US7709103B2 - Phosphor, manufacturing method thereof and light emitting device using the same - Google Patents
Phosphor, manufacturing method thereof and light emitting device using the same Download PDFInfo
- Publication number
- US7709103B2 US7709103B2 US11/243,962 US24396205A US7709103B2 US 7709103 B2 US7709103 B2 US 7709103B2 US 24396205 A US24396205 A US 24396205A US 7709103 B2 US7709103 B2 US 7709103B2
- Authority
- US
- United States
- Prior art keywords
- phosphor
- light emitting
- light
- columnar crystal
- emitting region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 141
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 76
- 150000004767 nitrides Chemical class 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 46
- 239000010408 film Substances 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 230000031700 light absorption Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 24
- 239000000463 material Substances 0.000 abstract description 17
- 239000002105 nanoparticle Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 19
- 239000012535 impurity Substances 0.000 description 12
- 230000005284 excitation Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 230000007704 transition Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000005476 size effect Effects 0.000 description 6
- 235000005811 Viola adunca Nutrition 0.000 description 5
- 240000009038 Viola odorata Species 0.000 description 5
- 235000013487 Viola odorata Nutrition 0.000 description 5
- 235000002254 Viola papilionacea Nutrition 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7743—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/002—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/762—Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/813—Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
- Y10S977/815—Group III-V based compounds, e.g. AlaGabIncNxPyAsz
- Y10S977/816—III-N based compounds, e.g. AlxGayInzN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/848—Tube end modifications, e.g. capping, joining, splicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
Definitions
- the present invention relates to crystalline phosphor (fluorescent body) having a columnar shape, manufacturing method thereof and a light emitting device using the phosphor.
- Nano-particle phosphors tend to aggregate, and when specific surface area increases, luminescent killers derived from surface defects increase, degrading light emitting characteristic.
- Japanese Patent Laying-Open No. 2003-226521 discloses a technique in which the surface of nano-particles is modified by a surface stabilizer, to attain the effect of defect capping and mono-dispersity.
- nitride semiconductors such as GaN, InN and AlN, which are III-V group compound semiconductors, have superior light emitting characteristic and have been known as materials of light emitting device emitting blue-violet light of high luminance.
- a technique for manufacturing a phosphor using the nitride semiconductor as such has been proposed recently, as disclosed in Japanese Patent Laying-Open Nos. 2000-008035, 2003-034510 and 2003-063810.
- the nitride semiconductor is a chemically stable compound, and therefore, synthesis thereof requires high reaction temperature. Synthesis by reversed micelle method disclosed in ISOBE reference above or surface modification using a stabilizer disclosed in Japanese Patent Laying-Open No. 2003-226521 cannot be applied, as these methods employ materials that are much susceptible to pyrolysis.
- the present invention was made in view of the conventional technical problems described above, and its object is to provide a phosphor having superior light emitting characteristic using nitride semiconductor material, a manufacturing method that can produce the phosphor with high production yield, and a light emitting device using the same.
- the present invention provides a phosphor formed of a columnar crystal having a diameter of at most 3 nm, wherein a light emitting region and a light absorbing region are defined in the columnar crystal, and the light emitting region and the light absorbing region are adjacent to each other along a longitudinal direction of the columnar crystal.
- the light emitting region has a length of at most 3 nm.
- the light emitting region is posed between the light absorbing regions.
- the light emitting region includes a light emitting region of red, a light emitting region of green and a light emitting region of blue, and provides white light as a whole as red, green and blue are mixed.
- the columnar crystal includes a III group nitride, and the crystal has wurtzeit structure.
- a plane including the diameter of the columnar crystal is (0001) plane, and the longitudinal direction is ⁇ 0001> direction.
- a luminescence center is added to the light emitting region.
- the luminescence center is a rare earth element.
- an element that controls light absorption is added to the absorbing region.
- the present invention provides a method of manufacturing a phosphor, including the steps of: forming a dielectric thin film on a substrate; growing a phosphor of columnar crystal on the dielectric thin film; and removing the phosphor of columnar crystal from the substrate by etching.
- the dielectric film is silicon nitride or silicon oxide.
- the present invention provides a light emitting device, having any of the above-described phosphors arranged side by side in a prescribed density on a substrate.
- the phosphor in accordance with the present invention attains good luminous efficiency and high intensity.
- the method of manufacturing the phosphor in accordance with the present invention enables manufacturing with high production yield.
- the light emitting device in accordance with the present invention attains improved luminous efficiency as compared with a light emitting body formed in a planar shape.
- FIG. 1 is a schematic perspective view showing the phosphor in accordance with the present invention.
- FIG. 2 is a schematic perspective view showing the phosphor in accordance with the present invention.
- FIGS. 3A to 3F are schematic cross sections representing process steps of manufacturing the phosphor in accordance with the present invention.
- FIG. 4 is a schematic cross section showing the light emitting device in accordance with the present invention.
- the phosphor of the present invention is characterized in that it is formed of a columnar crystal having a diameter of at most 3 nm, a light emitting region and a light absorbing region are defined in the columnar crystal, and the light emitting region and the light absorbing region are adjacent to each other along a longitudinal direction of the columnar crystal.
- the columnar crystal is adapted to have the diameter of 3 nm or smaller, luminous efficiency can remarkably be enhanced because of quantum size effect. Further, degradation of luminous efficiency resulting from internal field can be prevented.
- small diameter of at most 3 nm enables fine emission pattern, and therefore, a display or white light illumination using the phosphor of the present invention is free from color irregularity. More preferable diameter is 2.5 nm.
- the columnar crystal consists of a crystal grown in a columnar shape in a specific direction from a nano-size small area as a cross section vertical to the longitudinal direction.
- the columnar crystal is provided with a light absorbing region and a light emitting region adjacent thereto.
- the light absorbing region refers to a region that absorbs light, and by appropriately designing the material of the light absorbing region, wavelength of light to be absorbed can be adjusted.
- the light emitting region refers to a region that converts energy transmitted from the light absorbing region to light to be emitted externally. The color of light emission may be adjusted by varying the material of the light emitting region.
- FIG. 1 is a schematic perspective view of the phosphor in accordance with the present invention.
- a phosphor 1 is formed of a columnar semiconductor single crystal having the diameter of at most 3 nm, as described above.
- Phosphor 1 includes light absorbing regions 2 and a light emitting region 3 positioned therebetween.
- the semiconductor material forming phosphor 1 is preferably the III group nitride semiconductor such as GaN, AlN, InN or a mixed crystal of these. These semiconductor materials are direct transition type, wide gap semiconductors that can attain emission of RGB (red, green and blue) necessary to provide various colors of emission.
- light emitting region 3 has the diameter and length both of at most 3 nm.
- the diameter and length of the light emitting region are measurements of the cross-sectional diameter and the longitudinal length of the columnar crystal. These can be measured by using a scanning electron microscope, observing the cross section and side surface of the shape of columnar crystal.
- a light source of blue-violet (defined here as 380 to 450 nm) may be used as the excitation source exciting the phosphor of the present invention.
- a blue-violet semiconductor light emitting device using III group nitride semiconductor is preferred, as it has superior luminous efficiency and power saving characteristic, and allows reduction in size and weight.
- light absorbing region 2 In order to absorb the excitation light of ultraviolet to blue-violet range, preferably, light absorbing region 2 should be adjusted to have the band gap of 2.5 eV to 6.5 eV.
- As a semiconductor material that allows such band gap control use of Al x Ga 1-x N (0 ⁇ x ⁇ 1) or In y Ga 1-y N (0 ⁇ y ⁇ 0.15) mixed crystal is preferred.
- the excitation light of this wavelength can be absorbed if the band gap of light absorbing region 2 is smaller than 4.1 eV. Therefore, it is preferred that light absorbing region 2 is formed of Al x Ga 1-x N of which Al composition ratio x is at most 0.3.
- the excitation light of this wavelength can be absorbed if the band gap of light absorbing region 2 is smaller than 3.0 eV. Therefore, it is preferred that light absorbing region 2 is formed of In y Ga 1-y N of which In composition ratio y is at least 0.08.
- light absorbing region 2 should preferably have the band gap larger than 2.75 eV that corresponds to the wavelength of 450 nm.
- In composition ratio y should be at most 0.15.
- the diameter and length of light absorbing region 2 may be larger to absorb larger amount of light.
- the size of phosphor increases as its volume increases, and fine light emission becomes difficult. Therefore, the length of light absorbing region should preferably be adjusted such that the length of phosphor 1 in the longitudinal direction is at most 1 ⁇ m.
- the diameter and length of the light absorbing region can be measured in the similar manner as those of the light emitting region described above.
- light emitting region 3 is sandwiched between light absorbing regions 2 , as shown in FIG. 1 .
- light emitting region 3 is preferably sandwiched between two light absorbing regions 2 along the longitudinal direction of phosphor 1 .
- energy transfer efficiency improves, and in addition, surface defects can be reduced.
- higher luminous efficiency can be attained.
- the energy in light absorbing regions can be transferred without waste to light emitting regions 3 .
- a plurality of light emitting regions 3 it becomes possible to emit light of different colors from one phosphor. Particularly, when light emitting regions emitting light of three primary colors, that is, red, green and blue, are provided, these colors are mixed and white light can be emitted from one phosphor 1 . Therefore, troublesome arrangement of a plurality of phosphors becomes unnecessary, manufacturing cost can be reduced, and the phosphor of white having high cost-efficiency can be provided.
- the wavelength of light from the phosphor is as follows: for red light emission, the peak wavelength should preferably be in the range of 600 to 670 nm; for green light emission, the peak wavelength should preferably be in the range of 500 to 550 nm; and for blue light emission, the peak wavelength should preferably be in the range of 450 to 480 nm.
- III group nitride semiconductor for obtaining the preferable peak emission wavelength described above In z Ga 1-z N (0 ⁇ z ⁇ 1) mixed crystal is preferred, which allows good control of the RGB peak emission wavelength mentioned above.
- an impurity may be added so that the wavelength is controlled by emission through the impurity.
- the impurity for that purpose may include Si as a donor and Zn or Mg as an acceptor.
- the level attained by a donor impurity is shallower than the band gap, and therefore, it can be used for fine control of the peak emission wavelength from the band gap.
- an acceptor level is deeper than the donor level, and therefore, it can much vary the peak emission wavelength.
- Control of the peak emission wavelength by adding a luminescence center that emits light by inner shell transition is preferred, as it attains higher luminous efficiency than inter-band transition or transition made through impurity level described above, and further, fluctuation of emission wavelength caused dependent on temperature or excitation condition is smaller.
- a rare earth element is suitable for such luminescence center, and specific example includes Nd, Sm, Eu, Gd, Tb, Dy and Yb.
- the peak emission wavelength is determined not by the band gap of III group nitride semiconductor as the matrix but by the type and ionic charge number of the rare earth element.
- Sm 3+ and Eu 3+ are most preferred for red phosphor
- Tb 3+ and Eu 2+ are most preferred for green phosphor
- Ce 3+ and Tm 3+ are most preferred for blue phosphor.
- the absorbing wavelength may also be controlled by adding an impurity to light absorbing region 2 .
- the above-described donor/acceptor impurities and rare earth luminescence center may be used as the absorbing impurity.
- Phosphor 1 of the present invention has wurtzeit crystal structure, and assuming that the longitudinal direction is the ⁇ 0001> direction, preferably, a cross section cut along the plane vertical to that direction is the (0001) plane of the wurtzite structure. This facilitates formation of columnar crystal as the ⁇ 0001> direction is along an axis allowing easy orientation, and columnar phosphors of uniform diameter can easily be manufactured.
- the cross-sectional shape of phosphor 1 has an almost hexagonal shape reflecting the wurtzeit crystal structure, and the cross section has the crystal face of (0001).
- the longitudinal direction is the ⁇ 0001> direction vertical thereto.
- the semiconductor materials mentioned above used for phosphor 1 all include the wurtzeit crystal structure, and grow stably oriented along the ⁇ 0001> direction from the (0001) face. Therefore, a columnar crystal can easily be formed as the phosphor of the present invention.
- the cross-sectional shape can be confirmed by using a scanning electron microscope, observing the cross section and side surface of the shape of columnar crystal.
- the method of manufacturing the phosphor of the present invention includes the steps of forming a dielectric thin film on a substrate, growing a columnar crystalline phosphor on the dielectric thin film, and removing said columnar crystalline phosphor from the substrate by etching.
- a columnar crystal having a specific orientation can be epitaxially grown from a crystal nucleus in the form of dielectric thin film. Further, in the step of removing the phosphor from the substrate, the phosphor is removed by etching. Therefore, a small phosphor formed of the columnar crystal can be removed easily.
- the method of manufacturing the phosphor of the present invention will be described with reference to the figures.
- FIGS. 3A to 3F are schematic cross sections showing process steps of manufacturing the phosphor in accordance with the present invention.
- a substrate 10 is prepared and, as shown in FIG. 3B , a dielectric film 11 is formed on the surface of substrate 10 .
- Preferable substrate material includes Si substrate of (111) plane, sapphire substrate of (0001) plane, and SiC substrate of (0001) or (111) plane.
- the thickness of substrate 10 is at least 100 ⁇ m and smaller than 1 mm. When it exceeds 1 mm, it is too thick and degrades conduction of heat from the rear surface of substrate, possibly making it difficult to control growth temperature in the step of growing columnar crystal that will be described later. When it is thinner than 100 ⁇ m, it is too thin and fragile, so that production yield in the manufacturing process might decrease significantly.
- the dielectric thin film 11 silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) is preferred.
- the dielectric thin film may be formed by oxidizing or nitriding the substrate surface.
- a sapphire substrate such a dielectric film can be formed by a known method of thin film formation such as sputtering, CVD method or EB deposition.
- the thickness of dielectric film is at least 1 nm and smaller than 100 ⁇ m. If it exceeds 100 ⁇ m, it is too thick and removal by selective etching, which will be described later, becomes difficult, possibly damaging the columnar crystal in the step of removing the columnar crystal from the dielectric film. If it is smaller than 1 nm, it is too thin and uniform formation of the dielectric film becomes difficult, so that it becomes difficult to have the crystal nuclei grown on the dielectric film in a desired orientation.
- the columnar phosphor can easily be removed from the substrate of epitaxial growth, and a very small phosphor formed of a columnar crystal can easily be obtained.
- a crystal nuclei 12 are formed on dielectric film 11 .
- MBE molecular beam epitaxy
- CVD chemical vapor deposition
- PLD pulse laser deposition
- crystal nuclei 12 are grown to obtain a light absorbing region 12 a formed of a columnar crystal. Probability that a semiconductor material adheres on dielectric film 11 is low, and therefore, substrate 10 is dotted with crystal nuclei 12 of a prescribed density. The following growth is oriented along a specific direction with each crystal nucleus 12 as the center, and therefore, columnar crystals such as shown in FIG. 3D can easily be grown.
- the condition of crystal growth is changed to form a light emitting region 13 on light absorbing region 12 a .
- the condition of crystal growth is changed again, to form a light absorbing region 12 b on light emitting region 13 .
- phosphors 1 of columnar crystal consisting of light absorbing region 12 and light emitting region 13 are formed side by side on substrate 10 .
- the method of crystal growth molecular beam epitaxy (MBE) method, chemical vapor deposition (CVD) method, pulse laser deposition (PLD) method or the like may be used.
- dielectric film 11 is formed of silicon oxide or silicon nitride
- a solution containing hydrogen fluoride (HF) is preferably used as the etchant, as it etches away only the dielectric film, without any influence on substrate 10 or phosphor 1 .
- Phosphor 1 of the present invention may be used for a light emitting device.
- the light emitting device of the present invention is characterized in that the phosphors described above are arranged aligned on a substrate in a prescribed density.
- the substrate can be used as an excitation light introducing portion to the columnar phosphor, and as the columnar phosphor is integral with the substrate, coupling loss is small. Therefore, a highly efficient light emitting device can be obtained.
- FIG. 4 is a schematic cross section of the light emitting device in accordance with the present invention.
- a light emitting device 20 in accordance with the present invention has a group of phosphors of columnar crystals grown on a substrate 21 with a dielectric film 22 interposed, in accordance with the method of manufacturing the phosphor described above, which group of phosphors 24 are not removed from the substrate but excited by irradiation from an excitation source 25 from a side surface of the substrate.
- luminous efficiency of phosphor is higher in light emitting device 20 of the present invention, and therefore, a light emitting device attaining higher luminance and higher efficiency can be obtained.
- a lens 26 may be interposed between excitation source 25 and a side surface of substrate 21 .
- a lens 26 may be interposed for improved coupling efficiency.
- a light reflecting plate 23 may be provided below substrate 21 .
- material such as aluminum (Al), silver (Ag), platinum (Pt) or the like may be used.
- a phosphor consisting of a columnar crystal formed using a III group nitride semiconductor and an exemplary manufacturing method thereof will be described.
- an Si wafer material having the (111) plane as a main surface was used as a substrate 10 , and an SiO 2 film having the thickness of 10 nm was formed by thermal oxidation for 3 hours at 900° C. in an oxygen atmosphere.
- the SiO 2 film serves as the dielectric film 11 .
- substrate 10 was introduced to a molecular beam epitaxy apparatus (not shown), and substrate 10 was irradiated with beams of metal Ga, metal In and active atomic N, which had been turned to plasma, to form crystal nuclei 12 of In 0.1 Ga 0.9 N. Crystal nucleus 12 was observed by a scanning electron microscope, and it was confirmed that the surface had a hexagonal shape and the diameter was 2.5 nm.
- crystal nucleus 12 became a columnar crystal of In 0.1 Ga 0.9 N having the length of 20 nm.
- the columnar crystal region corresponds to light absorbing region 12 a.
- intensity of molecular beams of metal Ga and metal In was adjusted again to form a columnar crystal of In 0.1 Ga 0.9 N, that is, the same composition as light absorbing region 12 a , to the length of 20 nm on light emitting region 13 .
- the columnar crystal region corresponds to light absorbing region 12 b.
- phosphor 1 was formed. Thereafter, substrate 10 having phosphor 1 formed thereon was taken out from the molecular epitaxy apparatus and dipped in a solution containing HF, so as to eliminate by etching dielectric film 11 of SiO 2 , and phosphor 1 was removed from substrate 10 .
- a phosphor 1 of the present invention was formed in the similar manner as in the first example except that Si was added as an impurity when light emitting region 13 was grown.
- Luminous efficiency was improved by 40% from the first example.
- a phosphor 1 of the present invention was formed in the similar manner as in the first example except that Tb was added as an impurity when light emitting region 13 was grown.
- a phosphor 1 of the present invention was formed in the similar manner as in the third example except that Tb and Sm were added when light absorbing regions 12 a and 12 b were grown.
- emission intensity was improved by 1.4 times.
- a phosphor having a plurality of light emitting regions such as shown in FIG. 2 was formed. Except for this point, phosphor 1 of the present invention was formed in the similar manner as in the first example.
- phosphor 1 of the present example has three light emitting regions 3 a , 3 b and 3 c , having impurities Tb, Eu and Si added respectively.
- the step of removing phosphor 1 from substrate 10 was omitted, and columnar phosphors 1 were left fixed vertically on substrate 10 .
- an Al film having the thickness of 500 nm was deposited, as a light reflecting plate 23 .
- a laser beam of blue semiconductor laser device 25 having the wavelength of 405 nm was introduced from a side surface of substrate 10 through a coupling lens 26 .
- the laser beam is transmitted laterally in substrate 10 and reflected vertically by light reflecting plate 23 , and entered phosphor 1 , resulting in white light emission.
- the light emitting device in accordance with the present example light is emitted from a nano-size columnar phosphor, which attains remarkable quantum size effect. Therefore, luminous efficiency is improved than a phosphor formed to have a planar shape.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004296444A JP2006104411A (en) | 2004-10-08 | 2004-10-08 | Phosphor, its manufacturing method and light-emitting device using the same |
JP2004-296444 | 2004-10-08 | ||
JP2004-296444(P) | 2004-10-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060076878A1 US20060076878A1 (en) | 2006-04-13 |
US7709103B2 true US7709103B2 (en) | 2010-05-04 |
Family
ID=36144567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/243,962 Expired - Fee Related US7709103B2 (en) | 2004-10-08 | 2005-10-06 | Phosphor, manufacturing method thereof and light emitting device using the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US7709103B2 (en) |
JP (1) | JP2006104411A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090169889A1 (en) * | 2005-10-06 | 2009-07-02 | Konica Minolta Medical & Graphic, Inc. | Nanosized phosphor |
US20110012167A1 (en) * | 2008-03-05 | 2011-01-20 | Takayuki Shimamura | Light emitting element |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140975A (en) * | 2007-12-04 | 2009-06-25 | Panasonic Electric Works Co Ltd | Semiconductor light-emitting device and lighting device using it and manufacturing process of semiconductor light-emitting device |
JP5008631B2 (en) * | 2008-10-14 | 2012-08-22 | シャープ株式会社 | Phosphor, method for producing the same, and light emitting device using the same |
JP6988173B2 (en) | 2017-05-31 | 2022-01-05 | セイコーエプソン株式会社 | Luminous device and projector |
JP6911541B2 (en) | 2017-05-31 | 2021-07-28 | セイコーエプソン株式会社 | Light emitting device and projector |
JP7406790B2 (en) * | 2019-11-21 | 2023-12-28 | 国立大学法人秋田大学 | Method for manufacturing a nitride semiconductor crystal substrate and nitride semiconductor crystal substrate |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000008035A (en) | 1998-06-18 | 2000-01-11 | Futaba Corp | Phosphor and production thereof |
JP2000315653A (en) | 1999-04-30 | 2000-11-14 | Inst Of Physical & Chemical Res | Formation method of quantum dot of nitride semiconductor in droplet epitaxy |
JP2002241929A (en) | 2000-08-02 | 2002-08-28 | Sony Corp | Method for producing luminescent material, luminescent material and display device |
JP2003034510A (en) | 2001-04-25 | 2003-02-07 | Mitsubishi Chemicals Corp | Ultra-fine particle of gallium nitride crystal and method of manufacturing it |
JP2003063810A (en) | 2001-06-11 | 2003-03-05 | Tokyo Inst Of Technol | Method for producing gallium nitride powder and apparatus for producing gallium nitride powder |
JP2003226521A (en) | 2002-02-05 | 2003-08-12 | Hitachi Software Eng Co Ltd | Method for producing double-layer semiconductor nano- particles and double-layer semiconductor nano-particles produced by the method |
JP2003347585A (en) | 2002-03-19 | 2003-12-05 | Nobuhiko Sawaki | Semiconductor light emitting element and method of manufacturing the same |
US20040213307A1 (en) * | 2002-07-19 | 2004-10-28 | President And Fellows Of Harvard College | Nanoscale coherent optical components |
US7132677B2 (en) * | 2004-02-13 | 2006-11-07 | Dongguk University | Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same |
-
2004
- 2004-10-08 JP JP2004296444A patent/JP2006104411A/en active Pending
-
2005
- 2005-10-06 US US11/243,962 patent/US7709103B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000008035A (en) | 1998-06-18 | 2000-01-11 | Futaba Corp | Phosphor and production thereof |
JP2000315653A (en) | 1999-04-30 | 2000-11-14 | Inst Of Physical & Chemical Res | Formation method of quantum dot of nitride semiconductor in droplet epitaxy |
JP2002241929A (en) | 2000-08-02 | 2002-08-28 | Sony Corp | Method for producing luminescent material, luminescent material and display device |
JP2003034510A (en) | 2001-04-25 | 2003-02-07 | Mitsubishi Chemicals Corp | Ultra-fine particle of gallium nitride crystal and method of manufacturing it |
JP2003063810A (en) | 2001-06-11 | 2003-03-05 | Tokyo Inst Of Technol | Method for producing gallium nitride powder and apparatus for producing gallium nitride powder |
JP2003226521A (en) | 2002-02-05 | 2003-08-12 | Hitachi Software Eng Co Ltd | Method for producing double-layer semiconductor nano- particles and double-layer semiconductor nano-particles produced by the method |
JP2003347585A (en) | 2002-03-19 | 2003-12-05 | Nobuhiko Sawaki | Semiconductor light emitting element and method of manufacturing the same |
US20040213307A1 (en) * | 2002-07-19 | 2004-10-28 | President And Fellows Of Harvard College | Nanoscale coherent optical components |
US7132677B2 (en) * | 2004-02-13 | 2006-11-07 | Dongguk University | Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same |
Non-Patent Citations (4)
Title |
---|
Asahi et al., "Quantum Structures Self-Formed in GaP/InP Short Period Superlattices," Journal of the Surface Science Society of Japan, vol. 19, No. 9, pp. 565-572, (1998). |
He et al., "Formation of columnar (In, Ga) As quantum dots on GaAs (100)," Applied Physics Letters, vol. 85, No. 14, pp. 2771-2773, (2004). |
ISOBE, Applied Physics, vol. 70, No. 9, pp. 1087-1091, 2001. |
Kawal et al., "Epitaxiai Growth of InN Films and InN Nano-Columns by RF-MBE," The Institute of Electronics, Information and Communication Engineers Technical Report of IEICE, vol. 103, No. 343, pp. 33-37, (2003). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090169889A1 (en) * | 2005-10-06 | 2009-07-02 | Konica Minolta Medical & Graphic, Inc. | Nanosized phosphor |
US7976948B2 (en) * | 2005-10-06 | 2011-07-12 | Konica Minolta Medical & Graphic, Inc. | Nanosized phosphor |
US20110012167A1 (en) * | 2008-03-05 | 2011-01-20 | Takayuki Shimamura | Light emitting element |
US8178896B2 (en) * | 2008-03-05 | 2012-05-15 | Panasonic Corporation | Light emitting element |
Also Published As
Publication number | Publication date |
---|---|
JP2006104411A (en) | 2006-04-20 |
US20060076878A1 (en) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4126751B2 (en) | Display device and lighting device | |
JP4153455B2 (en) | Phosphor and light emitting diode | |
US5882779A (en) | Semiconductor nanocrystal display materials and display apparatus employing same | |
US20070176531A1 (en) | Phoshor and light-emitting diode | |
JP4223540B2 (en) | Semiconductor light emitting device, group III nitride semiconductor substrate, and manufacturing method thereof | |
US7709103B2 (en) | Phosphor, manufacturing method thereof and light emitting device using the same | |
EP3425684B1 (en) | Vertical-type ultraviolet light-emitting diode | |
JP2006295132A (en) | Light emitting device | |
CN114335274B (en) | Epitaxial structure of light emitting diode and preparation method thereof | |
WO2017179440A1 (en) | Spin-polarized high brightness electron generating photocathode and method for manufacturing for same | |
JP2003204079A (en) | Nitride semiconductor element using activating agent- containing substrate and its growing method | |
JP5008631B2 (en) | Phosphor, method for producing the same, and light emitting device using the same | |
JP2003204080A (en) | Nitride semiconductor element and its growing method | |
JP2007056164A (en) | Substrate for luminescent layer formation, luminant and luminescent substance | |
US9099597B2 (en) | Light emitting diode element with porous SiC emitting by donor acceptor pair | |
WO2008050479A1 (en) | ZnO LAYER AND SEMICONDUCTOR LIGHT-EMITTING DEVICE | |
JP4961443B2 (en) | Light emitting diode | |
JPH10245550A (en) | Zno ultraviolet emitter and its production | |
JP2006117735A (en) | Powder light-emitting element and light-emitting apparatus | |
JP4911082B2 (en) | Display device and lighting device | |
JP3097596B2 (en) | Group III nitride semiconductor light emitting device | |
US5694412A (en) | Epitaxial visible-light-emitting devices with light extracted through the substrate and method of making same | |
JP4303765B2 (en) | SiC semiconductor, semiconductor substrate, powder and nitride semiconductor light emitting diode | |
KR100833834B1 (en) | Phosphor and light-emitting diode | |
JP2003055656A (en) | Light-emitting element and light-emitting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHARP KABUSHIKI KAISHA,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAITO, HAJIME;REEL/FRAME:017086/0942 Effective date: 20050915 Owner name: SHARP KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAITO, HAJIME;REEL/FRAME:017086/0942 Effective date: 20050915 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220504 |