TW539657B - C-axis oriented lead germanate film and deposition method - Google Patents

C-axis oriented lead germanate film and deposition method Download PDF

Info

Publication number
TW539657B
TW539657B TW089108138A TW89108138A TW539657B TW 539657 B TW539657 B TW 539657B TW 089108138 A TW089108138 A TW 089108138A TW 89108138 A TW89108138 A TW 89108138A TW 539657 B TW539657 B TW 539657B
Authority
TW
Taiwan
Prior art keywords
film
patent application
range
scope
item
Prior art date
Application number
TW089108138A
Other languages
English (en)
Inventor
Tingkai Li
Fengyan Zhang
Yoshi Ono
Sheng Teng Hsu
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW539657B publication Critical patent/TW539657B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/933Germanium or silicon or Ge-Si on III-V
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12701Pb-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Volatile Memory (AREA)
  • Inorganic Insulating Materials (AREA)

Description

539657 A7 B7 五、發明說明(1 ) 月之背景和總結 本發明通常係關於製造鐵電記憶器裝置,較詳言之,係 關於、’工由使P G 0膜沿著c軸而定向結晶化,將供鐵電記憶 應用之鍺酸鉛(PG0)薄膜的鐵電性質達到最大之方法。 近年來,由於其雙穩態性質,鐵電薄膜供使用於電光 子•典私子,頻率靈敏電子學和不變性記憶器中吸引很大 <注意力。關於鐵電隨機接達記憶器(FRAMs)之大多數研 ίί中在具有一個電晶體和一個電容器之記憶器結構。電 谷益係由經夾置在兩個導電電極間之鐵電薄膜予以造成。 除非在F,AMs中不須要數據更新以外,此型記憶器的電路 構型及碩/寫順序相似於DRAMs者。因此之故,鐵電電容 备中所見到之疲乏問題變成限制以商業規模實現此等記憶 器j主要障礙之一。鍺酸鉛(PNGesOu)薄膜顯示優良疲乏 性貝,因此此等P G 〇薄膜用於FRAM裝置用途是極具吸引 力之材料。 具有平行於C軸之極性方向之非鈣鈦礦單軸鐵電體 在室溫下係屬於三方晶系空間組p3。高於居里 溫度(Tc=178t ),此材料轉變成爲六方晶系空間組% (=P3/m)。因爲此單軸鐵電僅具有1δ〇。磁疇,所 以爲了弛緩極化,沒有鐵彈性效果其趨向重定向磁疇通過 90。。此材料的重要特徵是小介質常數和小殘留極化,此 等特徵亦適合於鐵電不變性記憶裝置,特別適合一電晶體 記憶器用途。因爲其熱電和介質等特性,Pb5Ge3〇n亦具 有熱效檢波器應用之某些潛在性。 -4- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --------訂-------- -4 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 539657 A7 B7 五、發明說明(2 ) 鐵電不變性記憶器方面研究的另外領域是沈積鐵電薄膜 直接在F E T的閘區域而形成鐵電體-閘控制之F E T。早在 1950年代,已研究鐵電體·閘控制之裝置例如金屬-鐵電 體-矽(MFS) FET。已建議各種改質之MFSFET結構。舉例 而言,金屬-鐵電體-絕緣體-矽(MFIS) FET,金屬-鐵電 體·金屬·矽(MFMS) FET和金屬-鐵電體-金屬氧化物-矽 (MFMOS) FET。應答一個電晶體記憶器應用之要求,鐵電 材料應具有低介質常數和小殘留極化。因此之故,尋求鐵 電Pt^GesOj t薄膜,其具有4 piC/cm2的較小殘留極化和在其 大量材料中之大約5 0的介質常數。 在過去,鍺酸鉛之薄膜係由下列各種方法而造成:熱蒸 發和急驟蒸發(A. Mansingh和S. B. Krupanidhi,應用物理期 刊,5,5408,1980)dc反應性丨賤鍍(H. Schmitt,Η· E. Mueser和 R. Karthein,鐵電體 56, 141,1984),雷射燒蝕(S.B·
Krupanidhi,D. Roy. N. Maffei和C. J. Peng,關於積體鐵電體 之第三屆國際會議記錄,100,1991),及溶膠-凝膠技術(J. J. Lee與 S. K. Dey,應用物理文學,60, 2487, 1992)。 先前,已報導單晶Pb5Ge3On,其在沿著C軸之方向各自 具有4 piC/cm2和14 kV/cm的自發極化和橋頑電場。此等C 軸定向之Pb5Ge3On薄膜顯示不良鐵電性質:較低之極化 (2-3 pc/cm2),較高之矯頑電場(55-135 kV/cm)且其磁滯迴 線並非飽和而平方。為了轉換P G 0鐵電磁疇,需要極高 操作電壓,此現象妨礙其使用於記憶裝置中。 發展本發明之PG0膜而符合鐵電記憶裝置的要求。本發 -5- 本紙張尺度適用中國國家標準(CNS)A4規格mo X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ------訂---------線 經濟部智慧財產局員工消費合作社印製 539657 Λ7 _ B7 五、發明說明(3 ) 明係關於純經C -軸定向之p G 0薄膜其具有較小之p r數 値’較小之介質常數和較大之E c値。此種膜在製造一電 晶體(1T)1己憶格時有用。在1999年4月2 8日所申請之同在 申請程序專利申請案編號〇9/3〇丨,435中,由TingkaiLi等所 發明之標題是“多相鍺酸鉛膜和沈積方法,,,檔案號碼N〇. SLA4〇0中,將第二相的朴抑〇5加至抑5以3〇11中,增加顆 粒大小而未增加C ·軸定向。所產生之膜增加了 p r數値和 介質常數,並減少E c數値。此種膜使用微機電系統 (MEMS),高速多晶片模組(MCM),DRAM和FeRAM等應用 中0 在由1999年4月28日所申請之同在申請程序專利申請案 編號09/302,272中,由Tingkai Li等所發明之標題是“暴晶 生長之鍺鉛膜和沈積方法”檔案號碼Ν〇· SLA402中,將 適當含量的第一相Pt^GeO5加至Pb5Ge3〇"形成具有極高c 軸定向之大顆粒大小且冗全悬晶C軸鐵電鍺酸錯膜。其結 果是,獲得高P r和E c數値以及較低之介質常數。此種膜 使用於it,一個電晶體/一個電容器(1T/1C) FeRAM記憶 裝置中。
在由1999年4月2.8日所申請之同在申請程序專利申請案 編號09/3 01,434中,由Tingkai Li等所發明之標題是‘‘鐵彈 性鍺酸鉛膜及沈積方法”檔案號碼Νο· SLA4〇3中,形成使 用於製造Μ E Μ和M C Μ裝置之具有改良鐵彈性性質之CVD
Pl^GeO5膜。將上述各同在申請程序中之專利申請案以提 及之方式併入本文中。 -6 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂---------線| 539657 A7 ---—-----B7___ 五、發明說明(4 ) 如果可能發展單相P G 0膜而具有供使用於不變性記憶器 中之充分鐵電性質可能有利。 (請先閱讀背面之注意事項再填寫本頁) 如果單相多晶p G 〇膜的鐵電性質可經由結晶學上對準予 以加強可能有利。另外,如果可使結晶之P G 0膜主要沿著 C轴予以對準可能有利。 如果可能形成P G 0膜而具有小,均勻顆粒大小供使用於 高密度不變性鐵電記憶器中可能有利。 因此之故,在鍺酸鉛(PGO)膜中,提供用以形成具有c軸 定向之多晶p G 0膜在反應器室中之I c膜上的方法。該方 法包括下列步驟: a) 混合[Pb(thd)2]和[Ge(ET〇)4W形成具有大概5 ·· 3範圍 内之莫耳比之P G 0混合物; b) 使用大概8 : 2 : 1的莫耳比之各自四氫呋喃,異丙醇和 四乙二醇二甲醚的溶劑溶解步驟a)之混合物而形成先質溶 液其具有每升之溶劑大概〇 _ 1至〇 · 3莫耳之p 〇 〇混合物之 濃度; c )使用先質氣化器,加熱先質溶液至大概丨3 〇至1 8(rc範 圍内之溫度,創造先質氣體·, 經濟部智慧財產局員工消費合作社印製 在室中將先質氣體與以每分鐘大概1〇〇〇至6〇〇〇標準立 方厘米範圍内之鼠氣掩敗流混合,預熱至大概1 3 〇至1 8 〇 °C 之範圍内之溫度; 〇2)以大概500至3000 seem之範圍内速率,將氧氣流引入 該室中; d)加熱晶圓至大概4 5 0至500°C範圍内之溫度,分解步聚良 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 539657 A7 B7 五、發明說明(5 ) c )中所形成之先質氣體在晶圓上; e )形成具有小’均勻晶體顆粒大小之p 〇 〇膜其中包括第 一相的Pt^GesOi丨;及 f) 形成大概7 0 %或更大的C軸結晶學上定向在p G 〇膜的 Pt^GesC^ i相中’及具有大概〇 · 2至〇 . 8微米範圍内之顆粒 大小,因此使P G 0膜的鐵電性質最適化。 在本發明之某些觀點上,步驟f)包括下列之子步驟: f i)與在步驟e )中,沈積P G 0膜之同時,主要以c -軸定 向將P G 0膜的多晶結構定向;及 f*2)接著步驟e)後’將步驟e )中所形成之p g 〇膜在大相尤 4 5 0至550°C範圍内之溫度下,在係由氧和氧與pb大氣中 選出之大氣中退火,因此加強多晶PG0膜的匕軸定向。 在本發明之某些觀點上,鐵電裝置係以步驟e )中之p G 〇 膜予以形成,在接著步驟f2)後包括另外步驟: g) 形成導電電極在步驟e)中所形成之P G〇膜下面;及 h) 將步驟e)中所形成之PGO膜在大概450至550°C範圍内 之溫度下,在係由氧和氧與Pb大氣中選出之大氣中退 火’因此改良步驟e)中所形成之PGO膜與步驟g)中所形 成之電極間之界面。 步驟f〗)和h)包括使用快速熱退火(rta)方法,以每秒大 概1 0至20〇°C範圍内之熱陡升速率將pg〇膜退火歷大概1〇 分鐘之持續時間。
亦提供具有改良鐵電性質之鍺酸鉛(PGO)膜。該pG0膜 包含第一相的多晶Pb5Ge3〇ii,而Pb5Ge3〇"相主要具有C -8 - 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) --------------------訂---------線^^- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 539657 A7 ---------仏____ 五、發明說明(6 ) 軸結晶學上定向。c軸定向促進鐵電膜性質。在本發明之 某些觀點上,大概70%或更大的Pb咖3〇11膜具有c軸定 向。孩多晶Pb5Ge3〇"膜亦包括具有大概〇 2至15微米範 圍内之顆粒大小之晶體顆粒。 气提供具有鐵電性質之電容器。該電容器包含第一導電 :極,PGO膜(其中包括具有主要c軸結晶學上定向之多 晶P^GesOi^)在第一電極上,及蓋覆pG〇膜之第二導電 電極。在8伏特之所施加電壓時,該電容器具有大概每平 方厘米3 · 8微庫倫的2Pr (以/⑽2)和大概9 3仟伏/厘米 (kV/cm)之 2Ec。 員式之簡沭 圖1舉例説:用以形成具有c軸結晶學上定向之p G 〇膜 的方法。 圖2舉例説明:使用本發明p 〇 〇膜之具有鐵電性質之電 容器。 圖3是在500°C下所沈積之本發明的Pb5Ge3〇"膜之χ射線 圖型。 圖4是本發明p G 0膜的掃描電子顯微鏡(SEm)顯微照 片。 圖5與圖6舉例説明本發明p g 〇膜的p r和E c性質。 圖7顯示:後退火對於本發明Pb5Ge3〇ii膜之鐵電性質的 影響。 圖8舉例説明:在ir基體上之本發明的pb5Ge3〇n薄膜之 疲乏性質。 -9 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — — — hill·-------------訂---------線, (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 539657 A7 --—___B7 五、發明說明(7 ) 圖9舉例説明:在疲乏試驗前和後,自本發明p 〇 〇膜所 造成之電容器的磁滯迴線。 圖1 0舉例説明:自本發明p G 〇膜所造成電容器的漏 泥,及 圖1 1舉例説明:本發明P G 〇膜的介質常數。 故隹具體實施例之詳述 通過化學蒸氣沈積(CVD)而形成P G 0膜提供下列各種優 點:優良薄膜均句性,組成控制,高薄膜密度,高沈積速 率’優良步驟覆蓋率和對於大規模處理之順應性。迄至目 則爲止,經由C V D所提供之優良薄膜步驟覆蓋率尚未經 由任何其他技術而同等實現。經由C V D所顯示之純度, 可制性和精確度與分子束磊晶法(MBE)相競爭。更重要 者’可容易且精確生長新穎結構。MOCVD能產生整個類 別之裝置,其利用超薄層或原子清晰界面。 本發明的鐵電Pl^G^On薄膜係由金屬有機蒸氣沈積 (MOCVD)和RTP(快速熱方法)退火技術予以製造在以Ir或 P t盖覆之s i晶圓上。此等膜是鏡子一般且無裂缝,亚顯示 在4 5 0與550°C間之溫度下具有c軸定向之完全結晶化。關 於具有Ir電極之15.0 nm厚膜,獲得良好鐵電性質:2Pr和 2 E c各自是大約3 ·8 pC/cm2和93 kV/cm。此等膜亦顯示無疲 乏特性:在1 X 1〇9轉換循環後未見到疲乏。漏流係隨著增 加之電壓而增加。在100 kV/cm時是大約3.6 χ 1〇-7 A/Cni。 介質常數顯示:相似於大多數鐵電材料之性狀,其中介質 常數係關於所施加之電壓而改變。最大之介質常數是大約 -10- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------------IT---------^» (請先閱讀背面之注意事項再填寫本頁) 539657 Α7 ------ Β7 " ----- 五、發明說明(8 ) 30至50。可使用此等高品質MOCVD Pb5Ge3〇^^作爲單 電晶體鐵電記憶裝置之用途。 (請先閱讀背面之注意事項再填寫本頁) 本發明是包含第一相的多晶PbsGhOi〖之具有改良鐵電性 質之PGO(鍺酸鉛)膜。該Ρ%(^3〇ιι相主要具有c軸結晶學 上定向,因此,C軸定向促進鐵電薄膜性質。在本發明之 某些觀點上,PGO膜的大概70%或更多之Pb5Ge3〇n相具 有C軸定向。另外,多晶相膜包括具有大概 〇 · 2至〇 · 8微米範圍内之顆粒大小之晶體顆粒。多晶之 P G 0膜包括極均勻大小之小顆粒。顆粒大小的均勻性之偏 差係小於大概1 0 %。雖然顆粒相當小,但是其均勻性使本 發明薄膜理想供高密度(小)不變性記憶器用。 使用具有液體輸送系統之EMCORE氧化物MOCVD反應器 用於生長卩1)5〇63〇11膜。此一系統顯示於1999年4月28日所 申請之同在申請程序專利申請案编號〇9/301,435由丁丨11§1^1 Li等所發明之標題爲“多相鍺酸錯薄膜和沈積方法”,檔案 號碼No· SLA400中之圖1中。使用M0CVD方法將 卩135〇63011膜沈積在6”經Pt或If蓋覆之Si晶圓上。PGO薄 膜之先質列於表1中。 經濟部智慧財產局員工消費合作社印製 先質 式 蒸氣壓(mm Hg) 分解溫>$°C Pb(thd)2 ,GelETOJ, Pb(C, GefC. jH19〇2)2 :tiU〇l4 180〇C/0.05 325〇C b.p. 185.5°C 表1 P G Ο薄膜之先質的性質 -11 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公爱) 539657 Λ7 B7 五、發明說明(9 夜體先質例如烷醇鍺,卣化鍺,烷基鉛和函化鉛使用具 有、’二拴制之/里度之氣泡為而產生先質蒸氣。將固體先質, 例如yS -二酮酸鉛溶解入一種溶劑中並使用偶合以急驟氣 化益心液體輸送系統而產生先質蒸氣。表2是在本發明之 某些觀點上可叉替使用之一列的p G 〇膜先質。表3是供使 用於本發明之某些觀點的交替可供利用之一列的溶劑。 先質 式 在室溫下水份穩定性 蒸氣壓 分解之外觀 (mmHg) 溫度(。〇 GeH4 Ge2H6 Ge3H8 Ge(ET〇)4 Ge(OC2H5)4 無色液體敏感 185°C GeCl4 (C2H5 )2 GeCl2 j 白4粉末
Pb 四苯基鉛 Pb(thd)2 pKC6H5).
230〇C /0.05 325°C
Pb(CnH1902)2白色粉末 Pb(C2H>〇4 表2 P G 0膜之先質的性質
180°C /0.05 325〇C --------------------^--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製
溶劑 式 沸點(°c) 四氫呋喃(THF) C4H80 65 - 67〇C 異丙醇 C3H7OH 97〇C 四乙二醇二甲醚 Ci〇H2205 275°c 二甲苯 C6H4(CH3)2 137 - 144°C -12 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公爱) 經濟部智慧財產局員工消費合作社印製 539657 Λ7 ___ B7 五、發明說明(1〇 ) 甲苯 c6h5ch3 lire 丁(基)醇 [CH3(CH2)3]20 142 - 143°c
乙酸丁酯 CH3C02(CH2)3CH3 124 - 126〇C
2-乙基-1-己醇 CH3(CH2)3CH(C2H6)CH2OH 1 83 - 1 86〇C 表3適合PGO膜之溶劑的性質 將具有5 : 3莫耳比之[Pb(thd)2]和[Ge(ETO)4]溶解入8 : 2 : 1莫耳比之四氫呋喃,異丙醇和四乙二醇二甲醚的混合 溶劑中。先質溶液具有Pb5Ge3On的0.1至0.3M/L濃度。將 該溶液以每分鐘〇 . 1毫升之速率經由一具泵注入氣化器 (150°C )中而形成先質氣體。在15(M70°C下使用經預熱之 氬氣流將先質氣體帶入反應器中。沈積溫度和壓力各自是 500°C 和 5_10 Torr。將掩蔽氣流(Ar 4000 seem)連同氧(1000 至2000 seem)引導入反應器中。在沈積後,將Pb5Ge3〇i^ 在氧大氣中冷卻至室溫,爲了改良鐵電性質,使用rP T方 法在沈積頂電極前和後’將P b 5 G e 3 01】膜後退火。在沈積 頂電極前之後退火稱爲第一次退火,而在沈積頂電極後之 後退火稱爲二次退火。 圖1舉例説明用於形成具有C -軸結晶學上定向之p g 〇膜 的方法中之步驟。步驟1 0 0提供積體電路(I C )薄膜。I c膜 材料係由银和鉑中選出。典型,用上述之材料蓋覆石夕晶 圓。步驟102係混合[Pb(thd)2]和[Ge(ETO)4]而形成具有大 概4.5 : 3至5.5 : 3範圍内之莫耳比的PGO混合物。[Pb(thd)2] 或Pb是雙(2,2,6,6-四甲基-3,5-庚烷二酮基)鉛(η)而 [Ge(ETO)4]是乙醇鍺(IV)。甚至使用超出此範圍之莫耳 -13· 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ' (請先閱讀背面之注意事項再填寫本頁) --------訂---------線赢 539657 A7 ____ _ B7 五、發明說明(11 ) 比,本發明的方法仍可用。在本發明之某些觀點上,步驟 1 02包括以大概5 : 3的莫耳比混合物[pb(thd)2]和 (請先閱讀背面之注意事項再填寫本頁) [Ge(ETO)4]。當使用南先質溫度時,典型使用大於5 : 3的 Pb比,見下列步驟106。另外,當在沈積和退火方法期間 提供Pb大氣時,則使用低於5 ·· 3之pb比,見下列步驟 108-112 〇 步展1 0 4使用四風咬喃,兴丙鮮和四乙二醇二甲酸之混 合溶劑溶解步驟1 0 2的混合物而形成先質溶液。在本發明 之某些觀點上,步驟104包括大概8:2:1各自之四氫吱 喃,異丙醇,四乙二醇二甲醚的(混合)溶劑。另種方式, 將四氫呋喃用丁基醚代替。步驟丨〇 4包括形成先質溶液其 具有每升之溶劑大概0 · 1至〇 · 3莫耳之p G 〇混合物濃度。 關於其他溶劑更替,見上述表3。 經濟部智慧財產局員工消費合作社印製 步驟1 0 6,自步驟1 〇 4中所形成之溶液創造先質氣體。 當步驟1 0 0提供先質氣化器時,步驟1 0 6包括使用先質氣 化器加熱先質溶液在大概1 3 0至1 80Ό範圍内之溫度,因 此’形成先質氣體。如上文中所述,較寬範圍的氣化器溫 度經由#1整步驟1 〇 2中錯和鍺化合物之莫耳比係屬可能。 在一個較佳具體實施例中,將先質溶液在大概丨50°c下加 熱。將典型反應器配置適合先質氣體和載體氣體管線,排 氣管線,氣體流動凸緣和反應器壁之個人鑑定器(PID)控 制之加熱系統。控制氣體流動凸緣和反應器壁之溫度而避 兄乳化物先質的分解或冷凝。 步驟108將步骑1〇6中所形成之先質氣體分解在晶圓 -14- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 539657 Λ7 五、發明說明(12 上。雖然較大範圍的溫度係可能,但是步驟1〇8包括加奴 晶圓至大概450至500。(:範圍内之溫度,因&,所沈積之膜 主要具有C軸結晶學上定向。 7驟1 1 〇形成包括第一相的pb5Ge3〇H之Pg〇膜。步驟 112主要形成C軸結晶學上定向在相中。血型, 當沿著-軸例如C軸之晶體定向占主要地位其他兩轴例如 a和b軸時,就認爲薄膜具有結晶學上定向。無論如何,當 = 5 0%的晶體沿著各軸之一予以對準時,該膜具有特定 結晶學上足向。在本發明之一個觀點上,步驟1 1 2包括形 成具有大概70%或更大的c軸定向之多晶pb5Gh〇ii相。步 驟1 12亦包括具有大概〇2至〇·8微米範圍内之顆粒大小之 Pb^GesC^〗第一相。在本發明之某些觀點上,以大概〇 · 3微 米^顆粒大小較佳。另外,步驟H2包括具有均勻或均相 果、粒大小之多晶Pb5Ge3〇i 1相薄膜晶體。晶體大小均勻性 之偏差係小於大概1 0°/〇。步驟1 1 4是一種產物,其中使 PG0膜之鐵電性質最適化。 —在本發明之某些觀點上,步驟100提供液體泵。因此接 著7驟104後而在步驟前有一個另外步驟。步驟 l〇4a(圖中未示)使界該液體泵以每分鐘大概0.1至0.5毫升 (ml/min)範圍内之速率將步驟丨〇 4的先質溶液引入步驟1 〇 6 中之先質氣化器中。 在本發明之某些觀點上,將I C膜定位在反應器中或眞空 至中’且接著步驟! 〇 6後有另外步驟。步驟1〇仏將反應器 中I先貝氣體與每分鐘大概1〇〇〇至6000標準立方厘米(sccm) -15- 本紙張尺度適用中_家標準(CNS)A4規格⑵^观公爱) (請先閱讀背面之注意事項再填寫本頁) 訂---------線赢 經濟部智慧財產局員工消費合作社印製 539657 A7 B7 五、發明說明(13 ) (請先閱讀背面之注意事項再填寫本頁) 範圍内之氬氣掩蔽流相混合,預熱至大概1 3 0至1 80°C範 圍内之溫度。較寬範圍之掩蔽流和溫度亦屬可能。步驟 106b以大概5 0 0至3000 seem範圍内之流速將氧氣流引入反 應室中,因此促進具有C軸定向之PGO。氧大氣交替式包 括純〇2或乂0。步驟100提供:將1C晶圓定位在反應器中 之晶圓夾盤上。然後,步驟l〇6a與106b包括建立大概30至 50 torr(T)範圍内之先質蒸氣壓,而步驟1 〇 8包括建立大概 5至1 0 T範圍内之室壓。典型反應器系統利用氧或反應物 之分開管線和氣體掩蔽流而使氧或反應物之入口接近基質 表面而避免在沈積PG0膜在基體表面上前氣相中之預反 應。大面積基體之氧和反應物分佈經由許多管線和質量流 動控制器控制。 步驟1 1 2包括子步驟。步驟112a與沈積步驟1丨〇中之 P G 0膜之同時,將P G 〇膜的多晶結構以主要c軸定向而定 向。接著步驟1 10後,步驟112b以大概450至5 50°C範圍内 之溫度’在係由氧和氧與Pb大氣中選出之大氣中將步驟 1 1 〇中所形成之P G 0膜退火,因此加強多晶p G 0膜之c抽 足向。另種方式當在RTP溫度和方法中經由適當補償時, 使用較寬之沈積溫度。 經濟部智慧財產局員工消費合作社印製 在本發明之某些觀點上,鐵電裝置係使用步驟丨丨〇中之 P G 0膜予以形成。即:將P G 0膜沈積在導電電極上。然 後,接步驟112b後之另外步驟。步驟1 1 6形成導電電極蓋 覆在步驟1 1 0中所形成之P G 0膜上。步驟丨丨8係在大概 4 5 0至550°C範圍内之溫度下,在係由氧和氧與pb大氣中 -16- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)
539657 五、發明說明(14) 選出之大氣中將步驟110中所形成之P GO膜退火。改良步 驟1 1 0中所形成之PGO膜與步驟丨丨6中所形成之電極間^ 界面。 步驟112b和11 8包括在大於大概! 〇 %之分壓下所引入之 氧。最適苴之氧分壓是自20至1〇〇%。在本發明之某此觀 點上,步驟112b和118包括以每秒大概10至2〇〇。(::之熱猛 升速率使用係由爐退火和快速熱退火(RTA)中選出之退火 方法歷大概1 0至1 800秒的持續時間。較長之退火時間亦屬 有用. 圖2舉例説明使用本發明p g 〇膜之具有鐵電性質之電容 器。電容器200包含第一導電電極2〇2,蓋覆第一導電電 極202之PGO膜204其中包括具有主要c_軸結晶學上定向 之多晶PbsGesOn相,及蓋覆pg〇膜2〇4之第二導電電極 2 0 6,因此,形成p G Ο膜電容器。p g 〇膜2 0 4的顆粒大小 均勻性之偏差係小於大概丨〇 %。如圖5 _ 7中所示並在下文 中予以討論,電容器2 00具有鐵電性質其包括極化(pr)和 矯頑電場(Ec)。2Pr是每平方厘米大概3·8微庫倫化口⑽2) 而2Ec在8伏特之所施加電壓時,是大概每厘米9 3仟伏 (kV/cm)。 電容器200具有鐵電性質其包括大概3〇至5〇範圍内之介 質常數(圖1 1 ),在極化轉換的1 X 1 〇9循環後,大極9 5至 99%極化(Pr)(圖 8)。
Ph^GesC^〗膜的基本組成,相,和鐵電與電性質已予量 計,某些初步數據可供利用,Pb5Ge3〇ii膜之組成經由使 -17- 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱) ---------------------訂---------線^^· (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 539657 五、發明說明(15 ) 用能量分散X射線分析(EDX)予八 — 岣姑ϋ 7 t J 刀析。溽腠之相使用X射 、、泉%射丁以鑑定·Ir/Ti/Si0 /Si基 能與紉山拉^ 土 上潯胺爻厚度和表面形 :::2 顯微鏡予以研究。薄膜之漏流和介質常 H 咖55-6精確半導體參數分析儀和Ke麻> 82 CV分析儀予以量計。膜之辨而 ㈣A試驗機予以量計。^性“由—具標準化之 ^膜係在大約4筑至窗C之溫度下沈積。初沈積之薄 扠疋鏡子一般,無裂縫且充分黏附在基體上。此等膜亦顯 不極平π表面如藉光學顯微術和掃描電子顯微術兩者所 見。薄膜生長速率典型每分鐘孓5 nm範圍内。 圖3是在500^:所沈積之本發明的膜之乂射線圖 型。組成和X射線分析證實形成多晶。軸定向之 Pb5Ge30U膜。見到極尖(〇〇1),(〇〇2),(〇〇3),(〇〇4),(〇〇5) 與(006)等+,此科指示··具有較佳c軸定向之極良好 結晶〈PbsGe3〇"膜。小第二相Pb3Ge05亦自X射線圖型上 發現。關於表面形態學,在s EM檢驗下,薄膜顯現均勻 分佈之細顆粒且無裂化。 圖4是本發明p G 〇膜的掃描電子顯微鏡(SEM)顯微照 片。膜的平均顆粒·大小顯示爲大約0.3 μηι。量計PGO膜厚 度是大約1 5 0毫微米(nm)。 圖5和圖6舉例説明本發明p 〇 〇膜的p r和e c性質。該初 沈積之Pb5Ge3〇ii膜顯示:相當不良之鐵電性質。在500°C TRTP退火歷10分鐘後,該Pb5Ge3〇n膜顯示具有極小殘 留極化(Pr)和矯頑電場(Ec)之一些鐵電性質。隨著增加退 -18- 本紙張尺度適用中國國豕標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -I ϋ 1 n I · ϋ ϋ n H ϋ I · 經濟部智慧財產局員工消費合作社印製 539657 經濟部智慧財產局員工消費合作社印制π A7 五、發明說明(16 ) 、二度P r和E C增加。關於大於650°c之退火溫度,p G 0 薄膜:開始崩潰。 广顯示後退火對於本發明之扑5叫〇"膜的鐵電性質之 :因爲頂電極與Pb5Ge3〇H膜間之界面性質經由後退 火予以改良’所以Pb5Ge3〇u膜的磁滯迴線在超過5伏特之 所訑加私壓時係充分飽和且對稱。15〇打㈤厚pb5Ge3〇ii薄膜 >、示良好鐵電性質,在8 V的所施加電壓時具有2 p『 3·8 pC/cm2及 2Ec 93 kV/cm。 研圖8舉例説明卜基體上之本發明外5(}勺〇"薄膜的疲乏性 貝。薄膜之疲乏性質係在1MHz雙極方波的5¥時 予以I計。在將樣品轉換高達丨X丨〇9循環後,此膜未顯示 疲乏。 圖9舉例説明:在疲乏試驗前與後,自本發明p 〇 〇所造 成之電容器的磁滞迴線。在疲乏試驗前,膜的殘留極化 (2Pr)和墙頑電場(2Ec)是1.47 pC/cm2和52 kV/cm而在疲乏 试驗後各自是1.49 pC/cm2和54 kV/cm。咸信:P G 0膜之優 良疲乏性質係由於P G 〇晶格結構。p g 0材料具有沿著C軸 之大極化,但是沿著a或b軸甚少或無極化。因此,大多數 的磁疇構型是180。·磁疇。因此之故,pg〇具有優良疲乏 性質,相似於雙層氧化物。 圖1 〇舉例説明:自本發明p G Ο膜所造成之電容器的漏 流。關於記憶裝置應用,低漏流密度是一個重要考慮。圖 1 0顯示150 nm厚MOCVD PG0膜的I-V曲線。見到優良I-v 特性。Pl^GesO! i薄膜的漏流密度係隨著增加之施加電壓 -19 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I ^--·---K-------------訂---------線 (請先閱讀背面之注意事項再填寫本頁:> 539657 Λ7 ^---— _B7_____ 五、發明說明(17 ) 而增加’經發現在100 kV/cm時是大約3.6 X 1〇·7 A/cm2。 圖1 1舉例説明··本發明p G 〇膜的介質常數。關於記憶 裝置,特別關於一電晶體記憶應用,介質常數亦是另外重 要論題。本發明!^5以3〇11薄膜的介質常數顯示相似於大 多數鐵電材料之性狀,於此種情況介質常數係關於所施加 之電壓而改變。本發明朴5(^3〇11薄膜的最大介質常數是 大概4 5。 總括,經C-軸定向之Pl^GeW"膜係由mocvd和rtP等 技術予以再現式製造在經p t或][Γ蓋覆之s丨基體上。多晶 C-軸定向之PGO膜顯示具有大約〇·3 μιη較小顆粒大小之均 勻微結構。此等薄膜亦具有較小之極化,極小之介質常數 和較大之矯頑電場,其符合鐵電不變性記憶裝置之要求, 特別是一電晶體記憶應用。本發明之其他變更和具體實施 例爲精於該項技藝之人士可見。 (請先閱讀背面之注意事項再填寫本頁) --------訂---------線康 經濟部智慧財產局員工消費合作社印制衣 -20- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)

Claims (1)

  1. 539657 , 第0891加138號專利申請案 g ' 中文申請專利範圍替換本(92车7 W g 申請專利範圍 修正 補充 曰曰 择@ fej錯(PGO)薄膜,用於形成具有c轴定向之多 P GO膜在積體電路(IC)膜上之方法,該方法包括下列 步驟: a)混合[Pb(thd)2]* [Ge(ET〇)4]而形成具有4 5 : 3至 5.5 : 3範圍内之莫耳比的pG〇混合物; b)使用四氫吱喃,異丙醇和四乙二醇二甲醚之(混合) 溶劑溶解步騾a)之混合物而形成先質溶液; Ο自步騾b )中所形成之溶液,創造先質氣體; d) 分解步驟c)中所形成之先質氣體在晶圓上; e) 形成包括第一相的pb5Ge3〇n之pg〇膜;及 f) 形成主要C軸結晶學上定向在p G〇膜的p^G^On 相中,因此使P G 0膜之鐵電性質最適化。 11 2·如申請專利範圍第i項之方法,其中步驟幻包括以5 : 3 t 莫耳比混合[Pb(thd)2;^ [Ge(ETO)4]。 3.如申請專利範圍第!項之方法,其中步驟b)包括8 : 2 : 1莫耳比之各自四氫呋喃,異丙醇和四乙二 (混合)溶劑。 ^ 4. 其中步騾b)包括形成 1至0 · 3莫耳之p 〇 〇混 如申請專利範圍第丨項之方法, 先質溶液,其具有每升之溶劑〇 . 合物濃度。 5.如申請專利範圍第巧之方法,其中提供液體泵和先質 乳化器,其中步驟c)包括使用先質氣化器加熱先質溶 液至130至180。。範圍内之溫度,因此形成先質氣體' 及在步騾b)後但在步驟〇前之—個另外步驟: 539657 A8 B8 C8 ---- D8 六、申請專利範圍 使用液體泵,以每分鐘〇·ι至〇·5亳升(ml/min)範 圍内之速率將步騾b)的先質溶液引至步騾c)的先質氣 化器中。 6. 如申請專利範圍第1項之方法,其中將I c膜定位在反 應器室中,並包括接著步騾c )後之另外步騾·· 〇ι)在反應室中將先質氣體與每分鐘1〇〇〇至6〇〇〇標準 立方厘米(seem)範圍内之氬氣掩蔽流混合,預熱至130 至180°C之範圍内之溫度;及 c2)以500至3000 seem之範圍内數量將氧氣流引至該 室中,因此促進具有C軸定向之PGO。 7. 如申請專利範圍第6項之方法,其中將I c膜定位在反 應器室中之晶圓夹盤上,其中,步驟(^丨與。2)包括建 立3 0至50 ton: (T)範圍内之先質蒸氣壓,及其中步騾d) 包括建立大概5至10 T範圍内之室壓。 8. 如申請專利範圍第1項之方法,其中步騾d )包括加熱 晶圓至4 5 0至500°C範圍内之溫度,因此所沈積之膜具 有主要C軸結晶學上定向。 9·如申請專利範圍第1項之方法,其中I C膜材料係由銥 和鉑中選出。 10·如申請專利範圍第1項之方法,其中步騾f)包括形成具 有70%或更大的C軸定向之多晶Pb5Ge3〇u相。 11·如申請專利範圍第1項之方法,其中步騾f)包括下列子 步騾: fi)與步驟e)中沈積PGO膜之同時,主要以C軸定向 -2 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A、申请專利範圍 將P G Ο膜的多晶結構定向;及 G)接著步騾e)後,在450至550°C範圍内之溫度下,在 係由氧和氧與Pb大氣中選出之大氣中將步騾e)中所形 成之PGO膜退火,因此加強多晶pG〇膜之c軸定向。 12·如申請專利範圍第Η項之方法,其中鐵電裝置係使用 步騾e)中之PG0膜所形成,並包括接著步騾匕)後之另 外步驟: g) 形成導電電極蓋覆步驟e)中所形成之PG〇膜;及 h) 在45 0至550°C範圍内之溫度下,在係由氧和氧與 Pb大氣中選出之大氣中將步騾e)中所形成之pG〇膜退 火’因此改良步騾e)中所形成之PG〇膜與步騾g)中所 形成之電極間之界面。 13·如申請專利範圍第1 2項之方法,其中步騾f)和h )包括 在大於10 %之分壓下引入氧氣。 14·如申請專利範圍第1 2項之方法,其中步騾f 2)與h )包括 使用係由爐退火和在每秒1〇至2〇crc範圍内之熱猛升速 率下之快速熱退火(RT A)中選出之退火方法歷10至18〇〇 秒之持續時間。 15·如申請專利範圍第1項之方法,其中步騾f)包括具有 0.2至0.8微米範圍内之顆粒大小之pb5Ge3〇u第一相。 16·如申請專利範圍第1項之方法,其中步驟f)包括 Ρ^5&3〇ι 1第一相其具有小於1 0 %之顆粒大小均勻度之 偏差。 17. —種具有改良之鐵電性質之鍺酸鉛(pG〇)膜包含: 539657
    申清專利範圍 第一相的多晶Pb5Ge3〇u ;及 其中孩扑5以3〇11相具有主要C-軸結晶學上定向,因 此C軸定向促進鐵電薄膜性質。 队如申請專利範圍第17项之PG0膜,其中70%或更多之 PGO膜的pb5Ge3〇u相具有c軸定向。 19.如申請專利範圍第17項之pG〇膜,其中多晶⑽咖】 相膜包括具有G.2至〇.8微米範圍内之顆粒大小之晶體 顆粒。 如申請專利範圍第! 7項之pG〇膜,其中多晶押如〜 相膜包括具有小於i 0%之顆粒大小均勻性之偏差之晶 體顆粒。 21· —種具有鐵電性質之電容器包括: 第一導電電極; 蓋覆第一電極之PG0膜其中包括具有主要c軸結晶 學上定向之多相Pb5Ge3〇n相;及 蓋復PGO膜之第一導電電極,因此形成pG〇膜電容 器。 22·如申請專利範圍第2 1項之電容器,其中鐵電性質包括 30至50範圍内之介質常數。 23·如申請專利範圍第21項之電容器,其中鐵電性質包括 在極化轉換之1 x 1〇9循環後9 5至9 9 %極化(ρΓ)。 24·如申請專利範圍第21項之電容器,其中pG〇膜包括具 有小於1 0 %的顆粒大小均勻性偏差之晶體顆粒。 -4- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X297公釐)
TW089108138A 1999-04-28 2000-04-28 C-axis oriented lead germanate film and deposition method TW539657B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/301,420 US6410343B1 (en) 1999-04-28 1999-04-28 C-axis oriented lead germanate film and deposition method

Publications (1)

Publication Number Publication Date
TW539657B true TW539657B (en) 2003-07-01

Family

ID=23163272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089108138A TW539657B (en) 1999-04-28 2000-04-28 C-axis oriented lead germanate film and deposition method

Country Status (5)

Country Link
US (3) US6410343B1 (zh)
EP (1) EP1049148A3 (zh)
JP (1) JP3710118B2 (zh)
KR (1) KR100373080B1 (zh)
TW (1) TW539657B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410343B1 (en) * 1999-04-28 2002-06-25 Sharp Laboratories Of America, Inc. C-axis oriented lead germanate film and deposition method
US6281022B1 (en) * 1999-04-28 2001-08-28 Sharp Laboratories Of America, Inc. Multi-phase lead germanate film deposition method
US6420740B1 (en) * 1999-05-24 2002-07-16 Sharp Laboratories Of America, Inc. Lead germanate ferroelectric structure with multi-layered electrode
US6503314B1 (en) * 2000-08-28 2003-01-07 Sharp Laboratories Of America, Inc. MOCVD ferroelectric and dielectric thin films depositions using mixed solvents
US6441417B1 (en) * 2001-03-28 2002-08-27 Sharp Laboratories Of America, Inc. Single c-axis PGO thin film on ZrO2 for non-volatile memory applications and methods of making the same
US6586260B2 (en) * 2001-03-28 2003-07-01 Sharp Laboratories Of America, Inc. Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same
US6475813B1 (en) * 2001-08-13 2002-11-05 Sharp Laboratories Of America, Inc. MOCVD and annealing processes for C-axis oriented ferroelectric thin films
US20030082909A1 (en) * 2001-10-30 2003-05-01 Tingkai Li High-k gate oxides with buffer layers of titanium for MFOS single transistor memory applications
US6664116B2 (en) * 2001-12-12 2003-12-16 Sharp Laboratories Of America, Inc. Seed layer processes for MOCVD of ferroelectric thin films on high-k gate oxides
US6737364B2 (en) * 2002-10-07 2004-05-18 International Business Machines Corporation Method for fabricating crystalline-dielectric thin films and devices formed using same
JP4346919B2 (ja) * 2003-02-05 2009-10-21 忠弘 大見 強誘電体膜,半導体装置及び強誘電体膜の製造装置
US6794198B1 (en) * 2003-06-25 2004-09-21 Sharp Laboratories Of America, Inc. MOCVD selective deposition of c-axis oriented Pb5Ge3O11 thin films on high-k gate oxides
US7157111B2 (en) * 2003-09-30 2007-01-02 Sharp Laboratories Of America, Inc. MOCVD selective deposition of C-axis oriented PB5GE3O11 thin films on In2O3 oxides
US7531207B2 (en) * 2004-02-17 2009-05-12 Sharp Laboratories Of America, Inc. MOCVD PGO thin films deposited on indium oxide for feram applications
KR20100064742A (ko) * 2008-12-05 2010-06-15 한국전자통신연구원 낮은 침투전위 밀도를 갖는 순수 게르마늄 박막 성장법
US8232114B2 (en) * 2009-01-27 2012-07-31 Taiwan Semiconductor Manufacturing Co., Ltd. RTP spike annealing for semiconductor substrate dopant activation
WO2023008454A1 (ja) * 2021-07-30 2023-02-02 株式会社Flosfia 結晶性酸化物膜および半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027074A (en) * 1974-08-19 1977-05-31 Leco Corporation Process for producing ferroelectric crystalline material
JPH068509B2 (ja) * 1985-09-17 1994-02-02 勝 岡田 強誘電体薄膜の製造方法
JPH0742111B2 (ja) * 1991-09-19 1995-05-10 工業技術院長 焦電セラミックス薄膜素子の製造方法
JPH0734241A (ja) * 1993-07-21 1995-02-03 Tdk Corp 強誘電体薄膜製造方法
JPH08277196A (ja) * 1995-03-31 1996-10-22 Tdk Corp 強誘電体薄膜、その製造方法、半導体不揮発性メモリー素子、強誘電体ゲート型fet素子およびセンサー
US5731608A (en) * 1997-03-07 1998-03-24 Sharp Microelectronics Technology, Inc. One transistor ferroelectric memory cell and method of making the same
US6410343B1 (en) * 1999-04-28 2002-06-25 Sharp Laboratories Of America, Inc. C-axis oriented lead germanate film and deposition method

Also Published As

Publication number Publication date
US6616857B2 (en) 2003-09-09
KR100373080B1 (ko) 2003-02-25
JP3710118B2 (ja) 2005-10-26
EP1049148A3 (en) 2002-05-29
US6483137B2 (en) 2002-11-19
EP1049148A2 (en) 2000-11-02
KR20010020784A (ko) 2001-03-15
US6410343B1 (en) 2002-06-25
US20020018904A1 (en) 2002-02-14
JP2001007104A (ja) 2001-01-12
US20020022278A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
TW539657B (en) C-axis oriented lead germanate film and deposition method
US7332032B2 (en) Precursor mixtures for use in preparing layers on substrates
KR100457003B1 (ko) 다상 납 게르마늄화물 막 및 퇴적 방법
TW455949B (en) Epitaxially grown lead germanate film and deposition method
KR100451011B1 (ko) 백금 전극상의 단상 페로프스카이트 강유전 막과 이 막의 제조방법 및 강유전성 디바이스
Fitsilis et al. BST thin films grown in a multiwafer MOCVD reactor
TW557576B (en) MOCVD and annealing processes for C-axis oriented ferroelectric thin films
JP3682913B2 (ja) 強弾性鉛ゲルマニウム酸化物膜の生成方法およびキャパシタ
TWI228776B (en) Multi-phase lead germanate film and deposition method
Lukosius et al. Atomic vapor deposition of strontium tantalate films for MIM applications
KR100392299B1 (ko) 납 게르마늄화물(pgo) 박막의 금속 유기재 화학증착(mocvd) 및 어닐링 방법, 및 그에 사용되는 장치
Li et al. Ferroelectric PbZr1-xTixO3 thin films made by various metalorganic chemical vapor deposition techniques
Li et al. Novel Mocvd Processes for Nanoscale Oxide Thin Films

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees