TW573457B - Turbulence heat sink - Google Patents

Turbulence heat sink Download PDF

Info

Publication number
TW573457B
TW573457B TW92112769A TW92112769A TW573457B TW 573457 B TW573457 B TW 573457B TW 92112769 A TW92112769 A TW 92112769A TW 92112769 A TW92112769 A TW 92112769A TW 573457 B TW573457 B TW 573457B
Authority
TW
Taiwan
Prior art keywords
heat
pipe body
spoiler
cooler
heat pipe
Prior art date
Application number
TW92112769A
Other languages
Chinese (zh)
Other versions
TW200425826A (en
Inventor
Ching-Fen Tsai
Elizabeth Shuang-Young Tsai
Original Assignee
Ching-Fen Tsai
Tsai Yi Way
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ching-Fen Tsai, Tsai Yi Way filed Critical Ching-Fen Tsai
Priority to TW92112769A priority Critical patent/TW573457B/en
Application granted granted Critical
Publication of TW573457B publication Critical patent/TW573457B/en
Publication of TW200425826A publication Critical patent/TW200425826A/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

573457 玖 (發明說明臓明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) 【發明所屬之技術領域】 本發明乃提供一種擾流式冷卻器,尤指一種利用擾流方法, 能夠高效率散熱,比習用冷卻器或散熱糸統更精簡,成本更低 廉,可直接使用於各種「迷你化」之精密電子、或電氣設備'或 機械產品組件熱點之擾流式冷卻器。 【內容】 各種「迷你化」之精密電子、或電氣設備、或機械產品組件 熱點之冷卻的溫度控制技術,正面對各種「迷你化」之精密電子、 或電氣設備、或機械產品組件熱點週邊狹小空間的挑戰。爲了面 對此一挑戰,精密的熱對流檢測方法極爲重要,利用牛頓定律冷 卻方程式(Newton’s Law of Cooling Equation),可以說明整個對流 散熱效應:573457 (Explanation of the invention: Brief description of the technical field to which the invention belongs, prior art, content, embodiments and drawings) [Technical field to which the invention belongs] The present invention provides a turbulent cooler, especially a method using Flow method, which can dissipate heat with high efficiency, which is more streamlined and cheaper than conventional coolers or cooling systems. It can be directly used in various "miniaturized" precision electronic or electrical equipment 'or hot-spot cooling components of mechanical products. Device. [Content] Various "miniaturized" precision electronic, electrical equipment, or mechanical product component hot spot cooling temperature control technologies are facing various "miniaturized" precision electronic, electrical equipment, or mechanical product component hot spots. The challenge of space. In order to face this challenge, a precise thermal convection detection method is extremely important. Using Newton ’s Law of Cooling Equation, the entire convection heat dissipation effect can be explained:

Qconvection = h * A * (Tw - Ta)Qconvection = h * A * (Tw-Ta)

Qconvection : 對流熱量 h: 對流係數 A: 對流空氣接觸壁表面積Qconvection: Convective heat h: Convection coefficient A: Convective air contact wall surface area

Tw: 空氣對流接觸之壁面溫度Tw: wall temperature of air convection contact

Ta: 空氣之溫度 如上述牛頓定律冷卻方程式(Newton’ s Law of CoolingTa: The temperature of the air is the Newton ’s Law of Cooling

Equation)所示,因擾流式的設計,使對流係數(h)增高很多, 8 573457 因而能夠使與空氣接觸的面積減少,以減少對於上述各種「迷你 化」之精密電子、或電氣設備、或機械產品組件的空間的需求。 應用這個方法,能夠爲上述各種「迷你化」之精密電子、或電氣 設備、或機械產品組件熱點之冷卻的溫度控制技術,發展新的冷 卻器或散熱糸統。 本發明人等硏究氣體的擾流作用,證明擾流現象會提高熱傳 導效率’而熱傳導效率越高,所使用的熱傳導組件越小,將可改 善上述各種精密電子、或電氣設備、或機械產品之「迷你化」, 造成空間縮小,習用冷卻器或散熱糸統因體積太大而無法配合, 和無法提高其導熱及冷卻(或散熱)效率之困難。 有鑒於此,本發明乃提供一種擾流式冷卻器,尤指一種利用 擾流方法,能夠高效率散熱,比習用冷卻器或散熱糸統更精簡, 成本更低廉,可直接使用於各種「迷你化」之精密電子、或電氣 設備、或機械產品組件熱點之擾流式冷卻器。本發明所提供之擾 流式冷卻器,係由一排熱管體和一風扇所組成;其中排熱管體係 以優良的導熱金屬一銅或鋁等材料所製成,排熱管體之兩端分別 形成一進風口與一出風口,排熱管體之內壁設有多數擾流塊體, 排熱管體可直接裝置於上述各種「迷你化」之精密電子、或電氣 設備、或機械產品組件的熱點上;其中風扇係設於排熱管體之進 風口或出風口,能夠對排熱管體內吹氣或排氣,可以將傳導到排 熱管體內壁及內壁所設多數擾流塊體之高溫所形成之擾流熱氣 573457 排出,以提升冷卻效率,俾能使冷卻器或散熱糸統小型化,以適 合所裝置各種「迷你化」之精密電子、或電氣設備、或機械產品 組件熱點週邊狹小空間的限制,並降低成本。 本發明之主要目的,在提供一種利用擾流方法,能夠高效率 散熱,比習用冷卻器或散熱糸統更精簡,成本更低廉,可直接使 用於各種「迷你化」之精密電子、或電氣設備、或機械產品組件 熱點之擾流式冷卻器。 本發明之另一目的,在提供一種排熱管體之內壁設有多數擾 ® 流塊體,能夠使通過排熱管體內之空氣,形成擾流現象,以提升 冷卻(或散熱)效率之擾流式冷卻器。 【先前技術】 「迷你化」很明顯地已成爲所有精密電子、電氣設備和機械 工業等高耗電產品的主流;這些工業產品正是當今世界主要的經 濟動力來源,而用於各種「迷你化」之精密電子、或電氣設備、 或機械產品組件熱點之冷卻的溫度控制技術卻成了重大問題。 β 以筆記型電腦爲例,當筆記型電腦被啓動時,中央處理器產 生的高溫,會使中央處理器陷入不穩定狀態,輕者當機,嚴重者 會燒毀中央處理器。而產生高溫的主要原因是中央處理器使用的 電壓、與中央處理器的執行速度。通常中央處理器執行的速度越 快’或使用的電壓越高,中央處理器產生的溫度也越高。因此必 須使用冷卻器或散熱糸統來降低中央處理器的溫度,才能保持正 10 573457 常的運作。 如第一圖所不,目即巾面上所販售的筆記型電腦,其內部配 置的中央處理器的冷卻,係利用一冷卻器丨與一風扇(未繪), 其中之冷卻器1包括一片導熱板11、一支以上的導熱管12、一個 鰭片式散熱片13 ;冷卻器1之導熱板11、導熱管I〗和繪片式散熱 片13均係以優良的導熱金屬一銅或錦等材料所製成;其中導熱板 11係接合在中央處理器上;其中鰭片式散熱片13係設置在中央處 理器附近的筆記型電腦內部,鰭片式散熱片13之兩端分別形成一 · 進風口 131與一出風口 132 ;其中風扇係設於鰭片式散熱片13之進 風口 131 (或出風口 132);其中導熱管12的管內塡充有適量液態 冷媒,導熱管12的前段係接合在導熱板11上,導熱管12的後段係 接合在鰭片式散熱片13上。 啓動筆記型電腦之中央處理器產生的高溫,傳導到冷卻器1 之導熱板11時,接合在導熱板11上之導熱管12的前段管內所塡充 的液態冷媒吸熱蒸發,形成蒸氣形態的高溫冷媒,流到接合在鰭 * 片式散熱片13上之導熱管12的後段管內,蒸氣形態的高溫冷媒在 導熱管21的後段管內,經鰭片式散熱片13散熱冷卻,回復液態的 低溫冷媒,回流到接合在導熱板11上之導熱管12的前段管內,持 續吸收由中央處理器傳導到導熱板11的高溫,再形成蒸氣形態的 高溫冷媒,流到接合在鰭片式散熱片13上之導熱管12的後段管 內,經鰭片式散熱片13散熱冷卻,回復液態的低溫冷媒,回流到 11 573457 接合在導熱板11上之導熱管12的前段管內,如此週而復始降低中 央處理器的溫度,以保持正常的運作。 上述這種筆記型電腦內部配置的中央處理器所使用的習用 冷卻器1,需要包括一片導熱板11、一支以上的導熱管12、一個 鰭片式散熱片13 ;其中導熱管12的管內需要塡充有適量液態冷 媒,不僅組件繁多,構造複雜,對於筆記型電腦之中央處理器產 生的高溫,在冷卻器1內的傳導流程也很漫長,因此需要相當大 的空間,來容納上述這種習用冷卻器1。 · 而目前廠商生產的筆記型電腦,正朝向輕、薄、迷你化,和 高速運算功能發展中,這意味著筆記型電腦內部可以容納上述瓊 種習用冷卻器1的空間越來越小。因此使得上述這種習用冷卻器1 正面臨下列困境: 1. 爲了能夠被容納在「迷你化」之筆記型電腦內越來越小的空間 內,而致力於減少上述适種習用冷卻器1的導熱管12的數量’或 縮小導熱管12的管徑’將降低其冷卻(或散熱)效率。 麵 2. 「迷你化」之筆記型電腦內部可利用空間的大小’將影響和限 制上述這種習用冷卻器1的鰭片式散熱片13的大小’因此將影響 和限制其冷卻(或散熱)的能力。 3. 上述這種習用冷卻器1的繪片式1散熱片13雖然具有散熱功能’ f曰是風扇2產生的氣流’只能沿者鰭片式散熱片13平滑的表面平 順的散熱,無法提高其導熱及冷卻1 (或散熱)效率° 12 573457 4·上述這種習用冷卻器1組件的小型化,將降低其冷卻(或散熱) 效率’並影響筆記型電腦之中央處理器的穩定性,和降低其功 能。 【實施方式】 實施例一 如第二、三圖所示,本發明實施例一之擾流式冷卻器2,係 由一排熱管體21和一風扇22所組成;其中排熱管體21係以優良的 導熱金屬一銅或鋁等材料所製成,排熱管體21之兩端分別形成一 進風口 211與一出風口 212,排熱管體21之內壁213平行設有多數 散熱鰭片214,每一散熱鰭片214上設有多數半圓柱型擾流塊體 2141 ;排熱管體21可直接接合在筆記型電腦中央處理器(未繪) 上;其中風扇22係設於排熱管體21之進風口 211 (或出風口 212), 能夠對排熱管體21內吹氣或排氣,可以將中央處理器傳導到排熱 管體21之內壁213及內壁213所設多數散熱鰭片214及多數半圓柱 型擾流塊體2141之高溫,形成擾流熱氣,排出筆記型電腦外,以 提升冷卻(或散熱)效率,直接降低中央處理器的溫度。 實施例二 如第四、五圖所示,本發明實施例二之擾流式冷卻器4,係 由一排熱管體41和一風扇42所組成;其中排熱管體41係以優良的 導熱金屬一銅或鋁等材料所製成,排熱管體41之兩端分別形成一 進風口 411與一出風口 412,排熱管體41之內壁413平行設有多數 13 573457 圓柱型擾流塊體414 ;排熱管體41可直接接合在筆記型電腦中央 處理器(未繪)上;本發明實施例二之擾流式冷卻器4與本發明 實施例一之擾流式冷卻器2組成略同’僅其中排熱管體41之內壁 413平行設有多數圓柱型擾流塊體414,與本發明實施例一擾流式 冷卻器2之排熱管體21內壁213平行設有多數散熱鰭片214 ’每一 散熱鰭片214上設有多數半圓柱型擾流塊體2141略有不同’惟均 可以將中央處理器傳導到排熱管體41 (或20之內壁413 (或213 ) 及內壁413 (或213)所設多數圓柱型擾流塊體414 (或多數散熱 鶴片214及多數半圓柱型擾流塊體2丨41 )之高溫,形成擾流熱氣, 排出筆記型電腦外,以提升冷卻(或散熱)效率。 如上所述,本發明之擾流式冷卻器,提供一種利用擾流方 法,以提升冷卻(或散熱)效率,俾能使各種「迷你化」之精密 電子、或電氣設備、或機械產品組件熱點之冷卻器、或散熱糸統 小型化,並降低成本。 以上所舉者僅爲本發明之部份較佳具体實施例,並非限制本 發明,在不脫離本發明精神之範圍內可作種種變形、修飾與應 用’例如將本發明所提供擾流式冷卻器之排熱管體內所設之多數 擾流塊體改製成各種幾何形狀,凡此當仍包括在本專利範圍之 內0 14 573457 【圖式簡單說明】 (一) 圖式部份 第一圖係目前筆記型電腦內部配置的中央處理器所使用的習用 冷卻器1之示意圖。 第二圖係本發明實施例一擾流式冷卻器2之示意圖。 第三圖係本發明實施例一擾流式冷卻器2之排熱管體21之立體透 視圖。 第四圖係本發明實施例二擾流式冷卻器4之示意圖。 第五圖係本發明實施例二擾流式冷卻器4之排熱管體41之立體透 視圖 (二) 圖號 (1) 冷卻器 (11) 導熱板 (12) 導熱管 (13) 鰭片式散熱片 (131) 進風口 (132) 出風口 ⑵ 擾流式冷卻器 (21) 排熱管體 (22) 風扇 (211) 進風口 15 (212) 出風口 (213) 排熱管體21之內壁 (214) 散熱鰭片 (2141) 半圚柱型擾流塊體 (4) 擾流式冷卻器 (41) 排熱管體 (42) 風扇 (411) 進風口 (412) 出風口 (413) 排熱管體41之內壁 (414) 圓柱型擾流塊體 573457 續次頁(發明說明頁不敷使用時,請註記並使用續頁)As shown in Equation), the convection coefficient (h) is greatly increased due to the turbulent design. 8 573457 can reduce the area in contact with the air to reduce the above-mentioned "miniaturized" precision electronics, electrical equipment, Or space requirements for mechanical product components. By applying this method, it is possible to develop new coolers or cooling systems for the above-mentioned various "miniaturized" precision electronics, electrical equipment, or hot spots of mechanical product components. The inventors have studied the turbulent effect of gas and proved that the turbulence phenomenon will improve the heat conduction efficiency. 'The higher the heat conduction efficiency, the smaller the heat conduction components used, which can improve the above-mentioned various precision electronic, electrical equipment, or mechanical products. The "miniaturization" has caused a reduction in space, and conventional coolers or cooling systems cannot cope with the large volume, and it is difficult to improve their heat conduction and cooling (or heat dissipation) efficiency. In view of this, the present invention provides a turbulent cooler, especially a turbulent method, which can dissipate heat with high efficiency, which is more streamlined and cheaper than conventional coolers or cooling systems, and can be directly used in various "mini ”Precision electronic, or electrical equipment, or hot spots of mechanical product components. The spoiler cooler provided by the present invention is composed of a row of heat pipe bodies and a fan; wherein the heat pipe system is made of an excellent thermally conductive metal such as copper or aluminum, and the two ends of the heat pipe body are formed separately. One air inlet and one air outlet, the inner wall of the heat exhaust pipe body is provided with many spoiler blocks, and the heat exhaust pipe body can be directly installed on the above-mentioned various "miniaturized" precision electronic, electrical equipment, or hot spots of mechanical product components Among them, the fan is located at the air inlet or outlet of the heat exhaust pipe body, which can blow or exhaust the heat exhaust pipe body, and can be formed by the high temperature of the majority of the turbulent blocks arranged on the inner and inner walls of the heat exhaust pipe. The turbulent hot air 573457 is discharged to improve the cooling efficiency, which can make the cooler or heat sink system miniaturized, which is suitable for the limitation of the small space around the hot spots of the various miniaturized precision electronics, electrical equipment, or mechanical product components. And reduce costs. The main purpose of the present invention is to provide a method that utilizes turbulence, which can dissipate heat efficiently. It is more streamlined and cheaper than conventional coolers or cooling systems. It can be directly used in various "miniaturized" precision electronics or electrical equipment. , Or spoiler cooler for hot spots of mechanical product components. Another object of the present invention is to provide a turbulent flow block on the inner wall of a heat exhaust pipe body, which can cause air turbulence through the air in the heat exhaust pipe body to improve the cooling (or heat dissipation) turbulence. Cooler. [Previous technology] "Miniaturization" has obviously become the mainstream of all high power consumption products such as precision electronics, electrical equipment and machinery industries; these industrial products are the main source of economic power in the world today, and are used for various "miniaturization" However, the temperature control technology for the cooling of precision electronic, electrical equipment, or hot spots of mechanical product components has become a major problem. β Take a notebook computer as an example. When the notebook computer is started, the high temperature generated by the central processing unit will cause the central processing unit to fall into an unstable state. If it is light, it will crash and in severe cases will burn the central processing unit. The main reason for the high temperature is the voltage used by the CPU and the execution speed of the CPU. Generally, the faster the CPU executes or the higher the voltage used, the higher the temperature generated by the CPU. Therefore, a cooler or cooling system must be used to reduce the temperature of the CPU to maintain normal operation. As shown in the first figure, the notebook computer sold on the towel is cooled by a central processor configured with a cooler and a fan (not shown). The cooler 1 includes A heat-conducting plate 11, more than one heat-conducting pipe 12, a fin-type heat sink 13; the heat-conducting plate 11, heat-conducting pipe I of the cooler 1 and the drawing-type heat sink 13 are all made of excellent heat-conducting metal-copper or Made of materials such as brocade; the heat conducting plate 11 is connected to the central processing unit; the finned heat sink 13 is arranged inside the notebook computer near the central processing unit, and the two ends of the finned heat sink 13 are formed respectively An air inlet 131 and an air outlet 132; the fan is installed in the air inlet 131 (or the air outlet 132) of the finned fin 13; the tube of the heat transfer tube 12 is filled with an appropriate amount of liquid refrigerant, and the heat transfer tube 12 The front section of the heat sink is joined to the heat conducting plate 11, and the rear section of the heat conducting pipe 12 is joined to the fin heat sink 13. When the high temperature generated by the central processing unit of the notebook computer is started and transmitted to the heat conducting plate 11 of the cooler 1, the liquid refrigerant filled in the front tube of the heat conducting pipe 12 joined to the heat conducting plate 11 absorbs and evaporates, forming a vapor form. The high-temperature refrigerant flows into the rear section of the heat transfer tube 12 joined to the fin * fins 13. The high-temperature refrigerant in the form of vapor is cooled in the rear section of the heat transfer tube 21 through the fins 13 to cool and return to the liquid state. The low-temperature refrigerant flows back to the front tube of the heat-conducting tube 12 connected to the heat-conducting plate 11 and continuously absorbs the high temperature conducted by the central processing unit to the heat-conducting plate 11 to form a high-temperature refrigerant in the form of vapor, which flows to the fin-type The rear section of the heat transfer tube 12 on the heat sink 13 is cooled by the finned heat sink 13 to return to the liquid low-temperature refrigerant, and returns to the front section of the heat transfer pipe 12 joined to the heat transfer plate 11 573457. Reduce the temperature of the CPU to maintain normal operation. The conventional cooler 1 used by the above-mentioned central processor of the notebook computer needs to include a heat conducting plate 11, more than one heat conducting tube 12, and a fin-type heat sink 13; It needs to be filled with an appropriate amount of liquid refrigerant, not only with many components and complicated structure, but also for the high temperature generated by the central processing unit of the notebook computer, the conduction flow in the cooler 1 is long, so it needs a considerable space to accommodate the above. Kind of conventional cooler 1. · At present, the notebook computers produced by manufacturers are moving towards lighter, thinner, miniaturized, and high-speed computing functions, which means that the space inside the notebook computer that can accommodate the above-mentioned conventional cooler 1 is getting smaller and smaller. Therefore, the above-mentioned conventional cooler 1 is facing the following difficulties: 1. In order to be able to be accommodated in a smaller and smaller space in a "miniaturized" notebook computer, efforts have been made to reduce the number of suitable conventional coolers 1 described above. The number of heat-conducting pipes 12 or reducing the diameter of the heat-conducting pipes 12 will reduce its cooling (or heat dissipation) efficiency. Surface 2. The size of the available space inside the "miniaturized" notebook computer will affect and limit the size of the fin heat sink 13 of the conventional cooler 1 described above, and therefore will affect and limit its cooling (or heat dissipation). Ability. 3. Although the drawing type 1 fin 13 of the conventional cooler 1 has a heat dissipation function, 'f is the air flow generated by the fan 2', it can only dissipate heat smoothly along the smooth surface of the fin type fin 13 and cannot improve it. Its heat conduction and cooling 1 (or heat dissipation) efficiency ° 12 573457 4. The miniaturization of the conventional cooler 1 components mentioned above will reduce its cooling (or heat dissipation) efficiency and affect the stability of the central processing unit of the notebook computer. And reduce its functionality. [Embodiment] In the first embodiment, as shown in the second and third figures, the spoiler cooler 2 of the first embodiment of the present invention is composed of a row of heat pipe bodies 21 and a fan 22; The excellent heat-conducting metal is made of copper or aluminum and other materials. An air inlet 211 and an air outlet 212 are respectively formed at two ends of the heat exhaust pipe body 21. The inner wall 213 of the heat exhaust pipe body 21 is provided with a plurality of heat dissipation fins 214 in parallel. Each heat-dissipating fin 214 is provided with a plurality of semi-cylindrical spoiler blocks 2141; the heat exhaust pipe body 21 can be directly connected to a notebook computer central processor (not shown); wherein the fan 22 is provided on the heat exhaust pipe body 21 The air inlet 211 (or the air outlet 212) can blow or exhaust the heat exhaust pipe body 21, and can conduct the central processing unit to the inner wall 213 of the heat exhaust pipe body 21 and most of the heat dissipation fins 214 and 213 provided in the inner wall 213 and The high temperature of most semi-cylindrical spoiler blocks 2141 forms turbulent heat, which is exhausted from the notebook computer to improve cooling (or heat dissipation) efficiency and directly reduce the temperature of the central processing unit. Second embodiment As shown in the fourth and fifth figures, the spoiler cooler 4 of the second embodiment of the present invention is composed of a row of heat pipe bodies 41 and a fan 42. The heat pipe body 41 is made of excellent heat-conducting metal. Made of a material such as copper or aluminum, two ends of the heat exhaust pipe body 41 respectively form an air inlet 411 and an air outlet 412. The inner wall 413 of the heat exhaust pipe body 41 is provided with a plurality of 13 573457 cylindrical spoiler blocks 414 in parallel. The heat exhaust pipe body 41 can be directly connected to the central processing unit (not shown) of the notebook computer; the spoiler cooler 4 of the second embodiment of the present invention has the same composition as the spoiler cooler 2 of the first embodiment of the present invention; Only the inner wall 413 of the heat dissipation pipe body 41 is provided with a plurality of cylindrical spoiler blocks 414 in parallel, and the inner wall 213 of the heat dissipation pipe body 21 of the spoiler cooler 2 according to the first embodiment of the present invention is provided with a plurality of heat dissipation fins 214 in parallel. 'Each heat-dissipating fin 214 is provided with a majority of semi-cylindrical spoiler blocks 2141 which are slightly different', but the central processor can be conducted to the heat exhaust pipe body 41 (or the inner wall 413 (or 213) and the inner wall of 20) 413 (or 213) most cylindrical spoiler block 414 (or most radiating crane pieces 214 and more The high temperature of several semi-cylindrical spoiler blocks 2 丨 41) forms spoiled heat and is discharged outside the notebook computer to improve cooling (or heat dissipation) efficiency. As mentioned above, the spoiler cooler of the present invention provides a Using the spoiler method to improve the cooling (or heat dissipation) efficiency, it can miniaturize various "miniaturized" precision electronics, electrical equipment, or hot spots of mechanical product component hotspots, or cooling systems, and reduce costs. The above is only a part of the preferred embodiments of the present invention, and does not limit the present invention. Various modifications, modifications, and applications can be made without departing from the spirit of the present invention. For example, the turbulent cooling provided by the present invention Most of the spoiler blocks in the heat-exhaust tube of the device have been modified into various geometric shapes, which are still included in the scope of this patent. 0 14 573457 [Simplified description of the drawings] (I) The first part of the drawings It is a schematic diagram of a conventional cooler 1 used in a central processing unit internally configured in a notebook computer. The second diagram is a schematic diagram of a spoiler cooler 2 according to the first embodiment of the present invention. The third diagram is an embodiment of the present invention. Example 1 A perspective perspective view of the heat-exhaust pipe body 21 of the spoiler cooler 2. The fourth figure is a schematic diagram of the second spoiler cooler 4 of the second embodiment of the present invention. The fifth figure is the second spoiler cooling of the second embodiment of the present invention. Perspective view of the heat exhaust pipe body 41 of the heat sink 4 (two) drawing number (1) cooler (11) heat transfer plate (12) heat transfer pipe (13) fin heat sink (131) air inlet (132) air outlet 风Spoiler cooler (21) Exhaust pipe (22) Fan (211) Inlet 15 (212) Outlet (213) Inner wall (214) of exhaust pipe 21 Radiating fins (2141) Semi-pillar type Flow block (4) Spoiler cooler (41) Exhaust pipe (42) Fan (411) Inlet (412) Outlet (413) Inner wall (414) of exhaust pipe 41 Cylindrical spoiler 573457 Continued page (If the description page of the invention is insufficient, please note and use the continuation page)

Claims (1)

573457 請專利範圍 1、 一種擾流式冷卻器,係由一排熱管體和一風扇所組成;其中 排熱管體係以優良的導熱金屬一銅或鋁等材料所製成,其中 風扇係設於排熱管體一端之進風口或出風口;其特徵在其中 排熱管體之兩端分別形成一進風口與一出風口,排熱管體之 內壁設有多數擾流塊體,排熱管體可直接接合在各種「迷你 化」之精密電子、或電氣設備、或機械產品組件熱點上。 2、 如申請專利範圍第1項所述之擾流式冷卻器,其中排熱管體之 內壁所設多數擾流塊體,爲半圓柱型、或圓柱型、或各種幾 何形狀之擾流塊體。 續次頁(申請專利範圍頁不敷使用時,請註記並使用續頁 17573457 Patent scope 1. A spoiler type cooler is composed of a row of heat pipe bodies and a fan; the heat pipe system is made of excellent heat-conducting metal-copper or aluminum, etc., where the fan is located in the row An air inlet or an air outlet at one end of the heat pipe body is characterized in that an air inlet and an air outlet are formed at both ends of the heat pipe body, and the inner wall of the heat pipe body is provided with a plurality of turbulent blocks, and the heat pipe body can be directly connected On various "miniaturized" hot spots of precision electronic, electrical equipment, or mechanical product components. 2. The spoiler as described in item 1 of the scope of the patent application, wherein most of the spoiler blocks on the inner wall of the heat exhaust pipe body are semi-cylindrical, or cylindrical, or spoilers of various geometries. body. Continued pages (When the patent application page is insufficient, please note and use the continuation page 17
TW92112769A 2003-05-12 2003-05-12 Turbulence heat sink TW573457B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92112769A TW573457B (en) 2003-05-12 2003-05-12 Turbulence heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92112769A TW573457B (en) 2003-05-12 2003-05-12 Turbulence heat sink

Publications (2)

Publication Number Publication Date
TW573457B true TW573457B (en) 2004-01-21
TW200425826A TW200425826A (en) 2004-11-16

Family

ID=32734650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112769A TW573457B (en) 2003-05-12 2003-05-12 Turbulence heat sink

Country Status (1)

Country Link
TW (1) TW573457B (en)

Also Published As

Publication number Publication date
TW200425826A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
Ansari et al. Hotspot thermal management using a microchannel-pinfin hybrid heat sink
US20030056941A1 (en) Double heat exchange module for a portable computer
JP3119117U (en) Heat tube heatsink structure
WO2003041472A1 (en) Heat dissipating module
US7978474B2 (en) Liquid-cooled portable computer
JP2009532871A (en) Cooling system
TW201248104A (en) Liquid cooling device
US20050122678A1 (en) Docking station cooling system including liquid-filled hollow structure
Pastukhov et al. Active coolers based on copper–water LHPs for desktop PC
TWM586876U (en) Composite water-cooled drain structure
TW573457B (en) Turbulence heat sink
US20230292463A1 (en) Devices of drawing out surface heat of electronic components
JP2007208154A (en) Cooling device for electronic equipment
TW532057B (en) Manufacturing method of thermal super-conducting heat conduction block and the structure thereof
JPH11243289A (en) Electronic equipment
TWM612965U (en) Water cooled head with additional finned radiator
CN216748588U (en) Heat energy storage module applied to notebook computer
TW202139821A (en) Gravity-type high-efficiency heat-exchange device
JP3122899U (en) Heat dissipation system
TWM569443U (en) Cold air circulation heat exchange device and equipment having cold air circulation heat exchange device
JP2005159146A (en) Turbulence type heatsink
CN221056886U (en) Split type water-cooling industrial personal computer
TWI715094B (en) Composite water-cooling radiator structure
TWM624795U (en) Thermal energy storage module applied for notebook computer
TW202312849A (en) Electronic and heat dissipation assembly

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees