TW404017B - The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection - Google Patents

The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection Download PDF

Info

Publication number
TW404017B
TW404017B TW87105686A TW87105686A TW404017B TW 404017 B TW404017 B TW 404017B TW 87105686 A TW87105686 A TW 87105686A TW 87105686 A TW87105686 A TW 87105686A TW 404017 B TW404017 B TW 404017B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
silicon oxide
plasma
oxide dielectric
etching
Prior art date
Application number
TW87105686A
Other languages
Chinese (zh)
Inventor
Sen-Hung Lin
Hau-Ming Lian
Yin Chen
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW87105686A priority Critical patent/TW404017B/en
Application granted granted Critical
Publication of TW404017B publication Critical patent/TW404017B/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method of forming the etch via on the dielectric in the micro-electronic process. First , provide a substrate in the fabrication of the micro-electronic; next, form a layer of silicon oxide dielectric on the substrate; silicon oxide dielectrics uses tetra-ethyl-ortho-silicate (TEOS) as the silicon source material and is formed by utilizing plasma enhanced chemical vapor deposition (PECVD) method. Next, proceed plasma treatment towards silicon oxide dielectric and a layer of plasma treated silicon oxide dielectric is formed. A layer of patterned photoresist layer is formed on plasma treated silicon oxide dielectric which is used to define the position of the etch via. The patterned photoresist layer formed by this method peeled-off easily from the plasma treated silicon oxide dielectric after utilizing subsequently the isotropical etch method to proceed etching towards plasma treated silicon oxide dielectric.

Description

五、 經濟部中央樣準局員工消費合作社印製 4040:7 at B7 發明説明(1 發明背景 一、 發明領域 本發明係關於一在微電子製程中,於介電層上形成一 蝕刻槽之方法。特別地,本發明係關於一在微電子製程中 ’於介電層上形成蝕刻槽,其截面輪廓可重複製造之方法 〇 二、 相關先前技術: 一般在微電子製造技術中,用以形成微電子製造結構 之介電層者,係使用氧化矽介電層,而其係以四乙基正矽 酸鹽(TEOS)爲源材料,使用化學汽相沈積法(CVD) 成形,如熱化學汽相沈積法及電漿增強式化學汽相沈積法 (PECVD)。該介電層係包含(但非限定)前金屬介電 層(PMD)內金屬介電層(IMD)及後金屬介電層。以四 乙基正矽酸鹽(TEOS)爲源材料,使用熱化學汽相沈積 法及電漿增強式化學汽相沈積法(PECVD)所製成之微 電子結構之氧化矽介電層,較爲微電子製造中所意欲選用 ,因該氧化矽介電層相較於使用其他方法和材料所製成者 ,有更優越之特性。. 特別的,在先進的微電子製程之氧化矽介電層,至少 部分係爲以四乙基正矽酸鹽(TEOS)爲源材料,使用電 漿增強式化學汽相沈積法(PECVD)所製成,藉由此所 製成之介電層可形成相對高密度、窄蝕刻槽線寬度之線路 佈局結構,如(但非限定)蝕刻圖導體層線路佈局結構, 在先進的微電子製造技術中’如第—圖中所示,常以至少 本紙張尺度適用中國國家標率(CNS > A4规格(210X297公釐) —.— — I—.—,1 ί 1 裝-- (請先閲讀背面之注$項再填寫本頁) 訂— 線 83. 3.10,000 經濟部中央標準局員工消費八择社印製 4040 7 A7 _^_B7_五'發明説明(2) 一酒杯形蝕刻槽形成於在該氧化矽介電層上。 如第一圖中所示,一基底層10之表面具有至少有一系 列之圖案之氧化砂介電層12a、12b及12c,其係以四乙 基正矽酸鹽(TEOS)爲成長源材料,而以電漿增強化學 汽相沈積法(PECVD)形成,而該一系列之圖案化氧化 砂介電層12a、12b及12c介定出一對酒杯型触刻槽16a 及16b於一系列圖案氧化砂介電層12a、12b及12c上對 應形成一系列圖案之光阻層14a、14b及14c以協助定義 出該對酒杯型蝕刻槽16a及16b之位置。熟知此技藝者皆 了解,每一酒杯型蝕刻槽16a及16b之酒杯形狀最好能收 縮,如此方能較佳進行後續以毯狀導電層塡充該對酒杯型 蝕刻槽16a及16b,以完成如第一圖中所示結構之剖面圖 之微電子製程。 爲了在該每一酒杯型蝕刻槽16a及16b形成酒杯形輪 廓,其典型方式係將第一圖所示之微電子製造結構中,由 形成於蝕刻圖光阻層14a、14b及14c下方之覆蓋氧化係 介電層,進行: (1)以連續局部非等向性蝕刻/局部等向性蝕刻/完全 非等向性蝕刻之方式,在該覆蓋氧化係介電層上形成圖案 化氧化矽介電層12a、12b及12c ;或(2)以連續局部等向 性蝕刻/完全非等向性蝕刻之方式,在該覆蓋氧化係介電 層上形成圖案化氧化矽介電層12a、12b及12c。而在此 連續蝕刻所使用之非等向性蝕刻法,其典型係採用(但不 排除其他)之方式爲反應性離子蝕刻(RIE)非等向性蝕 (請先閲讀背面之注意事項再4寫本頁) .11 I 裝·V. 4040: 7 at B7 printed by the Consumer Cooperative of the Central Bureau of Probability of the Ministry of Economics (1 Background of the Invention 1. Field of the Invention The present invention relates to a method for forming an etching groove on a dielectric layer in a microelectronic process In particular, the present invention relates to a method for forming an etched groove on a dielectric layer in a microelectronic process, and the cross-sectional profile can be repeatedly manufactured. 2. Related prior technologies: Generally used in microelectronic manufacturing technology to form For the fabrication of the dielectric layer of the microelectronics structure, a silicon oxide dielectric layer is used, which uses tetraethyl orthosilicate (TEOS) as the source material and is formed by chemical vapor deposition (CVD), such as thermochemistry Vapor phase deposition method and plasma enhanced chemical vapor deposition method (PECVD). The dielectric layer includes (but is not limited to) a front metal dielectric layer (PMD), a metal dielectric layer (IMD), and a back metal dielectric. Layer. A silicon oxide dielectric layer made of tetraethyl orthosilicate (TEOS) as a microelectronic structure using thermochemical vapor deposition and plasma enhanced chemical vapor deposition (PECVD). , More intended in microelectronics manufacturing Because the silicon oxide dielectric layer has more superior characteristics than those made using other methods and materials. In particular, the silicon oxide dielectric layer in advanced microelectronics processes is at least partially based on Tetraethyl orthosilicate (TEOS) is used as the source material. It is made by plasma enhanced chemical vapor deposition (PECVD). The dielectric layer made from it can form a relatively high density and narrow etching groove. Line width line layout structures, such as (but not limited to) etched conductor layer line layout structures, are used in advanced microelectronics manufacturing techniques, as shown in the first figure, and are often applied at least on this paper scale to the national standard ( CNS > A4 specification (210X297 mm) —.— — I —.—, 1 ί 1 pack-(Please read the note on the back before filling this page) Order — line 83. 3.10,000 Central Ministry of Economic Affairs Printed by Staff of the Bureau of Standards, printed by 4080 7 A7 _ ^ _ B7_ Five 'Description of the Invention (2) A wine glass-shaped etching groove is formed on the silicon oxide dielectric layer. As shown in the first figure, a base layer 10 has at least a series of patterned sand oxide dielectric layers 12a, 12b and 12c on its surface, It is formed by using tetraethyl orthosilicate (TEOS) as a growth source material and plasma enhanced chemical vapor deposition (PECVD). The series of patterned oxide sand dielectric layers 12a, 12b and 12c A pair of wineglass-shaped etch grooves 16a and 16b are formed on a series of patterned oxide sand dielectric layers 12a, 12b, and 12c to form a series of photoresist layers 14a, 14b, and 14c to help define the pair of wineglass-type etchings. The positions of the grooves 16a and 16b. Those skilled in the art understand that the shape of the wine glass of each wine glass type etching groove 16a and 16b should preferably be contracted, so as to better perform the subsequent etching of the wine glass type with a blanket conductive layer The grooves 16a and 16b are used to complete the microelectronic process of the cross-sectional view of the structure shown in the first figure. In order to form a wine glass-shaped profile in each of the wine glass type etching grooves 16a and 16b, a typical method is to cover the microelectronic manufacturing structure shown in the first figure by covering the photoresist layers 14a, 14b, and 14c formed in the etching pattern. The oxide-based dielectric layer is subjected to: (1) forming a patterned silicon oxide dielectric on the overlying oxide-based dielectric layer in a manner of continuous local anisotropic etching / local isotropic etching / complete anisotropic etching. Electrical layers 12a, 12b, and 12c; or (2) forming patterned silicon oxide dielectric layers 12a, 12b, and 12c. The anisotropic etching method used in this continuous etching is typically (but not excluded) a reactive ion etching (RIE) anisotropic etching (please read the precautions on the back first and then 4 (Write this page) .11 I

,1T 線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83, 3.10,000 404017 at B7 經濟部中央標準局員工消費合作社印製 五、發明説明(3 ) 刻法’而在此連續蝕刻所使用之等向性蝕刻法,其典型係 採用(但不排除其他)之方式爲溼式化學蝕刻法。 在微電子製程中,其希望能於微電子結構中以一系列 的圖案化氧化砍介電層’如第一圖中所示之一系列的圖案 化氧化砍介電層12a、12b及12c,界定出一對酒杯型蝕 刻槽’如第一圖所示之一對酒杯型蝕刻槽16a及16b。但 在微電子製造技術中,此微電子製程無法完全克服製造上 之問題。特別像是在一般之微電子製造技術中,該整列之 蝕刻圖光阻層,如第一圖所示之一系列蝕刻圖光阻層14a 、14b及14c ’至少有局部會自該圖案化氧化矽介電層, 如第一圖中所不之一系列圖案化氧化砂介電層12a、i2b 及l;2c之表面剝離’而形成與第二圖所示之微電子製造結 構相似之剖面圖結構》 第二圖中揭示一微電子構造之剖面圖,其大致與第一 圖中之微電子構造之剖面圖相同,但其中:〇)對應於第 一圖中所不之整列触刻圖光阻層14a、14b及14c,此整 列触刻圖光阻層14a、Mb及14c部份剝離而形成整列之 部份剝離化蝕刻圖光阻層14a’、141),及14c,;(2)該列圖 案化氧化砂介電層12a、l2b及l2c,與其對應者被過度 蝕刻而形成整列之過度蝕刻型圖案化氧化砂介電層12a’ 、l2b’及Ik’ ;以及(3)該對酒杯形蝕刻槽i6a及,與 其對應者被過度蝕刻而形一對過度軸刻型酒杯形触刻槽 16a,及 16b’。 在先進的微電子製造中,與第二圖所示之微電子構造The paper size of the 1T line is applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 83, 3.10,000 404017 at B7 Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs The isotropic etching method used for this continuous etching is typically (but not excluded) a wet chemical etching method. In the microelectronic process, it is expected to be able to use a series of patterned oxide-cut dielectric layers in the microelectronic structure, such as a series of patterned oxide-cut dielectric layers 12a, 12b, and 12c shown in the first figure. A pair of wine glass type etching grooves is defined as one pair of wine glass type etching grooves 16a and 16b shown in the first figure. However, in microelectronic manufacturing technology, this microelectronic manufacturing process cannot completely overcome manufacturing problems. In particular, in general microelectronic manufacturing technology, the entire series of etched photoresist layers, such as the series of etched photoresist layers 14a, 14b, and 14c shown in the first figure, will be at least partially oxidized from the pattern. The silicon dielectric layer is a series of patterned sand oxide dielectric layers 12a, i2b, and 1; 2c as shown in the first figure. The surface is peeled off to form a cross-sectional view similar to the microelectronic manufacturing structure shown in the second figure. Structure >> The second figure shows a cross-sectional view of a microelectronic structure, which is roughly the same as the cross-sectional view of the microelectronic structure in the first figure, but in which: 0) corresponds to the entire array of engraved light in the first figure Resist layers 14a, 14b, and 14c. The entire pattern of photoresist layers 14a, Mb, and 14c are partially peeled off to form a whole array of partially stripped etching resists 14a ', 141), and 14c ,; (2) The rows of patterned sand oxide dielectric layers 12a, 12b, and 12c, and their counterparts are over-etched to form a whole row of overetched patterned sand oxide dielectric layers 12a ', l2b', and Ik '; and (3) the pair Wine glass-shaped etching grooves i6a and their counterparts are over-etched to form a pair of over-shaft type Cup-shaped contact groove 16a, and 16b '. In the advanced microelectronic manufacturing, the microelectronic structure shown in the second figure

(請先聞讀背面之注意Ϋ項再填寫本頁) -裝.(Please read the note on the back before filling out this page)-Install.

--II 線 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) 83. 3.10,000 404017 A7 B7 五、發明説明() (請先聞鲭背面之注$項再填寫本頁> 剖面相符合之微電子構造其較不欲被接受,因其很難在過 度蝕刻之酒杯形蝕刻槽中成功地形成完整或可靠的導體接 屬或內連線,如第二圖中之過度蝕刻型酒杯形蝕刻槽 16a’及16b’。而在微電子製造技術中,業者因而希望提供 出新的方法和材料藉以在氧化矽介電層上形成酒杯形触刻 槽,其中之以四乙基正矽酸鹽(TEOS)爲成長源材料並 利用化學汽相沈積法(CVD )成長之方式,像是以四乙 基正矽酸鹽(TEOS)爲成長源材料之電漿增強化學汽相 沈積法(PECVD),而不會矽介電層上部份剝離而產$ 過度蝕刻使酒杯形蝕刻槽中界定酒杯型蝕刻槽之蝕刻圖% 阻層氧化,其爲本發明之重點所在。 爲在微電子製造中形成酒杯形蝕刻槽及酒杯型結構, 已有不同的方法被揭示,特別是在積體電路製造技術中。 舉例而言,如Liu等人在美國專利第5,180,689號中揭 示使用於積體電路製造技術中,於積體電路製造結構形成 酒杯形蝕刻槽於多層介電層上之方法。該方法沿著一形成 於多層介電層上之單一蝕刻圖光阻層,利用一連續程序之 局部非等向性蝕刻/局部等向性蝕刻/完全非等向性蝕刻 之方式,形成酒杯形蝕刻槽於該多層介電層上。如此形成 之酒杯形蝕刻槽將可避免圖案化多層介電層產生高溫再流 動。 此外還有Megn等人在美國專利第5,452,403號中揭示 一相似方法,其使用於積體電路製造技術中,於積體電路 製造結構中形成一酒杯形飽刻槽於介電層上。該方法藉由 本紙張尺度通用中國國家標準(CNS ) A4規格(21〇Χ297公釐) 83. 3. !〇,〇〇〇 經濟部中央標準局貝工消費合作社印裝 A7 4040^7 _ B7 五、發明説明() 以一單一蝕刻圖光阻層形成一碗形蝕刻槽之蝕刻遮罩層, 利用一連續程序之局部非等向性蝕刻/局部等向性蝕刻之 方式,以形成一碗形局部蝕刻槽於介電層上。然後將該蝕 刻圖光阻層去除,並利用氬氣濺射電漿非等向性蝕刻法, 將該碗形蝕刻槽完全蝕刻至介電層,而成一酒杯形蝕刻槽 ,且同時平坦化及平滑化該介電層之銳利之邊緣變。 再者,如Hsu在美國專利第5,552,343號中揭示一方法 使用於積體電路製造技術中,於積體電路製造結構中形成 酒杯形蝕刻槽,其以硼和磷摻雜,並利用四乙基正矽酸鹽 (TEOS)爲矽之源材料生成氧化矽介電層。此方法係在 形成一界定酒杯形蝕刻槽位置之蝕刻圖光阻層之前,先利 用一緩衝氧化蝕刻劑(BOE)以去除一硼和磷摻雜之氧化 矽介電層。藉此方法,可使該酒杯形蝕刻槽於該硼和磷摻 雜之氧化较介電層表面上形成具有一小的輸角(entry angle)。 最後,如Kim在美國專利第5,622,833號中揭示一在積 體電路製造中之方法,係用於在介電層上形成一酒杯形蝕 刻槽並於該酒杯形蝕刻槽上形成一和酒杯型連通墊接觸之 酒杯型傳導接觸點綴層。此方法係利用一連續之局部等向 性蝕刻/完全非等向性蝕刻之方式以形成一酒杯形蝕刻槽. 於介電層上。 在微電子製造技術中,業者需要於介電層上形成酒杯 形蝕刻槽之更多的方法和材料,其以四乙基正矽酸鹽( TEOS)爲成長源材料並利用化學汽相沈積法(CVD)成 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 ----------; 1 裝--.---^--訂-----'線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 _404017_Βτ__五、發明説明(6 ) 長之方式,如以四乙基正矽酸鹽(TEOS)爲成長源材料 之電漿增強化學汽相沈積法(PECVD),而其可在微電 子製造中不會使酒杯形蝕刻槽因界定酒杯型蝕刻槽之蝕刻 圖光阻層自氧化矽介電層上部份剝離而產生過度蝕刻。在 積體電路製造技術中,形成酒杯形蝕刻槽於氧化矽介電層 上之方法和材料,其以四乙基正矽酸鹽(TEOS)爲成長 源材料並利用化學汽相沈積法(CVD)成長之方式,如 以四乙基正矽酸鹽(TEOS)爲成長源材料之電漿增強化 學汽相沈積法(PECVD),而其可在微電子製造中不會 使酒杯形蝕刻槽界定酒杯型蝕刻槽之蝕刻圖光阻層自氧化 矽介電層上部份剝離而產生過度蝕刻。 直接針對本發明之目的即爲前述需求。 發明槪要: ' 本發明之主要目的是於微電子製造中,提供一由氧化 矽介電層形成酒杯型蝕刻槽之方法,其係利用化學汽相沈 積法中之電漿增強式化學汽相沈積法,而使用之四乙基正 矽酸鹽爲其源材。 本發明之第二目的,係根據第一目的中所述之方法, 其提供一酒杯型蝕刻槽,而該酒杯型蝕刻槽不會因有蝕刻 圖案之光阻層由氧化矽介電層上部份剝離而形成過度蝕刻 〇 本發明之第三目的,其主要係根據前述之第一目的及 第二目的,爲供一積體電路製造技術之微電子製程。 本發明之第四目的爲提供一種方法’其主要係根據前 (請先Η讀背面之注意事項再填寫本頁) .裝 訂 bv^ 本纸張又度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 A7 _ _;--—- ___ B7 五、發1明説明(7 ) 述之第一目的、第二目的及第三目的,而該方法已可用於 製造。 爲符合本發明之目的,本發明提供—方法,以在微電 子製造中形成於氧化矽介電層上一蝕刻槽,而以四乙基正 矽酸鹽(TEOS)爲成長源材料,利用化學汽相沈積法( CVD)形成。爲實施本發明之方法,首先需提供一用於 微電子製造用之基底,而後在該基底上形成一氧化矽介電 層,此氧化矽介電層係以四乙基正矽酸鹽(TE〇s)爲成 長源材料,利用化學汽相沈積法(CVD)形成。而後將 該氧化矽介電層施以電漿處理而形成一電漿處理氧化矽介 電層。而後在此電漿處理氧化矽介電層上形成一層用界定 電漿處理氧化矽介電層上蝕刻槽之蝕刻圖光阻層。相較於 、 其他相同但未經電漿處理之氧化矽介電層上所形成之相同^ 蝕刻圖光阻層,該蝕刻圖光阻層在經後續之利用等向性蝕 刻法對該電漿處理氧化矽介電層進行蝕刻時,較不易自電 漿處理化氧化矽介電層上剝離。最後,利用等向性餓刻法 將該電漿處理氧化矽介電層蝕刻出蝕刻槽。 經濟部中央標準局員工消費合作社印製 本發明提供一方法以在微電子製造中形成一酒杯型蝕 刻槽’以四乙基正矽酸鹽(TEOS)爲成長源材料,利用 化學汽相沈積法(CVD)成長之氧化矽介電層上,而該 酒杯型蝕刻槽之形成不會產生因而該酒杯型蝕刻槽中,界 定酒杯型蝕刻槽之蝕刻圖光阻層自氧化矽介電層上部丨分新j 離,而導致過度蝕刻。於本發明中可了解實現本發日月目的 之關鍵,係在進行形成用以界定酒杯型蝕刻槽之飽刻匬1光 83.3.10,000 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) A7 B7 404017 五、發明説明(8 ) 阻層之步驟前,先將氧化矽介電層以電漿處理而形成電漿 處理氧化矽介電層。雖然氧化矽介電層以電漿處理,有助 於增進蝕刻圖光阻層於該氧化矽介電層上之附著力之機構 尙未完全淸楚’但此可確信可使用以避免界定酒杯型蝕刻 槽之蝕刻圖光阻層自氧化矽介電層上部份剝離而產生過度 蝕刻。 本發明之方法可用於微電子製程之積體電路製造。本 發明並未區隔於只用在一般之微電子製造上,以乙基正矽 酸鹽(ETOS)爲成長源材料,利用電漿增強化學汽相沈 積法(PECVD)成長之氧化矽介電層上形成酒杯型蝕刻 槽之方法。是以’本發明可被利用之微電子製造領域係包 含(而非限定)有積體電路製造、太陽電池之微電子製造 、以陶瓷爲基底之微電子製造及平面顯示器之微電子製造 。同樣地, 本發明中用來形成酒杯型蝕刻槽之氧化矽介電層之方 法可利用以形成之微電子製造元件係包含(而非限定)前 金屬介電層(PMD)、內金屬介電層(IMd)及後金屬介 電層。 本發明之方法已可用於製造。本發明之方法爲利用乙 基正矽酸鹽(ETOS)爲成長源材料,以化學汽相沈積法 (CVD)成長之氧化矽介電層做電漿處理以增進截刻圖 光阻靥於該氧化矽介電層上之附著力及於該氧化矽介電層 上行成一無過度蝕刻之酒杯型蝕刻槽。由於電漿法爲一在 微電子製造技術中之熟知技術,是以本發明之方法已可直 —^1 1! I I I (請先閲讀背面之注意事項再填寫本頁)--II line paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 404017 A7 B7 V. Description of the invention () (Please read the note $ on the back of mackerel before filling this page > A microelectronic structure with a matching profile is less acceptable because it is difficult to successfully form a complete or reliable conductor connection or interconnection in an over-etched wineglass-shaped etching groove, as shown in the second figure. Over-etched wine glass-shaped etching grooves 16a 'and 16b'. In the microelectronic manufacturing technology, the industry hopes to provide new methods and materials to form wine glass-shaped contact grooves on the silicon oxide dielectric layer. Ethyl orthosilicate (TEOS) is a growth source material and is grown by chemical vapor deposition (CVD), like plasma enhanced chemical vapor with tetraethyl orthosilicate (TEOS) as a growth source material Phase deposition method (PECVD), without the partial peeling of the silicon dielectric layer, and over-etching causes the etching pattern defining the wine glass type etching groove in the wine glass shaped etching groove to oxidize the resistance layer, which is the focus of the present invention. For the formation of wine glass etch in microelectronics manufacturing Different methods have been disclosed for trough and wine glass structures, especially in integrated circuit manufacturing technology. For example, Liu et al., Disclosed in US Patent No. 5,180,689 for use in integrated circuit manufacturing technology A method for forming a wine glass-shaped etching groove on a multilayer dielectric layer in a integrated circuit manufacturing structure. The method uses a continuous anisotropic localized photoresist layer along a single etching pattern photoresist layer formed on the multilayer dielectric layer. In the manner of isotropic etching / local isotropic etching / completely anisotropic etching, a wine glass-shaped etching groove is formed on the multilayer dielectric layer. The thus formed wine glass-shaped etching groove can prevent the patterned multilayer dielectric layer from generating high temperature. There is also a similar method disclosed by Megn et al. In U.S. Patent No. 5,452,403, which is used in integrated circuit manufacturing technology to form a wine glass shaped groove in the integrated circuit manufacturing structure on the dielectric layer. This method uses the Chinese standard (CNS) A4 size (21〇 × 297 mm) of this paper standard. 83. 3.! 〇, 〇〇 The Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperative, printed A7 404 0 ^ 7 _ B7 V. Explanation of the invention () A single etching pattern photoresist layer is used to form an etching mask layer of a bowl-shaped etching groove, and a continuous process of local anisotropic etching / local isotropic etching is used. To form a bowl-shaped partial etching groove on the dielectric layer. Then remove the photoresist layer of the etched pattern, and use argon sputtering plasma anisotropic etching to completely etch the bowl-shaped etching groove to the dielectric. Layer, forming a wine glass-shaped etching groove, and at the same time flattening and smoothing the sharp edge changes of the dielectric layer. Furthermore, as disclosed by Hsu in US Patent No. 5,552,343, a method is used in integrated circuit manufacturing technology, A wine glass-shaped etching groove is formed in the integrated circuit manufacturing structure, which is doped with boron and phosphorus, and uses tetraethyl orthosilicate (TEOS) as a silicon source material to generate a silicon oxide dielectric layer. This method uses a buffered oxide etchant (BOE) to remove a boron and phosphorus-doped silicon oxide dielectric layer before forming an etched photoresist layer defining the location of a wine glass-shaped etch groove. By this method, the wine glass-shaped etching groove can be formed with a small entry angle on the surface of the boron and phosphorus doped oxide compared with the surface of the dielectric layer. Finally, as disclosed by Kim in US Patent No. 5,622,833, a method for manufacturing integrated circuits is used to form a wine glass-shaped etching groove on a dielectric layer and to form a wine glass-shaped communication groove on the wine glass-shaped etching groove. A pad-shaped conductive contact embellishment layer. This method uses a continuous local isotropic etching / complete anisotropic etching method to form a wine glass-shaped etching groove on the dielectric layer. In microelectronic manufacturing technology, the industry needs more methods and materials for forming wine glass-shaped etching grooves on the dielectric layer. It uses tetraethyl orthosilicate (TEOS) as a growth source material and uses chemical vapor deposition. (CVD) cost paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 ----------; 1 pack --.--- ^-order- --- 'line (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs_404017_Βτ__ V. Description of the invention (6) Long way, such as tetraethyl orthosilicic acid Salt (TEOS) is a plasma-enhanced chemical vapor deposition method (PECVD) as a growth source material, and it can not make the wine glass-shaped etching groove in the microelectronics manufacturing because of the etching pattern defining the wine glass-shaped etching groove. The silicon dielectric layer is partially peeled off and over-etched. In integrated circuit manufacturing technology, a method and material for forming a wine glass-shaped etching groove on a silicon oxide dielectric layer, which uses tetraethyl orthosilicate (TEOS) as a growth source material and uses chemical vapor deposition (CVD) ) Growth methods, such as plasma enhanced chemical vapor deposition (PECVD) with tetraethyl orthosilicate (TEOS) as the source material, which can not define the wine glass-shaped etching groove in microelectronics manufacturing The etching pattern of the wine glass type etching groove is partially peeled from the silicon oxide dielectric layer and over-etching occurs. The foregoing needs are directly addressed by the object of the present invention. Summary of the invention: 'The main purpose of the present invention is to provide a method for forming a wine glass-shaped etching groove from a silicon oxide dielectric layer in microelectronics manufacturing, which uses a plasma enhanced chemical vapor phase in a chemical vapor deposition method. Deposition method, and tetraethyl orthosilicate is used as its source material. A second object of the present invention is to provide a wine glass type etching tank according to the method described in the first object, and the wine glass type etching tank will not be formed by a silicon oxide dielectric layer due to a photoresist layer having an etching pattern. The third object of the present invention is mainly a microelectronic process for integrated circuit manufacturing technology according to the aforementioned first object and second object. The fourth object of the present invention is to provide a method, which is mainly based on the previous (please read the precautions on the back before filling this page). Binding bv ^ This paper is again applicable to the Chinese National Standard (CNS) A4 specification (210X297 (Mm) 83. 3.10,000 A7 _ _; ------- ___ B7 Fifth, the 1st purpose, the 2nd purpose and the 3rd purpose stated in (1), and the method can be used for manufacturing. In accordance with the purpose of the present invention, the present invention provides a method for forming an etching groove on a silicon oxide dielectric layer in microelectronics manufacturing, and using tetraethyl orthosilicate (TEOS) as a growth source material, using chemistry Vapor phase deposition (CVD). To implement the method of the present invention, a substrate for microelectronics manufacturing is first provided, and then a silicon oxide dielectric layer is formed on the substrate. The silicon oxide dielectric layer is made of tetraethyl orthosilicate (TE 0s) is a growth source material and is formed by a chemical vapor deposition (CVD) method. The silicon oxide dielectric layer is then subjected to a plasma treatment to form a plasma-treated silicon oxide dielectric layer. Then, an etching pattern photoresist layer is formed on the plasma-treated silicon oxide dielectric layer by defining an etching groove on the silicon oxide dielectric layer. Compared with the same ^ etched photoresist layer formed on the same silicon oxide dielectric layer without plasma treatment, the etched photoresist layer is subjected to subsequent plasma etching using an isotropic etching method. When the silicon oxide dielectric layer is processed and etched, it is difficult to peel off the silicon oxide dielectric layer treated by the plasma. Finally, the plasma-treated silicon oxide dielectric layer is etched out by an isotropic etching method. Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economics The present invention provides a method for forming a wine glass-shaped etching groove in microelectronics manufacturing, using tetraethyl orthosilicate (TEOS) as a growth source material, using chemical vapor deposition (CVD) grows on the silicon oxide dielectric layer, and the formation of the wine glass type etching groove does not occur. Therefore, in the wine glass type etching groove, the etching pattern defining the wine glass type etching groove is a photoresist layer on top of the silicon oxide dielectric layer. Dividing new j away, resulting in over-etching. In the present invention, you can understand the key to achieving the purpose of the present day and month, which is to form a full engraving to define a wine glass type etching groove. 1 light 83.3.10,000 (Please read the precautions on the back before filling this page) This paper The standard is applicable to the Chinese National Standard (CNS) A4 (210X297 mm) A7 B7 404017 V. Description of the invention (8) Before the step of resisting the layer, the silicon oxide dielectric layer is treated with plasma to form a plasma-treated silicon oxide. Dielectric layer. Although the silicon oxide dielectric layer is treated with a plasma, the mechanism that helps to improve the adhesion of the etched photoresist layer to the silicon oxide dielectric layer is not completely clear, but it is believed that it can be used to avoid defining the wine glass type. The photoresist layer of the etching groove is partially peeled from the silicon oxide dielectric layer and over-etching occurs. The method of the present invention can be used for the fabrication of integrated circuits in a microelectronic process. The present invention is not distinguished from silicon oxide dielectrics which are only used in general microelectronics manufacturing, using ethyl orthosilicate (ETOS) as a growth source material, and plasma enhanced chemical vapor deposition (PECVD) growth. A method for forming a wine glass type etching groove on a layer. The field of microelectronics manufacturing that can be used in the present invention includes (but is not limited to) integrated circuit manufacturing, solar cell microelectronics manufacturing, ceramic-based microelectronics manufacturing, and flat display microelectronics manufacturing. Similarly, the method for forming a silicon oxide dielectric layer of a wine glass-type etching tank in the present invention can be used to form a microelectronic manufacturing element including (but not limited to) a front metal dielectric layer (PMD) and an inner metal dielectric. Layer (IMd) and back metal dielectric layer. The method of the invention is ready for manufacturing. The method of the present invention utilizes ethyl orthosilicate (ETOS) as a growth source material, and performs a plasma treatment on a silicon oxide dielectric layer grown by chemical vapor deposition (CVD) to enhance the photoresistance of the cut-off pattern. The adhesion on the silicon oxide dielectric layer and a wine glass type etching groove without over-etching are formed on the silicon oxide dielectric layer. As the plasma method is a well-known technology in microelectronics manufacturing technology, the method of the present invention is straightforward — ^ 1 1! I I I (Please read the precautions on the back before filling this page)

,1T 線 經濟部中央榡準局員工消費合作社印製 (CNS )人4規潘(210x297公釐) 83.3.10,000 404017 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明() 接用於製造。 圖示之詳細說明 本發明之目的、特徵及優點將在後述之較佳具體實施 例中詳細揭示。並在而較佳具體實施例將可由所附之圖示 而更充份了解,其爲本揭示之主要部份,其中 第一圖所示爲微電子製造中,習用微電子製造技術在 氧化矽介電層上之一對酒杯型蝕刻槽剖面圖。 第二圖所示爲習用微電子製造方法中一對在氧化矽介 電層上過度蝕刻之酒杯型蝕刻槽剖面圖,其係因用以界定 酒杯型蝕刻槽之蝕刻圖光阻層,部份自氧化矽介電層上部 份剝離所致。 第三圖至第六圖所示爲本發明之一較佳實施例之一系 列的剖面圖,用以說明在氧化矽介電層上進行各製造步驟 之結果,其主要揭示在本發明之第一較佳具體實施例所形 成無過度蝕刻之酒杯型蝕刻槽。 第七圖至第十一圖所示一系列的剖面圖,用以說明在 積體電路製造中,在內金屬介電層(IMD)上進行各製造 步驟之結果’其主要根據本發明之第二較佳具體之實施例 所形無過度蝕刻之酒杯型蝕刻槽。 發明之詳細說明 本發明較佳具體實施例爲一種用於微電子製造上方法 ,其係利用化學汽相沈積法(CVD),以四乙基正砂酸 鹽(TEOS)爲矽之源材料,在氧化矽介電層上形成一酒 杯型蝕刻槽’而該酒杯型蝕刻槽不會因用以界定酒杯型触 (請先聞讀背面之注意事項再填寫本頁) 裝 :* 線 本紙張尺度適用中國國家梯準(CNS ) A4規格(2丨〇><297公董) 83. 3.10,000 A7 B7 五、發明説明() 刻槽之蝕刻圖光阻層自氧化矽介電層上部份剝離而導致過 度蝕刻。本發明先行將氧化矽介電層經由電漿處理,而後 再在其上形成界定酒杯型蝕刻槽之蝕刻圖光阻層之方式, 即可達成本發明之目的》 .雖然本發明在積體電路製造程中具有實質之利用價値 ,其利用電漿增強式化學汽相沈積法並以四乙基正矽酸鹽 (TEOS)爲源材料所生成之氧化矽內金屬介電層(IMD )之暴露表面上形成之酒杯型蝕刻槽,而本發明之方法可 使該酒杯型蝕刻槽不會形成過度蝕刻,然其非僅可用於積 體電路製造,其亦包括(非局限於)太陽電池之微電子製 造、以陶瓷爲基底之微電子製造及平面顯示器之微電子製 造中,而其中之氧化矽介電層可形成於包括(非局限於) 前金屬介電層(PMD)、內金屬介電層(IMD)及後金屬 介電層之位置u 第一較佳具體實施例 請參考第三圖至第六圖,其揭示一系列的剖面圖,用 以說明本發明之一般具體實施例,其係在微電子製造中進 行各步驟之結果,其包含本發明之第一個較佳具體實施例 ,其氧化矽介電層所形成之一對無過度蝕刻之酒杯型蝕刻 槽。第一圖所示爲微電子製造中,早期製造步驟之橫截面 製造圖示。 第三圖所示爲一已於其上形成一氧化矽介電覆蓋層22 之基底20。在此本發明之第一較佳具體實施例中,其所 I. 11— - - I I - - Hr. - - - I I - I I..... I I .-—I— I—.. USJ (請先聞讀背面之注意事項再填寫本頁) .- 經濟部中央標準局貝工消費合作社印^ 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 A7 4〇4〇±^_£ --V li、 五、發明説明() 用基底20係用於包括(非局限於)積體電路、太陽電池 之微電子製造、以陶瓷爲基底之微電子製造及平面顯示器 之微電子製造中,此基底20可以是一用於微電子製造之 單純之基底,也可以是一已在其上形成—些微電子薄膜層 之基底。該微電子薄膜層可包含(並非侷限)微電子導體 層、微電子半導體層及微電子介電層。 對於覆蓋氧化矽介電層22,至少其曝露部份,係利用 化學汽相沈積法(CVD)並以四乙基正矽酸鹽(TEOS) 爲矽之源材料,此化學汽相沈積法(CVD)可爲熱化學 汽相沈積法或電漿增強式化學汽相沈積法(peCVD)。 ~ 該氧化矽介電層22可爲無摻雜之氧化矽介電層或有摻雜 之氧化矽介電層,而摻雜材料可包含(並非限制爲)硼和(I 磷,摻雜濃度可由少量到高約12原子百分比’如同在微 電子製造技術中所熟知者。較佳化學汽相沈積法(CVD )係利用如下條件: (1)化學汽相沈積法(CVD)適用之反應室壓力(即’ 經濟部中央橾準局負工消費合作杜印製 用於電漿增強式化學汽相沈積法(PECVD)之約6拖爾 (Torr)到約10拖爾(Torr),用於低壓化學汽相沈積 法(LPCVD)之約30拖爾(Torr)到50拖爾(Torr), 用於次常壓化學汽相沈積法(SACVD)之約350拖爾(, 1T Line Printed by the Central Consumers 'Union of the Ministry of Economic Affairs (CNS), printed by the Consumer Cooperative Cooperative (CNS), 4 gauges (210x297 mm) 83.3.10,000 404017 A7 B7 Printed by the Consumers' Cooperative of the Central Standards Bureau, Ministry of Economy In manufacturing. Detailed description of the drawings The objects, features and advantages of the present invention will be disclosed in detail in the preferred embodiments described later. And the preferred embodiment will be more fully understood from the attached diagram, which is the main part of this disclosure. The first picture shows the microelectronics manufacturing. A cross-sectional view of a pair of wine glass-type etch grooves on the dielectric layer. The second figure shows a cross-sectional view of a pair of wine glass type etching grooves over-etched on a silicon oxide dielectric layer in a conventional microelectronic manufacturing method. Caused by partial peeling from the silicon oxide dielectric layer. The third to sixth figures show a series of cross-sectional views of one of the preferred embodiments of the present invention, used to explain the results of various manufacturing steps performed on the silicon oxide dielectric layer, which are mainly disclosed in the first aspect of the present invention. A wineglass-shaped etching groove without over-etching is formed in a preferred embodiment. A series of cross-sectional views shown in FIGS. 7 to 11 are used to explain the results of various manufacturing steps performed on the inner metal dielectric layer (IMD) in the manufacture of integrated circuits. A wine glass type etching groove without over-etching, as shown in the two preferred embodiments. Detailed description of the invention A preferred embodiment of the present invention is a method for manufacturing microelectronics, which uses chemical vapor deposition (CVD) and uses tetraethyl orthosaltate (TEOS) as the source material of silicon. A wine glass type etching groove is formed on the silicon oxide dielectric layer, and the wine glass type etching groove will not be used to define the wine glass type contact (please read the precautions on the back before filling this page). Applicable to China National Ladder Standard (CNS) A4 specification (2 丨 〇 < 297 public directors) 83. 3.10,000 A7 B7 5. Description of the invention () Etching pattern of grooves Photoresist layer on silicon oxide dielectric layer Partial peeling leads to excessive etching. In the present invention, the silicon oxide dielectric layer is first treated with a plasma, and then an etching pattern photoresist layer defining a wine glass type etching groove is formed thereon, thereby achieving the purpose of the invention. "Although the present invention is in a integrated circuit, In the manufacturing process, there is a substantial utilization price, which uses plasma enhanced chemical vapor deposition and uses tetraethyl orthosilicate (TEOS) as the source material to expose the metal dielectric layer (IMD) in silicon oxide. The wine glass type etching groove formed on the surface, and the method of the present invention can prevent the wine glass type etching groove from being over-etched. However, it is not only used for integrated circuit manufacturing, but also includes (but is not limited to) the micro cells of solar cells. In electronics manufacturing, ceramic-based microelectronics manufacturing and flat display microelectronics manufacturing, the silicon oxide dielectric layer can be formed including (but not limited to) a front metal dielectric layer (PMD), an inner metal dielectric The position of the IMD and the rear metal dielectric layer u For the first preferred embodiment, please refer to the third to sixth figures, which disclose a series of cross-sectional views for explaining the general specific embodiment of the present invention. system The microelectronic fabrication carry out the steps of the result, comprising a first specific preferred embodiment of the present invention, without excessive etching of one type of glass etching bath which silicon oxide dielectric layer is formed. The first figure shows a cross-section manufacturing diagram of early manufacturing steps in microelectronics manufacturing. The third figure shows a substrate 20 on which a silicon oxide dielectric cover layer 22 has been formed. In this first preferred embodiment of the present invention, I. 11—--II--Hr.---II-I I ..... II .-— I— I— .. USJ (Please read the notes on the reverse side before filling out this page).-Printed by the Beige Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ^ This paper is in Chinese National Standard (CNS) A4 size (210X297 mm) 83.3.10,000 A7 4 〇4〇 ± ^ _ £-V li, V. Description of the invention () The substrate 20 is used for microelectronic manufacturing including (but not limited to) integrated circuits, solar cells, ceramic-based microelectronic manufacturing, and In the microelectronic manufacturing of a flat display, the substrate 20 may be a simple substrate used for microelectronic manufacturing, or a substrate on which some microelectronic thin film layers have been formed. The microelectronic thin film layer may include (but is not limited to) a microelectronic conductor layer, a microelectronic semiconductor layer, and a microelectronic dielectric layer. For the silicon oxide dielectric layer 22, at least its exposed portion is a chemical vapor deposition method (CVD) and uses tetraethyl orthosilicate (TEOS) as the source material of silicon. This chemical vapor deposition method ( CVD) may be a thermal chemical vapor deposition method or a plasma enhanced chemical vapor deposition method (peCVD). ~ The silicon oxide dielectric layer 22 may be an undoped silicon oxide dielectric layer or a doped silicon oxide dielectric layer, and the doping material may include (but not limited to) boron and (I phosphorus, doping concentration) From a small amount to about 12 atomic percent 'as is well known in microelectronic manufacturing technology. The preferred chemical vapor deposition method (CVD) uses the following conditions: (1) a reaction chamber for which chemical vapor deposition (CVD) is applicable Pressure (that is, the Ministry of Economic Affairs, the Central Bureau of Standards, Work and Consumption Cooperation, Du printed on about 6 Torr to about 10 Torr for plasma enhanced chemical vapor deposition (PECVD), used for About 30 Torr to 50 Torr of Low Pressure Chemical Vapor Deposition (LPCVD), about 350 Torr of Sub-Atmospheric Chemical Vapor Deposition (SACVD) (

Torr)到450拖爾(Torr),用於常壓化學汽相沈積法( APCVD)之約760拖爾(Torr) ; (2)射頻功率(僅電漿 反應須使用),此係利用13.56百萬赫(MHz)之射頻’ 以600瓦至900瓦之功率;(3)適當之基底20溫度’在熱 83. 3.10,000 1^^1. ^^^1 n^i I^J^i - -I I n a I (請先閲讀背面之注意事項再填寫本頁) 線 本紙張尺度適用中國國家榇準(CNS ) Α4規格(210Χ297公釐) A7 404017 _____ B7___ 五、發明説明(12 ) 化學汽相沈積法中約攝氏350到550度及在電漿增強式化 學汽相沈積法(PECVD)約攝氏350到450度;(4) 180 到280密爾(千分之一吋)之晶座間隔;(5)化學汽相沈 積法(CVD)適用之四乙基正矽酸鹽(TEOS)濃度及流 量控制(即,用於電漿增強式化學汽相沈積法(PECVD )中,每分鐘約700到約1200毫克之流量,用於低壓化 學汽相沈積法(LPCVD)中,每分鐘約350到約600毫 克之流量及用於次常壓化學汽相沈積法(SACVD)或用 於常壓化學汽相沈積法(APCVD)中之每分鐘約200到 約400毫克之流量);(6)氧化劑氧氣或臭氧的流量控制 ,如化學汽相沈積法(CVD)專用之每分鐘約400到 8000立方公分(標準狀態下)之流量(seem)。及(7) 化學汽相沈積法中背景氣體(載流氣體)之氦氣其流量之 控制,(即,用於電漿增強式化學汽相沈積法(PECVD )中,約每分鐘1000立方公分(標準狀態下)(seem) 之流量,用於低壓化學汽相沈積法(LPCVD)中’約每 分鐘1000到約1400立方公分(標準狀態下)(seem) 之流量及用於次常壓化學汽相沈積法(SACVD)中之約 每分鐘3500到約4500立方公分(標準狀態下)(seem )之流量)。較佳此氧化矽介電覆蓋層22生成之厚度約 在 4000 到 5000 埃(Angstroms)之間。 請參考第四圖,此剖面圖顯示第三圖之基底於後續之 微電子製程之製造結果’相較於第三圖’其中之氧化矽介 電覆蓋層22已經由電漿24處理,而成爲電漿處理氧化矽 14 Γ ^ SpacilicalM^IIII Joc 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X297公釐) (請先聞讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局貝工消費合作社印装 經濟部中央標準局員工消費合作社印製 4040:17 $ 五、發明説明(13 ) 介電層22’。根據本發明第一較佳具體實施例,其中之電 漿24包含氧或氮較佳。更佳,電漿24係由氧及氮組成》 最佳,電漿24係由氧組成》 雖然將氧化矽介電覆蓋層22由第一次電漿24處理, 而轉化爲電漿處理氧化矽介電層22’之機構尙未十分淸楚 ’而此已確信可使後續程序中形成酒杯型蝕刻槽時,不會 因界定酒杯型蝕刻槽之蝕刻圖光阻層自氧化矽介電層上部 份剝離而導致過度蝕刻。由是第一電漿24可自覆蓋氧化 矽介電層22之表面移除雜質,或改變其表面以形成電漿 處氧化砂介電層22’,使得餓刻圖光阻層更易於與其表面 接合。 雖然在第三圖與第四圖中並未特別說明,然此氧化矽 < 介電覆蓋層22之第一電漿24處理最好與在基底上形成氧 化矽介電層20之過程在同一反應器中進行,或在鄰接之 反應器(意指不接觸到大氣環境)中進行。如此將可提供 較佳之製造效率且可使在基底上形成氧化矽介電層20及 形成基底20上之電漿處理氧化矽介電層22’之進行更可 靠。 較佳,此第次電漿24處理係利用如下之條件:(1)約 7到約11拖爾(Torr)之反應器壓力;(2)使用頻率 13.56百萬赫(MHz)、功率約600瓦到約800瓦之射頻 功率;(3)由攝氏約350度到450度之基底溫度;(4)由 約180到280密爾(千分之一吋)之晶座間隔;(5)每分 鐘約400到600立方公分(標準狀態下)(seem)之氧 本紙張尺度通用中國國家標準(CNS ) A4規格(210X297公釐) 裝— (請先閲讀背面之注意事項再填寫本頁) -5 線 404017 A7 B7 五、發明説明(14 氣流量控制或每分鐘約2000到3〇00立方公分(標準狀態 下)(seem)之氮氣流量控制;及(6)約3到10秒之第 —電漿24處理時間。 請參考圖五,此剖面圖顯示在第四圖中之處理程序後 ,於後續之微電子製造之結果。相較於第四圖,其中電漿 處理氧化矽介電覆蓋層22’上已形成整列之蝕刻圖光阻層 26a、26b及26c,形成該蝕刻圖光阻層之方法及所用之材 料爲微電子製造技藝中已知之技術,使用微電子製造之傳 統方式,在覆蓋之光阻層上蝕刻而形成蝕刻圖光阻層,該 覆蓋之光阻層所用之材料係選用一般之光阻材料,包括( 並非限定於)正光阻材料及負光阻材料。 本發明第一較佳具體實施例中,其整列之蝕刻圖光阻 層26a、26b及26c較佳係由正光阻材料形成,因在微電 子製造中,正光阻材料所形成之蝕刻圖光阻層通常會有較 增強之平面穩定性,然其他材料亦可形成此整列之蝕刻圖 光阻層26a、26b及26c。較佳,在電漿處理氧化矽介電 層22’上形成之蝕刻圖光阻層26a、26b及26c,其較佳之 厚度係控制在約8000到10000埃(Angstroms)之間,以 界定一對寬度W1介於約0.45到0.65微米之孔,而藉其 間之一寬度W2介於約0.3到0.2微米之光阻層片隔開, 如第五圖所示。 在第五圖所示爲電漿處理氧化矽介電覆蓋層22’經過局 部等向性蝕刻後,形成局部等向性蝕刻之電漿處理氧化矽 介電覆蓋層22”'之結果。當將電漿處理氧化矽介電覆蓋層 本紙張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) 麵 ---------—^--------IT------.^ (請先閲讀背面之注意事項#,填寫本頁) 經濟部中央標準局員工消費合作社印裝 4〇4〇^γ Α7 經濟部中央標隼局貝工消费合作社印製 Β7 五、發明説明(15 ) 22’經局部等向性蝕刻步驟而形成局部等向性蝕刻之電獎 處理氧化矽介電覆蓋層22,,,之過程中’係利用傳統微電子 製造中採用之等向性蝕刻劑。此等向性蝕刻劑係包含(然 非限定於)濕式化學等向性蝕刻法使用之氫氟酸餓刻劑和 在高於原反應器壓力350微拖爾(mTon:)之壓力下進行 之乾式電漿等向性蝕刻法使用之含氟蝕刻劑。在本發明第 一較佳具體實施例中,該等向性蝕刻劑使用一傳統微電子 製造中採用之緩衝氧化蝕刻劑(BOE),其係由水性氣化 銨水性氫氟酸組成。如第五圖所示,在該局部等向性飩刻 之電漿處理氧化矽介電層22’上會形成一對碗形之孔。一 般狀況下,在局部等向性蝕刻之電漿處理氧化矽介電層 22’上之孔,其(橫截面上之)水平對垂直蝕刻速率之比 値其約爲不大於1.8之値,更佳爲1:1到1.4:1之比値。 請參·考圖六,此剖面圖所示爲第五圖之處理程序後’ 後續之微電子中之製造結果。相較於第五圖,在局部等向 性蝕刻之電漿處理氧化矽介電層22’上形成之一對碗形的 之孔,其已被完全蝕刻直達基底而形成一對酒杯型蝕刻槽 29a及29b,此亦使得有蝕刻圖之電漿處理氧化矽介電層 22a、22b及22c同時形成。該對酒杯型蝕刻槽29a及29b 是藉由在局部等向性蝕刻之電漿處理氧化矽介電層22’上 ,利用其塗佈之蝕刻圖光阻層26a、26b及26c爲蝕刻遮 罩’經第二電漿28處理而形成。在本發明第一較佳具體 實施例中,此第二電漿28處理係使用典型且較佳之等向 性反應性離子蝕刻法(RIE),而其主要係利用含氟之蝕 ('ΛϋΜΐι'ΙΚ ISwiii Spccilk*ii〇««t IM Joe 1 *7 本紙張尺度逋用中國國家棣牟(CNS ) M規格(210X297公嫠) 404017 A7 經濟部中央標準局員工消費合作社印裝 __B7_ 五、發明説明(16 ) 刻劑氣體爲其電漿成份。 如第六圖之剖面圖所示,該對酒杯型蝕刻槽29a及29b 並未形成因整列之触刻圖光阻層26a、26b及26c自有蝕 刻圖之電漿處理氧化矽介電層22a、22b及22c上剝離而 產生之過度蝕刻。由於該對酒杯型蝕刻槽29a及29b沒有 形成因整列之蝕刻圖光阻層26a、26b及26c自有蝕刻圖 之電漿處理氧化矽介電層22a、22b及22c上剝離而產生 之過度蝕刻,使得在該對酒杯型蝕刻槽29a及29b上所生 成之一對酒杯型導體接觸與級導體內連線層,可在形成時 具有較佳之平面穩定度,從而增強其機能及並增進可靠度 〇 第二較佳具體實施例 請參考第七圖至第十一圖,其揭示一系列的剖面圖,(麵 用以說明本發明之一更特殊應用之較佳實施例。其係在積 體電路製造中進行各步驟之結果,其包含本發明之第二較 佳具體實施例中在內金屬介電層(IMD)上形成之一對無 過度蝕刻之酒杯型蝕刻槽。第七圖所示爲積體電路製造中 ,一早期製造步驟的橫截面圖示。 第七圖中所示爲一半導體基底30表面及內部形成一對 隔離區,其係用以分隔半導體基底30上各作用區。雖然 在已知之積體電路製造中採用之半導體基底可有N型及P 型之摻雜,不同之摻雜濃度及數種不同之結晶方向。在此 本發明之第二較佳具體實施例中,其所採用之半導體基底 3〇係採用(100)方向結晶之N型或P型矽半導體基底。 UitJa l'K Γμ«·Ι SfMctikatioaAi ih Jo,.· J ^ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項—填寫本頁) -裝· *^τ 線 404017 經濟部中央標準局員工消费合作社印製 A7 B7_ 五、發明説明(17 ) 同樣的,已知之積體電路製造中,用已分隔半導體基底上 各作用區之隔離區可形成於半導體基底之上或內部或同時 存在,而其形成方式包含(而非限制於)隔離區熱成長法 及隔離區沈積/成紋(deposition/patterning)法。於本發 明之第二較佳具體實施例中,此隔離區32a及32b較佳採 用隔離區熱成長法,在半導體基底30表面及內部生成氧 化矽之隔離區32a及32b,以分隔半導體基底30上各作 用區。 第七圖亦揭示在半導體基底30之作用區之表面及內部 形成一系列之結構,其係用以形成場效電晶體(FET)。 該一系列之結構包括:(1) 一在半導體基底30之作用區 形成之閘極介電層34; (2)形成及排列於閘極介電層34 上之閘極電極36 ;及(3)在半導體基底30之作用區內, 於其上未被閘極介電層34及閘極電極36覆蓋之部份形成 一對源極/汲極區38a及38b。在傳統之積體電路製造領 域之場效電晶體(FET)製造中之方法及材料皆可用於前 述之場效電晶體(FET)的每一結構之形成過程。氧化矽 閘極介電層34之形成,其典型較佳之選擇(然並不排除 其他)爲使用加熱氧化法在半導體基底30之作用區上形 成厚度約在80到140埃之氧化矽閘極介電層34,而形成 及排列於閘極介電層34上之閘極電極36,其典型較佳者 (然並不排除其他)爲採用厚度約在1500到2500埃之已 慘雜複晶砂或複晶砂化金屬(doped polysilicon/metal siliside)爲閘極電極材料。最後’在形成半導體基底30 <·: UmI· lit 1 9 ^纸張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) 'Torr) to 450 Torr, about 760 Torr for atmospheric pressure chemical vapor deposition (APCVD); (2) RF power (only required for plasma reaction), this uses 13.56 hundred Radio frequency in megahertz (MHz) with power of 600 watts to 900 watts; (3) appropriate substrate 20 temperature 'in heat 83. 3.10,000 1 ^^ 1. ^^^ 1 n ^ i I ^ J ^ i --II na I (Please read the precautions on the back before filling this page) The size of the paper is applicable to China National Standard (CNS) A4 specification (210 × 297 mm) A7 404017 _____ B7___ V. Description of the invention (12) About 350 to 550 degrees Celsius in phase deposition and about 350 to 450 degrees Celsius in plasma enhanced chemical vapor deposition (PECVD); (4) 180 to 280 mils (thousandths of an inch) (5) TEOS concentration and flow control for chemical vapor deposition (CVD) (ie, used in plasma enhanced chemical vapor deposition (PECVD)) Flow rate of 700 to about 1200 mg for low pressure chemical vapor deposition (LPCVD) flow rate of about 350 to about 600 mg per minute and for sub-atmospheric pressure chemical vapor deposition Method (SACVD) or for atmospheric pressure chemical vapor deposition (APCVD) flow rate of about 200 to about 400 mg per minute); (6) oxidant oxygen or ozone flow control, such as chemical vapor deposition method (CVD ) Dedicated flow (seem) of about 400 to 8000 cubic centimeters per minute (under standard conditions). And (7) the control of the flow rate of helium in the background gas (carrier gas) in the chemical vapor deposition method (ie, used in the plasma enhanced chemical vapor deposition method (PECVD), about 1000 cubic centimeters per minute) (Under standard conditions) (seem) flow rate, used in low pressure chemical vapor deposition (LPCVD) flow rate of about 1000 to about 1,400 cubic centimeters per minute (under standard conditions) (seem) and for sub-atmospheric pressure chemistry Flow rate of about 3,500 to about 4,500 cubic centimeters per minute (under standard conditions) in vapor deposition (SACVD). Preferably, the silicon oxide dielectric cover layer 22 is formed to a thickness of about 4,000 to 5,000 Angstroms (Angstroms). Please refer to the fourth figure. This cross-sectional view shows the manufacturing results of the substrate of the third figure in the subsequent microelectronic process. 'Compared to the third figure'. The silicon oxide dielectric cover layer 22 has been processed by the plasma 24 and becomes Plasma-treated silicon oxide 14 Γ ^ SpacilicalM ^ IIII Joc This paper is sized for China National Standard (CNS) A4 (210 X297 mm) (please read the precautions on the back before filling out this page) Printed by the Bureau of Standards, Consumer Cooperatives of the Ministry of Economic Affairs. Printed by the Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 4040: 17 $ 5. Description of Invention (13) Dielectric layer 22 '. According to a first preferred embodiment of the present invention, it is preferable that the plasma 24 contains oxygen or nitrogen. More preferably, plasma 24 is composed of oxygen and nitrogen. "Best, plasma 24 is composed of oxygen." Although the silicon oxide dielectric coating 22 is treated by the first plasma 24, it is converted to plasma-treated silicon oxide. The mechanism of the dielectric layer 22 is not very clear, and it is believed that when the wine glass type etching groove is formed in the subsequent process, the photoresist layer is not formed on the silicon oxide dielectric layer due to the etching pattern defining the wine glass type etching groove. Partial peeling leads to excessive etching. Because the first plasma 24 can remove impurities from the surface covering the silicon oxide dielectric layer 22, or change its surface to form a oxidized sand dielectric layer 22 'at the plasma, the photoresist layer can be more easily patterned with its surface. Join. Although not specifically illustrated in the third and fourth figures, the first plasma 24 treatment of the silicon oxide < dielectric coating 22 is preferably the same as the process of forming the silicon oxide dielectric layer 20 on the substrate It is carried out in a reactor, or in an adjacent reactor (meaning not exposed to the atmosphere). This will provide better manufacturing efficiency and make the formation of the silicon oxide dielectric layer 20 on the substrate and the plasma-treated silicon oxide dielectric layer 22 'on the substrate 20 more reliable. Preferably, the first plasma 24 treatment uses the following conditions: (1) a reactor pressure of about 7 to about 11 Torr; (2) a use frequency of 13.56 million hertz (MHz) and a power of about 600 Watts to about 800 watts of RF power; (3) substrate temperature from about 350 degrees to 450 degrees Celsius; (4) crystal block spacing from about 180 to 280 mils (thousandths of an inch); (5) per About 400 to 600 cubic centimeters per minute (under standard conditions) (seem) of oxygen This paper size is common Chinese National Standard (CNS) A4 specification (210X297 mm) Packing-(Please read the precautions on the back before filling this page)- 5 Line 404017 A7 B7 V. Description of the invention (14 Air flow control or nitrogen flow control of about 2000 to 3,000 cubic centimeters per minute (under standard conditions) (seem); and (6) About 3 to 10 seconds Plasma 24 processing time. Please refer to Figure 5. This cross-sectional view shows the results of subsequent microelectronics manufacturing after the processing procedure in Figure 4. Compared to the fourth figure, the plasma treatment of the silicon oxide dielectric cover An entire array of etched photoresist layers 26a, 26b, and 26c have been formed on layer 22 'to form the etched photoresist layer. The method and the materials used are known in microelectronics manufacturing technology. The traditional method of microelectronics manufacturing is used to etch on the overlying photoresist layer to form an etching pattern photoresist layer. The material used for the overlay photoresist layer is selected. General photoresist materials include (but are not limited to) positive photoresist materials and negative photoresist materials. In the first preferred embodiment of the present invention, the entire array of etched photoresist layers 26a, 26b, and 26c are preferably made of positive light. Resistive material is formed, because in the microelectronic manufacturing, the etched photoresist layer formed by the positive photoresist material usually has enhanced planar stability, but other materials can form the entire etched pattern photoresist layer 26a, 26b and 26c. Preferably, the etched photoresist layers 26a, 26b, and 26c formed on the plasma-treated silicon oxide dielectric layer 22 'have a preferred thickness controlled between about 8000 and 10,000 Angstroms to define A pair of holes having a width W1 between about 0.45 and 0.65 microns, and separated by a photoresist layer having a width W2 between about 0.3 and 0.2 microns, as shown in the fifth figure. Plasma-treated silicon oxide dielectric coating 22 'After the local isotropic etching, a plasma treated silicon oxide dielectric coating 22' of local isotropic etching is formed. When the plasma treated silicon oxide dielectric coating is used, the paper size applies Chinese national standards (CMS) A4 specification (210X297mm) Surface ------------- ^ -------- IT ------. ^ (Please read the note # on the back first, fill in (This page) Printed by the Consumers 'Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 4040 ^ γ Α7 Printed by the Central Standards Bureau of the Ministry of Economics, printed by the Shellfish Consumer Cooperatives B7 V. Description of the invention (15) 22' after partial isotropic etching step The process of forming the electrically-treated silicon oxide dielectric coating 22, which is locally isotropically etched, uses an isotropic etchant used in traditional microelectronics manufacturing. This isotropic etchant includes (but is not limited to) a hydrofluoric acid based etchant used in wet chemical isotropic etching and is performed at a pressure of 350 microtorr (mTon :) above the original reactor pressure. Fluorinated etchant for dry plasma isotropic etching. In the first preferred embodiment of the present invention, the isotropic etchant uses a buffered oxide etchant (BOE) used in traditional microelectronics manufacturing, which is composed of aqueous gasification ammonium aqueous hydrofluoric acid. As shown in the fifth figure, a pair of bowl-shaped holes are formed in the locally-isotropically etched plasma-treated silicon oxide dielectric layer 22 '. In general, the ratio of the horizontal (vertical cross-section) to the vertical etch rate of the holes in the silicon oxide dielectric layer 22 'treated with the plasma isotropically etched plasma is approximately not more than 1.8, and more The ratio is preferably 1: 1 to 1.4: 1. Please refer to Figure 6. This cross-sectional view shows the manufacturing results of the subsequent microelectronics after the processing procedure of Figure 5. Compared to the fifth figure, a pair of bowl-shaped holes are formed in the plasma-treated silicon oxide dielectric layer 22 'with local isotropic etching, which have been completely etched to the substrate to form a pair of wine glass-shaped etching grooves. 29a and 29b, which also enables the plasma-treated silicon oxide dielectric layers 22a, 22b, and 22c with an etching pattern to be formed simultaneously. The pair of wine glass-shaped etching grooves 29a and 29b are formed by plasma treatment of a silicon oxide dielectric layer 22 'on a locally isotropic etching, and the photoresist layers 26a, 26b, and 26c coated with the etching mask are used as an etching mask. 'Formed by the second plasma 28 treatment. In the first preferred embodiment of the present invention, the second plasma 28 treatment uses a typical and better isotropic reactive ion etching (RIE) method, and it mainly uses a fluorine-containing etching ('ΛϋΜΐι' ΙΚ ISwiii Spccilk * ii〇 «« t IM Joe 1 * 7 This paper size is in accordance with China National Standards (CNS) M specifications (210X297) 嫠 404017 A7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs Explanation (16) The etchant gas is the plasma component. As shown in the cross-sectional view of the sixth figure, the pair of wine glass-shaped etching grooves 29a and 29b do not form photoresist layers 26a, 26b, and 26c due to the entire line of etching patterns Excessive etching due to peeling off of the plasma-treated silicon oxide dielectric layers 22a, 22b, and 22c with an etching pattern. Because the pair of wine glass-shaped etching grooves 29a and 29b do not form photoresist layers 26a, 26b, and 26c due to the entire etching pattern Excessive etching caused by the peeling of the plasma-treated silicon oxide dielectric layers 22a, 22b, and 22c with an etching pattern, which makes a pair of wineglass-type conductors on the pair of wineglass-type etching grooves 29a and 29b contact and level conductive Interbody wiring layer, which can have better Surface stability, thereby enhancing its function and reliability. For the second preferred embodiment, please refer to FIGS. 7 to 11, which reveal a series of cross-sectional views. A preferred embodiment for special applications. It is the result of various steps in the fabrication of integrated circuits, which includes a pair of non-metallic dielectric layers (IMDs) formed in the second preferred embodiment of the present invention. Over-etched wineglass-shaped etching groove. The seventh figure shows a cross-sectional view of an early manufacturing step in the fabrication of integrated circuits. The seventh figure shows a pair of isolation areas formed on the surface and inside of a semiconductor substrate 30, It is used to separate the active regions on the semiconductor substrate 30. Although the semiconductor substrates used in the fabrication of known integrated circuits may have N-type and P-type doping, different doping concentrations and several different crystallization directions. In this second preferred embodiment of the present invention, the semiconductor substrate 30 used is an N-type or P-type silicon semiconductor substrate crystallized in the (100) direction. UitJa l'K Γμ «·· SfMctikatioaAi ih Jo , .. J ^ Paper Zhang scale is applicable to China National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back-fill out this page first)-Installed * * τ 404017 Printed by A7 B7_ 5 (17) In the same way, in the manufacture of known integrated circuits, an isolation region that separates each active region on a semiconductor substrate can be formed on or inside the semiconductor substrate or coexist, and the formation method includes (instead of Limited to) thermal isolation method and deposition / patterning method. In the second preferred embodiment of the present invention, the isolation regions 32a and 32b preferably adopt an isolation region thermal growth method to generate isolation regions 32a and 32b of silicon oxide on the surface and inside of the semiconductor substrate 30 to separate the semiconductor substrate 30. On each action zone. The seventh figure also reveals that a series of structures are formed on the surface and inside of the active region of the semiconductor substrate 30, which are used to form a field effect transistor (FET). The series of structures includes: (1) a gate dielectric layer 34 formed in the active region of the semiconductor substrate 30; (2) a gate electrode 36 formed and arranged on the gate dielectric layer 34; and (3) In the active region of the semiconductor substrate 30, a pair of source / drain regions 38a and 38b are formed on a portion of the semiconductor substrate 30 that is not covered by the gate dielectric layer 34 and the gate electrode 36. The methods and materials used in the field-effect transistor (FET) manufacturing in the field of traditional integrated circuit manufacturing can be used in the formation of each structure of the field-effect transistor (FET) described above. The formation of the silicon oxide gate dielectric layer 34 is typically better (but not excluded) by using a thermal oxidation method to form a silicon oxide gate dielectric having a thickness of about 80 to 140 angstroms on the active region of the semiconductor substrate 30. Electrical layer 34, and the gate electrode 36 formed and arranged on the gate dielectric layer 34 is typically better (but not excluded) by using a miscellaneous complex crystal sand having a thickness of about 1500 to 2500 angstroms. Or doped polysilicon / metal siliside is used as the gate electrode material. Finally ‘form the semiconductor substrate 30 < ·: UmI · lit 1 9 ^ Paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) '

404017 A7 B7 五、發明説明( 之作用區內之源極/汲極區38a及38b上,其典型較佳者 爲藉離子束密度約在每立方公分1E13到1E16個離子, 而佈植能量約在35到50千電子伏特(keV)之離子佈植 法,並利用閘極介電層34及閘極電極36做爲遮罩而形成 經濟部中央標準局負工消費合作社印製 再參考第七圖,其亦顯示在一包含有形成場效電晶體 結構之半導體基底30之上所形成爲一平坦化前金屬介電 層40 (PMD),而平坦化前金屬介電層(PMD)之成長 ,在已知之積體電路製造中有多種方法和材料可供採用。 在積體電路製造中,平坦化前金屬介電層(PMD)之成 長方法係包含(而非限定)化學汽相沈積法(CVD)、 電漿增強式化學汽相沈積法(PECVD)和實體蒸汽沈積 (Physical Vapor Deposition_PVD)濺鏟法,而藉此等方 法形成之平坦化前金屬介電層(PMD)中之介電材料係 包含(而非限定)氧化矽介電材料、氮化矽介電材料及氮 氧化矽介電材料。在本發明之第二較佳具體實施例中,該 平坦化前金屬介電層(PMD) 40係選用較佳之氧氮化矽 材料,藉由電漿增強式化學汽相沈積法(PECVD)形成 ,此過程與在第三圖中所示之在基底上藉由電漿增強式化 學汽相沈積法(PECVD)於較高位置上形成一層氧化矽 介電層2 2相似。此平坦化前金屬介電層(PMD) 40形 成之厚度較佳係之約9000到12000埃之間。 請再參照第七圖,其亦揭示在位於該平坦化前金屬介 電層(PMD) 40上方形成之一對圖案化(patterned)第404017 A7 B7 V. Description of the invention On the source / drain regions 38a and 38b in the active region, the typical preferred one is that the ion beam density is about 1E13 to 1E16 ions per cubic centimeter, and the implantation energy is about In the ion implantation method of 35 to 50 kiloelectron volts (keV), the gate dielectric layer 34 and the gate electrode 36 are used as a mask to form the printed work of the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives. It also shows the growth of a metal dielectric layer 40 (PMD) before planarization formed on a semiconductor substrate 30 including a field effect transistor structure, and the growth of the metal dielectric layer (PMD) before planarization. There are a variety of methods and materials available in known integrated circuit manufacturing. In integrated circuit manufacturing, the growth method of metal dielectric layer (PMD) before planarization includes (but is not limited to) chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), and physical vapor deposition (Physical Vapor Deposition_PVD) sputtering method, and the dielectric in the metal dielectric layer (PMD) before planarization formed by these methods Materials include, but are not limited to, silicon oxide Dielectric materials, silicon nitride dielectric materials, and silicon oxynitride dielectric materials. In a second preferred embodiment of the present invention, the pre-planarized metal dielectric layer (PMD) 40 is a preferred oxynitride. Silicon material is formed by plasma enhanced chemical vapor deposition (PECVD). This process is similar to that shown in the third figure on the substrate by plasma enhanced chemical vapor deposition (PECVD). A silicon oxide dielectric layer 22 is formed at the location similarly. The thickness of the metal dielectric layer (PMD) 40 formed before the planarization is preferably between about 9000 and 12000 angstroms. Please refer to the seventh figure again, which also reveals A pair of patterned caps are formed over the pre-planarized metal dielectric layer (PMD) 40.

----------装-- (請先閲讀背面之注意事項再填寫本頁) 訂 線 20 本紙張尺度逋用中國國家棣準(CNS ) Α4規格(210Χ297公釐) 404017 ΑΊ Β7 五、發明説明() 一導體層42a及42b °在已知之積體電路製造領域之微[電 子積體電路製造中,圖案化導體層可有多種方法及材料選 用以形成。圖案化導體層之形成,在傳統之積體電路製造 領域之典型方法爲藉由將覆蓋導體層圖案化(Patterning )而形成,而該覆蓋導體層可選用各種金屬、合金、摻雜 之複晶矽及複晶矽化金屬爲材料而形成。在本發明之第二 較佳具體實施例中,該平坦化前金屬介電層(PMD) 4〇 上方形成之圖案化第一導體層42a及42b,較佳係採用在 傳統技術中,以至少部份含鋁金屬之材料將覆蓋導體層圖 案化之方法,如同在一般在積體電路製造中所熟知者。典 型較佳之狀況爲,該第一導體層42a及42b其形成厚度約 在4500到8000埃之間,寬度約在0.3到3微米之間而分 隔片約在0.3到3微米之間。 最後在第七圖中,亦顯示一系列之三層覆蓋介電層, 其係形成於平坦化前金屬介電層(PMD) 40及一對圖案 化第一導體層42a及42b之上。該系列之三層覆蓋介電層 包括:(1)—覆蓋第一內金屬介電層(IMD) 43,其係形 成於平坦化前金屬介電層(PMD) 40及一對圖案化第一 導體層42a及42b之上;(2) —覆蓋第一間隙塡充內金屬 介電層(IMD) 44,其係形成於覆蓋第一內金屬介電層( IMD) 43之上;及(3) 一覆蓋第—平面化內金屬介電層( IMD) 45 ’其係形成於覆蓋第一間隙塡充內金屬介電層( IMD) 44之上。雖然在傳統之積體電路製造領域中,前 述之三層介電層中任一層之形成過程,其選用之方法及材 本紙張尺度適财關家橾準(CNS ) ( 2iQx297公庚)---------- Installation-(Please read the precautions on the back before filling in this page) Binding line 20 This paper size uses China National Standard (CNS) Α4 size (210 × 297 mm) 404017 ΑΊ Β7 V. Description of the invention (1) A conductor layer 42a and 42b ° In the field of known integrated circuit manufacturing [electronic integrated circuit manufacturing, a patterned conductive layer can be formed by a variety of methods and materials. The formation of a patterned conductor layer is a typical method in the traditional integrated circuit manufacturing field by patterning a cover conductor layer, and the cover conductor layer can be selected from various metals, alloys, and doped complex crystals. Silicon and polycrystalline silicon silicide are used as materials. In a second preferred embodiment of the present invention, the patterned first conductor layers 42a and 42b formed above the planarized metal dielectric layer (PMD) 40 are preferably used in the conventional technology to at least The method of patterning the conductive layer by covering some aluminum-containing materials is well known in general in the manufacture of integrated circuits. Typically, the first conductor layers 42a and 42b are formed to have a thickness of about 4500 to 8000 angstroms, a width of about 0.3 to 3 micrometers, and a separator of about 0.3 to 3 micrometers. Finally, in the seventh figure, a series of three overlying dielectric layers are also shown, which are formed on the pre-planarized metal dielectric layer (PMD) 40 and a pair of patterned first conductor layers 42a and 42b. The three covering dielectric layers of this series include: (1)-covering the first inner metal dielectric layer (IMD) 43, which is formed before the planarization of the metal dielectric layer (PMD) 40 and a pair of patterned first On the conductor layers 42a and 42b; (2)-covering the first interstitial charge inner metal dielectric layer (IMD) 44 formed on the first inner metal dielectric layer (IMD) 43; and (3) ) A covering first-planar inner metal dielectric layer (IMD) 45 ′ is formed on the first gap filling inner metal dielectric layer (IMD) 44. Although in the field of traditional integrated circuit manufacturing, the formation process of any of the three dielectric layers described above, the methods and materials used in this paper are suitable for financial standards (CNS) (2iQx297)

n I I I ^ I I I I n I— ^ I 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 經濟部中央樣準局貝工消費合作社印装 404017 A7 __ B7 五、發明説明(20 ) 料可有多種方式,而形成該覆蓋第一內金屬介電層(IMD )43較佳之選擇係爲與形成平坦化前金屬介電層(pMD )40所採用的較佳方法與材料相似或相同,而可得到預 期之非平面化的覆蓋第一內金屬介電層(IMD) 43。而此 覆蓋第一內金屬介電層(IMD) 43之較佳形成厚度爲約 4000到5000埃之間。 同樣地,在傳統之積體電路製造領域中,間隙塡充介 電層之形成其選用之方法及材料可有多種方式,其包含( 而非限定)旋轉式玻璃塗蓋法(SOG)及定高壓臭氧輔助 熱化學汽相沈積法(CVD),而藉此等方法形成之間隙-塡充介電層中之介電材料係包含(而非限定)矽氧烷旋轉 式玻璃(SOG)介電材料、矽酸鹽旋轉式玻璃(s〇G)介^^ 電材料及氧化矽介電材料,而在本發明之第二較佳具體實 施例中’該覆蓋第一間隙塡充內金屬介電層(IMD) 44 係選用較佳之矽氧烷旋轉式玻璃(SOG)介電材料,藉由 旋轉式玻璃(S0G)塗蓋法形成,如一般傳統之積體電路 製作技術習用者。此第一間隙塡充內金屬介電層(IMD) 44形成之較佳厚度係在約6000到8000埃之間。 最後,在本發明之第二較佳具體實施例中,該覆蓋第 —平面化內金屬介電層(IMD) 45係選用氧化矽介電材 料’藉由以四乙基正矽酸鹽(TEOS)作爲矽之源材料,n III ^ IIII n I— ^ Line I (Please read the notes on the back before filling out this page) Printed by the Employees' Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs Printed by the Central Bureau of Standards of the Ministry of Economic Affairs Printed by the Bayer Consumer Cooperatives 404017 A7 __ B7 5 2. Description of the Invention (20) There are many ways to form the material, and the preferred choice for forming the first inner metal dielectric layer (IMD) 43 is the same as that used to form the metal dielectric layer (pMD) 40 before planarization. The method is similar or the same as that of the material, and a desired non-planar covering of the first inner metal dielectric layer (IMD) 43 is obtained. The thickness of the first inner metal dielectric layer (IMD) 43 is preferably about 4000 to 5000 angstroms. Similarly, in the field of traditional integrated circuit manufacturing, there are many ways to choose the method and materials for forming the gap-filled dielectric layer, including (but not limited to) the spin-on-glass coating method (SOG) and fixing. High-pressure ozone-assisted thermochemical vapor deposition (CVD), and the gaps formed by these methods-the dielectric material in the tritium-charged dielectric layer includes (but is not limited to) siloxane spin-on-glass (SOG) dielectric Materials, silicate spin-on-glass (s0G) dielectric materials, and silicon oxide dielectric materials, and in the second preferred embodiment of the present invention, 'the covering first gap is filled with a metal dielectric. The layer (IMD) 44 is formed by using a better siloxane rotating glass (SOG) dielectric material, and is formed by a rotating glass (S0G) coating method, as is commonly used by conventional integrated circuit manufacturing techniques. The preferred thickness of the first interstitial-filled metal dielectric layer (IMD) 44 is between about 6000 and 8000 angstroms. Finally, in the second preferred embodiment of the present invention, the covering first planarized inner metal dielectric layer (IMD) 45 is a silicon oxide dielectric material selected by using tetraethyl orthosilicate (TEOS ) As the source of silicon,

而使用化學汽相沈積法形成,其至少與第三圖之本發明第 一實施例中,形成之覆蓋氧化矽介電層22之暴露部位所 藉以使用之化學汽相沈積法並以四乙基正矽酸鹽(TEOS 本紙張尺度適用中國國家揉準(CNS > Α4規格(210X297公釐) ---------—裝— (請先聞讀背面之注意ί項再填寫本頁) 訂 404017 五、發明説明f1 ) )作爲砂之源材料相同或相似。職覆雜—平面化內金 屬介電層(IMD) 45之形成,係形成爲較佳之約4〇〇〇到 5000 埃。 現在請參考第八圖,此剖面圖顯示在第七圖中所示之 積體電路微電子結構於後續積體電路製造中之製造結果。 第八圖中之積體電路微電子結構剖面圖,在其他方面均與 第七圖中所示之積體電路微電子結__關同,但其 中之覆蓋第一平面化內金屬介電層(IMD) 45已經由第 —電漿46處理,而成爲覆蓋電漿處理化第—平面=內金 屬介(励)45’。在本發明之第二較佳具體實施例 ^ ’該第-Μ 46所㈣之雛方法、材_條件與顯 示於第四圖、本發明之第一實施例中,形成之第—電勝 24所使用之方法、材料和條件近似或相同。’ 一 現在請參考第九圖,此剖面圖顯示在第Λ圖中所示之 積體電路微電子結構後續積體電路製造中之製造結果,第 九圖中之積體電路微電子結構剖面圖,在宜 八圖中所示之積體電路微電子結軸面圖=面= 經濟部中央標準局員工消费合作杜印製 :(1)在該覆蓋電漿處理化第一平面化內金屬介電層( _) 45’上’已形成整列之餓刻圖第〜光阻層偷、樣 和48c;以及⑵該覆蓋電漿處理化第—平面化內金屬介 電層45’已被等向性蝕刻爲局部等向性蝕刻覆蓋 電漿處理化第一平面化內金屬介電層(IMD) 45,,而形 成一對酒杯形孔位。 在本發明之第二較佳具體實施例中,該整列之餓姻 衣紙張尺度適用中國國冬標準(CNS ) A4規格(2iQX 297公董) 404017 a? B7 五、發明説明f2 ) 經濟部中央標準局員工消費合作社印裝 第一光阻層48a、48b和48c之形成,其所使用之方法、 材料和尺寸大小與顯示於第五圖、本發明之第一實施例中 ,形成之整列蝕刻圖光阻層26a、26b和26c所使用之方 法、材料和尺寸大小近似或相同。與本發明之第一較佳實 施例類似,經由在第八圖中所顯示的覆蓋電漿處理化第一 平面化內金屬介電層(IMD) 45’所形成之局部等向性蝕 刻覆蓋電漿處理化第一平面化內金屬介電層(IMD) 45” ,其所使用之方法和材料與經由在第四圖中所顯示的覆蓋 電漿處理化氧化矽介電層22’所形成之局部等向性蝕刻覆 蓋電漿處理化氧化矽介電層22”所使用之方法和材料近似 或相同。 如第九圖所示,爲本發明之第二較佳具體實施例中, 該蝕覆蓋電漿處理化第一平面化內金屬介電層(IMD) 45’經局部等向性蝕刻處理而形成之局部等向性蝕刻覆蓋 電漿處理化第一平面化內金屬介電層(IMD) 45”,其蝕 刻並未深達覆蓋第一間隙塡充內金屬介電層(IMD) 44。 若將其蝕刻深達於覆蓋第一間隙塡充內金屬介電層(IMD )44 ’則該局部等向性蝕刻覆蓋電漿處理化第〜平面化內 金屬介電層(IMD) 45”,其碗形孔位之碗形輪廓將受到 損害。 請參考第十圖,此剖面圖顯示在第九圖中所示之積體 電路微電子結構後續於接下來之積體電路製造中之製造結 果。顯示於第十圖中之積體電路微電子結構剖面圖,在其 他方面均與第九圖中所示之積體電路微電子結構的剖面圖 % (#先閲讀背面之注意事項再填寫本頁) .装. 訂 線 本紙張尺度通用中國國家榡芈(CNS ) A4規格(210X297公釐) A7 404017 B7 五、發明説明P ) 相同,但其中局部等向性蝕刻覆蓋電漿處理化第一平面化 內金屬介電層(IMD) 45”上之碗形孔位已利用第二電漿 50將其完全蝕刻而形成一對酒杯型內連線蝕刻槽51a和 51b,而分別和圖案化第一導體層42a及42b相連通,而 此同時將:(1)使局部等向性蝕刻覆蓋電漿處理化第一平 面化內金屬介電層(IMD) 45”形成整列之圖案化電漿處 理化第一平面化內金屬介電層(IMD) 45a、45b及45c ; (2)使覆蓋第一間隙塡充內金屬介電層(IMD) 44形成整 列之圖案化覆蓋第一間隙塡充內金屬介電層(IMD) 44a 、44b及44c ;以及(3)使覆蓋第一內金屬介電層(IMD )43形成整列之圖案化第一內金屬介電層(IMD) 43a、 43b 及 43 c。 在本發明之第二較佳具體實施例中,該第二電漿50所 使用之較佳的方法、材料和條件與顯示於第六圖本發明第 一實施例中,形成之第二電漿28所使用之方法、材料和 條件近似或相同。 與本發明之第一較佳具體實施例相似,在第十圖中戶斤 顯示的一對酒杯型內連線蝕刻槽51a和51b,並未造成_ 整列之蝕刻圖第一光阻層48a、48b和48c自與其配合$ 圖案化電漿處理化第一平面化內金屬介電層(IMD) 45a 、45b及45c上部份剝離而產生之過度飩刻。 現請參考第十一圖,此剖面圖顯示在第十圖中所示$ 積體電路微電子結構後續積體電路製造中之製造結果,_ 示於第十一圖中之積體電路微電子結構剖面圖,在其他$ t'axal IR.itoc 25 本紙張尺度通用中國國家榡準(CNS ) A4規格(210X297公釐) ' ------------裝-- (請先閲讀背面之注意事項再填寫本頁)It is formed using a chemical vapor deposition method, which is at least the same as the chemical vapor deposition method used to cover the exposed portion of the silicon oxide dielectric layer 22 formed in the first embodiment of the third embodiment of the present invention. Orthosilicate (TEOS) This paper size is applicable to the Chinese national standard (CNS > Α4 size (210X297 mm) ---------— packing— (Please read the note on the back before filling in this item. Page) Order 404017 V. Description of the invention f1)) As the source of sand, the materials are the same or similar. Duplication—The formation of a planarized internal metal dielectric layer (IMD) 45 is preferably formed at about 4,000 to 5000 angstroms. Please refer now to the eighth figure. This cross-sectional view shows the manufacturing results of the integrated circuit microelectronic structure shown in the seventh figure in subsequent integrated circuit manufacturing. The cross-sectional view of the integrated circuit microelectronic structure in the eighth figure is similar to the integrated circuit microelectronic junction shown in the seventh figure in other respects, but it covers the first planarized metal dielectric layer (IMD) 45 has been processed by the first plasma 46, and it becomes the first plasma-covered plasma treatment of the first plane = inner metal medium (excitation) 45 '. In the second preferred embodiment of the present invention ^ 'the method, materials, conditions, and conditions shown in the fourth -M 46 are shown in the fourth figure, the first embodiment of the present invention, the first-electric win 24 The methods, materials, and conditions used are similar or the same. 'First, please refer to the ninth figure. This cross-sectional view shows the manufacturing results of the integrated circuit microelectronic structure in the subsequent integrated circuit manufacturing shown in FIG. Λ. The sectional view of the integrated circuit microelectronic structure in the ninth figure , The integrated circuit microelectronic junction axial plane diagram shown in Figure 8 = face = printed by the consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs, Du printed: (1) the first planarization of the metal substrate in the covering plasma treatment The electrical layer (_) 45 'has been formed in the entire row of the engraved pattern ~ photoresist layer stealing, sampling and 48c; and 覆盖 the covering plasma treatment of the first-planar metal dielectric layer 45' has been isotropic The isotropic etching is a local isotropic etching covering the first planarized metal dielectric layer (IMD) 45 by plasma treatment to form a pair of wine glass-shaped holes. In the second preferred embodiment of the present invention, the paper size of the entire row of hungry wedding dresses is applicable to the Chinese National Winter Standard (CNS) A4 specification (2iQX 297 public directors) 404017 a? B7 V. Description of the invention f2) The formation of the first photoresist layer 48a, 48b, and 48c printed by the Consumer Bureau of the Standards Bureau. The methods, materials, sizes, and dimensions are shown in the fifth figure and the first embodiment of the present invention. The methods, materials, and dimensions used in the photoresist layers 26a, 26b, and 26c are similar or the same. Similar to the first preferred embodiment of the present invention, the localized isotropic etching overlay formed by the first planarized inner metal dielectric layer (IMD) 45 'is processed by the overlay plasma treatment shown in the eighth figure. The first planarized inner metal dielectric layer (IMD) 45 "is plasma-treated. The method and materials used are the same as those formed by the plasma-treated silicon oxide dielectric layer 22 'shown in the fourth figure. The method and material used for the local isotropic etching to cover the plasma-treated silicon oxide dielectric layer 22 "is similar or the same. As shown in the ninth figure, in the second preferred embodiment of the present invention, the etch-cover plasma treatment is performed on the first planarized inner metal dielectric layer (IMD) 45 'through partial isotropic etching. The partial isotropic etching covers the plasma treatment of the first planarized inner metal dielectric layer (IMD) 45 ", and the etching does not reach the first interstitial filled inner metal dielectric layer (IMD) 44. If the The etching depth is up to covering the first interstitial charge inner metal dielectric layer (IMD) 44 ', then the local isotropic etching covers the plasma treatment to the first to planarized inner metal dielectric layer (IMD) 45 ", and its bowl The bowl-shaped contour of the hole shape will be damaged. Please refer to the tenth figure. This cross-sectional view shows the fabrication results of the integrated circuit microelectronic structure shown in the ninth figure in the subsequent integrated circuit manufacturing. The cross-sectional view of the integrated circuit microelectronic structure shown in the tenth figure is otherwise similar to the cross-sectional view of the integrated circuit microelectronic structure shown in the ninth figure. ). Binding. Binding paper size is common Chinese National Standard (CNS) A4 specification (210X297 mm) A7 404017 B7 V. Description of the invention P) Same, but the local isotropic etching covers the first plane of plasma treatment The bowl-shaped holes on the internal metal dielectric layer (IMD) 45 "have been completely etched with the second plasma 50 to form a pair of wine glass-shaped interconnect wiring etching grooves 51a and 51b, respectively, and patterned the first The conductor layers 42a and 42b communicate with each other, and at the same time: (1) Placing the local isotropic etching to cover the plasma treatment and forming the first planarized inner metal dielectric layer (IMD) 45 "into a patterned plasma treatment. The first planarized inner metal dielectric layer (IMD) 45a, 45b, and 45c; (2) A patterned pattern covering the first gap filled inner metal dielectric layer (IMD) 44 is formed to cover the first gap filled inner metal Dielectric layers (IMD) 44a, 44b, and 44c; and (3) covering the first internal gold Dielectric (IMD) 43 is formed of a first patterned aligned metal dielectric (IMD) 43a, 43b and 43 c. In the second preferred embodiment of the present invention, the preferred method, materials, and conditions used in the second plasma 50 are shown in the sixth embodiment of the second plasma. 28 The methods, materials and conditions used are similar or the same. Similar to the first preferred embodiment of the present invention, the pair of wine glass-type interconnecting etch grooves 51a and 51b shown in the tenth figure does not result in the first photoresist layer 48a, 48b and 48c are excessively engraved due to partial peeling on the first planarized inner metal dielectric layers (IMD) 45a, 45b, and 45c in combination with patterned plasma treatment. Please refer to the eleventh figure. This cross-sectional view shows the manufacturing results of the integrated circuit microelectronic structure shown in the tenth figure. _ The integrated circuit microelectronics shown in the eleventh figure Structural cross-section view, in other $ t'axal IR.itoc 25 This paper size is universal China National Standard (CNS) A4 specification (210X297 mm) '------------ install-(Please (Read the notes on the back before filling out this page)

ΤΨ · 、·'" 線 經濟部中央標準局員工消费合作社印製 404017 A7 A7 B7 經濟部中央標準局貝工消费合作社印製 五、發明説明f4 ) 面均與第十圖中所示之積體電路微電子結構的剖面圖相同 ,但其中:(1)蝕刻圖第一光阻層48a、48b和48c已經 由積體電路製造中之一步驟被去除;且(2)接著藉由塡充 對應之酒杯形蝕刻槽,形成一對圖案化第二導電層52a及 52b分別接觸至圖案化第~導體層42a及42b。在本發明 之第二較佳具體實施例中,在第十圖中所顯示之蝕刻圖第 一光阻層48a、48b和48c已經由積體電路製造中之一步 驟被去除,藉以提供形成一積體電路製造之部份剖面結構 ’如第^一圖中所示’而其所使用之方法,在傳統技術中 典型之採用(但不排除其他)方式係包括溼式化學去除法 及乾式氧原子電漿去除法。相同地,在本發明之第二較佳 具體實施例中’該触刻圖第一光阻層48a、48b和48c所 使用之較佳的方法、材料和尺寸大小與形成圖案化第一導 體層42a及42b所使用之方法、材料和尺寸大小近似或相 同。 經由利用酒杯形蝕刻槽之功能及其可靠性,其所形成 之圖案化第二導電層52a及52b無缺陷或雜質殘存於其間 ,且不會因餓刻圖第一光阻層48a ' 48b和48c由對應之 圖案化電獎處理化第一平面化內金屬介電層(IMD) 45a 、45b及45c上少許剝離而形成過度蝕刻。 實施例: 以四乙基正政酸鹽(TEOS)爲源材料,使用電獎增強 式化學汽相沈積法(PECVD) ’一系列之四塊半導體基 底之每一塊上形成一層氧化砂介電層。該電獎增強式化學ΤΨ, '' " Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 404017 A7 A7 B7 Printed by the Shell's Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the Invention f4) The cross-sectional view of the bulk circuit microelectronic structure is the same, but: (1) the first photoresist layers 48a, 48b, and 48c have been removed by one of the steps in the fabrication of the integrated circuit; Corresponding wineglass-shaped etching grooves form a pair of patterned second conductive layers 52a and 52b in contact with the patterned first conductive layers 42a and 42b, respectively. In a second preferred embodiment of the present invention, the first photoresist layers 48a, 48b, and 48c in the etched pattern shown in the tenth figure have been removed by one step in the fabrication of integrated circuits, thereby providing the formation of a A part of the cross-section structure of the integrated circuit manufacturing is shown in the figure ^ and the method used in the traditional technology is typically adopted (but not excluded) in other ways, including wet chemical removal and dry oxygen Atomic plasma removal. Similarly, in the second preferred embodiment of the present invention, the preferred method, material, and size of the first photoresist layers 48a, 48b, and 48c of the etched pattern and the patterned first conductive layer are formed. The methods, materials, and dimensions used in 42a and 42b are similar or the same. By utilizing the function and reliability of the wine glass-shaped etching groove, the patterned second conductive layers 52a and 52b formed there are no defects or impurities remaining therebetween, and the first photoresist layer 48a'48b and 48c is slightly over-etched by the corresponding patterned electrowinning treatment of the first planarized inner metal dielectric layers (IMD) 45a, 45b, and 45c. Example: Using TEOS as the source material, an electric award enhanced chemical vapor deposition method (PECVD) is used to form a layer of oxide sand dielectric on each of a series of four semiconductor substrates . The Electric Award Enhanced Chemistry

is ----------裝— - (請先閲讀背面之注意事項再填寫本頁) 訂 線 26 本纸張尺度適用中國國家標準(CNS ) A4規格(2丨0乂297公釐) 經濟部中央標準局貝工消费合作社印裝 404017 a? _:_B7___ 五、發明説明(25 ) 汽相沈積法(PECVD)係採用如下之條件:(1) 一反應器 壓力約9拖爾(Torr) ; (2) —頻率爲13.56 MHz,功率 約700瓦之射頻功率;(3) —半導體基底溫度約攝氏400 度;(4)—濃度約每立方米800毫克(mgm)之四乙基正 矽酸鹽(TE0S);及(5) —流量約每分鐘500立方公分 (標準狀態下)之氧氣做爲氧化劑。 於該四塊半導體基底,其中三塊之上所形成之氧化矽 介電層分別以如下條件之氧原子電漿處理或以氮原子電漿 處理:(1) 一反應器壓力約9拖爾(torr);及(2)—頻 率爲13.56MHz,功率約700瓦之射頻功率。 如此該氧化矽介電層將形成爲電漿處理化氧化矽介電 層。該氧原子電漿處理或氮原子電漿處理可採用不同之暴 露時間及不同之氧氣或氮氣流量。 在每一電漿處理化氧化矽介電層及另一塊未經此處理 之氧化矽介電層上,分別形成一層蝕刻圖光阻層,其係選 用 Sumitono Chemical Company 所提供之 PF158 正光阻劑 材料。各蝕刻圖光阻層係形成爲約8700埃之厚度,並於 其上有多個直徑約0.55微米之圓形孔位。每一圓形孔位 與其相鄰者相隔約〇.4微米: 在各電漿處理化氧化矽介電層及另一塊未經此處理之 氧化矽介電層之蝕刻圖光阻層上,以20:1比例之緩衝氧 化蝕刻劑(BOE),對其圓形孔位之部位進行蝕刻(註: 2〇:1指濃度20%之水性氟化銨與濃度49%之水性氫氟酸 之比例爲20:1),在約攝氏23度下,蝕刻時間約225秒 本纸乐尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) 404017 A7 B7 五、發明説明(27 ) 經由電漿處理所顯示之功效可顯示於表一所示之掃描式電 子顯微鏡(SEM)檢測結果報告中。 表一 樣品 電紫處理 水平對垂直触亥!1速率比 經濟部中央橾準局員工消費合作社印製 1 02—流量500 seem/處理時間5秒 2 02 —流量500 seem/處理時間25秒 3 N2—流量1000 seem/處理時間5秒 4 無 參考表一所示之資料,應用於本發明之較佳具體實施 例中,將氧化矽介電層經氧原子或氮原子電漿處理,其可 提供一覆蓋電漿處理化氧化矽介電層,經由此所形成之酒 杯形蝕刻槽較不會形成過度蝕刻。可得知形成於該酒杯形 蝕刻槽上之圖案化導體層可不需縮短其深度比例。 雖然本發明之較佳具體實施例及本發明之實施例已在 前述說明中揭示,可供熟習此技藝者了解。然其並非用以 限定本發明。在不脫離本發明之精神和範圍內,當可對本 發明之較佳具體實施例及本發明之實施例中所提供之方法 、材料、結構及尺寸大小作各種之變更與修改,因此本發 明之保護範圍,當視後附之申請專利範圍所界定者爲準。 1.35 1.00 1.65 3.35is ---------- Loading--(Please read the precautions on the back before filling this page) Thread 26 This paper size applies to China National Standard (CNS) A4 specification (2 丨 0 乂 297mm) Ii) Printed by Shellfish Consumer Cooperative of Central Bureau of Standards, Ministry of Economic Affairs 404017 a? _: _ B7___ V. Description of Invention (25) The vapor deposition method (PECVD) uses the following conditions: (1) a reactor pressure of about 9 Torr (Torr); (2) — RF power with a frequency of 13.56 MHz and a power of about 700 watts; (3) — semiconductor substrate temperature of about 400 degrees Celsius; (4) — a concentration of about 800 milligrams (mgm) per cubic meter TEOS; and (5) —Oxygen with a flow rate of about 500 cubic centimeters per minute (under standard conditions) is used as the oxidant. On the four semiconductor substrates, the silicon oxide dielectric layers formed on three of them are treated with an oxygen atom plasma or a nitrogen atom plasma, respectively, under the following conditions: (1) a reactor pressure of about 9 Torr ( torr); and (2) —RF power with a frequency of 13.56 MHz and a power of about 700 watts. In this way, the silicon oxide dielectric layer will be formed into a plasma-treated silicon oxide dielectric layer. The oxygen atom plasma treatment or nitrogen atom plasma treatment may use different exposure times and different oxygen or nitrogen flow rates. An etched photoresist layer is formed on each of the plasma-treated silicon oxide dielectric layer and another silicon oxide dielectric layer that has not been treated. The photoresist layer is made of PF158 positive photoresist material provided by Sumitono Chemical Company. . Each etched photoresist layer is formed to a thickness of about 8700 angstroms, and has a plurality of circular holes with a diameter of about 0.55 micrometers. Each circular hole is separated from its neighbor by about 0.4 micrometers: On the photoresist layer of each of the plasma-treated silicon oxide dielectric layers and another silicon oxide dielectric layer that has not been treated, 20: 1 ratio of buffered oxidizing etchant (BOE), to etch its circular holes. (Note: 20: 1 refers to the ratio of 20% aqueous ammonium fluoride to 49% aqueous hydrofluoric acid. At 20: 1), the etching time is about 225 seconds at about 23 degrees Celsius. The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) 404017 A7 B7 V. Description of the invention (27) Via electricity The efficacy shown by the pulp treatment can be shown in the scanning electron microscope (SEM) test result report shown in Table 1. Table 1 Sample electric purple treatment horizontal to vertical touch Hai! 1 speed ratio printed by the Consumer Cooperatives of the Central Economic and Technical Standards Bureau, Ministry of Economic Affairs 1 02—flow 500 seem / processing time 5 seconds 2 02—flow 500 seem / processing time 25 seconds 3 N2 —Flow rate 1000 seem / Processing time 5 seconds 4 Without the information shown in Table 1, it is applied in the preferred embodiment of the present invention. The silicon oxide dielectric layer is treated with an oxygen atom or nitrogen atom plasma, which can provide A plasma-treated silicon oxide dielectric layer is formed, and the wine glass-shaped etching groove formed through the plasma treatment layer is less likely to be over-etched. It can be known that the patterned conductive layer formed on the wine glass-shaped etching groove need not be shortened in depth ratio. Although the preferred embodiment of the present invention and the embodiment of the present invention have been disclosed in the foregoing description, it can be understood by those skilled in the art. However, it is not intended to limit the invention. Without departing from the spirit and scope of the present invention, various changes and modifications can be made to the preferred embodiments of the present invention and the methods, materials, structures, and sizes provided in the embodiments of the present invention. The scope of protection shall be determined by the scope of the attached patent application. 1.35 1.00 1.65 3.35

(請先閲讀背面之注意事項再填寫本頁)(Please read the notes on the back before filling this page)

裝.Installed.

1T 線 29 本紙張尺度適用中國國家樣丰(CNS ) A4規格(210Χ297公羞)1T line 29 This paper size is applicable to China National Sample (CNS) A4 specification (210 × 297)

Claims (1)

404017 ABCD 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 1、 一種在微電子製造中增強光阻層於介電層上的附著力 之方法,其包含下述步驟: 提供一微電子製造用之基底; 在基底上形成一層氧化矽介電層,該氧化矽介電層係 以四乙基正矽酸鹽(TEOS)作爲矽之源材料,而使 用化學汽相沈積法(CVD)製成; 將該氧化矽介電層以電漿處理,而使該氧化矽介電層 成爲一電漿處理化氧化矽介電層;及 在該電漿處理化氧化矽介電層上,形成一層蝕刻圖光 阻層,因而將氧化矽介電層作電漿處理之步驟,可增 強蝕刻圖光阻層在電漿處理化氧化矽介電層上之附著 力。 2、 依申請專利範圍第1項所述之方法,其中該方法之微 電子製造係選自由積體電路微電子製造、太陽電池微 電子製造、以陶瓷爲基底之微電子製造及平面顯示器 之微電子製造所組成之微電子製造群組。 3、 依申請專利範圍第1項所述之方法:其中該化學汽相 沈積法(CVD)係選自由熱化學汽相沈積法(CVD) 及電漿增強式化學汽相沈積法(PECVD)所組成之 汽相沈積法(CVD)群組,而氧化矽介電層係選自由 摻雜之氧化矽介電層及無摻雜之氧化矽介電層所組成 之氧化矽介電層群組。 4、 依申請專利範圍第1項所述之方法,其中用作電漿處 理之電漿係選自由氧原子電漿及氮原子電漿所組成之 --------------------,·1 裝----- (請先閲讀背面之注意事項再填寫本頁) 、11 :國 線 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) ABCD 404017 六、申請專利範圍 電漿群組。 5、 依申請專利範圍第1項所述之方法,其中該蝕刻圖光 阻層與電漿處理化氧化矽介電層間之附著力可在電獎 處理化氧化矽介電層於暴露進行等向性蝕刻時增強, 該等向性蝕刻係選自由溼式化學蝕刻法及高壓反應性 離子蝕刻法(RIE)所組成之等向性蝕刻法群組。 6、 一種微電子製造中形成氧化矽介電層其係根據申請專 利範圍第1項之方法製成。 7、 一種在微電子製造中於一介電層形上形成一蝕刻槽之 方法,其包含下述步驟: 提供一微電子製造用之基底; 在基底上形成一層氧化矽介電層,該氧化矽介電層係 以四乙基正矽酸鹽(TEOS)作爲矽之源材料,而使 用化學汽相沈積法製成; 將該氧化矽介電層以電漿處理,而使該氧化矽介電層 成爲一電漿處理化氧化矽介電層; 在該電漿處理化氧化矽介電層上,形成一蝕刻圖光阻 層,以定位電漿處理化氧化矽介電層上蝕刻槽之位置 ,此將該氧化砂介電層作電獎處理之步驟,可增強餓 刻圖光阻層在電漿處理化氧化矽介電層上之附著力; 及 以等向性蝕刻法蝕刻該電漿處理化氧化矽介電層以形-成蝕刻槽。 8、 依申請專利範圍第7項所述之方法,其中該微電子製 本紙張尺度適用中國國家標準(CNS)A4规格(210X297公釐) -----------------—^ — (請先閲讀背面之注意事項再蜞寫本頁) ——訂- 經濟部中央標準局員工消費合作社印製 ---J 7 01 4 ο 4 ABCD 申請專利範圍 經濟部中央標準局員工消費合作社印製 造係選自由積體電路微電子製造、太陽電池微電子製 造、以陶瓷爲基底之微電子製造及平面顯示器之微電 子製造所組成之微電子製造群組。 '依申請專利範圍第7項所述之方法,其中之化學汽相 沈積法(CVD)係選自由熱化學汽相沈積法(CVD) 及電漿增強式化學汽相沈積法(PECVD)所組成之 汽相沈積法(CVD)群組,而氧化矽介電層係選自由 摻雜之氧化矽介電層及無摻雜之氧化矽介電層所組成 之氧化矽介電層群組。 〇、依申請專利範圍第7項所述方法,其中用作電漿處 理之電漿係選自由氧原子電漿及氮原子電漿所組成之 電漿群組。 1、 依申請專利範圍第7項所述之方法,其中之等向性 蝕刻法係選自由溼式化學蝕刻法及高壓反應性離子蝕 刻法(RIE)所組成之等向性蝕刻法群組。 2、 一種於微電子製造中在氧化矽介電層上生成之蝕刻 槽其係依申請專利範圍第7項所述之方法。 3、 一種在微電子基體電路製造中於一介電層上形成一 蝕刻槽之方法,其包含下述步驟: 提供一半導體基底; 在該半導體基底上形成一層氧化矽介電層,該氧化矽 介電層係以四乙基正矽酸鹽(TEOS)作爲矽之源材 料,而使用化學汽相沈積法(CVD)製成; 將該氧化矽介電層以電漿處理,而使該氧化矽介電層 32 用中國國家標準(CNS)A4規格(210 X 297公爱) ................Γ:.裝…… (請先閲讀背面之注意事項再填寫本頁) 訂 線 A8 B8 C8 D8 404017 六、申請專利範圍 成爲一電漿處理化氧化矽介電層; 在該電漿處理化氧化矽介電層上,形成一蝕刻圖光阻 層,以界定電漿處理化氧化矽介電層上酒杯型蝕刻槽 之位置,此將氧化矽介電層作電漿處理之步驟’可增 強蝕刻圖光阻層在電漿處理化氧化矽介電層上之附著 力;及 以等向性蝕刻法蝕刻電漿處理化氧化矽介電層以形成 酒杯型蝕刻槽。 1 4、依申請專利範圍第1 3項所述之方法,其中之化學 汽相沈積法(CVD)係選自由熱化學汽相沈積法( CVD)及電漿增強式化學汽相沈積法(PECVD)所 組成之汽相沈積法(CVD)群組,而氧化矽介電層係 選自由摻雜之氧化矽介電層及無摻雜之氧化矽介電層 所組成之氧化矽介電層群組。 1 5、依申請專利範圍第1 3項所述之方法,其中之電漿 係選自由氧原子電漿及氮原子電漿所組成之電漿群組 〇 1 6、依申請專利範圍第7項所述之方法,其中之等向性 蝕刻法係選自由溼式化學蝕刻法及高壓反應性離子蝕 刻法(RIE)所組成之等向性蝕刻法群組。 1 7、一種於積體電路微電子製造中於氧化矽介電層形成 之蝕刻槽,其係依申請專利範圍第13項之方法製成 本纸張尺度適用中國國家標準(CNS)A4規格(210X297公釐) ---------------- --------I---- (請先閲讀背面之注意事項再場寫本頁) ,1T 線 經濟部中央標準局員工消費合作社印製 --—I404017 ABCD Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 6. Scope of Patent Application 1. A method for enhancing the adhesion of a photoresist layer to a dielectric layer in microelectronic manufacturing, which includes the following steps: Provide a microelectronic Manufacturing substrate; a silicon oxide dielectric layer is formed on the substrate, the silicon oxide dielectric layer uses tetraethyl orthosilicate (TEOS) as the source material of silicon, and chemical vapor deposition (CVD) is used Making; treating the silicon oxide dielectric layer with a plasma, so that the silicon oxide dielectric layer becomes a plasma-treated silicon oxide dielectric layer; and forming on the plasma-treated silicon oxide dielectric layer, forming An etched photoresist layer, so the step of using the silicon oxide dielectric layer as a plasma treatment can enhance the adhesion of the etched photoresist layer to the plasma treated silicon oxide dielectric layer. 2. The method according to item 1 of the scope of the patent application, wherein the microelectronics manufacturing method is selected from the group consisting of integrated circuit microelectronics manufacturing, solar cell microelectronics manufacturing, ceramic-based microelectronics manufacturing, and flat display microelectronics. Microelectronics manufacturing group consisting of electronics manufacturing. 3. The method according to item 1 of the scope of patent application: wherein the chemical vapor deposition (CVD) method is selected from the group consisting of thermochemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD). A CVD group is formed, and the silicon oxide dielectric layer is selected from the group consisting of a doped silicon oxide dielectric layer and an undoped silicon oxide dielectric layer. 4. The method according to item 1 of the scope of patent application, wherein the plasma used for plasma treatment is selected from the group consisting of an oxygen atom plasma and a nitrogen atom plasma ------------ --------, · 1 pack ----- (Please read the precautions on the back before filling this page), 11: National paper size of this paper applies Chinese National Standard (CNS) A4 specification (210X297) (B) ABCD 404017 6. Patent application plasma group. 5. The method according to item 1 of the scope of patent application, wherein the adhesion between the photoresist layer of the etched pattern and the plasma-treated silicon oxide dielectric layer can be isotropic in the exposure of the electro-treated silicon oxide dielectric layer upon exposure. It is enhanced during isotropic etching. The isotropic etching is selected from the group of isotropic etching composed of wet chemical etching and high pressure reactive ion etching (RIE). 6. A silicon oxide dielectric layer is formed in the manufacture of microelectronics, which is made according to the method of the first patent application. 7. A method for forming an etching groove on a dielectric layer in microelectronic manufacturing, comprising the following steps: providing a substrate for microelectronic manufacturing; forming a silicon oxide dielectric layer on the substrate, the oxidation The silicon dielectric layer is made of tetraethyl orthosilicate (TEOS) as the source material of silicon and is prepared by chemical vapor deposition method. The silicon oxide dielectric layer is treated with a plasma to make the silicon oxide dielectric The electric layer becomes a plasma-treated silicon oxide dielectric layer; an etching pattern photoresist layer is formed on the plasma-treated silicon oxide dielectric layer to locate the etching grooves on the plasma-treated silicon oxide dielectric layer. Position, this step of using the oxide sand dielectric layer as an electric treatment step can enhance the adhesion of the photoresist layer on the plasma-treated silicon oxide dielectric layer; and the isotropic etching method is used to etch the electricity. The slurry processes the silicon oxide dielectric layer to form an etched trench. 8. According to the method described in item 7 of the scope of patent application, wherein the microelectronic paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) --------------- --- ^ — (Please read the notes on the back before copying this page) ——Order-Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs --- J 7 01 4 ο 4 ABCD Patent Application Scope Central Standards of the Ministry of Economic Affairs The Bureau ’s consumer cooperative print manufacturing is selected from the microelectronics manufacturing group consisting of integrated circuit microelectronics manufacturing, solar cell microelectronics manufacturing, ceramic-based microelectronics manufacturing, and flat display microelectronics manufacturing. 'The method according to item 7 of the scope of the patent application, wherein the chemical vapor deposition method (CVD) is selected from the group consisting of a thermal chemical vapor deposition method (CVD) and a plasma enhanced chemical vapor deposition method (PECVD) The vapor phase deposition (CVD) group, and the silicon oxide dielectric layer is selected from the group consisting of a doped silicon oxide dielectric layer and an undoped silicon oxide dielectric layer. 〇 According to the method described in item 7 of the scope of the patent application, the plasma used for plasma treatment is selected from the group consisting of an oxygen atom plasma and a nitrogen atom plasma. 1. The method according to item 7 of the scope of patent application, wherein the isotropic etching method is selected from the group of isotropic etching methods composed of a wet chemical etching method and a high-pressure reactive ion etching method (RIE). 2. An etching groove formed on a silicon oxide dielectric layer in microelectronics manufacturing according to the method described in item 7 of the scope of patent application. 3. A method for forming an etching groove on a dielectric layer in the manufacture of a microelectronic substrate circuit, comprising the following steps: providing a semiconductor substrate; forming a silicon oxide dielectric layer on the semiconductor substrate, the silicon oxide The dielectric layer is made of tetraethyl orthosilicate (TEOS) as the source material of silicon, and is made by chemical vapor deposition (CVD). The silicon oxide dielectric layer is treated with a plasma to make the oxide The silicon dielectric layer 32 uses the Chinese National Standard (CNS) A4 specification (210 X 297 public love) ...... Γ: .installation ... (Please read the note on the back first (Please fill in this page again for details) Thread A8 B8 C8 D8 404017 VI. The scope of patent application becomes a plasma-treated silicon oxide dielectric layer; on the plasma-treated silicon oxide dielectric layer, an etched photoresist layer is formed In order to define the position of the wine glass-shaped etching groove on the plasma-treated silicon oxide dielectric layer, this step of using the silicon oxide dielectric layer as a plasma treatment can enhance the etching pattern of the photoresist layer in the plasma-treated silicon oxide dielectric. Adhesion on the layer; and etching plasma treated silicon oxide dielectric layer with isotropic etching to A wine glass-shaped etching groove is formed. 14. The method according to item 13 of the scope of the patent application, wherein the chemical vapor deposition (CVD) method is selected from the group consisting of thermochemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD). ) Group composed of vapor phase deposition (CVD), and the silicon oxide dielectric layer is selected from the group consisting of a doped silicon oxide dielectric layer and an undoped silicon oxide dielectric layer. group. 15. According to the method described in item 13 of the scope of the patent application, wherein the plasma is selected from the group of plasma consisting of an oxygen atom plasma and a nitrogen atom plasma 0 1. According to item 7 of the scope of patent application In the method, the isotropic etching method is selected from the group of isotropic etching methods composed of a wet chemical etching method and a high-pressure reactive ion etching method (RIE). 17. An etching groove formed in a silicon oxide dielectric layer in the fabrication of integrated circuit microelectronics, which is made according to the method of the 13th scope of the patent application. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297). Mm) ---------------- -------- I ---- (Please read the notes on the back before writing this page), 1T line economy Printed by the Consumers' Cooperatives of the Ministry of Standards of the People's Republic of China --- I
TW87105686A 1998-04-13 1998-04-13 The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection TW404017B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87105686A TW404017B (en) 1998-04-13 1998-04-13 The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87105686A TW404017B (en) 1998-04-13 1998-04-13 The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection

Publications (1)

Publication Number Publication Date
TW404017B true TW404017B (en) 2000-09-01

Family

ID=21629876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87105686A TW404017B (en) 1998-04-13 1998-04-13 The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection

Country Status (1)

Country Link
TW (1) TW404017B (en)

Similar Documents

Publication Publication Date Title
TW546688B (en) Method of forming a trench isolation structure and semiconductor device
US8580666B2 (en) Methods of forming conductive contacts
TW518679B (en) Method of manufacturing semiconductor device
US7341952B2 (en) Multi-layer hard mask structure for etching deep trench in substrate
US6140024A (en) Remote plasma nitridation for contact etch stop
US5374583A (en) Technology for local oxidation of silicon
JP2002076142A (en) Method for forming charge storage electrode of capacitor
TW578297B (en) Semiconductor integrated circuit device and the manufacturing method thereof
TWI320215B (en) Method of forming shallow trench isolation(sti) with chamfered corner
TWI220788B (en) Flash memory cell and fabrication thereof
TWI270179B (en) Method of fabricating a trench capacitor DRAM device
TW404017B (en) The plasma surface treatment method having the oxide of the patterned tetra-ethyl-ortho-silicate (TEOS) with reliable etch via and the interconnection
TWI223393B (en) Method of filling bit line contact via
TWI235424B (en) Method for forming a contact opening
TW538500B (en) Method of manufacturing gate of field effect transistor
TWI255016B (en) Method of manufacturing flash memory devices
TW552673B (en) A method of fabricating a semiconductor device
TW200921845A (en) Method for fabricating conductive plug
TW400565B (en) The manufacturing processes of the shallow trench isolation
KR100696774B1 (en) A method for forming a capacitor of a semiconductor device
KR100268911B1 (en) Capacitor of semiconductor device and manufacturing method thereof
KR100400285B1 (en) Method for manufacturing semiconductor device
TW404005B (en) The isolation structure of combining LOCOS and shallow trench isolation (STI) and the manufacturing method thereof
TW321792B (en) Production method of polysilicon stud in integrated circuit
TW400618B (en) The forming method of self-align contact

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees