TW201231619A - Method of preparing nitride-based red phosphor powder and package structure of light emitting diode - Google Patents

Method of preparing nitride-based red phosphor powder and package structure of light emitting diode Download PDF

Info

Publication number
TW201231619A
TW201231619A TW100103738A TW100103738A TW201231619A TW 201231619 A TW201231619 A TW 201231619A TW 100103738 A TW100103738 A TW 100103738A TW 100103738 A TW100103738 A TW 100103738A TW 201231619 A TW201231619 A TW 201231619A
Authority
TW
Taiwan
Prior art keywords
sintering
maabdcedxe
preparing
red
nitride
Prior art date
Application number
TW100103738A
Other languages
Chinese (zh)
Inventor
Chiao-Wen Yeh
Ru-Shi Liu
Chih-Min Lin
Yu-Huan Liu
Yi-Jung Chen
Original Assignee
Everlight Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Electronics Co Ltd filed Critical Everlight Electronics Co Ltd
Priority to TW100103738A priority Critical patent/TW201231619A/en
Priority to CN2011101519801A priority patent/CN102618264A/en
Publication of TW201231619A publication Critical patent/TW201231619A/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

A method of preparing nitride-based red phosphor powder is provided. The method includes mixing MaAbDcEdXe crystals of 10 to 50 parts by weight to serve as seeds with raw materials for preparing MaAbDcEdXe crystals of 50 to 90 parts by weight to form a mixture. Thereafter, a step of sintering the mixture is conducted so as to form MaAbDcEdXe crystal product. M is an active center and includes Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or combination thereof. A represents a group-IIA metal element having two valence electrons. D represents a group-IVA metal element having four valence electrons. E represents a group-IIIA metal element having three valence electrons. X represents nitrogen element. In addition, a+b=1, 0.00001 ≤ a ≤ 0.1, 0.5 ≤ c ≤ 4, 0.5 ≤ d ≤ 8 and 0.8x(2/3+4/3xc+d) ≤ e ≤ 1.2x(2/3+4/3xc+d).

Description

201231619 EL99092 36618twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種螢光粉的製備方法及白光發光 二極體封裝結構,且特別是有關於一種可以增加放光強度 之紅色氮化物螢光粉的製備方法以及白光發光二極體封裝 結構。201231619 EL99092 36618twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a phosphor powder and a white light emitting diode package structure, and more particularly to an increase in light emission A method for preparing a red nitride phosphor of intensity and a white light emitting diode package structure.

【先前技術】 基於節能減碳以及永續發展之環保意識,目前世界先 進各國均逐步將傳統照明淘汰’進而選擇白光發光二極 體。白光一極體的優點疋體積小’可以配合應用設備來含周 整。而且白光二極體的耗電量低’僅有傳統燈泡的1/8至 1/10,日光燈的1/2,並且其壽命長,可達10萬小時以上。 此外,白光二極體的發熱量低且反應速度快,因此非常適 合高頻操作。白光二極體可以解決白熾燈泡難以克服的問 題’其可做為21世紀的照明以及顯示光源,並且兼具省電 與環保概念,因此,被喻為「綠色照明光源」。 19%年美國專利第5998925號提出第—顆白光二極 體,其係藉由藍光發光二極體(LED)激發錦捧雜之紀:石 權=螢光料色f光,此黃色螢光粉所發出的黃光可與较 光混合而產生白光。然而,為使麟照明及顯示$上了: 色發光二極體須具有完整的全光譜波段,其中L 目前發展的4點。 、1色波1又為 201231619 EL99092 36618twf.doc/n 【發明内容】 本發明提供一種紅色氮化物螢光粉的製備方法,其可 以增加紅色氮化物螢光粉的放光強度。 本發明提供一種具有紅色氮化物螢光粉之白光發光 二極體封裝結構,其紅色氮化物螢光粉具有足夠的放光強 度0 本發明提出一種紅色氮化物螢光粉的製備方法,包括 以Q1重量份之MaAbDcEdXe結晶物做為晶種,與Q2重 量份之用以製作MaAbDcEdXe結晶物之原料混合,[Prior Art] Based on the environmental awareness of energy saving and carbon reduction and sustainable development, the world's advanced countries are gradually eliminating traditional lighting and then selecting white light emitting diodes. The advantages of white light and the small size are small enough to fit the application equipment. Moreover, the white light diode consumes less power, which is only 1/8 to 1/10 of the conventional bulb, 1/2 of the fluorescent lamp, and has a long life of more than 100,000 hours. In addition, the white light diode has a low heat generation rate and a fast response speed, so it is very suitable for high frequency operation. The white light diode can solve the problem that incandescent light bulbs are difficult to overcome. It can be used as a lighting source and display light source in the 21st century, and has both power saving and environmental protection concepts. Therefore, it is called a "green lighting source." In the 19th year, U.S. Patent No. 5,998,925 proposes a first white light diode which is excited by a blue light emitting diode (LED) to promote the glory of the glory: stone weight = fluorescent color f light, this yellow fluorescent The yellow light emitted by the powder can be mixed with light to produce white light. However, in order to make the lighting and display of the lining: The color illuminating diode must have a complete full-spectrum band, of which L is currently developing 4 points. 1 color wave 1 is again 201231619 EL99092 36618twf.doc/n SUMMARY OF THE INVENTION The present invention provides a method of preparing a red nitride phosphor which can increase the light emission intensity of a red nitride phosphor. The invention provides a white light emitting diode package structure with red nitride phosphor powder, wherein the red nitride phosphor powder has sufficient light-emitting intensity. The invention provides a method for preparing a red nitride phosphor powder, which comprises Q1 parts by weight of MaAbDcEdXe crystals are seeded and mixed with Q2 parts by weight of the raw material for making MaAbDcEdXe crystals.

Ql+Q2=100。之後進行燒結,以形成MaAbDcEdXe結晶產Ql+Q2=100. Sintering is then performed to form MaAbDcEdXe crystals.

物’其中Μ為活化中心,包括Mn、Ce、Pr、Nd、Sm、 Eu、Tb、Dy、Ho、Er、Tm、Yb 或其組合。a 為 2 價 IIA 族金屬元素。D為4價IVA族金屬元素。E為3價hIA族 金屬元素。X為元素氮、元素氧、元素氟其中之一或其混 合。a+b=l,0.00001 仝 aSO.l,0.5 幺 c 幺4,0.5 幺d幺 8, 0.8 X (2/3+4/3 X c+d)SeS 1.2 X (2/3+4/3 X c+d)。 本發明再提出一種紅色氮化物螢光粉的製備方法,包 括以10至50重量份之MaAbDcEdXe結晶物做為晶種,與 50至90重量份之用以製作MaAbDcEdXe結晶物之原料混 合,之後進行燒結,以形成MaAbDcEdXe結晶產物,其中 Μ 為活4匕中心,包括 Mn、Ce、Pr、Nd、Sm、Eu、Tb、 Dy、Ho、Er、Tm、Yb或其組合。A為2價IIA族金屬元 素。D為4價IVA族金屬元素。E為3價ΙΙΙΑ族金屬元素。 X 為元素氮。a+b=l,〇.〇〇〇〇lSas〇.l,〇.5ScS4,〇.5<d<8, 201231619 EL99092 36618twf.doc/n 0·8χ(2/3+4/3xc+d)Sd ·2χ(2/3+4/3xc+d)。 依照本發明一實施例所述,上述紅色氮化物營光粉的 製備方法中,做為晶種的上述MaAbDcEdXe結晶物的尺寸 小於25微米。 依照本發明一實施例所述’上述紅色氮化物榮光粉的 製備方法中,當X為元素氮時,上述用以製作 MaAbDcEdXe結晶物之原料包括28莫耳%至38莫耳%的 A的氮化物、28莫耳%至38莫耳%的D的氮化物、28莫 耳%至38莫耳%的E的氮化物以及0.1莫耳%至5莫耳% 的Μ的氮化物、μ的氧化物。 依照本發明一實施例所述,上述紅色氮化物螢光粉的 製備方法中,燒結係在氮氣、氨氣或惰性氣體的氣氛下進 行,燒結溫度為攝氏1600度至1900度,燒結時間為2小 時至10小時,壓力為〇.3MPa至IMPa。 依照本發明一實施例所述,上述紅色氮化物螢光粉的 製備方法還包括將燒結所得之MaAbDcEdXe結晶產物與 用以製造MaAbDcEdXe結晶物之原料再燒結。 依照本發明一實施例所述,上述紅色螢光粉的製備方 法還包括在進行上述再燒結之前,將上述燒结所得之 MaAbDcEdXe結晶產物進行筛選,取尺寸為3微米至25 微米者。 依照本發明一實施例所述,上述紅色螢光粉的製備方 法中,上述再燒結與上述燒結的製程條件相同或相異。 依照本發明一實施例所述,上述紅色氮化物螢光粉的 201231619 EL99092 36618twf.doc/n 製備方法中,上述再燒結係在氮氣、氨氣或惰性氣體的氣 氛下進行,燒結溫度為攝氏1600度至19〇〇度,燒結時間 為2小時至1〇小時,壓力為〇 3MPa至iMPa。 本發明更提出一種發光二極體封裝結構,包括發光元 件與螢光粉層。榮光粉層覆蓋發光元件之表面與周圍,包 括第一螢光粉與第二螢光粉。第一螢光粉為紅色氮化物螢 光粉’紅色氮化物螢光粉包括以10至5〇重量份且尺寸小 於25微米之MaAbDcEdXe結晶物做為晶種,與50至90 重量份之用以製作MaAbDcEdXe結晶物之原料混合,之後 進行燒結,所形成之MaAbDcEdXe結晶產物。M為活化 中心,包括 Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、 Er、Tm、Yb或其組合。A為2價IIA族金屬元素。D為4 價IVA族金屬元素。E為3價ΠΙΑ族金屬元素。χ為元素 氮、元素氧、元素氟其中之一或其混合。a+b=l, 0.00001<a<0.1 > 0.5<c<4 > 0.5<d<8 > 8x(2/3+4/3xc+d)把 1.2x(2/3+4/3xc+d)。上述燒結係在氮 氣、氨氣或惰性氣體的氣氛下進行,燒結溫度為攝氏&〇〇 度至1900度,燒結時間為2小時至10小時,壓力為〇 3Μρ& 至IMPa。第二螢光粉為黃色螢光粉或綠色螢光粉。 本發明之紅色氮化物螢光粉的製備方法簡單,而且可 以增加紅色氮化物螢光粉的放光強度。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 201231619 EL99092 36618twf.doc/n 【實施方式】 本發明提出紅色氮化物螢光粉的製備方法。此紅色氮 化物螢光粉之放射波長為57〇nm至7〇〇nm,激發波長為 360nm至550nm。紅色氮化物螢光粉之化學式可以 MaAbDcEdXe來表示,其中 Μ 為活化中心’包括 Mn、Ce、Pr、Nd、Sm、Eu、Tb、 Dy、Ho、Er、Tm、Yb 或其組合; A為2價IIA族金屬元素; D為4彳貝IVA族金屬元素; E為3價IIIA族金屬元素; X為元素氮;以及 a+b=l » 0.00001<a<0.1 » 0.5<c<4 5 0.5<d<8 5 〇.8 x(2/3+4/3 xc+d)SeS 1.2X(2/3+4/3 xc+d)。 此紅色氮化物螢光粉的製備方法係以Q1重量份之 MaAbDcEdXe結晶物做為晶種,將其與Q2重量份之用以 製作MaAbDcEdXe結晶物之原料混合,之後進行燒結,以 形成MaAbDcEdXe結晶產物。Qi+Q2=i〇〇。在一實施例 中,Q1為10至50; Q2為50至90。做為晶種的MaAbDcEdXe 結晶物可以經過篩選,其尺寸小於25微米。在一實施例 中,做為晶種的MaAbDcEdXe結晶物係經過筛選,其尺寸 為3微米至25微米。 用以製作MaAbDcEdXe結晶物之原料包括μ、a、d 以及E的X化物。更具體地說,當χ為元素氮時,用以 製作MaAbDcEdXe結晶物之原料包括a的氮化物' d的 201231619 EL99092 36618twf.doc/n 氮化物以及E的氮化物以及M的氮化物或M的氧化物。 在一實施例中,用以製作MaAbDcEdXe結晶物之原料包括 28莫耳%至38莫耳%的A的氮化物、28莫耳%至38莫 耳%的D的氮化物、28莫耳%至38莫耳%的E的氮化物 以及0.1莫耳%至5莫耳%的Μ的氮化物或Μ的氧化物。 用以製作MaAbDcEdXe結晶物之原料可以經過研 磨’之後’再與做為晶種的MaAbDcEdXe結晶物混合。晶 種與原料進行燒結係在氮氣、氨氣、惰性氣體或其組合的 氣氛進行。惰性氣體例如是氦氣、氖氣或氬氣。燒結溫度 例如是攝氏1600度至1900度。燒結時間例如是2小時至 10小時。壓力例如是0.3MPa至IMPa。 以上實施例之製備紅色氮化物螢光粉的方法係將原 料與晶種混合燒結一次來說明。然而本發明並不以此為 限’在實際的應用時,可以重複上述步驟1次至數次。更 具體地說,在一實施例中,以上燒結所得之MaAbDcEdXe 結晶產物可與用以製造MaAbDcEdXe結晶物之原料再燒 結。在進行再燒結之前’將燒結所得之結晶產物進行篩選, 選取尺寸為3微米至25微米者。再燒結的製程條件可與燒 結的條件相同或相異。再燒結可以在氮氣、氨氣、惰性氣 ,或其組合的氣氛進行。惰性氣體例如是氦氣、氖氣或氬 ,。再燒結溫度例如是攝氏16〇〇度至19〇〇度,時間例如 疋2小時至1〇小時’壓力例如是〇 至1娜&。 圖8係繪示本發明一實施例之發光二極體封裝結構的 剖面示意圖。 201231619 EL99092 36618twf.doc/nThe substance 'where Μ is an activation center includes Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or a combination thereof. a is a 2-valent IIA metal element. D is a tetravalent IVA metal element. E is a trivalent hIA metal element. X is one of elemental nitrogen, elemental oxygen, elemental fluorine or a mixture thereof. a+b=l,0.00001 with aSO.l,0.5 幺c 幺4,0.5 幺d幺8, 0.8 X (2/3+4/3 X c+d)SeS 1.2 X (2/3+4/3 X c+d). The invention further provides a method for preparing red nitride phosphor powder, comprising: seeding 10 to 50 parts by weight of MaAbDcEdXe crystal as a seed, and mixing 50 to 90 parts by weight of a raw material for preparing MaAbDcEdXe crystal, and then performing Sintering to form a MaAbDcEdXe crystalline product wherein Μ is a living center, including Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, or a combination thereof. A is a divalent IIA metal element. D is a tetravalent IVA metal element. E is a trivalent lanthanide metal element. X is the elemental nitrogen. a+b=l,〇.〇〇〇〇lSas〇.l,〇.5ScS4,〇.5<d<8, 201231619 EL99092 36618twf.doc/n 0·8χ(2/3+4/3xc+d) Sd · 2χ (2/3+4/3xc+d). According to an embodiment of the present invention, in the method for preparing a red nitride camping powder, the size of the MaAbDcEdXe crystallized as a seed crystal is less than 25 μm. According to an embodiment of the present invention, in the method for preparing the red nitride glazing powder, when X is elemental nitrogen, the raw material for preparing the MaAbDcEdXe crystal material comprises 28 mol% to 38 mol% of A nitrogen. , 28 mol% to 38 mol% of nitride of D, 28 mol% to 38 mol% of nitride of E, and 0.1 mol% to 5 mol% of niobium nitride, oxidation of μ Things. According to an embodiment of the present invention, in the method for preparing the red nitride phosphor, the sintering is performed under an atmosphere of nitrogen, ammonia or an inert gas, and the sintering temperature is 1600 to 1900 degrees Celsius, and the sintering time is 2. Hours to 10 hours, the pressure is 〇.3MPa to IMPa. According to an embodiment of the invention, the method for preparing the red nitride phosphor further comprises re-sintering the sintered MaAbDcEdXe crystal product and the material for forming the MaAbDcEdXe crystal. According to an embodiment of the invention, the method for preparing the red phosphor powder further comprises: screening the crystallized product of the MaAbDcEdXe obtained by the sintering to obtain a size of 3 micrometers to 25 micrometers before performing the re-sintering. According to an embodiment of the present invention, in the method for preparing the red phosphor, the re-sintering is the same as or different from the processing conditions of the sintering. According to an embodiment of the present invention, in the method of preparing the red nitride phosphor powder of 201231619 EL99092 36618twf.doc/n, the re-sintering is performed under an atmosphere of nitrogen, ammonia or an inert gas, and the sintering temperature is 1600 Celsius. To a degree of 19 degrees, the sintering time is 2 hours to 1 hour, and the pressure is 〇3 MPa to iMPa. The invention further provides a light emitting diode package structure comprising a light emitting element and a phosphor powder layer. The glory powder layer covers the surface and the periphery of the light-emitting element, and includes a first phosphor powder and a second phosphor powder. The first phosphor powder is a red nitride phosphor powder 'red nitride phosphor powder comprising 10 to 5 parts by weight of MaAbDcEdXe crystals having a size of less than 25 microns as seed crystals, and 50 to 90 parts by weight. The raw materials of the MaAbDcEdXe crystals were mixed and then sintered to form a MaAbDcEdXe crystalline product. M is an activation center and includes Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or a combination thereof. A is a divalent group IIA metal element. D is a 4-valent IVA metal element. E is a trivalent lanthanide metal element. χ is an element of nitrogen, elemental oxygen, elemental fluorine or a mixture thereof. a+b=l, 0.00001<a<0.1 >0.5<c<4>0.5<d<8> 8x(2/3+4/3xc+d) put 1.2x(2/3+ 4/3xc+d). The above sintering is carried out under an atmosphere of nitrogen, ammonia or an inert gas at a sintering temperature of celsius to 1900 degrees, a sintering time of 2 hours to 10 hours, and a pressure of 〇 3 Μ ρ & The second phosphor is yellow phosphor or green phosphor. The red nitride phosphor of the present invention is simple in preparation and can increase the light-emitting intensity of the red nitride phosphor. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. 201231619 EL99092 36618twf.doc/n [Embodiment] The present invention proposes a method for preparing red nitride phosphor powder. The red nitride phosphor has an emission wavelength of 57 Å to 7 Å and an excitation wavelength of 360 nm to 550 nm. The chemical formula of the red nitride phosphor can be expressed by MaAbDcEdXe, wherein Μ is the activation center 'including Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or a combination thereof; A is 2 a metal element of Group IIA; D is a metal element of Group IA of 4 mussels; E is a metal element of a trivalent Group IIIA; X is an elemental nitrogen; and a+b=l » 0.00001<a<0.1 » 0.5<c<4 5 0.5<d<8 5 〇.8 x(2/3+4/3 xc+d)SeS 1.2X(2/3+4/3 xc+d). The red nitride phosphor is prepared by seeding Q1 parts by weight of MaAbDcEdXe crystals, and mixing it with Q2 parts by weight of a material for preparing MaAbDcEdXe crystals, followed by sintering to form MaAbDcEdXe crystal product. . Qi+Q2=i〇〇. In one embodiment, Q1 is from 10 to 50; Q2 is from 50 to 90. The MaAbDcEdXe crystals as seed crystals can be screened to a size of less than 25 microns. In one embodiment, the MaAbDcEdXe crystalline as a seed crystal is screened to a size of from 3 microns to 25 microns. The materials used to make the MaAbDcEdXe crystals include the X compounds of μ, a, d, and E. More specifically, when lanthanum is elemental nitrogen, the raw material used to make the MaAbDcEdXe crystal includes a nitride of d a 201231619 EL99092 36618 twf.doc/n nitride and a nitride of E and a nitride of M or M Oxide. In one embodiment, the material used to make the MaAbDcEdXe crystals comprises 28 mole% to 38 mole% of nitride of A, 28 mole% to 38 mole% of nitride of D, 28 mole% to 38 mol% of the nitride of E and 0.1 mol% to 5 mol% of the niobium nitride or niobium oxide. The material used to make the MaAbDcEdXe crystals can be post-milled and then mixed with the MaAbDcEdXe crystals as seed crystals. The seed crystal is sintered with the raw material in an atmosphere of nitrogen, ammonia, an inert gas or a combination thereof. The inert gas is, for example, helium, neon or argon. The sintering temperature is, for example, 1600 to 1900 degrees Celsius. The sintering time is, for example, 2 hours to 10 hours. The pressure is, for example, 0.3 MPa to 1 MPa. The method of preparing the red nitride phosphor powder of the above embodiment is described by mixing the raw material and the seed crystal once. However, the present invention is not limited thereto. In the actual application, the above steps may be repeated one to several times. More specifically, in one embodiment, the above-described sintered MaAbDcEdXe crystalline product can be re-fired with the material used to make the MaAbDcEdXe crystal. The crystallized product obtained by sintering was screened before re-sintering, and a size of 3 to 25 μm was selected. The process conditions for re-sintering may be the same as or different from the conditions for sintering. The re-sintering can be carried out in an atmosphere of nitrogen, ammonia, inert gas, or a combination thereof. The inert gas is, for example, helium, neon or argon. The re-sintering temperature is, for example, 16 degrees Celsius to 19 degrees Celsius, and the time is, for example, 2 hours to 1 hour. The pressure is, for example, 〇 to 1 Na & FIG. 8 is a cross-sectional view showing a light emitting diode package structure according to an embodiment of the present invention. 201231619 EL99092 36618twf.doc/n

請參照圖8’發光二極體封裝結構1〇〇包括基材u〇、 發光元件120以及螢光粉層130。基材11〇為承載發光元 件120之底座。發光元件120附著於基材11〇上。^光= 件120例如是藍色發光二極體晶片。發光元件12〇 ^由= 導體材料所構成,例如VA族之多元複合化合物,包括氮 銦化鎵(InGaN) '氮化鎵/碳化;ε夕(GaN/sic)或上述之任音^且 合。發光元件120係透過銲線14〇與支架引腳15〇電性連 接。螢光粉層130包覆於發光元件12〇周圍,更包覆兩銲 線的一部份。螢光粉層130有兩種以上之螢光粉,且這: 螢光粉係均勻分散於此螢光粉層130中。上述之榮光粉^ 130至少包含第一螢光粉Hi及第二螢光粉132。在—實施 例中,第一螢光粉131例如為本發明上述實施例所製備之 紅色螢光粉。紅色螢光粉之結構為MaAbDcEdXe,其中 Μ、A、D、E、X、a、b、c、d以及e之定義如上所述, 於此不再贅述。第二螢光粉例如為黃色螢光粉或綠色螢光 粉。監色發光二極體晶片所發出之藍光可以激發紅色螢光 粉發射紅光,亦可激發黃色螢光粉發出黃光,使得發光二 極體封裝結構產生白光。 X 例1 以0.1021克經過500網目過篩選取25微米之Referring to Fig. 8', the light emitting diode package structure 1 includes a substrate u, a light emitting element 120, and a phosphor layer 130. The substrate 11A is a base that carries the light-emitting element 120. The light emitting element 120 is attached to the substrate 11A. The light = device 120 is, for example, a blue light emitting diode chip. The light-emitting element 12〇 is composed of a conductor material, such as a VA group multi-component compound, including gallium nitride (InGaN) 'gallium nitride/carbonization; ε/ ic ( GaN/sic) or any of the above . The light-emitting element 120 is electrically connected to the holder pin 15 through the bonding wire 14A. The phosphor layer 130 is wrapped around the light-emitting element 12 and further covers a part of the two wires. The phosphor layer 130 has two or more types of phosphor powder, and this: the phosphor powder is uniformly dispersed in the phosphor layer 130. The above-mentioned glory powder 130 includes at least a first phosphor powder Hi and a second phosphor powder 132. In the embodiment, the first phosphor powder 131 is, for example, the red phosphor powder prepared in the above embodiment of the invention. The structure of the red phosphor is MaAbDcEdXe, wherein Μ, A, D, E, X, a, b, c, d and e are as defined above, and will not be described again. The second phosphor is, for example, yellow phosphor or green phosphor. The blue light emitted by the color-emitting diode chip can excite the red phosphor to emit red light, and can also excite the yellow phosphor to emit yellow light, so that the light-emitting diode package structure generates white light. X Example 1 After 0.1021 g through 500 mesh screening, take 25 μm

CaAlSiN3:Eu2%(CaAlSiN3:Eu2%表示 CaAlSiN3 之中摻雜 2w.t.%的EU,w.t.%表示重量百分比)做為晶種,其合成方 法為 0.6940 克的 Ca^、0.6699 克的 Si3N4、0.5885 克的 201231619 EL99092 36618twf.doc/n AIN以及0.0477克的EuN混合研磨,之後,於攝氏1700 度、氮氣壓力為〇.48MPa下燒結4小時,得紅色產物過筛 而得此晶種。 比較例1 以0.1021克沒有經過網目篩選之CaAlSiN3:Eu2°/〇做為 比較例1,其合成方法為0.6940克的Ca3N2、0.6699克的 Si3N4、0.5885克的A1N以及0.0477克的EuN混合研磨, 之後,於攝氏1700度、氮氣壓力為〇.48MPa下燒結4小 時,得紅色產物。 例2 取尺寸小於25微米的CaAlSiN3:Eu2%樣品0.1021克 做為晶種。將晶種與0.3123克的Ca3N2、0.3015克的Si3N4、 0.2649克的A1N以及0.0215克的EuN混合研磨,之後, 於攝氏1700度、氮氣壓力為0.48MPa下燒結4小時,得 紅色產物。 例3 取尺寸小於25微米的CaAlSiN3:Eu2%樣品〇.4克做為 晶種並取 0.552 克的 Ca3N2、0.5359 克的 Si3N4、0.4708 克 的A1N以及0.0405克的Eu203混合研磨後,於攝氏1700 度、氮氣壓力為0.48MPa下燒結4小時,得紅色產物。 比較例2 取 0.3470 克的 Ca3N2、0.3350 克的 Si3N4、0.2943 克 的A1N以及0.0239克的EuN混合研磨後,於攝氏1700度、 氮氣壓力為0.48MPa下燒結4小時,得紅色產物。 201231619 EL99092 36618twf.doc/n 上述例1與比較例1所形成之紅色氮化物螢光粉化合 物之的激發光譜圖如圖1所示,掃描式電子顯微鏡(SEM) 之照片分別如圖2A以及圖2B所示。由圖1以及圖2A與 2B的結果顯示:相較於沒有經過過篩者,以過篩的 CaAlSiN3 :Eu2%做為晶種所得之紅色氮化物螢光粉化合物 的顆粒大小較均勻且亮度較高。 上述例2以及比較例2所形成之紅色氮化物螢光粉化 合物經由X光粉末繞射圖譜如圖3所示,其結果顯示例2 以及比較例2所形成之紅色氤化物螢光粉化合物均為純 相。 上述例2以及比較例2所形成之螢光粉化合物的激發 光譜圖如圖4所示;上述例3以及比較例2所形成之紅色 氮化物螢光粉化合物的激發光譜圖如圖6所示’其結果顯 示例2、例3以及比較例2所形成之紅色氮化物螢光粉可 被360至550nm波長激發。而且例2、例3所形成的勞光 粉化合物的激發強度大於比較例2所形成之螢光粉化合 物。 上述例2以及比較例2所形成之螢光粉化合物的放射 光譜圖如圖5所示;上述例3以及比較例2所形成之紅色 氮化物螢光粉化合物的放射光譜圖如圖7所示,其結果如 表1所示。由表1的結果顯示例2、例3以及比較例2所 形成之紅色氮化物螢光粉的放射波長為570至’且 例2、例3的放光強度大於比較例2的放光強度。 11 201231619 EL99092 36618twf.doc/n 激發峰 放射峰 顏色 -——~~____ 光強度積分 光強度積分 值Ex. 值Em. 強度Int. 面積RQO (nm) (nm) (%,相對) (%,相對) 例2 460 660 紅 107 110 例3 460 658 紅 119 118 mm2 460 664 紅 100 mn 半高宽 FWHM (nm) 92 92 93CaAlSiN3:Eu2% (CaAlSiN3:Eu2% means that 2w.t.% of EU is doped in CaAlSiN3, wt% means weight percentage) as a seed crystal, and its synthesis method is 0.6940 g of Ca^, 0.6699 g of Si3N4, 0.5885 The 201231619 EL99092 36618twf.doc/n AIN and 0.0477 grams of EuN were mixed and ground, and then sintered at 1700 ° C and a nitrogen pressure of 〇.48 MPa for 4 hours to obtain a red product which was sieved to obtain the seed crystal. Comparative Example 1 0.1021 g of CaAlSiN3:Eu2°/〇 without mesh screening was used as Comparative Example 1, and the synthesis method was 0.6940 g of Ca3N2, 0.6699 g of Si3N4, 0.5885 g of A1N, and 0.0477 g of EuN, followed by mixing and grinding. After sintering at 4700 ° C and nitrogen pressure of 〇.48 MPa for 4 hours, a red product was obtained. Example 2 A CaAlSiN3:Eu2% sample having a size of less than 25 μm was used as a seed crystal. The seed crystal was mixed and ground with 0.3123 g of Ca3N2, 0.3015 g of Si3N4, 0.2649 g of A1N, and 0.0215 g of EuN, followed by sintering at 1,700 ° C and a nitrogen pressure of 0.48 MPa for 4 hours to obtain a red product. Example 3 A CaAlSiN3:Eu2% sample having a size of less than 25 μm was used as a seed crystal and 0.552 g of Ca3N2, 0.5359 g of Si3N4, 0.4708 g of A1N, and 0.0405 g of Eu203 were mixed and ground at 1,700 °C. Sintering was carried out for 4 hours under a nitrogen pressure of 0.48 MPa to obtain a red product. Comparative Example 2 0.3470 g of Ca3N2, 0.3350 g of Si3N4, 0.2943 g of A1N, and 0.0239 g of EuN were mixed and ground, and then sintered at 1,700 ° C and a nitrogen pressure of 0.48 MPa for 4 hours to obtain a red product. 201231619 EL99092 36618twf.doc/n The excitation spectrum of the red nitride phosphor powder compound formed in the above Example 1 and Comparative Example 1 is shown in Fig. 1, and the photographs of the scanning electron microscope (SEM) are shown in Fig. 2A and 2B is shown. The results of Fig. 1 and Figs. 2A and 2B show that the red nitride phosphor powder compound obtained by seeding CaAlSiN3:Eu2% as a seed crystal has a relatively uniform particle size and brightness compared with those which have not been sieved. high. The red nitride phosphor powder compound formed in the above Example 2 and Comparative Example 2 is shown in Fig. 3 through the X-ray powder diffraction pattern, and the results show that the red telluride phosphor powder compounds formed in Example 2 and Comparative Example 2 are both shown. It is pure phase. The excitation spectrum of the phosphor powder compound formed in the above Example 2 and Comparative Example 2 is shown in Fig. 4; the excitation spectrum of the red nitride phosphor powder compound formed in the above Example 3 and Comparative Example 2 is shown in Fig. 6. The results show that the red nitride phosphor powder formed in Example 2, Example 3, and Comparative Example 2 can be excited by a wavelength of 360 to 550 nm. Further, the luminescent powder compound formed in Examples 2 and 3 had a higher excitation intensity than the luminescent powder compound formed in Comparative Example 2. The emission spectrum of the phosphor powder compound formed in the above Example 2 and Comparative Example 2 is shown in Fig. 5; the emission spectrum of the red nitride phosphor powder compound formed in the above Example 3 and Comparative Example 2 is shown in Fig. 7 . The results are shown in Table 1. The results of Table 1 show that the red nitride phosphor powder formed in Example 2, Example 3, and Comparative Example 2 had a radiation wavelength of 570 to ' and the light emission intensity of Example 2 and Example 3 was larger than that of Comparative Example 2. 11 201231619 EL99092 36618twf.doc/n Excitation peak emission peak color -——~~____ Light intensity integral light intensity integral value Ex. Value Em. Intensity Int. Area RQO (nm) (nm) (%, relative) (%, Relative) Example 2 460 660 Red 107 110 Case 3 460 658 Red 119 118 mm2 460 664 Red 100 mn Half-height FWHM (nm) 92 92 93

,〜iu"心心你你科〒加入晶種後再進行燒 結來製備紅色氮化物螢光粉之方法,所形成之紅色氣化物 勞光粉可被發光二極體的至55Gnm波長的光激發,放 射波長為57G至7GGnm,而且可以有狀升紅色氮化物營 光粉的放光強度,其㈣方法料,極具產業應用價值。 另一方面,以經過篩選的晶種與原料進行燒結可以使得所 形成的紅色氮化物螢光粉的顆粒非常均勻且可以提升其亮 度。 、儿~~iu" Heart-to-heart method: After you add the seed crystal and then sinter to prepare the red nitride phosphor powder, the red vaporized glaze powder can be excited by the light of the light-emitting diode to the wavelength of 55Gnm. The emission wavelength is 57G to 7GGnm, and it can have the light-emitting intensity of the red nitride battalion powder. The (4) method material has great industrial application value. On the other hand, sintering with the seed crystals and the raw materials can make the particles of the formed red nitride phosphor powder very uniform and can increase the brightness thereof. ,child

雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内’當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1所示為本發明例1以及比較例1所形成之紅色氮 化物螢光粉化合物之激發光譜圖。 圖2A所示為本發明例1所形成之紅色氮化物螢光粉 12 201231619 EL99092 36618twf.doc/n 化合物之掃描式電子顯微鏡之照片。 圖2B所示為比較例1所形成之紅色氮化物螢光粉化 合物之掃描式電子顯微鏡之照片。 圖3所示為本發明例2以及比較例2所形成之紅色氮 化物螢光粉化合物之X光粉末繞射圖。 圖4所示為本發明例2以及比較例2所形成之紅色氮 化物螢光粉化合物的激發光譜圖。 圖5所示為本發明例2以及比較例2所形成之紅色氮 化物螢光粉化合物的放射光譜圖。 圖6所示為本發明例3以及比較例2所形成之紅色氮 化物螢光粉化合物的激發光譜圖。 圖7所示為本發明例3以及比較例2所形成之紅色氮 化物螢光粉化合物的放射光譜圖。 圖8所示為本發明較佳實施例之發光二極體封裝結構 的不意圖。 【主要元件符號說明】 100 :發光二極體封裝結構 131 :第一螢光粉 110 :基材 132 :第二螢光粉 120 :發光元件 140 :銲線 130 :螢光粉層 150 :支架引腳 13The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art can make a few changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing excitation spectra of a red nitride fluorescent powder compound formed in Example 1 and Comparative Example 1. Fig. 2A is a photograph of a scanning electron microscope of a compound of the red nitride phosphor powder 12 201231619 EL99092 36618 twf.doc/n formed in Example 1 of the present invention. Fig. 2B is a photograph of a scanning electron microscope of the red nitride fluorescent powder compound formed in Comparative Example 1. Fig. 3 is a view showing an X-ray powder diffraction pattern of the red nitride phosphor powder compound formed in Example 2 and Comparative Example 2 of the present invention. Fig. 4 is a view showing the excitation spectrum of the red nitride fluorescent powder compound formed in Example 2 and Comparative Example 2 of the present invention. Fig. 5 is a view showing the emission spectrum of the red nitride fluorescent powder compound formed in Example 2 and Comparative Example 2 of the present invention. Fig. 6 is a view showing the excitation spectrum of the red nitride fluorescent powder compound formed in Example 3 of the present invention and Comparative Example 2. Fig. 7 is a view showing the emission spectrum of the red nitride fluorescent powder compound formed in Example 3 of the present invention and Comparative Example 2. Figure 8 is a schematic illustration of a light emitting diode package structure in accordance with a preferred embodiment of the present invention. [Main component symbol description] 100: Light-emitting diode package structure 131: First phosphor powder 110: Substrate 132: Second phosphor powder 120: Light-emitting element 140: Wire bond 130: Fluorescent powder layer 150: Bracket lead Foot 13

Claims (1)

201231619 EL99092 36618twf.doc/n 七、申請專利範圍: 1. 一種紅色氮化物螢光粉的製備方法,包括以10至 50重量份之MaAbDcEdXe結晶物做為晶種,與5〇至90 重量份之用以製作MaAbDcEdXe結晶物之原料混合,之後 進行燒結’以形成MaAbDcEdXe結晶產物,其中 Μ為活化中心,包括Mn、Ce、Pr、Nd、Sm、Eu、 Tb、Dy、Ho、Er、Tm、Yb 或其組合; A為2價IIA族金屬元素; _ D為4價IVA族金屬元素; E為3價IIIA族金屬元素; X為元素氮;以及 a+b=l > 0.00001<a<0.1 , 0.5<c<4 » 〇.5<d<8 > 0.8x(2/3+4/3xc+d)SeSl.2x(2/3+4/3xc+d)。 2. 如申請專利範圍第1項所述之紅色氮化物螢光粉 的製備方法’其中做為晶種的該MaAbDcEdXe結晶物的尺 寸小於25微米。 ° 3. 如申請專利範圍第丨項所述之紅色氮化物螢光粉 鲁 的製備方法,其中當X為元素氮時,該用以製作 MaAbDcEdXe結晶物之原料包括2 8莫耳%至3 8莫耳%的 A的氮化物、28莫耳%至38莫耳%的D的氮化物以及28 莫耳%至38莫耳%的E的氮化物以及〇丨莫耳%至$莫耳 %的Μ的氮化物或μ的氧化物。 4·如申請專利範圍第1¾2項所述之紅色氮化物螢光 粉的製備方法,其中上述燒結係在I氣、氨氣或惰性氣體 14 201231619 EL99092 36618twf.doc/n 的氣氣下進行,燒結溫度為攝氏1600度至1900度,燒結 時間為2小時至10小時’壓力為〇 3Mpa至1Mpa。 5. 如申請專利範圍第丨項所述之紅色氮化物螢光粉 的製備方法,更包括將上述燒結所得之MaAbDcEdXe結晶 產物與用以製造MaAbDeEdXe結晶物之原料再燒結。201231619 EL99092 36618twf.doc/n VII. Patent Application Range: 1. A method for preparing red nitride phosphor powder, comprising 10 to 50 parts by weight of MaAbDcEdXe crystal as seed crystal, and 5 to 90 parts by weight The raw materials used to make the MaAbDcEdXe crystals are mixed, followed by sintering to form a MaAbDcEdXe crystalline product, wherein cerium is an activation center, including Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb Or a combination thereof; A is a divalent Group IIA metal element; _D is a tetravalent IVA metal element; E is a trivalent Group IIIA metal element; X is an elemental nitrogen; and a+b=l >0.00001<a< 0.1 , 0.5 < c < 4 » 〇.5 < d < 8 > 0.8x (2 / 3 + 4 / 3xc + d) SeSl. 2x (2 / 3 + 4 / 3xc + d). 2. The method of preparing a red nitride phosphor according to claim 1, wherein the MaAbDcEdXe crystallite as a seed crystal has a size of less than 25 μm. 3. The method for preparing a red nitride phosphor powder according to the invention of claim 2, wherein when X is elemental nitrogen, the raw material for preparing the MaAbDcEdXe crystal comprises 28 to 8 mol% to 3 8 Molar% of A nitride, 28 mole% to 38 mole% of D nitride, and 28 mole% to 38 mole% of E nitride and 〇丨mol% to $m% Niobium nitride or oxide of μ. 4. The method for preparing a red nitride phosphor according to claim 13 or claim 42, wherein the sintering is performed under a gas of I gas, ammonia gas or inert gas 14 201231619 EL99092 36618 twf.doc/n, sintering The temperature is from 1600 to 1900 degrees Celsius, and the sintering time is from 2 hours to 10 hours. The pressure is from 3 Mpa to 1 Mpa. 5. The method for preparing a red nitride phosphor according to the invention of claim 2, further comprising re-sintering the above-mentioned sintered MaAbDcEdXe crystalline product with a raw material for producing MaAb DeEdXe crystal. 6. 如申請專利範圍第5項所述之紅色螢光粉的製備 方法,更包括在進行上述再燒結之前,將上述燒結所得之 MaAbDeEdXe結晶產物進行篩選,取尺寸為3微米至^ 微米者。 7. 如申請專利範圍第5項所述之紅色氮化物勞光粉 的製備方法,其巾上料燒結與上職結㈣程條件相同。 8. 如中請專利範圍第5項所述之紅色氮化物勞光粉 的衣備方法’其巾上述再燒結與上述燒結的製程條件相里。 圍第51㈣述之紅色氮化物榮光粉 / ’/、中上述再燒結係在氮氣、氨氣或惰性氣體 、氣氮下、行,燒結溫度為攝氏1600度至⑽ 時間為2小時至10小時,壓力為0.3MPu1MPa。 10.—種發光二極體封裝結構,包括: 一發光元件; 第-;=第 發光元件之表面與周圍,包括- 第螢先叔與一第二螢光粉,其中: 螢光粉===:光粉’該紅隨化物 MaAbDcEdXe結晶物做為曰刀^寸小於25微米之 曰切做為晶種,與50至9〇重量份之用以 15 201231619 EL99092 36618twf.doc/n 製作MaAbDcEdXe結晶物之原料混合,之後進行燒結’所 形成之MaAbDcEdXe結晶產物,其中 Μ為活化中心,包括Mn、Ce、Pr、Nd、Sm、 Eu、Tb、Dy、Ho、Er、Tm、Yb 或其組合; A為2價IIA族金屬元素; D為4價IVA族金屬元素; E為3價IIIA族金屬元素; X為元素氮;以及 a+b=l > 0.00001<a<0.1 > 0.5<c<4 » 0.5<d<8 ? 0.8x(2/3+4/3 xc+d)<e< 1.2x(2/3+4/3 xc+d) > 其中,上述燒結係在氮氣、氨氣或惰性氣體的氣 氛下進行,燒結溫度為攝氏16〇〇度至1900度,燒結時間 為2小時至1〇小時,壓力為0.3MPa至IMPa ;以及 該第二螢光粉為黃色螢光粉或綠色螢光粉。6. The method for preparing a red phosphor according to claim 5, further comprising screening the sintered MaAbDeEdXe crystalline product to a size of 3 micrometers to 2 micrometers before performing the above re-sintering. 7. The method for preparing red nitride light-resistant powder according to claim 5, wherein the sintering of the towel is the same as the condition of the upper duty (four). 8. The method for preparing a red nitride light-polishing powder according to the fifth aspect of the patent application, wherein the above-mentioned re-sintering of the towel is in accordance with the process conditions of the sintering described above. The red nitride glory powder / '/ in the 51st (4th) is neutralized under nitrogen, ammonia or inert gas, gas nitrogen, and the sintering temperature is 1600 ° C to 10 ° C for 2 hours to 10 hours. The pressure is 0.3 MPu 1 MPa. 10. A light-emitting diode package structure comprising: a light-emitting element; a surface of the first light-emitting element and the periphery thereof, including - a first fluorescent film and a second fluorescent powder, wherein: the phosphor powder == =: Light powder 'The red coating with MaAbDcEdXe crystallized as a file with a size of less than 25 microns as a seed crystal, and 50 to 9 parts by weight for 15 201231619 EL99092 36618twf.doc/n MaAbDcEdXe crystal The raw materials of the materials are mixed, and then sintered, the formed MaAbDcEdXe crystalline product, wherein cerium is an activation center, including Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or a combination thereof; A is a divalent Group IIA metal element; D is a tetravalent IVA group metal element; E is a trivalent Group IIIA metal element; X is an elemental nitrogen; and a+b=l >0.00001<a<0.1>0.5<;c<4 » 0.5<d<8 ? 0.8x(2/3+4/3 xc+d)<e<1.2x(2/3+4/3 xc+d) > where the above sintering It is carried out under an atmosphere of nitrogen, ammonia or an inert gas at a sintering temperature of 16 to 1900 degrees Celsius, a sintering time of 2 hours to 1 hour, and a pressure of 0.3 MPa to 1 MPa; The second phosphor is a yellow phosphor or green phosphor.
TW100103738A 2011-01-31 2011-01-31 Method of preparing nitride-based red phosphor powder and package structure of light emitting diode TW201231619A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100103738A TW201231619A (en) 2011-01-31 2011-01-31 Method of preparing nitride-based red phosphor powder and package structure of light emitting diode
CN2011101519801A CN102618264A (en) 2011-01-31 2011-05-25 Preparation method of red nitride fluorescent powder and packaging structure of light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103738A TW201231619A (en) 2011-01-31 2011-01-31 Method of preparing nitride-based red phosphor powder and package structure of light emitting diode

Publications (1)

Publication Number Publication Date
TW201231619A true TW201231619A (en) 2012-08-01

Family

ID=46558481

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103738A TW201231619A (en) 2011-01-31 2011-01-31 Method of preparing nitride-based red phosphor powder and package structure of light emitting diode

Country Status (2)

Country Link
CN (1) CN102618264A (en)
TW (1) TW201231619A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698927B (en) * 2021-09-22 2023-07-11 烟台布莱特光电材料有限公司 Preparation method of alpha-type plug Long Chengse fluorescent powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931239B2 (en) * 2004-02-18 2007-06-13 独立行政法人物質・材料研究機構 Light emitting device and lighting apparatus
US8148886B2 (en) * 2005-01-31 2012-04-03 Ube Industries, Ltd. Red nitride phosphor and production method thereof
JP5188687B2 (en) * 2006-07-18 2013-04-24 昭和電工株式会社 Phosphor, manufacturing method thereof, and light emitting device
US8513876B2 (en) * 2007-05-22 2013-08-20 National Institute For Materials Science Fluorescent substance, method for producing the same, and light-emitting device using the same
JP5578597B2 (en) * 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 Phosphor, method for manufacturing the same, and light emitting device using the same
US8119028B2 (en) * 2007-11-14 2012-02-21 Cree, Inc. Cerium and europium doped single crystal phosphors

Also Published As

Publication number Publication date
CN102618264A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
Fang et al. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes
TWI534246B (en) Fluorescent particles and light-emitting diodes, and a lighting device using the same, and a backlight device for a liquid crystal panel
TWI357927B (en) Fluorescent substance and manufacturing method the
TWI373507B (en)
TWI299055B (en)
JP5833547B2 (en) Luminescent ceramic and light emitting device using the same
TWI375710B (en)
TWI304438B (en) Nitrogen oxide based fluorescent body and process for preparing the same
JP2012519216A (en) Nitridosilicate co-doped with zirconium and hafnium
KR20060079251A (en) White light emitting diode device
TW201024393A (en) Doped garnet phosphors having a red shift for pcleds
KR20130099097A (en) Silicophosphate luminophores
WO2007004492A1 (en) Fluorophor and method for production thereof and illuminator
JP2011168708A (en) Fluorescent material and light-emitting device employing the same
TWI280271B (en) Oxynitride based fluorescent body and method for preparing the same
TW201211206A (en) Carbonitride based phosphors and light emitting devices using the same
JP2011140664A (en) Method for producing phosphor
CN107801399B (en) Phosphor ceramic
KR20130054123A (en) Luminescent material
JPWO2013147066A1 (en) Oxynitride phosphor powder
TW201224118A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
Du et al. Synthesis, structure and luminescent properties of yellow phosphor La3Si6N11: Ce3+ for high power white-LEDs
WO2010041195A1 (en) Blue emitting sion phosphor
Shao et al. Efficient violet-light-excitable blue-cyan phosphor for full-spectrum lighting
JP2014503605A (en) Nitrogen compound luminescent material, method for preparing the same, and illumination light source manufactured thereby