用引線5〇6,將金線 507b連接於金屬層503b ’並藉以環氧樹脂508固定。 介以金線507a、507b施加電壓至發光二極體5〇1後,電流 注入於發光二極體。其結果係’於圖4之GalnN/GaN多重量 子井活性層40 7放出波長400 nm之紫色光。該紫色光中,向 SiC基板401之方向放出之光進入至第2雜質添加Sic層4〇3 與第1雜質添加SiC層402,幾乎全部吸收於此等層中,同時 藉由各層之雜質位準產生螢光。 於第2雜質添加SiC層403中,以H^Vcm3左右之濃度添加B 與N ’藉以400 nm之紫色光激發後,放出具有如圖3所示之 光譜之螢光。該螢光如自圖3明知,係波長為5〇〇 nm至750 nm,峰值波長約為600 nm之黃色之螢光,但比較多地含有 超過600 nm之紅色成分。又,第2雜質添加Sic層403之厚度 為 20 μηι。 另一方面,於第1雜質添加SiC層402中,以l〇18/cm3左右 之濃度添加A1與N,藉以400 nm之光激發後,放出具有如圖 6所示之光譜之螢光。該螢光如自圖6明知,係波長為4〇〇 nm 至75 0 nm ’峰值波長為460 nm附近之藍色光。又,第1雜質 添加SiC層402之厚度為20 μπι。 藉由混合該2層雜質添加SiC層402、403產生之螢光,獲 得優於顯色性之白色光。藉由變化上述之摻雜濃度與Sic層 402、403之膜厚,可調節混合比。自此可知,白色光之色 溫度之調節比較容易。又,於發光二極體之内部產生白色 100544.doc •32- 1305228 光,故而放出之白色光之顏色的角度依存性很小,甚至可 以忽略不計。 (實施例8) 於圖7表示本實施例之發光二極體之構造。該發光二極體 如圖7所示,於摻雜N之n-SiC基板701上,藉由CVD法磊晶 成長添加有A1與N之第1雜質添加SiC層702、與添加有B與N 之第2雜質添加SiC層703。進而於SiC層703上,藉由有機金 屬化合物氣相形成法積層n-AlGaN缓衝層704、n-GaN第1接 觸層705、n-AlGaN第1包層706、GalnN/GaN多重量子井活 性層707、p-AlGaN電子塊層708、p-AlGaN第2包層709、以 及p-GaN第2接觸層710。繼而,於p-GaN第2接觸層710之表 面,形成包含Ni/Au之p電極711,於SiC基板701之表面部分 地形成η電極712,從而獲得發光二極體。 繼而如圖8所示,將該發光二極體801安裝於莖幹805上。 於形成於莖幹805上之絕緣性散熱片802的金屬層803上,以 表側朝下方式進行安裝。其後,藉以金線807連接金屬層803 與配線用引線806,並藉以環氧樹脂808固定。 施加電壓至發光二極體801後,電流注入於發光二極體。 其結果係,於圖7之GalnN/GaN多重量子井活性層707中, 放出波長400 nm之紫色光。該紫色光中,向SiC基板701之 方向放出之光進入至第2雜質添加SiC層703與第1雜質添加 SiC層702,幾乎全部吸收於此等2層中,並藉由各SiC層之 雜質位準發出螢光。
於第2雜質添加SiC層703中,以1018/cm3左右之濃度添加B 100544.doc -33- 1305228 與N ’藉以400 nm之光激發後’放出具有如圖3所示之光譜 之螢光。該螢光如自圖3明知’係波長為5〇〇 nm至750 nm, 峰值波長約為600 nm之黃色之螢光,但比較多地含有超過 600 nm之紅色成分。又’第2雜質添加sic層7〇3之厚度為3〇 μιη。 另一方面’於第1雜質添加Sic層702中,以l〇18/cm3左右 之濃度添加A1與N,藉以400 nm之光激發後,放出具有如圖 6所示之光譜之螢光。該螢光如自圖6明知,係波長為4〇〇nm 至750 nm ’峰值波長為460 nm附近之藍色光。又,第1雜質 添加SiC層702之厚度為30 μιη 〇 藉由混合該2層雜質添加SiC層702、703產生之螢光,獲 得優於顯色性之白色光。藉由變化摻雜之雜質濃度與51(:層 702、703之膜厚,可調節混合比。自此可知,白色光之顏 色之調節比較容易。又’於發光二極體之内部產生白色光, 故而放出之白色光之顏色的角度依存性很小,甚至可以忽 略不計。 (實施例9) 於本實施例中,組合發光波長為440 nm至480 nm之先前 之氮化物半導體發光二極體與本發明之發光二極體,合成 白色光。本發明之發光二極體採用將氮化物半導體發出之 紫色光作為激發光’發出黃色之螢,光的發光二極體。 除不形成藉以A1與N摻雜之第1雜質添加sic層,僅形成藉 以B與N摻雜之第2雜質添加SiC層作為雜質添加Sic層外, 與實施例8同樣地製作發光二極體,如圖8所示,與實施例8 I00544.doc •34- 1305228 同樣地安裝。 主入電流至發光一極體後,於GalnN/GaN多重量子井活 性層中放出波長400 nm之紫色光,向Sic基板之方向放出之 紫色光進入至雜質添加SiC層,並藉由雜質添加Sic層幾乎 全部得以吸收,並發出螢光。 雜質添加SiC層中,B與N均以iWcm3左右之濃度添加, 藉以400 nm之光激發後,放出具有如圖3所示之光譜之黃色 之螢光。該黃色之螢光如自圖3明知,其波長為5〇〇 nm至75〇 nm,峰值波長約為60〇nm,亦比較多地含有超過6〇()11111之 紅色成分。又,雜質添加SiC層之厚度為30 μιη。 組合配置該發出黃色光之二極體、與發光波長為44〇 nm 至480 nm之氮化物半導體構成之先前之發光二極體(未圖 示),以3:1混合來自發出黃色光之二極體之放射光、與來自 先前之二極體之放射光,藉此可合成優於顯色性之白色光。 可知.作為發出黃色光之二極體,A1GaInP構成之4元系 同τα度一極體得以實用化,為呈現如圖3所示之寬闊光譜, 組合本實施例中製作之發光二極體與藍色發光二極體,藉 此可更加容易地獲得顯色性高之白色。 (實施例10) 除取代結晶成長時之B源,將A1單體以相對於Sic粉末為 〇·1 mol%之方式混合於Sic粉末,作為原料粉末之外,與實 施例1同樣地形成SiC結晶。獲得之sic結晶之A1與N的濃度 係:N為5xl0iW,A1為2xl0iW。又,螢光光譜呈現 如圖6所示之寬闊光譜,其發出峰值波長為43〇nm,波長4〇〇 100544.doc -35- 1305228 nm至750 nm之螢光。 繼而,將測定後之結晶以丨850°c保持4小時,實施熱退火 處理’其結果係’光譜之形狀大致相同,但發光之相對強 度與熱退火處理前相比,提高至2倍以上。 (實施例11) 除將結晶成長時之環境氣體中N2氣體之分壓設為5%,A1 單體相對於SiC粉末之濃度設為丨mol%之外,與實施例10 同樣地製造SiC結晶。獲得之SiC結晶之n與A1的濃度係:N 為5xl018/cm3 ’ A1為lxl〇17/cm3。又,營光光譜之形狀與實 施例10相同’但發光之相對強度與實施例1〇中熱退火處理 前之結晶相比,大致提高至2倍。 (實施例12) 除將結晶成長時之環境氣體中N2氣體之分壓設為1 〇〇/〇, A1單體相對於SiC粉末之濃度設為1〇 mol%之外,與實施例 1〇同樣地製造SiC結晶。獲得之Sic結晶之N與A1的濃度係: N為8x 10 /cm ’· A1為4χ 1 〇17/cm3。又,螢光光譜之形狀與 實施例10相同’但發光之相對強度與實施例丨〇中熱退火處 理前之結晶相比’大致提高至3倍。 (實施例13) 除將結晶成長時之環境氣體中N2氣體之分壓設為30%, A1單體相對於SiC粉末之濃度設為20 mol%之外,與實施例 10同樣地製造SiC結晶。獲得之siC結晶之N與A1的濃度係: N為1x10 /cm ’ A1為1χ 1 〇18/cm3。又,螢光光譜之形狀與 實施例10相同’但發光之相對強度與實施例丨〇中熱退火處 100544.doc -36- 1305228 理前之結晶相比,大致下降至1/3以下。 理應考慮:本次揭示之實施形態及實施例於所有方面僅 #例示’並非受限制者。本發明之範圍並非藉由上述之說 • 日月’而藉由請求之範圍揭示,包含與請求範圍同等之意義 . 以及範圍内之所有變更。 • [產業上之可利用性] 本發明之SiC製螢光體即使於將波長比較長之藍色-紫色 光作為一次光之情形時,亦發出高效率之螢光,故而可獲 籲 #激發光與螢光之混合色,可製造使用半導體元件等發出 之波長比較長之激發光的發光二極體。該發光二極體優於 " 顯色性、成本低,作為發光效率高之白色光源有用。又, • Sic係共有結合性高之材料,不易變質,亦具有導電性,故 而亦耐於強烈電子束,亦可使用於放電管或1>£)1>。 【圖式簡單說明】 圖1係表示本發明之Sic製螢光體的製造方法中使用之單 結晶成長裝置之一例的模式圖。 籲 圖2係說明本發明之製造方法中使用之改良型瑞利法之 原理的模式圖。 圖3係表示本發明之81(:製螢光體之發光特性的圖。 圖4係表示本發明之發光二極體之構造的模式圖。 圖5係表示裝有本發明之發光二極體之狀態的模式圖。 圖6係表示本發明之SiC製螢光體之發光特性的圖。 圖7係表示本發明之發光二極體之構造的模式圖。 圖8係表示裝有本發明之發光二極體之狀態的模式圖。 圖9係表示裝有先前之發光二極體之狀態的模式圖。
100544.doc -37- 1305228 圖ίο係表示裝有先前之發光二極體之狀態的模式圖。 【主要元件符號說明】 1 基板 2 原料 3 坩堝 4 蓋 5 石英管 6 支持棒 7 熱屏蔽罩 8 工作線圈
9 401 402 403 404 405 406 407 408 409 410 411 導入管 SiC基板 第1雜質添加SiC層 第2雜質添加SiC層
AlGaN緩衝層 n-GaN第1接觸層 η-AlGaN第1包層
GalnN/GaN多重量子井活性層 p-AlGaN電子塊層 p-AlGaN第2包層 p-GaN第2接觸層 p電極 412 η電極 100544.doc -38-

Claims (1)

1305228 十、申請專利範圍··
-種SiC製螢光體,其特徵在於:藉由外部光源激發而發 光,且由B與A1中一種以上之元素及N所摻雜者。 如請求項1之SiC製螢光體,其中3與^中一種以上之元素 之摻雜濃度及N之摻雜濃度均為1〇15/(;1113至1〇2G/cm3。 如請求項2之SiC製螢光體,其中3與入丨中一種以上之元素 之摻雜濃度及N之摻雜濃度均為1〇16/£;1113至1〇2〇/cm3。 如請求項1之sic製螢光體,其中發出波長5〇〇 11111至75〇 nm之螢光,於500 nm至650 nm具有峰值波長。 如請求項4之SiC製螢光體,其中SiC係由N與B所摻雜,N 或B中任何一方之濃度為1〇i5/cm3至丨〇1Vcm3,他方之濃度 為 l〇16/cm3至 l〇19/cm3。 6. 如請求項1之SiC製螢光體,其中發出波長400 nm至750 nm之螢光,於400 nm至550 nm具有峰值波長。 7. 如請求項6之SiC製螢光體’其中SiC係由N與A1所摻雜,N 或八1中任何一方之濃度為1〇15/0„13至1〇18/(;1113,他方之濃 度為 1016/cm3 至 1019/cm3。 8. —種SiC製螢光體之製造方法,其特徵在於:該SiC製螢 光體係藉由外部光源激發,發出波長500 nm至750 nm之 營光,於500 nm至650 nm具有峰值波長,並由N與B所摻 雜,N或B中任何一方之濃度為l〇15/cm3至1018/cm3,他方 之濃度為1016/cm3至l〇l9/cm3;其製造方法係 將 LaB6、B4C、TaB2、NbB2、ZrB2、HfB2、BN、或含 有B之礙作為B源,It由升華再結晶法形成S i C結晶。 100544.doc 1305228 9. 一種SiC製螢光體之製造方法,其特徵在於:該siC製螢 光體係藉由外部光源激發’發出波長500 nm至750 nm之 螢光’於500 nm至650 nm具有峰值波長,並由n與B所摻 雜,N或B中任何一方之濃度為l〇15/cm3至i〇18/cm3,他方 ' 之濃度為l〇16/cm3至lO’cm3 ;其製造方法係 . 將 B 單體、LaB6、B4C、TaB2、NbB2、ZrB2、HfB2 或 BN 作為B源’於真空下或惰性氣體環境下,以丨5〇〇»c以上熱 擴散至SiC。 • 10·如請求項8或9之SiC製螢光體之製造方法,其中昇華再結 晶或熱擴散之後,以130(TC以上實施1小時以上之熱退火 處理。 -11.如請求項9之SiC製螢光體之製造方法,其中熱擴散之後 去除表面層。 12· —種半導體用之基板,其特徵在於包含6^型Sic;單結晶螢 光體’該螢光體係藉由外部光源激發而發光,且由8與八1 籲 中一種以上之元素及N所摻雜者。 13.如請求項12之半導體用之基板,其中包含6h型siC單結晶 螢光體,該螢光體係由N與B所摻雜,發出波長5〇〇 nm至 750 nm之螢光,並於500 nm至650 nm具有峰值波長。 Μ·如請求項12之半導體用之基板,其中包含6H型SiC單結晶 螢光體,該螢光體係由1^與八1所摻雜,發出波長4〇()11111至 750 nm之螢光,並於400 nm至5 50 nm具有峰值波長。 15.種半導體用之基板之製造方法,其特徵在於··該基板 包含6H型SiC單結晶螢光體,該螢光體係藉由外部光源激 100544.doc 1305228 l〇19/cm3 ;其製造方法具備: ^ ’ 發出波長50〇nn^75〇nm之榮光,於5〇〇nn^65〇nm 具有峰值波長,並由]^與3所摻雜,N*B中任何一方之濃 度為l〇I5/cm3至10iVCm3,他方之濃度為…6/cm3至 ,A t 0 . _ 將 B單體、LaB6、B4C、TaB2、NbB2、ZrB2 ' HfB2或 BN 作為B源,於真空下或惰性氣體環境下,以150(rc以上熱 擴散至SiC之步驟;及
去除表面層之步驟。 16_種藉由昇華再結晶法形成SiC結晶之半導體用之基板 之製造方法’其特徵在於:該基板包含6H型Sic單結晶螢 光體’該螢光體係藉由外部光源激發,發出波長5〇〇 nm 至750 nm之螢光’於500 nm至650 nm具有峰值波長,並 由N與B所摻雜,;^或3中任何一方之濃度為1〇i5/cm3至 10 8/cm3 ’他方之濃度為1〇i6/cm3至1〇19/cm3 ;其製造方法 係結晶成長時之環境氣體包含氣體分壓為1%至3〇%iN2 氣體’原料Sic包含0.05 mol%至15 mol%之B源。 17.如請求項15或16之半導體用之基板之製造方法,其中昇 華再結晶後或熱擴散後,以130(TC以上實施熱退火處理。 1 8. 一種半導體用之粉末’其特徵在於:包含6H型SiC單結晶 螢光體,且粒徑為2 μπι至1〇 ,中心粒徑為3 μιη至6 μηι ’該6Η型SiC單結晶螢光體係藉由外部光源激發,發 出波長500 nm至75〇 nm之螢光,於500 nm至650 nm具有 峰值波長。 19. 一種發光二極體’其特徵在於:具備包含6H型SiC單結晶 100544.doc 1305228 螢光體之半導體用之基板與該基板上包含氮化物半導體 之發光元件,該6H型SiC單結晶螢光體係由3與八丨中一種 以上之元素及N所摻雜者。 2〇· —種發光二極體,其特徵在於:於Sic製半導體用之基板 上具備包含6H型SiC單結晶螢光體之1或2層以上之層,於 上述6H型SiC單結晶螢光體層上具備包含氮化物半導體 之發光元件,該6H型SiC單結晶螢光體係由8與八丨中一種 以上之元素及N所摻雜者。
如請求項19或20之發光二極體,其中包含氮化物半導體 之上述發光元件之發光波長為408 nm以下。 如請求項19或20之發光二極體,其中上述611型§丨(:單結晶 螢光體之B與A1中一種以上之元素之摻雜濃度及N之摻$ 濃度均為 1016/cm3至 1019/cm3。 23.如請求項22之發光二極體,其中上述611型81(:單結晶螢光 體之B與A1中一種以上之元素之摻雜濃度及N之摻雜濃度 均為 1017/cm3 至 1019/cm3。 & 100544.doc
TW094108959A 2004-03-24 2005-03-23 Phosphor and light-emitting diode TW200604331A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087110A JP4153455B2 (ja) 2003-11-28 2004-03-24 蛍光体および発光ダイオード

Publications (2)

Publication Number Publication Date
TW200604331A TW200604331A (en) 2006-02-01
TWI305228B true TWI305228B (zh) 2009-01-11

Family

ID=34993682

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094108959A TW200604331A (en) 2004-03-24 2005-03-23 Phosphor and light-emitting diode

Country Status (5)

Country Link
US (1) US20070176531A1 (zh)
DE (1) DE112005000637T5 (zh)
GB (1) GB2428681B (zh)
TW (1) TW200604331A (zh)
WO (1) WO2005090515A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128068A1 (en) * 2005-11-15 2007-06-07 Hitachi Metals, Ltd. Solder alloy, solder ball, and solder joint using the same
JP2007149791A (ja) * 2005-11-24 2007-06-14 Univ Meijo 半導体発光素子および半導体発光素子の作成方法
WO2007136097A1 (ja) * 2006-05-23 2007-11-29 Meijo University 半導体発光素子
US7859000B2 (en) * 2008-04-10 2010-12-28 Cree, Inc. LEDs using single crystalline phosphor and methods of fabricating same
KR101266205B1 (ko) * 2008-07-08 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법
JP2010021202A (ja) * 2008-07-08 2010-01-28 Ushio Inc 発光装置
CN102143908A (zh) * 2008-07-08 2011-08-03 宋健民 石墨烯与六方氮化硼薄片及其相关方法
US20100218801A1 (en) * 2008-07-08 2010-09-02 Chien-Min Sung Graphene and Hexagonal Boron Nitride Planes and Associated Methods
KR101266226B1 (ko) * 2008-07-09 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법
US7888691B2 (en) * 2008-08-29 2011-02-15 Koninklijke Philips Electronics N.V. Light source including a wavelength-converted semiconductor light emitting device and a filter
JP5330880B2 (ja) 2009-03-27 2013-10-30 学校法人 名城大学 発光ダイオード素子及びその製造方法
JP5548204B2 (ja) * 2009-08-31 2014-07-16 国立大学法人京都大学 紫外線照射装置
US20110108854A1 (en) * 2009-11-10 2011-05-12 Chien-Min Sung Substantially lattice matched semiconductor materials and associated methods
JP5852300B2 (ja) * 2009-12-02 2016-02-03 オリンパス株式会社 光検出装置、顕微鏡および内視鏡
US20110163298A1 (en) * 2010-01-04 2011-07-07 Chien-Min Sung Graphene and Hexagonal Boron Nitride Devices
JP5839315B2 (ja) * 2010-07-30 2016-01-06 株式会社デンソー 炭化珪素単結晶およびその製造方法
JP5932664B2 (ja) 2010-12-08 2016-06-08 エルシード株式会社 Iii族窒化物半導体デバイス及びその製造方法
JP5219230B1 (ja) * 2012-09-04 2013-06-26 エルシード株式会社 SiC蛍光材料及びその製造方法並びに発光素子
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9738991B2 (en) * 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) * 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
CN103320862B (zh) * 2013-06-07 2016-03-30 山东大学 有色碳硅石宝石及其制备方法
WO2014203974A1 (ja) 2013-06-20 2014-12-24 エルシード株式会社 発光装置
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9577045B2 (en) 2014-08-04 2017-02-21 Fairchild Semiconductor Corporation Silicon carbide power bipolar devices with deep acceptor doping
JP6730082B2 (ja) * 2016-05-02 2020-07-29 日機装株式会社 深紫外発光素子の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562706B1 (en) * 2001-12-03 2003-05-13 Industrial Technology Research Institute Structure and manufacturing method of SiC dual metal trench Schottky diode
US20070128068A1 (en) * 2005-11-15 2007-06-07 Hitachi Metals, Ltd. Solder alloy, solder ball, and solder joint using the same

Also Published As

Publication number Publication date
US20070176531A1 (en) 2007-08-02
GB0620523D0 (en) 2006-11-29
DE112005000637T5 (de) 2008-06-26
WO2005090515A1 (ja) 2005-09-29
GB2428681A8 (zh) 2007-07-25
GB2428681A (en) 2007-02-07
TW200604331A (en) 2006-02-01
GB2428681B (en) 2008-10-29

Similar Documents

Publication Publication Date Title
TWI305228B (zh)
JP4153455B2 (ja) 蛍光体および発光ダイオード
TWI375710B (zh)
JP5628394B2 (ja) 蛍光体変換半導体発光デバイス
JP5185421B2 (ja) 赤色発光蛍光体およびそれを用いた発光装置
EP2562231B1 (en) Luminescent material
WO2010056619A1 (en) Phosphor composition
WO2006101096A1 (ja) 蛍光体とその製造方法および発光器具
CN107801399B (zh) 磷光体陶瓷
JP5758415B2 (ja) 赤色発光蛍光体の製造方法
US7709103B2 (en) Phosphor, manufacturing method thereof and light emitting device using the same
JP5946036B2 (ja) 発光装置
JP6356573B2 (ja) 単結晶蛍光体及び発光装置
JP4961443B2 (ja) 発光ダイオード
US9099597B2 (en) Light emitting diode element with porous SiC emitting by donor acceptor pair
TW201943838A (zh) 發光材料
JP4303765B2 (ja) SiC半導体、半導体用基板、粉末及び窒化物半導体発光ダイオード
KR100833834B1 (ko) 형광체 및 발광 다이오드
JP2007254759A5 (zh)
JP6865333B1 (ja) 発光材料
KR102422468B1 (ko) 발광 디바이스를 위한 파장 변환 재료
CN101014682B (zh) 荧光物质
GB2440695A (en) Phosphor and light-emitting diode
TW201231619A (en) Method of preparing nitride-based red phosphor powder and package structure of light emitting diode
McKittrick Improving the Efficiency of Solid State Light Sources