TW201248104A - Liquid cooling device - Google Patents

Liquid cooling device Download PDF

Info

Publication number
TW201248104A
TW201248104A TW100117831A TW100117831A TW201248104A TW 201248104 A TW201248104 A TW 201248104A TW 100117831 A TW100117831 A TW 100117831A TW 100117831 A TW100117831 A TW 100117831A TW 201248104 A TW201248104 A TW 201248104A
Authority
TW
Taiwan
Prior art keywords
heat
liquid
heat absorbing
flow channels
tube
Prior art date
Application number
TW100117831A
Other languages
Chinese (zh)
Other versions
TWI438388B (en
Inventor
Chien-An Chen
Hsing-Yu Chiang
Original Assignee
Wistron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wistron Corp filed Critical Wistron Corp
Priority to TW100117831A priority Critical patent/TWI438388B/en
Priority to CN2011101480996A priority patent/CN102790020A/en
Priority to US13/431,478 priority patent/US20120291997A1/en
Publication of TW201248104A publication Critical patent/TW201248104A/en
Application granted granted Critical
Publication of TWI438388B publication Critical patent/TWI438388B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Road Paving Structures (AREA)

Abstract

A liquid cooling device includes a heat absorbing part, a first transfer tube, a second transfer tube, and a heat dissipation part, wherein the heat absorbing part has a heat block, a first expansion pipe, and a second expansion pipe. The heat block is connected to an external heated component, and includes a plurality of flow passages to facilitate the flow of a coolant for absorbing the heat generated from the external heated component. The first expansion pipe and the second expansion pipe are connected to the heat block respectively. The first transfer tube and the second transfer tube are connected to the heat dissipation part respectively therefore a cooling cycle is formed among the heat absorbing part, the first transfer tube, the second transfer tube, and the heat dissipation part.

Description

201248104 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種散熱裝置,特別是一種液冷式散熱 裝置。 【先前技術】 由於現在電子裝置運轉效能的提高,電子裝置内發熱 元件的運轉效能也越來越高,為保持電子裝置的正常運 作,以電子裝置内CPU的散熱裝置為例,目前普遍使用的 是液體式冷卻系統,而此類的散熱裝置在與CPU直接接觸 的吸熱銅塊上設有腔體供冷卻液流動,讓腔體内的冷卻液 與吸熱銅塊進行熱交換,進而讓與吸熱銅塊接觸的CPU降 溫,但腔體佔有一定體積,使得液體式冷卻系統體積較大, 並且與吸熱銅塊與冷卻液的接觸面積有限,無法充分發揮 冷卻液的效果。 先前技術中已經揭露的一種液冷式散熱裝置,在腔體 内設計了複數個凹陷部,用以增加冷卻液與吸熱塊的接觸 面積,來提高熱交換效率。但此先前技術仍保有相當體積 之腔體,並沒減少液冷式散熱裝置的體積。 因此有必要提供一種的液冷式散熱裝置,既能省去腔 體所佔用的體積,也能增加冷卻液與CPU的熱交換面積, 達到減少體積又增加熱交換效率的目的。 ⑧ 201248104 【發明内容】 本發明之一主要目的係在提供一種内部有複數流通道 之吸熱塊。 本發明另一之主要目的係在提供一種提高冷卻液與外 部發熱元件間之熱交換面積的液冷式散熱裝置。 為達成上述之目的,本發明之液冷式散熱裝置,包括: 吸熱部、第一傳輸管、第二傳輸管與散熱部,其中吸熱部 包括:吸熱塊、第一突擴管與第二突擴管。吸熱塊用以與 外部發熱元件接觸,吸熱塊内部有複數個流通道,用以讓 冷卻液在複數個流通道内流動,以吸收外部發熱元件運轉 時發出之熱量,第一突擴管與吸熱塊之一側連接,用以讓 冷卻液流入複數個流通道内,第二突擴管與吸熱塊之另一 側連接,讓冷卻液流出複數個流通道。第一傳輸管與第一 突擴管連接,第二傳輸管與第二突擴管連接,散熱部分別 與第一傳輸管與第二傳輸管連接,使得吸熱部、散熱部與 第一傳輸管與第二傳輸管之間形成一迴路,讓冷卻液得以 在迴路内流動。 【實施方式】 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉出本發明之具體實施例,並配合所附圖式, 作詳細說明如下。 請先參考圖1關於依據本發明之一實施例之液冷式散 201248104 熱裝置’其中圖1為液冷式散熱裝置之分解示意圖。 -杜不’本發明之液冷式散熱裝置1與外部發熱 兀件90接觸’以供散除該外部發熱元件9〇所產生之熱。 液=式散熱裝置1包括吸熱部1G、第—傳輪管2G、第二傳 輸管30以及散熱部4〇,並且吸熱部1〇、散哉部仙與第一 傳輸管20 α及第二傳輸管30之間形成一迴路,以使冷卻 液60得以如圖!之箭號所示之方向在該迴路内流動。 在本發明之一實施例中,吸熱塊10為一銅塊,但本發 明不以此為限,吸熱塊1G可為任何具高熱傳導(Th_al Conductivity)性質之材料。在本發明之一實施例中,第一 傳輸管20以及第二傳輸管30所使用的材質為塑膠或銅, 並且冷卻液60為冷媒或氟碳介電流體(FC72),但本發明不 以此為限。於本實施例中,散熱部4〇具有風扇41以及散 熱片42 ’且散熱片42相鄰於風扇4卜且散熱片42分別與 第一傳輸管20以及第二傳輸管3〇連接。風扇41以及散熱 片42可讓冷卻液60降溫而回復過冷狀態,而回復過冷狀 態的冷卻液60將再經由第一傳輸管2〇進入吸熱部1〇,藉 此可持續不斷地冷卻外部發熱元件9〇。在本發明之一實施 例中,與液冷式散熱裝置1接觸之外部發熱元件9〇為中央 處理單元(cpu),但本發明不以此為限,液冷式散熱裝置i 可與任何發熱之元件,例如繪圖處理晶片、南橋晶片或北 橋晶片等發熱晶片接觸,以供散除其所產生之熱。 接者凊一併參考圖2關於依據本發明之一實施例之液 冷式散熱裝置之吸熱部,其中圖2為吸熱部之分解示意圖。 如圖1及圖2所示,吸熱部10包括吸熱塊u、第一突 ⑧ 6 201248104 擴管12以及第二突擴管13。其中吸熱塊11係用以與外部 發熱元件90接觸,以吸收外部發熱元件90所產生之熱。 吸熱塊11内部包括複數個流通道111,用以讓冷卻液60 如圖1及圖2之箭號方向所示,在複數個流通道111内流 動,藉此吸收外部發熱元件90運轉時發出之熱。 第一突擴管12具有進液接口 121及吸熱塊接口 122。 第一突擴管12之一端藉由進液接口 121與第一傳輸管20 連結,另一端藉由吸熱塊接口 122與吸熱塊11連結。進液 接口 121為單一管徑,其與第一傳輸管20連接,可供冷卻 液60流入第一突擴管12,進而流入複數個流通道111内。 藉由第一突擴管12的設計能讓冷卻液60由原本在單一管 徑(第一傳輸管20)内流動引導進入在吸熱塊11之複數 管徑(複數個流通道111)内流動,以冷卻外部發熱元件 90,並且為了配合吸熱塊11,吸熱塊接口 122的管徑大小 實質上會與吸熱塊11連接之一端的尺寸相當。 第二突擴管13具有出液接口 131及吸熱塊接口 132, 第二突擴管13之一端藉由吸熱塊接口 132與吸熱塊11連 結,另一端藉由出液接口 131與第二傳輸管30連結,出液 接口 131為單一管徑,其係與第二傳輸管30連接,可供已 吸收外部發熱元件90所產生之熱之冷卻液60流出第二突 擴管13。藉由第二突擴管13的設計使得冷卻液60由原本 在吸熱塊11之複數管徑(複數個流通道111)内流動,回 到單一管徑(第二傳輸管30)内,而為了配合吸熱塊11, 吸熱塊接口 132的管徑大小實質上會與吸熱塊11連接之一 端的尺寸相當。此時流出第二突擴管13之冷卻液60,將 7 201248104 流入第二傳輸管30,再進入散熱部4〇。 如圖2所示,在本發明之一實施例中,複數個流通道 111為複數個圓管,並且各個流通道之管徑實質上小於3 mm,但本發明不以此為限。本發明藉由在與外部發執^ 90直接接觸的吸熱塊11内設置複數個流通道in,^ 冷卻液60與外部發熱元件9〇的熱交換面積’二増加 卻效率。再者’在每個流通道U1内流動之冷‘提高冷 流率(mass flow rate)比使用單一管徑的質量流的質量 讓在每個流通道111内軸之冷卻錄快料、因此可 點(較快產生由液相變氣相的相變化),藉此二部液的彿 量,而提升賴塊U之熱傳效益,進啸=更多的熱 式散熱裝置1冷卻外部發減件%之 明之液冷 ^冷式散熱農置1可供冷卻液6〇直接在本發明 3上U内流動,可節省吸熱部H)之空間2111之流 熱裝置1之賴部1G的體積較小。 #夜冷式散 Φ Ϊ此Ϊ注Ϊ的是,如圖2所示,在本發明之 ,一犬擴管12與第二突擴管13大致為三〜實施例 :::液6〇在°及熱部1。内的流動方向是為形狀, 第-突擴管12與第二突擴々 向流動。 液6G在吸熱部1G内亦可以其= 以下請參考圖3關於依據本發明之另 =散熱裝置之吸熱部,其中圖3為吸熱部之分$施例之液冷 圖3/斤不’在本發明之另一實施例中,吸熱部:意圖。如 管12a與第二突擴管…的形狀為一長條柱體。=第〜突 201248104 121設置於第一突擴管12a之一端,且出液接口 131設置於第 二突擴管13a之一端。冷卻液60在吸熱部i〇a内之流動方向 如圖3之箭號所示,冷卻液60先由上往下經由進液接口 121 進入第一突擴管12a後,再由左往右流入吸熱塊11之複數個 流通道111。已吸收外部發熱元件90所產生之熱之冷卻液60 再由左往右流出複數個流通道111進入第二突擴管13a,最 後冷卻液60再由下往上經由出液接口 131流入第二傳輸管 30 ° 此外,如圖2及圖3所示,在本發明之一實施例中,吸 熱塊11之複數個流通道111大致為圓形管徑,但本發明不以 此為限’複數個流通道1丨丨亦可為其他形狀^外部發熱元件 90 以下請參考圖4及圖5關於依據本發明之另一實施例 之吸熱塊’其中圖4及圖5為吸熱塊之示意圖。 如圖4所示’在本發明之另一實施例中,吸熱塊na 之複數個流通道111a可以是方形管徑;或者,如圖5所示’ 在本發明之再一實施例中,吸熱塊llb之複數個流通道 111b可以是星形管徑,但本發明不以上述實施例為限。 此外’本發明之複數個流通道111、111a、111b亦可任 意與第一突擴管12、〗.2a或第二突擴管13、13a搭配。再 者’為了進一步提高吸熱塊η之吸熱效率,本發明也可以 在複數個流通道111、llla、mb内設置散熱片或内螺旋 紋。 以下請參考圖6關於依據本發明之另一實施例之液冷 式散熱裝置’其中圖6為液冷式散熱裝置之分解示意圖。 201248104 如圖6所示,在本發明之另一實施例中,液冷式散熱 裝置la包括吸熱部10、第一傳輸管20、第二傳輸管30、 散熱部40以及幫浦50,幫浦50可用以加速推動冷卻液60 的散熱循環,以供將散熱部40散熱後回到過冷狀態之冷卻 液60泵入第一傳輸管20内,以使冷卻液60再度進入吸熱 部10,而進行冷卻外部發熱元件90的散熱循環。於本實 施例中,幫浦50係設於第一傳輸管20,惟本發明並不限 於此。 綜上所陳,本發明無論就目的、手段及功效,在在均 顯示其迥異於習知技術之特徵。惟應注意的是,上述諸多 實施例僅係為了便於說明而舉例而已,本發明所主張之權 利範圍自應以申請專利範圍所述為準,而非僅限於上述實 施例。 【圖式簡單說明】 圖1係依據本發明之一實施例之液冷式散熱裝置之分解示 意圖。 圖2係依據本發明之一實施例之液冷式散熱裝置之吸熱部 之分解示意圖。 圖3係依據本發明之另一實施例之液冷式散熱裝置之吸熱 部之分解示意圖。 圖4係依據本發明之另一實施例之吸熱塊之示意圖。 圖5係依據本發明之再一實施例之吸熱塊之示意圖。 201248104 圖6係依據本發明之另一實施例之液冷式散熱裝置之分解 示意圖。 【主要元件符號說明】 液冷式散熱裝置1、la 吸熱塊11 流通道111、111a、111b 進液接口 121 第一傳輸管20 出液接口 131 第二傳輸管30 風扇41 幫浦50 吸熱部10、10a 第一突擴管12、12a 第二突擴管13、13a 吸熱塊接口 122、132 散熱部40 散熱片42 冷卻液60 外部發熱元件90201248104 VI. Description of the Invention: [Technical Field] The present invention relates to a heat dissipating device, and more particularly to a liquid cooling type heat dissipating device. [Prior Art] Due to the improvement of the operating efficiency of the electronic device, the operating efficiency of the heating element in the electronic device is also higher and higher. In order to maintain the normal operation of the electronic device, the heat sink of the CPU in the electronic device is taken as an example, and is currently commonly used. It is a liquid cooling system, and such a heat sink is provided with a cavity on the heat absorbing copper block in direct contact with the CPU for the coolant to flow, so that the coolant in the cavity exchanges heat with the heat absorbing copper block, thereby allowing heat absorption. The CPU in contact with the copper block cools down, but the cavity occupies a certain volume, which makes the liquid cooling system bulky, and the contact area with the heat absorbing copper block and the cooling liquid is limited, and the effect of the cooling liquid cannot be fully exerted. A liquid-cooled heat sink disclosed in the prior art has a plurality of recesses in the cavity for increasing the contact area between the coolant and the heat absorbing block to improve heat exchange efficiency. However, this prior art still retains a relatively large volume of cavity and does not reduce the volume of the liquid cooled heat sink. Therefore, it is necessary to provide a liquid-cooled heat sink which not only saves the volume occupied by the cavity, but also increases the heat exchange area between the coolant and the CPU, thereby achieving the purpose of reducing the volume and increasing the heat exchange efficiency. 8 201248104 SUMMARY OF THE INVENTION A primary object of the present invention is to provide a heat absorbing block having a plurality of flow channels therein. Another primary object of the present invention is to provide a liquid-cooled heat sink that increases the heat exchange area between the coolant and the external heat generating component. In order to achieve the above object, the liquid-cooling heat dissipating device of the present invention comprises: a heat absorbing portion, a first transfer tube, a second transfer tube and a heat dissipating portion, wherein the heat absorbing portion comprises: a heat absorbing block, a first protruding tube and a second protruding portion Expand the pipe. The heat absorbing block is used for contacting the external heating element, and the heat absorbing block has a plurality of flow channels therein for allowing the cooling liquid to flow in the plurality of flow channels to absorb the heat generated when the external heating element operates, the first expansion tube and the heat absorbing block One side is connected to allow the coolant to flow into the plurality of flow channels, and the second expansion pipe is connected to the other side of the heat absorption block to allow the coolant to flow out of the plurality of flow channels. The first transfer tube is connected to the first expansion tube, the second transfer tube is connected to the second expansion tube, and the heat dissipation portion is respectively connected with the first transfer tube and the second transfer tube, so that the heat absorption portion, the heat dissipation portion and the first transfer tube A circuit is formed between the second transfer tube to allow the coolant to flow in the circuit. The above and other objects, features, and advantages of the present invention will become more apparent from the description of the appended claims. Please refer to FIG. 1 for a liquid-cooled dispersion 201248104 thermal device according to an embodiment of the present invention. FIG. 1 is an exploded perspective view of a liquid-cooled heat dissipation device. - Du No' The liquid-cooled heat sink 1 of the present invention is in contact with the external heat generating element 90 for dissipating heat generated by the external heat generating element 9A. The liquid heat sink 1 includes a heat absorbing portion 1G, a first transfer tube 2G, a second transfer tube 30, and a heat dissipating portion 4, and the heat absorbing portion 1 哉, the 哉 portion and the first transfer tube 20 α and the second transfer A loop is formed between the tubes 30 to allow the coolant 60 to be as shown! The direction indicated by the arrow flows in the loop. In one embodiment of the present invention, the heat absorbing block 10 is a copper block, but the present invention is not limited thereto, and the heat absorbing block 1G may be any material having high heat conduction (Th_al Conductivity) properties. In an embodiment of the present invention, the first transfer tube 20 and the second transfer tube 30 are made of plastic or copper, and the coolant 60 is a refrigerant or a fluorocarbon dielectric fluid (FC72), but the present invention does not This is limited. In the present embodiment, the heat dissipating portion 4A has a fan 41 and a heat radiating fin 42', and the fins 42 are adjacent to the fan 4, and the fins 42 are respectively connected to the first transfer tube 20 and the second transfer tube 3''. The fan 41 and the fins 42 can cool the coolant 60 to return to the supercooled state, and the coolant 60 that has returned to the supercooled state will enter the heat absorbing portion 1 via the first transfer pipe 2, thereby continuously cooling the outside. The heating element is 9〇. In an embodiment of the present invention, the external heating element 9 is in contact with the liquid cooling type heat sink 1 as a central processing unit (cpu), but the invention is not limited thereto, and the liquid cooling type heat sink i can be combined with any heat. The components, such as a heat-drawing wafer such as a graphics processing wafer, a south bridge wafer, or a north bridge wafer, are contacted to dissipate the heat generated thereby. Referring to Fig. 2, a heat absorbing portion of a liquid cooling type heat dissipating device according to an embodiment of the present invention will be referred to, and Fig. 2 is an exploded perspective view of the heat absorbing portion. As shown in FIGS. 1 and 2, the heat absorbing portion 10 includes a heat absorbing block u, a first protrusion 8 6 201248104 expansion tube 12, and a second expansion tube 13. The heat absorbing block 11 is for contacting the external heat generating component 90 to absorb the heat generated by the external heat generating component 90. The heat absorbing block 11 includes a plurality of flow passages 111 for allowing the coolant 60 to flow in the plurality of flow passages 111 as indicated by the arrow direction of FIGS. 1 and 2, thereby absorbing the external heating element 90 when it is operated. heat. The first expansion tube 12 has a liquid inlet port 121 and a heat absorbing block port 122. One end of the first expansion pipe 12 is coupled to the first transmission pipe 20 via the liquid inlet port 121, and the other end is coupled to the heat absorption block 11 via the heat absorption block interface 122. The inlet port 121 is a single pipe diameter which is connected to the first transfer pipe 20 for allowing the coolant 60 to flow into the first flare pipe 12 and further into the plurality of flow passages 111. The first expansion tube 12 is designed to allow the coolant 60 to flow from a single tube diameter (the first transfer tube 20) into a plurality of tube diameters (a plurality of flow channels 111) in the heat absorption block 11. In order to cool the external heating element 90, and in order to fit the heat absorbing block 11, the diameter of the heat absorbing block interface 122 is substantially equal to the size of one end of the connection of the heat absorbing block 11. The second expansion tube 13 has a liquid outlet interface 131 and a heat absorption block interface 132. One end of the second expansion tube 13 is connected to the heat absorption block 11 through the heat absorption block interface 132, and the other end is connected by the liquid outlet interface 131 and the second transmission tube. 30, the liquid outlet interface 131 is a single diameter, which is connected to the second transmission tube 30, and the cooling liquid 60 that has absorbed the heat generated by the external heating element 90 flows out of the second expansion tube 13. By the design of the second expansion pipe 13, the cooling liquid 60 flows from the plurality of pipe diameters (the plurality of flow passages 111) originally in the heat absorption block 11 to return to the single pipe diameter (the second transmission pipe 30), and In conjunction with the heat absorbing block 11, the diameter of the heat absorbing block interface 132 is substantially the same as the size of one end of the heat absorbing block 11. At this time, the coolant 60 flowing out of the second expansion pipe 13 flows into the second transfer pipe 30, and then enters the heat radiating portion 4〇. As shown in FIG. 2, in one embodiment of the present invention, the plurality of flow channels 111 are a plurality of circular tubes, and the diameter of each of the flow channels is substantially less than 3 mm, but the invention is not limited thereto. The present invention provides a plurality of flow passages in the heat absorbing block 11 in direct contact with the external actuators, and the heat exchange area of the coolant 60 and the external heat generating component 9 is increased. Furthermore, the 'cooling flowing in each flow channel U1' increases the mass flow rate compared to the mass flow using a single pipe diameter, so that the cooling of the inner shaft of each flow channel 111 is recorded, so Point (faster phase change from liquid phase to gas phase), thereby increasing the heat transfer efficiency of the block U by the amount of the two liquids, and entering the whirl = more thermal heat sinks 1 cooling external reduction The liquid cooling of the %% of the liquid cooling cold cooling farm 1 can be used for the cooling liquid 6 〇 directly flowing in the U of the present invention 3, which can save the space of the heat absorbing part H) 2111 of the thermal device 1 small. #夜冷式散Φ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 一 一 一 一 一 一 一° and hot part 1. The flow direction inside is a shape, and the first-swelling pipe 12 and the second sudden expansion are flowing. The liquid 6G may also be in the heat absorbing portion 1G. hereinafter, please refer to FIG. 3 for the heat absorbing portion of the heat dissipating device according to the present invention, wherein FIG. 3 is a portion of the heat absorbing portion, and the liquid cooling pattern of the embodiment is 3 jin. In another embodiment of the invention, the heat sink is intended. For example, the shape of the tube 12a and the second expansion tube is a long cylinder. = No. 201248104 121 is disposed at one end of the first expansion pipe 12a, and the liquid discharge port 131 is disposed at one end of the second expansion pipe 13a. The flow direction of the coolant 60 in the heat absorbing portion i〇a is as indicated by an arrow in FIG. 3, and the coolant 60 first enters the first expansion pipe 12a from the top to the bottom via the liquid inlet port 121, and then flows from left to right. A plurality of flow channels 111 of the heat absorbing block 11. The coolant 60 that has absorbed the heat generated by the external heating element 90 flows out from the left to the right into the plurality of flow passages 111 into the second expansion pipe 13a, and finally the coolant 60 flows from the bottom to the top through the liquid outlet port 131. In addition, as shown in FIG. 2 and FIG. 3, in one embodiment of the present invention, the plurality of flow channels 111 of the heat absorbing block 11 are substantially circular pipe diameters, but the invention is not limited thereto. The flow channel 1丨丨 can also be other shapes. The external heating element 90. Referring to FIG. 4 and FIG. 5, the heat absorbing block according to another embodiment of the present invention, wherein FIGS. 4 and 5 are schematic views of the heat absorbing block. As shown in FIG. 4, in another embodiment of the present invention, the plurality of flow channels 111a of the heat absorbing block na may be square pipe diameters; or, as shown in FIG. 5, in another embodiment of the present invention, heat absorption The plurality of flow channels 111b of the block 11b may be star-shaped, but the present invention is not limited to the above embodiment. Further, the plurality of flow passages 111, 111a, and 111b of the present invention may be arbitrarily combined with the first flared pipe 12, the second pipe, or the second flared pipe 13, 13a. Further, in order to further increase the heat absorbing efficiency of the heat absorbing block η, the present invention may also provide fins or inner spirals in the plurality of flow channels 111, 111a, mb. Referring to Figure 6 below, a liquid-cooled heat sink according to another embodiment of the present invention is shown in Figure 6 which is an exploded view of the liquid-cooled heat sink. 201248104 As shown in FIG. 6, in another embodiment of the present invention, the liquid-cooling heat dissipating device 1a includes a heat absorbing portion 10, a first transfer tube 20, a second transfer tube 30, a heat dissipating portion 40, and a pump 50, and a pump 50 can be used to accelerate the heat dissipation cycle of the cooling liquid 60, so that the cooling liquid 60 that has cooled the heat radiating portion 40 and returned to the supercooled state is pumped into the first transfer pipe 20, so that the cooling liquid 60 enters the heat absorbing portion 10 again. The heat dissipation cycle of the external heating element 90 is cooled. In the present embodiment, the pump 50 is provided in the first transfer pipe 20, but the present invention is not limited thereto. In summary, the present invention exhibits features that are different from conventional techniques in terms of purpose, means, and efficacy. It is to be noted that the above-described embodiments are merely illustrative for ease of explanation, and the scope of the invention is intended to be limited by the scope of the application and not limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded perspective view of a liquid-cooled heat sink according to an embodiment of the present invention. Fig. 2 is an exploded perspective view showing a heat absorbing portion of a liquid-cooled heat sink according to an embodiment of the present invention. Fig. 3 is an exploded perspective view showing the heat absorbing portion of the liquid cooling type heat dissipating device according to another embodiment of the present invention. 4 is a schematic view of a heat absorbing block in accordance with another embodiment of the present invention. Figure 5 is a schematic illustration of a heat absorbing block in accordance with still another embodiment of the present invention. 201248104 Figure 6 is an exploded perspective view of a liquid-cooled heat sink according to another embodiment of the present invention. [Main component symbol description] Liquid-cooled heat sink 1, la heat absorbing block 11 Flow channel 111, 111a, 111b Liquid inlet port 121 First transfer pipe 20 Liquid outlet interface 131 Second transfer pipe 30 Fan 41 Pump 50 Heat absorbing portion 10 10a First expansion tube 12, 12a Second expansion tube 13, 13a Heat absorbing block interface 122, 132 Heat sink 40 Heat sink 42 Coolant 60 External heating element 90

Claims (1)

201248104 七、申請專利範圍: 1. 一種液冷式散熱裝置,包括: 一吸熱部,該吸熱部包括: 一吸熱塊,用以與一外部發熱元件接觸,該吸熱塊 内部包括複數個流通道,用以讓一冷卻液在該複數個流 通道内流動,以吸收該外部發熱元件所產生之熱; 一第一突擴管,其係與該吸熱塊之一側連接,用以 讓該冷卻液流入該複數個流通道内;以及 一第二突擴管,其係與該吸熱塊之另一側連接,用 以讓該冷卻液流出該複數個流通道; 一第一傳輸管,其係與該第一突擴管連接; 一第二傳輸管,其係與該第二突擴管連接;以及 一散熱部,其係分別與該第一傳輸管以及該第二傳輸管 連接,使得該吸熱部、該散熱部與該第一傳輸管以及該 第二傳輸管之間形成一迴路,讓該冷卻液得以在該迴路 内流動。 2. 如申請專利範圍第1項所述之液冷式散熱裝置,其中該 複數個流通道之各個流通道之管徑實質上小於3 mm。 3. 如申請專利範圍第2項所述之液冷式散熱裝置,其中該 複數個流通道之各個流通道實質上為圓形管徑。 4. 如申請專利範圍第2項所述之液冷式散熱裝置,其中該 複數個流通道之各個流通道實質上為方形管徑或星形 管徑。 5. 如申請專利範圍第2項所述之液冷式散熱裝置,其中該 第一突擴管或該第二突擴管實質上為三角形。 ⑧ 201248104 .:專利範圍第2項所述之液冷式散熱裝置,其中該 一^擴管或該第二突擴管實質上為長條柱體,該第一 輸官係與該第一突擴管之一端連接,該第二傳輸管係 與該第二突擴管之一端連接。 7.如申請專利範圍第1至6項任一項所述之液冷式散熱裝 置,更包括一幫浦,該幫浦係設於該第一傳輸管。 8·如申請專利範圍第1至6項任一項所述之液冷式散熱裝 置’其中該散熱部更包括一風扇以及一散熱片。 9.如申請專利範圍第1至6項任一項所述之液冷式散熱裝 置’其中該吸熱部係由一具高熱傳導( Conductivity)性質之材料所製成。 10·如申請專利範圍第9項所述之液冷式散熱裝置,其中該 吸熱部係由銅所製成。 Λ201248104 VII. Patent application scope: 1. A liquid-cooling heat dissipating device, comprising: a heat absorbing portion, the heat absorbing portion comprising: a heat absorbing block for contacting an external heating element, wherein the heat absorbing block comprises a plurality of flow channels, And a coolant flowing in the plurality of flow channels to absorb heat generated by the external heat generating component; a first expansion pipe connected to one side of the heat absorption block for allowing the coolant to flow in a plurality of flow channels; and a second expansion pipe connected to the other side of the heat absorption block for allowing the coolant to flow out of the plurality of flow channels; a first transfer pipe and the first a second expansion pipe connected to the second expansion pipe; and a heat dissipation portion respectively connected to the first transmission pipe and the second transmission pipe, so that the heat absorption portion, The heat dissipating portion forms a circuit with the first transfer tube and the second transfer tube to allow the coolant to flow in the circuit. 2. The liquid-cooled heat sink according to claim 1, wherein each of the plurality of flow channels has a diameter of substantially less than 3 mm. 3. The liquid-cooled heat sink of claim 2, wherein each of the plurality of flow channels has a substantially circular diameter. 4. The liquid-cooled heat sink of claim 2, wherein each of the plurality of flow channels has a substantially square or star-shaped diameter. 5. The liquid-cooled heat sink of claim 2, wherein the first flare or the second flare is substantially triangular. The liquid-cooled heat dissipating device of the second aspect of the invention, wherein the first expansion tube or the second expansion tube is substantially a long column, the first system and the first protrusion One end of the expansion tube is connected, and the second transmission tube is connected to one end of the second expansion tube. 7. The liquid-cooled heat sink according to any one of claims 1 to 6, further comprising a pump, the pump being disposed in the first transfer tube. 8. The liquid-cooled heat dissipating device of any one of claims 1 to 6, wherein the heat dissipating portion further comprises a fan and a heat sink. 9. The liquid-cooled heat dissipating device according to any one of claims 1 to 6, wherein the heat absorbing portion is made of a material having high thermal conductivity properties. 10. The liquid-cooled heat sink according to claim 9, wherein the heat absorbing portion is made of copper. Λ
TW100117831A 2011-05-20 2011-05-20 Liquid cooling device TWI438388B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW100117831A TWI438388B (en) 2011-05-20 2011-05-20 Liquid cooling device
CN2011101480996A CN102790020A (en) 2011-05-20 2011-06-03 Liquid cooling type heat dissipation device
US13/431,478 US20120291997A1 (en) 2011-05-20 2012-03-27 Liquid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117831A TWI438388B (en) 2011-05-20 2011-05-20 Liquid cooling device

Publications (2)

Publication Number Publication Date
TW201248104A true TW201248104A (en) 2012-12-01
TWI438388B TWI438388B (en) 2014-05-21

Family

ID=47155388

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117831A TWI438388B (en) 2011-05-20 2011-05-20 Liquid cooling device

Country Status (3)

Country Link
US (1) US20120291997A1 (en)
CN (1) CN102790020A (en)
TW (1) TWI438388B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677261B1 (en) * 2012-06-20 2018-10-10 ABB Schweiz AG Two-phase cooling system for electronic components
TWM450187U (en) * 2012-10-25 2013-04-01 Cooling House Co Ltd Circulation type thermosyphon heat dissipation device
CN104423504A (en) * 2013-08-28 2015-03-18 英业达科技有限公司 Server
WO2015088376A1 (en) * 2013-12-13 2015-06-18 Siemens Research Center Limited Liability Company Device and method for heat transfer from semiconductor transistors
CN104866043B (en) * 2014-02-21 2018-05-08 北京市鑫全盛商贸有限公司 Water-filled radiator
WO2016148344A1 (en) * 2015-03-17 2016-09-22 대한민국(관리부서:국립수산과학원) Aquarium fish tank using plurality of peltier elements and method for adjusting breeding water temperature
JP2017152614A (en) * 2016-02-26 2017-08-31 株式会社日立情報通信エンジニアリング Liquid cooling type cooling device
US10077945B2 (en) * 2016-05-27 2018-09-18 Asia Vital Components Co., Ltd. Heat dissipation device
CN106604615A (en) * 2017-01-03 2017-04-26 联想(北京)有限公司 Electronic device
CN108419424A (en) * 2018-05-16 2018-08-17 江琴兰 A kind of heat dissipation equipment for sensor
CN110831406B (en) * 2019-10-30 2021-05-07 中国电子科技集团公司第三十八研究所 Efficient heat dissipation device for electronic device with ultrahigh heat flux density
CN112179163A (en) * 2020-09-14 2021-01-05 东莞汉旭五金塑胶科技有限公司 Water-cooling radiator capable of increasing radiating area
CN112286323A (en) * 2020-11-10 2021-01-29 上海英众信息科技有限公司 Notebook computer water-cooling heat dissipation device and use method thereof
CN112433587B (en) * 2020-12-26 2022-03-08 枣庄科顺数码有限公司 Enhanced heat dissipation device for computer
JP7457760B2 (en) 2022-07-29 2024-03-28 株式会社Uacj鋳鍛 heat transfer plate
CN116568008B (en) * 2023-05-31 2024-02-23 小米汽车科技有限公司 Liquid cooling radiator, motor controller and vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099311A (en) * 1991-01-17 1992-03-24 The United States Of America As Represented By The United States Department Of Energy Microchannel heat sink assembly
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US20070130769A1 (en) * 2002-09-03 2007-06-14 Moon Seok H Micro heat pipe with pligonal cross-section manufactured via extrusion or drawing
US20040112571A1 (en) * 2002-11-01 2004-06-17 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US20040250994A1 (en) * 2002-11-05 2004-12-16 Lalit Chordia Methods and apparatuses for electronics cooling
US20060060333A1 (en) * 2002-11-05 2006-03-23 Lalit Chordia Methods and apparatuses for electronics cooling
US20040190253A1 (en) * 2003-03-31 2004-09-30 Ravi Prasher Channeled heat sink and chassis with integrated heat rejector for two-phase cooling
US6934154B2 (en) * 2003-03-31 2005-08-23 Intel Corporation Micro-channel heat exchangers and spreaders
US7591302B1 (en) * 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system
US7080683B2 (en) * 2004-06-14 2006-07-25 Delphi Technologies, Inc. Flat tube evaporator with enhanced refrigerant flow passages
US7317615B2 (en) * 2005-05-23 2008-01-08 Intel Corporation Integrated circuit coolant microchannel assembly with manifold member that facilitates coolant line attachment
KR100772381B1 (en) * 2005-09-29 2007-11-01 삼성전자주식회사 Heat sink
JP4675283B2 (en) * 2006-06-14 2011-04-20 トヨタ自動車株式会社 Heat sink and cooler
JP5136376B2 (en) * 2008-12-02 2013-02-06 富士通株式会社 Loop heat pipe and electronic equipment

Also Published As

Publication number Publication date
US20120291997A1 (en) 2012-11-22
CN102790020A (en) 2012-11-21
TWI438388B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
TW201248104A (en) Liquid cooling device
JP3169627U (en) Cooling device heat dissipation structure
KR100817267B1 (en) Cooling jacket
WO2017148050A1 (en) Cooling device for data centre machine cabinet, machine cabinet, and cooling system
US20130213612A1 (en) Heat pipe heat dissipation structure
US20130213611A1 (en) Heat pipe heat dissipation structure
TW200826824A (en) Heat dissipation module
CN103429061A (en) Empty-belly heat pipe radiator
TWM493087U (en) Closed circulation heat dissipation module
CN110943058B (en) Heat radiator
CN216818326U (en) High-power chip efficient heat dissipation cooling device
JP3213430U (en) Graphic card heat dissipation device
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
JP6825615B2 (en) Cooling system and cooler and cooling method
TW201101011A (en) Heat-dissipative device for multi-task heat-dissipative module using the heat-dissipative device
WO2019037392A1 (en) Radiator, outdoor unit, and air conditioner
TW202334598A (en) Liquid cooling device and liquid cooling system having the liquid cooling device
TWI427255B (en) Evaporator and loop type heat pipe employing it
CN108323099B (en) Fin type heat pipe coupling radiator
TWI687642B (en) Cycling heat dissipation module
CN206525069U (en) Radiator for power electronic devices
WO2024001199A1 (en) Vapor chamber, heat sink and electronic device
WO2022141654A1 (en) Electronic device heat dissipation apparatus having semiconductor auxiliary heat pump
TWI839974B (en) A heat dissipation module for heat exchange between two phase flow circulation vapor chamber and cold liquid fuild
TWI530249B (en) Hybrid heat sink assembly

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees