TW322621B - Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation - Google Patents

Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation Download PDF

Info

Publication number
TW322621B
TW322621B TW86100268A TW86100268A TW322621B TW 322621 B TW322621 B TW 322621B TW 86100268 A TW86100268 A TW 86100268A TW 86100268 A TW86100268 A TW 86100268A TW 322621 B TW322621 B TW 322621B
Authority
TW
Taiwan
Prior art keywords
polycrystalline silicon
manufacturing
nitrogen
item
patent application
Prior art date
Application number
TW86100268A
Other languages
Chinese (zh)
Inventor
Horng-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW86100268A priority Critical patent/TW322621B/en
Application granted granted Critical
Publication of TW322621B publication Critical patent/TW322621B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A manufacturing method of polysilicon structure of integrated circuit comprises: (1) on semiconductor wafer forming dielectric; (2) planarizing the above dielectric; (3) by lithography and etch technology etching the above dielectric to expose the above semiconductor wafer so as to form hole; (4) forming one polysilicon; (5) forming dot silicon particles; (6) by ion implantation technology performing oblique nitrogen implantation to implant nitrogen ion into the above silicon particles, and changing the above silicon particles to nitrogen-containing region; (7) with the above nitrogen-containing region as oxidization mask, thermally oxidizing the above polysilicon to form polysilicon oxide; (8) with the above polysilicon oxide as etching mask, by etch technology etching the above polysilicon to make the above polysilicon generate trench; (9) removing the above polysilicon oxide.

Description

〇22621 經濟部中央標準局貝工消費合作社印裝 A7 B7 五、發明説明() : 1. 發明之技術領域 本發明是關於積體電路之動態隨機存取記億體之電容器的的製造方法,特別是 關於堆疊式動態隨機存取記憶體之電容器的的製造方法。 2. 發明背景 典型的動態隨機存取記憶體是在矽半導體晶圓上製造一個金氧半場效電晶體與 電容器’所述金氧半場效電晶體是作爲轉移閘電晶體(transferred gate transistor), 並利用所述轉移閘電晶體的源極來連接電容器的下層電極以形成動態隨機存取記憶 體的記憶元。數目龐大的記憶元聚集成爲記憶元陣列。其中,所述轉移閘電晶體的 源極跟電容器作電性接觸,數位資訊儲存在電容器內,並藉著所述轉移閘電晶體' 位元線和字語線陣列來取得儲存在電容器內的數位資訊.。另一方面,在記憶元陣列 的附近則有其它電路圍繞,例如感測放大器等電路,這些外部電路,稱爲週邊電路 區域(peripheral circuit)。因此,要達到動態隨機存取記憶體之髙積集密度尚目的, 必需縮小記憶體之記憶元的尺寸,然而電容器尺寸的縮小會降低電容値,使得記憶 體電路的訊號/雜訊(SignalNoise ; S/N)比例降低,造成電路誤判或電路不穩定等 缺點。職是之故,爲了達成高積集密度的動態隨機存取記憶體,必需尋找更尖端的 製程技術,以在降低記憶元之平面電路佈局面積之同時,能夠維持或增加電容器之 電容値。 電容的公式是C= εΑ/Τ,其中,£是電容器介電層(capacitor dielectric)之介 電常數,A是電容器下層電極之表面積,T是電容器下層電極之厚度,因此,要增加 電容器之電容可以從兩個方向著手,第一個方向是採用高介電常數的材料作爲電容 器介電層,巡如,Ta205、Ti02和SrTi03材料都具有非常高的介電常數,可惜, 由於這些高介'電常數的材料之薄膜品質不佳,存i有絕緣層的奔潰電壓等可靠性問 題,因此到目前爲止還無法應用到動態隨機存取記億體。 使用高介電常數的電容器介電層既然不甚可行,吾人由電容的公式C= εΑ/Τ 可知電容的大小跟電容器下層電極之表面積成正比,因此,增加電容器下層電極之 表面積是增加電容器之電容的另一個方向,而目前最普遍的是所謂三度空間電容器 (3-D capacitor )。所述三度空間電容器是在所述轉移閘電晶體之上方或下方的第三 度空間形成電容器,以在有限的平面電路佈局面積內增加電容器之電容値。電容器 製造在所述轉移閘電晶體之上方時,稱爲堆疊式電容器(stack capacitor),而電容 器製造在所述轉移閘電晶體之下i時稱爲凹溝式電容器(trenchcapacitor)。目前, 動態隨機存取記憶體工業主要是使用堆疊式電容器結構,例如,日本和韓國的半導 體公司主要是採用堆疊式電容器結構。〇22621 Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed A7 B7 V. Description of the invention (): 1. Technical Field of the Invention The present invention relates to a method for manufacturing capacitors with dynamic random access memory for integrated circuits, In particular, it relates to a method for manufacturing a capacitor of a stacked dynamic random access memory. 2. BACKGROUND OF THE INVENTION A typical dynamic random access memory is to fabricate a metal oxide half field effect transistor and a capacitor on a silicon semiconductor wafer. The metal oxide half field effect transistor is used as a transferred gate transistor. The source of the transfer gate transistor is used to connect the lower electrode of the capacitor to form a memory cell of the dynamic random access memory. A large number of memory cells are gathered into a memory cell array. Wherein, the source of the transfer gate transistor makes electrical contact with the capacitor, digital information is stored in the capacitor, and the bit gate and word line array of the transfer gate transistor are used to obtain the stored Digital information ... On the other hand, there are other circuits around the memory cell array, such as sense amplifier circuits. These external circuits are called peripheral circuits. Therefore, in order to achieve the purpose of dynamic random access memory high accumulation density, it is necessary to reduce the size of the memory cell, but the reduction in the size of the capacitor will reduce the capacitance value, so that the memory circuit signal / noise (SignalNoise; S / N) ratio is reduced, resulting in shortcomings such as circuit misjudgment or circuit instability. For this reason, in order to achieve a high accumulation density of dynamic random access memory, it is necessary to look for more advanced process technology to reduce or maintain the area of the planar circuit layout of the memory cell while maintaining or increasing the capacitance value of the capacitor. The formula for capacitance is C = εΑ / Τ, where £ is the dielectric constant of the capacitor dielectric layer, A is the surface area of the lower electrode of the capacitor, and T is the thickness of the lower electrode of the capacitor, therefore, the capacitance of the capacitor should be increased You can start from two directions. The first direction is to use high dielectric constant materials as capacitor dielectric layers. For example, Ta205, Ti02 and SrTi03 materials all have very high dielectric constants. Unfortunately, due to these high dielectric The quality of the thin film of the electric constant material is poor, and there are reliability problems such as the breakdown voltage of the insulating layer, so it has not been applied to dynamic random access memory. Since the use of high dielectric constant capacitor dielectric layers is not feasible, we can see from the formula of capacitance C = εΑ / Τ that the size of the capacitor is proportional to the surface area of the lower electrode of the capacitor. Therefore, increasing the surface area of the lower electrode of the capacitor is to increase the capacitor. The other direction of capacitance, and the most common at present is the so-called 3-D capacitor. The three-dimensional space capacitor forms a capacitor in the third-degree space above or below the transfer gate transistor to increase the capacitance value of the capacitor within a limited planar circuit layout area. When the capacitor is fabricated above the transfer gate transistor, it is called a stack capacitor, and when the capacitor is fabricated below the transfer gate transistor i, it is called a trench capacitor. At present, the dynamic random access memory industry mainly uses stacked capacitor structures. For example, semiconductor companies in Japan and South Korea mainly use stacked capacitor structures.

Watanabe 等人於 IEDM 1988 年第 600 頁所發表之「stacked capacitor cells for high density dynamic RAMs」與 Wakamiya 等人於 VLSI Technology 1989 第 69 頁所發表之 「novel stacked capacitor cell for 64 Mb DRAM」均揭露了堆疊式電容器結構。S. Kimura等人的美國專利第4742018號和T.Ema美國專利4977102號亦揭露堆疊式電 2 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) 03. (請先閲讀背面之注$項再填寫本頁)"Stacked capacitor cells for high density dynamic RAMs" published by Watanabe et al. On page 600 in IEDM 1988 and "novel stacked capacitor cells for 64 Mb DRAM" published by Wakamiya et al. On page 69 of VLSI Technology 1989 Stacked capacitor structure. U.S. Patent No. 4742018 of S. Kimura et al. And U.S. Patent No. 4977102 of T.Ema also disclose stacked paper 2 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 03. (Please read the back side first (Note $ item and fill this page)

TT

A7 B7 五、發明説明κ ) 容器以增加電容器電容。日本富士通公司的Masa〇 Taguchi等人在美國專利第 5021357號更揭露了改良的堆疊式電容器結構’稱爲鰭型電容器結構(fm capacitor),大幅增加電容器電容,提尚動態隨機存取目3憶體之集積密度。日本 Hitachi公司的T. Kaga等人更在1994年ffiDM第927頁之一篇題目爲「A 0.29 um2 ΜΙΜ-CROWN cell and process technology for 1-Gigabit DRAMs」的論文,揭露了 一種 更爲先進的稱爲「ΜΙΜ-CROWN結構」的堆疊式電容器’這些電容器結構均能大幅 增加電容器的電容値,提高動態隨機存取記憶體元件之集積密度。 本發明揭露了一種利用矽晶粒和氮離子佈植技術形成動態隨機存取記憶體之堆 疊式電容器,能大幅增加電容器的電容値,提高動態隨機存取記憶體元件之集積密 度,適用於0.25微米、集積密度六仟四佰萬位元之動態隨機存取記憶體的製造。 3.發明之簡要說明 本發明的主要Η的是提供一種具備高電容之堆疊式電容器的製造方法》 本發明的另一個目的是提供·種具有大的表面積之電容器下層電極之的製造方 法。 本發明的另一個目的是提供一種高集積密度之堆疊式動態隨機存取記憶體的製 造方法。 茲簡述本發明之主要方法如F。首先,以標準製程在矽半導體晶圓上形成隔離 金氧半場效電晶體所需要的場氧化層,接著,形成金氧半場效電晶體和字語線 (wordline)。接著,沈積一層第一介電層與第二介電層,並利用化學機械式琢磨技 術平坦化所述第二介電層。接著,利用微影技術與電漿蝕刻技術蝕刻所述第一介電 層與第二介電層以露出所述金氧半場效電晶體之源極,以形成記憶元接觸窗(node contact) 〇 接著,沈積一層第·複晶矽和點狀的複晶矽半球型晶粒。接著,利用離子佈植 技術進行斜向的氮離子佈植(oblique nitrogen implantation)以將氮離子植入所述複晶 矽半球型晶粒,將所述複晶矽半球型晶粒變成含氮區域。接著,以所述含氮區域作 爲氧化護罩,熱氧化所述第一複晶矽,以形成複晶矽氧化層(poly-oxide)。 接著’以所述複晶矽氧化層作爲蝕刻保護罩,利用蝕刻技術蝕刻所述第一複晶 矽’使所述第一複晶矽產牛凹槽,所述凹槽之功用是增加所述第一複晶矽的表面 積。然後’利用微影技術在電容器區域上方形成光阻圖案,然後,利用電漿蝕刻技 術對所述第一複晶矽進行蝕刻,以形成電容器之下層電極。接著,在所述電容器的 下層電極表面形成_ .層電容器介電層,接著,形成一層第二複晶矽。最後,利用微 影技術與蝕刻技術蝕刻所述電容器介電層和第二複晶矽,以形成電容器的上層電極 (top electrode),一種具備高集積密度之堆疊式動態隨機存取記憶體於焉完成。 本纸張尺度適用中苺國家標準(CNS ) M说格(21〇><297公釐) (请先M1*背面之注意事項再填寫本頁) 裝_ 訂 經濟部中央標準局貝工消費合作社印裝 A7 B7 經濟部中央標华局貝工消资合作社印褽 五、發明説明() , 4. 圖示的簡要說明 圖一到圖十六是本發明之實施例的製程剖面示意圖。 圖一是在矽半導體晶圓上形成轉移閘電晶體和字語線後的製程剖面示意圖; 圖二是沈積一層第一介電層與第二介電層,並平坦化所述第二介電層後的製程剖面 示意圖; 圖三是利用微影技術與電漿蝕刻技術蝕刻所述第一介電層與第二介電層以以形成記 億元接觸窗(node contact)後的製程剖面示意圖; 圖四是去除光阻圖案後的製程剖面示意圖: 圖五是沈積一層第一複晶矽後的製程剖面示意圖; 圖六是形成點狀的複晶矽半球型晶粒後的製程剖面示意圖; 圖七是利用離子佈植技術進行斜向的氮離子佈植(oblique nitrogen implantation)以 將氮離子植入所述複晶矽半球型晶粒,將所述複晶矽半球型晶粒變成「含氮 區域」後的製程剖面示意圖; 圖八是以所述含氮區域作爲氧化護罩,熱氧化所述第一複晶矽,以形成複晶矽氧化 層後的製程剖面示意圖; 圖九是以所述複晶矽氧化層作爲蝕刻護罩,利用蝕刻技術蝕刻所述第一複晶矽,以 形成具有凹溝的第一複晶矽後的製程剖面示意圖; 圖十是去除所述氧化矽後的製程剖面示意圖; 圖十一是利用微影技術在所述記憶元接觸窗上方形成光阻圖案後的製程剖面示意 圖; 、 圖十二是利用電漿蝕刻技術對所述第一複晶矽進行蝕刻,以定義電容器之下層電極 的圖案後的製程剖面示意圖; ' 圖十三是老腎所述光阻圖案後的製程剖面示意圖; 圖十四是€所述電容器的下層電極表面形成一層電容器介電層後的製程剖面示意 圖, 圖十五是形成一層第二複晶矽後的製程剖面示意圖; 圖十六是利用微影技術與磁場增強式活性離子式電漿蝕刻技術蝕刻所述薄的電容器 介電層和第二複晶矽,以形成電容器的上層電極(top electrode)後的製程剖 面示意圖。 5. 發明之實施例 現在請參考圖一。首先,在電阻値約2.5 ohm-cm、晶格方向(100)之P型矽 半導體基板10上形成場氧化層12,所述場氧化層Π通常是利用熱氧化技術氧化 所述P型矽半導體基板10而形成,其厚度介於3500埃到6500埃之間,作爲隔 離金氧半場效電晶體之用。當然,也可以利用傳統的淺凹溝隔離技術(Shallow Trench Isolation ; STI)來形成隔離金氧半場效電晶體所需之場氧化層12。然後,在 所述P型矽半導體基板10之表面形成金氧半場效電晶體,所述金氧半場效電晶體 包含有閘氧化層14、閘極16A '覆蓋氧化層18 (capped oxide)、N-淡摻雜源極/ 4 I I 裝 n n n ϋ 1· I n ϋ n 線 (請先閲讀背面之注意事項再填寫本頁) 本纸張尺度適用中國國家橾準(CNS ) Α4規格(210X297公釐) 經濟部中央標準局貝工消费合作社印裝 A7 B7 五、發明説明() , 汲極20A/20B、二氧化砂側壁子22和N+源極/汲極24A/24B,如圖一所不。另 外,在形成閘極16A之同時也形成字語線16B,如圖一所示。' 請再參考圖一。所述閘氧化層Η是在含乾氧的高溫環境中熱氧化所述P型矽 半導體基板10之表面之矽原子而成,其氧化溫度介於850到1000 °C之間,其厚 度介於50到200埃之間。所述閘極16A則一般是由低壓化學氣相沉積法 (LPCVD)形成之複晶矽16或鎢複晶矽化物所構成,若由複晶矽構成,其厚度介 於2000到4000埃之間,若由鎢複晶矽化物構成,則下層複晶矽之厚度介於1〇〇〇 到2000埃之間,上層矽化鎢之厚度介於1000到2000埃之間,其總厚度也是介 於2000到4000埃之間。所述覆蓋氧化層18是利用低壓化學氣相沉積法形成之無 摻雜的二氧化矽,其厚度介於800到1600埃之間。然後,利用微影技術與電漿蝕 刻技術蝕刻所述覆蓋氧化層18和複晶矽16或鎢複晶矽化物,以形成所述轉移閘電 晶體之閘極結構(gatestructure),如圖一所示。 形成所述複晶矽16之反應溫度介於500到700 °C之間,而形成之複晶矽16 可以未經摻雜,然後再利用離子佈植技術予以摻雜使具導電性,其離子佈植劑量介 於1E13到1E16原子/平方公分之間,離子佈植能量則介於30到80 Kev之間,以 完成對所述複晶矽16之摻雜。當然,也能利用同步磷離子攙雜方法(in-situ doped)以完成對所述複晶矽16之摻雜,其反應氣體是PH3、SiH4與N2的混合氣 體或AsH3、SiH4與N2的混合氣體,最後的磷離子濃度介於1E20到1E21原子/立 方公分之間,而較理想的磷離子濃度是5E20原子/立方公分之間。對所述複晶矽18 之電漿蝕刻,其反應氣體則是由SF6、CI2.和HBr組成之混合氣體,能提供效果相 當理想的單向性蝕刻、鈾刻率和蝕刻均勻度,所述複晶矽16對所述閘氧化層14之 蝕刻選擇率也非常高。 ’ 一- 請再參考圖一。接著,利用磷離子佈植技術來形成所述轉移閘電晶體之N_淡 摻雜源極/汲極20A/20B,其離子佈植劑量介於1E13到3E14原子/平方公分之 間,離子佈植能量則介於20到50 Kev之間,如圖一所示,所述N·淡摻雜源極/汲 極20A/20B是爲了降低熱載子效應,以提高所述轉移閘電晶體之可靠性。接著,沉 積一層二氧化矽22,並利用磁場增強式活性離子式電漿蝕刻技術對所述二氧化矽 22進行垂直單向性的回蝕刻,以在所述閘極16之二側形成二氧化砂側壁子22。 而所述二氧化矽22通常是利用低壓化學氣相沉積法形成之無攙雜的二氧化矽,其反 應氣體是矽甲烷或四已基矽酸鹽(Si(C2H50)4)和氧氣,反應溫度介於600到800 °C之間,反應壓力介於0.2到0.4托爾之間,厚度介於500到1500埃之間。最 後,利用離子砷佈植技術形成N+源極24A/汲極24B,其離子佈植劑量介於1E15到 5E16原子/平方公分之間,離子佈植能量則介於30到80 Kev之間,以提供良好的歐 姆接觸,如圖一所示。 現在請參考圖二、圖三與圖四。完成所述轉移閘電晶體和字語線16B的製造 後,接著,沈積一層第一介電層26與第二介電層28,並利用化學機械式$磨芒術 (Chemical Mechanical Polishing ; CMP )平坦化所述第二介電層28,如圖二所示。 _5_ 本纸張尺度適用中國國家標準(CNS ) A4C格(210 X 297公釐) I I I i 裝 I I 1 I I 訂.—I !—線 (請先閲讀背面之注意事項再填寫本頁) 3226:2! 經濟部中央標準局貝工消费合作社印裝 A7 B7 五、發明説明()A7 B7 V. Description of Invention κ) Container to increase capacitor capacitance. Japan ’s Fujitsu ’s Masa〇Taguchi et al. Disclosed in US Patent No. 5021357 an improved stacked capacitor structure called a fin capacitor structure (fm capacitor), which greatly increases the capacitor capacitance and improves dynamic random access. The accumulation density of the volume. T. Kaga and others from Hitachi, Japan, published an article titled "A 0.29 um2 ΜΙΜ-CROWN cell and process technology for 1-Gigabit DRAMs" on page 927 of ffiDM in 1994. These "stacked capacitors of" TIM-CROWN structure "" can greatly increase the capacitance value of the capacitors and increase the density of dynamic random access memory devices. The invention discloses a stacked capacitor using silicon die and nitrogen ion implantation technology to form a dynamic random access memory, which can greatly increase the capacitance value of the capacitor and improve the accumulation density of the dynamic random access memory device, which is suitable for 0.25 Manufacture of dynamic random access memory with a micron and an accumulation density of 64 million bits. 3. Brief description of the invention The main aspect of the present invention is to provide a method for manufacturing a stacked capacitor with high capacitance. Another object of the present invention is to provide a method for manufacturing a lower electrode of a capacitor having a large surface area. Another object of the present invention is to provide a method for manufacturing a stacked dynamic random access memory with high packing density. Here is a brief description of the main method of the present invention such as F. First, a standard process is used to form a field oxide layer on the silicon semiconductor wafer that is required to isolate the metal oxide semiconductor field effect transistor. Then, the metal oxide semiconductor field word transistor and the wordline are formed. Next, a first dielectric layer and a second dielectric layer are deposited, and the second dielectric layer is planarized using chemical mechanical polishing techniques. Next, the first dielectric layer and the second dielectric layer are etched using photolithography technology and plasma etching technology to expose the source electrode of the metal oxide semi-field effect transistor to form a memory cell contact (node contact). Next, a layer of first polycrystalline silicon and dotted polycrystalline silicon hemispherical crystal grains are deposited. Next, oblique nitrogen implantation is performed using ion implantation technology to implant nitrogen ions into the polycrystalline silicon hemispherical crystal grains, and the polycrystalline silicon hemispherical crystal grains are changed into nitrogen-containing regions . Next, the nitrogen-containing region is used as an oxidation shield to thermally oxidize the first polycrystalline silicon to form a polycrystalline silicon oxide layer (poly-oxide). Then 'use the polycrystalline silicon oxide layer as an etching protection cover and etch the first polycrystalline silicon using an etching technique' to make the first polycrystalline silicon produce a groove, the function of the groove is to increase the The surface area of the first polycrystalline silicon. Then, a photoresist pattern is formed on the capacitor area using a lithography technique, and then the first polycrystalline silicon is etched using a plasma etching technique to form an underlying electrode of the capacitor. Next, a _ layer capacitor dielectric layer is formed on the lower electrode surface of the capacitor, and then, a second layer of polycrystalline silicon is formed. Finally, the capacitor dielectric layer and the second polycrystalline silicon are etched using lithography and etching techniques to form the top electrode of the capacitor, a stacked dynamic random access memory with high accumulation density in Yan carry out. The standard of this paper is applicable to China National Berry Standard (CNS) M Saoge (21〇 < 297mm) (please pay attention to M1 * on the back and then fill in this page) Printed by the consumer cooperative A7 B7 Printed by the Central Standardization Bureau of the Ministry of Economic Affairs Pui Gong Consumers Cooperative Fifth, the description of the invention (), 4. Brief description of the drawings Figures 1 to 16 are schematic cross-sectional views of the process of the embodiment of the present invention. Figure 1 is a schematic cross-sectional view of the process after forming a transfer gate transistor and word lines on a silicon semiconductor wafer; Figure 2 is a layer of a first dielectric layer and a second dielectric layer deposited, and the second dielectric is planarized A schematic cross-sectional view of the process after the layer; FIG. 3 is a schematic cross-sectional view of the process after the first dielectric layer and the second dielectric layer are etched using photolithography and plasma etching to form a node contact Figure 4 is a schematic cross-sectional view of the process after removing the photoresist pattern: Figure 5 is a schematic cross-sectional view of the process after depositing a layer of first polycrystalline silicon; Figure 6 is a schematic cross-sectional view of the process after forming dot-shaped polycrystalline silicon hemispherical grains; Fig. 7 is oblique nitrogen implantation using ion implantation technology to implant nitrogen ions into the polycrystalline silicon hemispherical crystal grains, turning the polycrystalline silicon hemispherical crystal grains into "containing Schematic cross-sectional view of the process after the "nitrogen region"; Figure 8 is a schematic cross-sectional view of the process after the nitrogen-containing region is used as an oxidation shield to thermally oxidize the first polycrystalline silicon to form a polycrystalline silicon oxide layer; Said The crystalline silicon oxide layer is used as an etching shield, and the first polycrystalline silicon is etched by an etching technique to form a first polycrystalline silicon having a concave groove. FIG. 10 is a process cross section after removing the silicon oxide Schematic diagram; FIG. 11 is a schematic cross-sectional view of the process after forming a photoresist pattern on the memory cell contact window using lithography technology; FIG. 12 is etching the first polycrystalline silicon using plasma etching technology to Schematic cross-sectional view of the process after defining the pattern of the lower electrode of the capacitor; Figure 13 is a schematic cross-sectional view of the process after the photoresist pattern of the old kidney; Figure 14 is the formation of a capacitor dielectric layer on the surface of the lower electrode of the capacitor Figure 15 is a schematic cross-sectional view of the process after forming a layer of second polycrystalline silicon; Figure 16 is a photolithography technique and a magnetic field enhanced active ion plasma etching technique to etch the thin capacitor dielectric layer And a second polycrystalline silicon to form a top cross-sectional view of the capacitor after forming a top electrode. 5. Embodiments of the invention Please refer to Figure 1 now. First, a field oxide layer 12 is formed on a P-type silicon semiconductor substrate 10 with a resistance value of about 2.5 ohm-cm and a lattice direction (100). The field oxide layer Π is usually oxidized by thermal oxidation technology to the P-type silicon semiconductor The substrate 10 is formed, and its thickness is between 3500 Angstroms and 6500 Angstroms, which is used to isolate the metal oxide half field effect transistor. Of course, the traditional shallow trench isolation technology (Shallow Trench Isolation; STI) can also be used to form the field oxide layer 12 required for isolating the metal oxide half field effect transistor. Then, a metal oxide half field effect transistor is formed on the surface of the P-type silicon semiconductor substrate 10, the metal oxide half field effect transistor includes a gate oxide layer 14, a gate electrode 16A 'capped oxide layer 18 (capped oxide), N -Lightly doped source / 4 II with nnn ϋ 1 · I n ϋ n line (please read the precautions on the back before filling in this page) The paper size is applicable to China National Standards (CNS) Α4 specification (210X297mm ) A7 B7 printed by Beigong Consumer Cooperative of Central Bureau of Standards of the Ministry of Economy V. Description of invention (), Drain 20A / 20B, Sand dioxide sidewall 22 and N + source / drain 24A / 24B, as shown in Figure 1. In addition, the word line 16B is formed at the same time as the gate electrode 16A is formed, as shown in FIG. 'Please refer to Figure 1 again. The gate oxide layer H is formed by thermally oxidizing silicon atoms on the surface of the P-type silicon semiconductor substrate 10 in a high-temperature environment containing dry oxygen. The oxidation temperature is between 850 and 1000 ° C, and the thickness is between Between 50 and 200 Angstroms. The gate electrode 16A is generally composed of polycrystalline silicon 16 or tungsten polycrystalline silicide formed by low pressure chemical vapor deposition (LPCVD). If it is composed of polycrystalline silicon, its thickness is between 2000 and 4000 angstroms If made of tungsten polycrystalline silicide, the thickness of the lower polycrystalline silicon is between 1000 and 2000 angstroms, the thickness of the upper tungsten silicide is between 1000 and 2000 angstroms, and the total thickness is also between 2000 To 4000 Angstroms. The cover oxide layer 18 is undoped silicon dioxide formed by low-pressure chemical vapor deposition, and has a thickness between 800 and 1600 angstroms. Then, the photolithography technique and the plasma etching technique are used to etch the cover oxide layer 18 and the polycrystalline silicon 16 or tungsten polycrystalline silicide to form the gate structure of the transfer gate transistor, as shown in FIG. 1 Show. The reaction temperature for forming the polycrystalline silicon 16 is between 500 and 700 ° C, and the formed polycrystalline silicon 16 can be undoped, and then doped using ion implantation technology to make it conductive, and its ions The implantation dose is between 1E13 and 1E16 atoms / cm 2, and the ion implantation energy is between 30 and 80 Kev to complete the doping of the polycrystalline silicon 16. Of course, the in-situ doped method can also be used to dope the polycrystalline silicon 16, the reaction gas is a mixed gas of PH3, SiH4 and N2 or a mixed gas of AsH3, SiH4 and N2 The final phosphorus ion concentration is between 1E20 and 1E21 atoms / cm3, while the ideal phosphorus ion concentration is between 5E20 atoms / cm3. For the plasma etching of the polycrystalline silicon 18, the reaction gas is a mixed gas composed of SF6, CI2. And HBr, which can provide the ideal unidirectional etching, uranium engraving rate and etching uniformity. The etching selectivity of the polysilicon 16 to the gate oxide layer 14 is also very high. ’1-Please refer to figure 1 again. Next, using phosphor ion implantation technology to form the N_ lightly doped source / drain 20A / 20B of the transfer gate transistor, the ion implantation dose is between 1E13 to 3E14 atoms / cm2, ion implantation The plant energy is between 20 and 50 Kev. As shown in Fig. 1, the N · lightly doped source / drain 20A / 20B is to reduce the hot carrier effect and improve the transfer gate transistor reliability. Next, a layer of silicon dioxide 22 is deposited, and the magnetic field enhanced active ion plasma etching technique is used to vertically etch back the silicon dioxide 22 unidirectionally to form dioxide on both sides of the gate 16砂 形状 子 子 22. The silicon dioxide 22 is usually an impurity-free silicon dioxide formed by low-pressure chemical vapor deposition. The reaction gas is silicon methane or tetrahexyl silicate (Si (C2H50) 4) and oxygen. The reaction temperature Between 600 and 800 ° C, the reaction pressure is between 0.2 and 0.4 Torr, and the thickness is between 500 and 1500 Angstroms. Finally, the ion implantation technology is used to form the N + source 24A / drain 24B. The ion implantation dose is between 1E15 and 5E16 atoms / cm2, and the ion implantation energy is between 30 and 80 Kev. Provide good ohmic contact, as shown in Figure 1. Now please refer to Figure 2, Figure 3 and Figure 4. After the manufacture of the transfer gate transistor and the word line 16B is completed, a first dielectric layer 26 and a second dielectric layer 28 are deposited, and chemical mechanical polishing (CMP) is used Plane the second dielectric layer 28 as shown in FIG. 2. _5_ The size of this paper is applicable to Chinese National Standard (CNS) A4C grid (210 X 297 mm) III i Pack II 1 II Order.—I! —Line (please read the precautions on the back before filling this page) 3226: 2 ! A7 B7 printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention ()

T 接著,利用微影技術在記億元接觸窗區域上方形成光阻圖案29,再利用電駿餘刻技 術蝕刻所述N+源極24A上方之所述第一介電層26與第二介電層28以露出所述 N+源g 2jA,以在所述N+源極24A區域形成記憶元接觸窗30 (node contact), 如圖三所示’未來’堆疊式電容器之下層電極將透過所述記憶元接觸窗3〇跟所述 轉移閘電晶體之N+源極24A作電性接觸。利用氧氣電漿和硫酸去除所述光阻圖案 29後,如圖四所示。 _所述介電層26可以是利用低壓化學氣相沉積法(LPCVD)形成之無攙雜 的二氧化矽,其反應溫度介於330到370。(:之間,其反應氣體是四已基矽酸鹽 (TE0S)與氧化氮(N20)或甲烷(silane)與氧化氮(N2〇),其厚度介於800 埃到1600埃之間。所述第二介電層28則是利用大氣壓化學氣相沉積法 (APCVD)或次大氣壓化學氣相沉積法(SACVD)形成之硼磷摻雜二氧化矽 (BPSG)或磷摻雜二氧化矽(PSG),其反應氣體是TMB、TMP與氧化氮,其厚 度介於3000到8000埃之間。對所述第一介電層26與第二介電層28之電漿蝕刻 以形成所述記憶元接觸窗30,可以利用磁場增強式活性離子式電漿蝕刻技術 (MERIE)或電子迴旋共振電漿蝕刻技術(ECR)或傳統的活性離子式電漿蝕刻技 巧(RIE),而通常是利用磁場增強式活性離子式電漿蝕刻技術,其電漿反應氣體是 三氟氫化碳和氬氣,例如,曰本電氣公司(TEL)所製造型號TEL8500之蝕刻機或 美國應用材料公司(applied materials)所製造型號PR5000E之蝕刻機,其蝕刻原理 均屬於磁場增強式活性離子式電漿餓刻技術,能提供效果相當理想的單向性鈾刻、 蝕刻率和蝕刻均勻度,且所述對P型矽半導體基板10之蝕刻選擇率也非常高。 現在請參考圖五與圖六。然後,沈積一層第一複晶矽32,所述第一複晶矽32 塡滿所述記憶元接觸窗30,如圖五所示。接著,利用低壓化學氣相沉積法形成點狀 的複晶砂半球型晶粒34 (dotHemi-SphericalGrain ; dotHSG),如圖六所示。另 外’也可以利用低壓化學氣相沉積法形成複晶矽半球型晶粒(HSG)之後再利用電 漿蝕刻技術對複晶矽半球型晶粒進行回蝕刻以形成點狀的複晶矽半球型晶粒34。 所述第一複晶矽32通常是利用同步攙雜之低壓也學氣相沉積法形成,其反應 氣體是PH3、SiH4與N2或AsH3、SiH4與N2的混合氣體,攙雜有隣和砷等雜質 原子,其反應溫度介於500到650 °C之間,其厚度介於2000到6000埃之間,以塡 滿所述記憶元接觸窗30作考慮。所述第一複晶矽32必需具備導電性,其雜質離子 濃度介於1E20到1E21原子/立方公分之間,而較理想的濃度是5E20原子/立方公 分。形成所述複晶矽半球型晶粒.34之反應溫度介於500到750 °C之間,其直徑介 於50到500埃之間。 丨' 現在請參考圖七與圖八。接著,利用離子佈植技術進行斜向的氮離子佈植35 ;(oblique nitrogen implantation)以將氮離子植入所述複晶矽半球型晶粒34,將所述 /複晶矽半球型晶粒34變成含氮區域34a,如圖七所示。接著,以所述含氮區域34a I作爲氧化護罩,的高溫環埯中熱氣化ggji;第一>以形成複 \晶矽氧化層38 (^^oxide),其熱氧化溫度介於700到900 °C之間,鉑圖八所 \_ 6 ^纸張尺度適用中國國家標準(0阳)六4規格(2丨0父297公釐) : I II 裝 I I I I訂—— 線 (請先閲讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明() 示。所述斜向的氮離子佈植35之斜向離子入射角度介於0。到50。之間,並且,一 邊進行斜向的氮離子佈植35時,同時一邊轉動所述P型矽半導體基板10。 現在請參考圖九與圖十。接著,以所述複晶矽氧化層刻保護 罩_,利用磁場增強式活性離子式電漿飽 刻所述第一複晶矽32a,使所述第 一複晶矽32a產生凹槽,使所述第一複晶矽32a成爲第一複晶矽32b,如圖九所 示,凹槽之功用是增加所述第一複晶矽32a的表面積。然後,利用電漿蝕刻或稀釋 氫氟酸溶液或蒸氣氫氟酸(vaporHF)去除所述複晶矽氧化層38,如圖十所示。對 所述第一複晶矽32a之磁場增強式活性離子式電漿蝕刻,其電漿反應氣體是六氟化 硫、氧氣和溴化氫之混合氣體,能提供效果相當理想的蝕刻率和蝕刻均勻度,並 且,所述第一複晶矽32對所述複晶矽氧化層38之蝕刻選擇率非常高,介於20到 50之間。 現在請參考圖十一'圖十二與圖十三。然後,利用微影技術在電容器區域上方 形成光阻圖案44,如圖十一所示,所述光阻圖案44是正光阻,其厚度介於8000到 12000埃之間。然後,利用磁場增強式活性離子式電發蝕刻技術對所述第一複晶矽 32b進行蝕刻,使成爲第一複晶矽32c,以定義電容器之下層電極的圖案,如圖十 二所示。利用氧氣電漿和硫酸去除所述光阻圖案44後,所述第一複晶矽32c構成 了電容器的下層電極32c,並且,所述下層電極32b透過所述記憶元接觸窗30跟 所述轉移閘電晶體之N+源極24A作電性接觸,如圖十三所示。同樣的,對所述第 一複晶矽32b之電漿蝕刻以形成電容器的下層電極32c,磁場增強式活性離子式電 漿蝕刻技術,其電漿反應氣體是六氟化硫、氧氣和溴化氫之混合氣體,能提供效果 相當理想的蝕刻率和飩刻均勻度,並且,所述第一複晶矽32b對光阻圖案44之蝕 刻選擇率非常高,介於10到20之間。請注意,由所述第一複晶矽32c構成之電容 器的下層電極_ 32c具有凹溝,故能大幅增加電容器電容,縮小電路佈局面積,提高 _動態隨機存取記憶體之集積密度。 現在請參考圖十四、圖十五與圖十六。接著,以標準製程在所述電容器的下層 電極32c表面形成一層厚度極薄的電容器介電層46,如圖十四所示,接著,形成 一層第二複晶矽48,如圖十五所示。最後,利用微影技術與磁場增強式活性離子式 電漿蝕刻技術蝕刻所述薄的電容器介電層46和第二複晶矽48,以形成電容器的上 層電極(top electrode),如圖十六所示,一種具備高集積密度之堆疊式動態隨機存 取記憶體於焉完成。 所述電容器介電層46通^是由氧化氮化矽(Oxynitride)、氮化矽(Nitride) 和二氧化矽(Oxide)藉由下述方法形成。首先,在溫度介於800°C到950°C之間時 熱氧化由複晶矽構成之所述下層電極32c,以形成厚度介於40埃到200埃之間的 氧化矽。接著,在溫度介於650°C到750°C之間時以低壓化學氣相沉積法形成厚度 介於40埃到60埃之間的氮化矽。最後,在溫度介於800°C到950°C之間時氧化所 述氮化矽,以形成厚度介於20埃到50埃之間的氧化氮化矽。自然,所述電容器介 ----------^------tr------10 (請先Μ讀背面之注意事項再填寫本頁) 7 本紙張尺度適用中國國家標準(CNS ) A4洗格(2丨0X2.97公釐) A7 B7 五、發明説明() 電層46亦可由其它高介電常數材料組成,例如五氧二鉬(Ta205 ),或由Ti〇2 和SrTi03等高介電常數材料所組成》 所述第二複晶矽48之形成方法跟第一複晶矽32 —樣,是利用同步攙雜之低 壓化學氣相沉積法形成,其反應氣體是PH3、SiH4與Ν2或AsH3、SiH4與Ν2的 混合氣體,攙雜有磷和砷等雜質原子,其反應溫度介於500到650 °C之間,其厚度 介於1000到2000埃之間,所述第二複晶矽48也必需具備導電性,其雜質離子濃 度介於1E20到1E21原子/立方公分之間,而較理想的濃度是5E20原子/立方公分。 而形成電容器的上層電極48之電漿鈾刻,可以利用磁場增強式活性離子式電漿蝕刻 技術(MERIE),其電漿反應氣體是六氟化硫、氧氣和溴化氫之混合氣體。 以上係以最佳實施例來闡述本發明,而非限制本發明’並且,熟知半導體技藝 之人士皆能明瞭,適當而作些微的改變及調整,仍將不失本發明之要義所在,亦不 脫離本發明之精神和範圍。 —------- (請先閲讀背面之注意事項再填寫本頁) Γ 經濟部中央樣準局員工消费合作社印製 本纸張尺度適用中國國家榡芈(CNS M4規格(公釐)T Next, using photolithography technology to form a photoresist pattern 29 on the area of the billion-dollar contact window, and then use the electrical etching technology to etch the first dielectric layer 26 and the second dielectric layer above the N + source electrode 24A The layer 28 exposes the N + source g 2jA to form a memory cell contact 30 (node contact) in the N + source 24A region. As shown in FIG. 3, the underlying electrode of the “future” stacked capacitor will pass through the memory The element contact window 30 makes electrical contact with the N + source electrode 24A of the transfer gate transistor. After removing the photoresist pattern 29 with oxygen plasma and sulfuric acid, as shown in FIG. 4. The dielectric layer 26 may be doped silicon dioxide formed by low-pressure chemical vapor deposition (LPCVD), and the reaction temperature is between 330 and 370. (In between, the reaction gas is tetrahexyl silicate (TEOS) and nitrogen oxide (N20) or methane (silane) and nitrogen oxide (N2〇), and its thickness is between 800 angstroms and 1600 angstroms. The second dielectric layer 28 is boron-phosphorus-doped silicon dioxide (BPSG) or phosphorus-doped silicon dioxide (APSG) or phosphorous-doped silicon dioxide (APCVD) or sub-atmospheric pressure chemical vapor deposition (SACVD). PSG), the reaction gases are TMB, TMP and nitrogen oxide, and the thickness is between 3000 and 8000 angstroms. Plasma etching the first dielectric layer 26 and the second dielectric layer 28 to form the memory Element contact window 30 can use magnetic field enhanced active ion plasma etching technology (MERIE) or electron cyclotron resonance plasma etching technology (ECR) or traditional active ion plasma etching technology (RIE), and usually use magnetic field Enhanced reactive ion plasma etching technology, the plasma reaction gas is trifluorocarbon and argon, for example, the model TEL8500 etching machine manufactured by Japan Electric Company (TEL) or the American Applied Materials (applied materials) Etching machine for manufacturing model PR5000E, the etching principles are all The magnetic field-enhanced active ion plasma etching technology can provide unidirectional uranium etching, etching rate and etching uniformity with a quite ideal effect, and the etching selectivity of the P-type silicon semiconductor substrate 10 is also very high. Now Please refer to FIGS. 5 and 6. Then, a layer of first polycrystalline silicon 32 is deposited, and the first polycrystalline silicon 32 fills the memory cell contact window 30, as shown in FIG. 5. Then, a low-pressure chemical vapor is used The deposition method forms dot-shaped polycrystalline sand hemispherical grains 34 (dotHemi-SphericalGrain; dotHSG), as shown in Figure 6. Alternatively, low-pressure chemical vapor deposition can also be used to form polycrystalline silicon hemispherical grains (HSG) Afterwards, the plasma etching technique is used to etch back the polycrystalline silicon hemispherical crystal grains to form dot-shaped polycrystalline silicon hemispherical crystal grains 34. The first polycrystalline silicon 32 is usually learned by using low-pressure synchronous doping Formed by phase deposition method, the reaction gas is a mixed gas of PH3, SiH4 and N2 or AsH3, SiH4 and N2, doped with impurity atoms such as o and arsenic, the reaction temperature is between 500 and 650 ° C, and the thickness is between Between 2000 and 6000 Angstroms The yin contact window 30 is considered. The first polycrystalline silicon 32 must have conductivity, and its impurity ion concentration is between 1E20 and 1E21 atoms / cubic centimeter, and the ideal concentration is 5E20 atoms / cubic centimeter. The reaction temperature of the polycrystalline silicon hemispherical grains. 34 is between 500 and 750 ° C, and its diameter is between 50 and 500 Angstroms. 丨 'Now please refer to Figures 7 and 8. Next, use the ion The implantation technique performs oblique nitrogen ion implantation 35; (oblique nitrogen implantation) to implant nitrogen ions into the polycrystalline silicon hemispherical crystal grains 34, and change the / polycrystalline silicon hemispherical crystal grains 34 into nitrogen-containing The area 34a is shown in Figure 7. Next, the nitrogen-containing region 34a I is used as an oxidation shield to thermally vaporize ggji in a high-temperature ring; the first > to form a complex \ crystalline silicon oxide layer 38 (^^ oxide) with a thermal oxidation temperature between 700 Between 900 ° C and 8 places of platinum chart \ _ 6 ^ The paper size is in accordance with Chinese National Standard (0 Yang) 6 4 specifications (2 丨 0 father 297 mm): I II Pack IIII order-line (please first Read the precautions on the back and then fill out this page) A7 B7 Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The oblique ion incidence angle of the oblique nitrogen ion implantation 35 is between 0 and zero. To 50. In the meantime, when performing oblique nitrogen ion implantation 35, the P-type silicon semiconductor substrate 10 is rotated simultaneously. Now please refer to Figure 9 and Figure 10. Next, the protective cover is engraved with the polycrystalline silicon oxide layer, and the first polycrystalline silicon 32a is engraved with a magnetic field-enhanced active ion plasma, so that the first polycrystalline silicon 32a is recessed so that The first polycrystalline silicon 32a becomes the first polycrystalline silicon 32b. As shown in FIG. 9, the function of the groove is to increase the surface area of the first polycrystalline silicon 32a. Then, the polycrystalline silicon oxide layer 38 is removed by plasma etching or diluting hydrofluoric acid solution or vapor hydrofluoric acid (vaporHF), as shown in FIG. The magnetic field enhanced active ion plasma etching of the first polycrystalline silicon 32a, the plasma reaction gas is a mixed gas of sulfur hexafluoride, oxygen and hydrogen bromide, which can provide an ideal etching rate and etching Uniformity, and the etching selectivity of the first polycrystalline silicon 32 to the polycrystalline silicon oxide layer 38 is very high, ranging from 20 to 50. Now please refer to Figure 11 ', Figure 12 and Figure 13. Then, a photoresist pattern 44 is formed above the capacitor area using lithography. As shown in FIG. 11, the photoresist pattern 44 is a positive photoresist, and its thickness is between 8000 and 12000 angstroms. Then, the first polycrystalline silicon 32b is etched using a magnetic field enhanced active ion electro-hair etching technology to become the first polycrystalline silicon 32c to define the pattern of the underlying electrode of the capacitor, as shown in FIG. After removing the photoresist pattern 44 with oxygen plasma and sulfuric acid, the first polycrystalline silicon 32c constitutes the lower electrode 32c of the capacitor, and the lower electrode 32b passes through the memory cell contact window 30 and transfers The N + source 24A of the gate transistor makes electrical contact, as shown in Figure 13. Similarly, plasma etching of the first polycrystalline silicon 32b to form the lower electrode 32c of the capacitor, magnetic field enhanced active ion plasma etching technology, the plasma reaction gases are sulfur hexafluoride, oxygen and bromide The mixed gas of hydrogen can provide an ideal etching rate and uniformity of etching, and the etching selectivity of the first polycrystalline silicon 32b to the photoresist pattern 44 is very high, ranging from 10 to 20. Please note that the lower electrode _32c of the capacitor formed by the first polycrystalline silicon 32c has a concave groove, so it can greatly increase the capacitor capacitance, reduce the circuit layout area, and increase the accumulation density of _ dynamic random access memory. Now please refer to Figure 14, Figure 15 and Figure 16. Next, a standard process is used to form a very thin capacitor dielectric layer 46 on the surface of the lower electrode 32c of the capacitor, as shown in FIG. 14, and then, a second layer of polycrystalline silicon 48 is formed, as shown in FIG. 15 . Finally, the thin capacitor dielectric layer 46 and the second polycrystalline silicon 48 are etched using photolithography technology and magnetic field enhanced active ion plasma etching technology to form a top electrode of the capacitor, as shown in FIG. 16 As shown, a stacked dynamic random access memory with high accumulation density is completed in Yan. The capacitor dielectric layer 46 is formed of silicon oxide nitride (Oxynitride), silicon nitride (Nitride) and silicon dioxide (Oxide) by the following method. First, the lower electrode 32c made of polycrystalline silicon is thermally oxidized at a temperature between 800 ° C and 950 ° C to form silicon oxide with a thickness between 40 angstroms and 200 angstroms. Next, at a temperature between 650 ° C and 750 ° C, silicon nitride with a thickness between 40 Angstroms and 60 Angstroms is formed by low-pressure chemical vapor deposition. Finally, the silicon nitride is oxidized at a temperature between 800 ° C and 950 ° C to form a silicon oxide nitride with a thickness between 20 Angstroms and 50 Angstroms. Naturally, the capacitors mentioned are ---------- ^ ------ tr ------ 10 (please read the precautions on the back before filling in this page) 7 This paper size is applicable China National Standard (CNS) A4 wash grid (2 丨 0X2.97mm) A7 B7 5. Description of invention () The electric layer 46 can also be composed of other high dielectric constant materials, such as penta-molybdenum dioxygen (Ta205), or by Ti〇2 and SrTi03 and other high dielectric constant materials. The formation method of the second polycrystalline silicon 48 is the same as that of the first polycrystalline silicon 32. It is formed by the low-pressure chemical vapor deposition method of simultaneous doping and its reaction The gas is a mixed gas of PH3, SiH4 and N2 or AsH3, SiH4 and N2, doped with impurity atoms such as phosphorus and arsenic, its reaction temperature is between 500 and 650 ° C, and its thickness is between 1000 and 2000 Angstroms, The second polycrystalline silicon 48 must also have electrical conductivity, and its impurity ion concentration is between 1E20 and 1E21 atoms / cubic centimeter, and the ideal concentration is 5E20 atoms / cubic centimeter. The plasma uranium engraving of the upper electrode 48 forming the capacitor can use the magnetic field enhanced active ion plasma etching technology (MERIE). The plasma reaction gas is a mixed gas of sulfur hexafluoride, oxygen and hydrogen bromide. The above is a description of the present invention in terms of the preferred embodiments, rather than limiting the present invention. Moreover, those familiar with semiconductor technology will understand that appropriate changes and adjustments will still lose the essence of the present invention, nor Departs from the spirit and scope of the present invention. —------ (Please read the precautions on the back before filling in this page) Γ Printed by the Employee Consumer Cooperative of the Central Prototype Bureau of the Ministry of Economic Affairs This paper standard is applicable to the Chinese national government (CNS M4 specification (mm)

Claims (1)

經濟部中央標準局貝工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 1 ·一種積體電路之複晶矽結構的製造方法’係包括: 在半導體晶圓上形成介電層; 平坦化所述介電層; 利用微影技術與蝕刻技術蝕刻所述介電層以露出所述半導體晶圓,以形成洞孔 (hole ); 形成一層複晶矽; _形成點狀的砂晶質點(siliconparticles); . 利用離子佈植技術進行斜向的氮離子佈植(oblique nitrogen implantation)以將 /氮離子植入所述矽晶質點,將所述矽晶質點變成含氮區域; 以所述含氮區域作爲氧化護罩,熱氧化所述複晶矽,以形成複晶矽氧化層 (poly- oxide ); 以所述複晶矽氧化層作爲蝕刻保護罩,利用蝕刻技術蝕刻所述複晶矽,使所述 複晶矽產生凹槽; \ 去除所述複晶矽氧化層。 二_ 2·如申請專利範圍第1項所述之製造方法,其中所述半導體晶圓含有電性元件與 薄膜。 3 ·如申請專利範圍第1項所述之製造方法,其中所述介電層是利用低壓化學氣相 沉積法(LPCVD)形成之無攙雜的二氧化砂,其反應溫度介於330到370 °C之 間’其反應氣體是四已基砍酸鹽(TE0S)與氧化氮(N2〇)或甲烷(silane)與 氧化氮(N2〇),其厚度介於3000到8000埃之間。 4 -如申請專利範圍第1項所述之製造方法,其中所述介電層是利用大氣壓化學氣 相沉積法(APCVD)或次大氣壓化學氣相沉積法(SACVD)形成之硼磷摻雜二 氧化矽(BPSG)或磷摻雜二氧化矽(pSG),其反應氣體是ΤΜΒ、TMP與氧 化氮,其厚度介於3000到8000埃之間。 5 ·如申請專利範圍第1項所述之製造方法,其中所述平坦化所述介電層,是利用 化學機械式琢磨技術(CMP)。 6.如申_專利範圍第1項所述之製造方法,其中所述複晶矽是利用同步攙雜之低 壓化學氣相沉積法形成’其反應氣體是PH3、SiH4與N2或AsH3、SiH4與N2 的混合氣體,反應溫度介於纟〇〇到650。(:之間,其厚度介於2000到6000埃之 間’其雜質離子濃度介於1E20到1E21原子/立方公分之間,而較理想的濃度是 5E20原子/立方公分》 · 7 ·如專利範圍第1項所述之製造方法,其中所述點狀的矽晶質點是指複晶矽 半球型晶粒(Hemi-Spherical Grain ; HSG)。 本紙張尺度適用中國國家榇牟(CNS ) Α4规格(210χ297公兼〉 9 --------f 裝------訂------ίΊ (請先S讀背面之注意Ϋ項再填寫本頁) S2262l A8 B8 C8 D8 經濟部中央標準局員工消費合作社印震 、申請專利範圍 如申請專利範圍第1項所述之製造方法,其中所述「斜向的」氮離子佈植,其 斜向離子入射角度介於0。到50。之間,並且,一邊進行斜向的氮離子佈植 時,同時一邊轉動所述砂半導體基板。 9 ·如申請專利範圍第1項所述之製造方法,其中所述使所述複晶矽產生凹槽之蝕 刻’是利用磁場增強式活性離子式電漿蝕刻技術(MERIE)或電子迴旋共振電 漿蝕刻技術(ECU)或傳統的活性離子式電漿蝕刻技術(RE),其電漿反應氣 體是六氟化硫、氧氣和溴化氫之混合氣體。 10 ·如申請專利範圍第1項所述之製造方法,其中所述去除所述複晶矽氧化層,是 利用電漿蝕刻或稀釋氫氟酸溶液或蒸氣氫氟酸(vaporHF)。 11 ·如申請專利範圍第1項所述之製造方法,其中所述形成洞孔之蝕刻,是利用磁 場增強式活性離子式電漿蝕刻技術(MERIE)或電子迴旋共振電漿蝕刻技術 (ECR)或傳統的活性離子式電漿蝕刻技術(RIE),其電漿反應氣體是-三氟氫 化碳和氬氣之混合氣體。 12 ·—種動態隨機存取記憶體的製造方法,係包括 在矽半導體晶圓上形成隔離金氧半場效電晶體所需要的氧化層; 形成金氧半場效電晶體和字語線(wordline); 沈積一層第一介電層與第二介電層,並平坦化所述第二介電層; 利用微影技與蝕刻技術蝕刻所述第一介電層與第二介電層以露出所述金氧半場 效電晶體之源極,以形成記億元接觸窗(node contact); 沈積一層第一複晶矽; 形成點狀的矽晶質點(siliconparticles); ' 利用離子佈植技術進行斜向的氮離子佈植(oblique nitrogen implantation)以將 氮離子植入所述矽晶質點,將所述矽晶質點變成含氮區域; 以所述含氮區域作爲氧化護罩,熱氧化所述第一複晶矽,以形成複晶矽氧化層 (poly-oxide ); 以所述複晶矽氧化層作爲蝕刻保護罩,利用蝕刻技術鈾刻所述複晶矽,使所述 第一複晶矽產生凹槽; 去除所述複晶矽氧化層; 利用微影技術和蝕刻技術鈾刻所述第一複晶矽’以形成電容器之下層電極; 在所述電容器的下層電極表面形成電容器介電層; 形成一層第二複晶矽; 利用微影技術與蝕刻技術蝕刻所述電容器介電層和第二複晶矽,以形成電容器 的上層電極(top electrode)。 13 ·如申請專利範圍第12項所述之製造方法,其中所述金氧半場效電晶體含有閘 氧化層、閘極與源極/汲極。 10 本紙張尺度逋用中國國家揉準(CNS > A4規格(210X297公釐) --------f ·裝-- (請先閲讀背面之注意事項再填寫本I) 訂 Λ 經濟部中央標準局貝工消費合作社印製 A8 B8 C8 六、申請專利範圍 Μ ·如申請專利範圍第I2項所述之製造方法,其中所述第一介電層是利用低壓化 學氣相沉積法(LPCVD)形成之無攙雜的二氧化矽,其反應溫度介於330到 370 °C之間’其反應氣體是四已基矽酸鹽(TEOS)與氧化氮(Ν2〇)或甲烷 (silane)與氧化氮(Ν20),其厚度介於800埃到1600埃之間。 15 ·如申請專利範圍第12項所述之製造方法,其中所述第二介電層是利用大氣壓 化學氣相沉積法(APCVD)或次大氣壓化學氣相沉積法(SACVD)形成之硼磷 摻雜二氧化矽(BPSG)或磷摻雜二氧化矽(PSG),其反應氣體是ΤΜΒ、ΤΜΡ 與氧化氮,其厚度介於3000到8000埃之間。 16 _如申請專利範圍第12項所述之製造方法,其中所述平坦化所述第二介電層, 是利用化學機械式琢磨技術(CMP)。 Π .如申請專利範圍第12項所述之製造方法,其中所述第一複晶矽是利用同步攙 雜之低壓化學氣相沉積法形成,其反應氣體是PH3、SiH4與Ν2或'Α§Η3、 SiH4與Ν2的混合氣體,反應溫度介於500到650 °C之間,其厚度介於2000 到6000埃之間,其雜質離子濃度介於1E20到1E21原子/立方公分之間,而較 理想的濃度是5E20原子/立方公分。 18 ·如申請專利範圍第12項所述之製造方法,其中所述點狀的矽晶質點是指複晶 砍半球型晶粒(Hemi-Spherical Grain ; HSG ) 〇 19 ·如申請專利範圍第12項所述之製造方法,其中所述「斜向的」氮離子佈植, 其斜向離子入射角度介於0。到50 °之間,並且',一邊進行斜向的氮離子佈植 時,同時一邊轉動所述矽半導體基板。 20 ·如申請專利範圍第12項所述之製造方法,其中所述使所述第一複晶矽產生凹 槽之蝕刻,是利用磁場增強式活性離子式電漿蝕刻技術(MERIE)或電子迴旋 共振電漿蝕刻技術(ECR)或傳統的活性離子式電漿蝕刻技術(RIE),其電漿 反應氣體是六氟化硫、氧氣和溴化氫之混合氣體。 21 ·如申請專利範圍第12項所述之製造方法,其中所述去除所述複晶矽氧化層, 是利用電漿餓亥!]或稀釋氫氟酸溶液或蒸氣氫氟酸(vaporHF)。 22 ·如申請專利範圍第12項所述之製造方法,其中所述對所述第一複晶矽之蝕刻 以形成電容器之下層電極,是利用磁場增強式活性離子式電漿蝕刻技術 (MERIE)或電子迴旋共振電漿蝕刻技術(ECR)或傳統的活性離子式電腿刻 技術(RIE),其電漿反應氣體是六氟化硫、氧、氯和溴化氫之混合氣體。 23 ·如申請專利範圍第12項所述之製造方法,其中所述第二複晶矽是利用同步攙 雜之低壓化學氣相沉積法形成,其反應氣體是PH3、SiH4與N2或AsH3、 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) --------1 袭------tT------^ (請先閲讀背面之注意事項再填寫本頁) 申請專利範圍 應反宏 1質子 合其20 混荀犯 的irs疋 與 Η420想 S1到理 A8 Β8 C8 D8A8 B8 C8 D8 printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs VI. Patent Scope 1 · A method for manufacturing a polycrystalline silicon structure of an integrated circuit 'includes: forming a dielectric layer on a semiconductor wafer; planarization The dielectric layer; etching the dielectric layer to expose the semiconductor wafer using lithography and etching techniques to form holes; forming a layer of polycrystalline silicon; _ forming dot-shaped sand crystal dots ( silicon particles) ;. Oblique nitrogen implantation using ion implantation technology (oblique nitrogen implantation) to implant / nitrogen ions into the silicon crystal particles, turning the silicon crystal particles into nitrogen-containing regions; The nitrogen region serves as an oxidation shield to thermally oxidize the polycrystalline silicon to form a polycrystalline silicon oxide layer (poly-oxide); the polycrystalline silicon oxide layer is used as an etching protective shield to etch the polycrystalline silicon using an etching technique So that the polycrystalline silicon produces grooves; \ remove the polycrystalline silicon oxide layer. 2_2. The manufacturing method as described in item 1 of the patent application scope, wherein the semiconductor wafer contains electrical elements and thin films. 3. The manufacturing method as described in item 1 of the scope of the patent application, wherein the dielectric layer is a non-doped dioxide sand formed by low pressure chemical vapor deposition (LPCVD), and the reaction temperature is between 330 and 370 ° Between C's, the reaction gas is tetrahexyl acid salt (TEOS) and nitrogen oxide (N2〇) or methane (silane) and nitrogen oxide (N2〇), and its thickness is between 3000 and 8000 angstroms. 4-The manufacturing method as described in item 1 of the scope of the patent application, wherein the dielectric layer is a boron-phosphorus doped two formed by atmospheric pressure chemical vapor deposition (APCVD) or sub-atmospheric pressure chemical vapor deposition (SACVD) Silicon oxide (BPSG) or phosphorus-doped silicon dioxide (pSG), the reaction gases are TMB, TMP and nitrogen oxide, and the thickness is between 3000 and 8000 angstroms. 5. The manufacturing method as described in item 1 of the patent application scope, wherein the planarization of the dielectric layer utilizes chemical mechanical polishing technology (CMP). 6. The manufacturing method as described in item 1 of the Shen_Patent Scope, wherein the polycrystalline silicon is formed by low-pressure chemical vapor deposition with simultaneous doping 'whose reaction gases are PH3, SiH4 and N2 or AsH3, SiH4 and N2 For the mixed gas, the reaction temperature is between 〇〇〇 to 650. (: Between, its thickness is between 2000 and 6000 angstroms, and its impurity ion concentration is between 1E20 and 1E21 atoms / cubic centimeter, and the ideal concentration is 5E20 atoms / cubic centimeter. The manufacturing method as described in item 1, wherein the dot-shaped silicon crystal dots refer to polycrystalline silicon hemispherical grains (Hemi-Spherical Grain; HSG). The paper size is applicable to the Chinese National Simu (CNS) Α4 specification ( 210χ297 public and> 9 -------- f outfit ------ order ------ ίΊ (please read the note on the back first and then fill in this page) S2262l A8 B8 C8 D8 Economy The Department of Central Bureau of Standards, Employee Consumer Cooperatives, and the scope of patent application. The manufacturing method described in item 1 of the patent application scope, wherein the "oblique" nitrogen ion implantation has an oblique ion incidence angle between 0. to 50. In addition, while performing oblique nitrogen ion implantation, the sand semiconductor substrate is rotated at the same time. 9. The manufacturing method as described in item 1 of the patent application scope, wherein the compound crystal Etching of grooves produced in silicon 'is the use of magnetic field enhanced active ion plasma etching Technology (MERIE) or electron cyclotron resonance plasma etching technology (ECU) or traditional reactive ion plasma etching technology (RE), the plasma reaction gas is a mixed gas of sulfur hexafluoride, oxygen and hydrogen bromide. 10 The manufacturing method as described in item 1 of the patent application scope, wherein the removal of the polycrystalline silicon oxide layer is by plasma etching or dilution of hydrofluoric acid solution or vapor hydrofluoric acid (vaporHF). The manufacturing method as described in item 1 of the patent scope, wherein the etching for forming holes is to use magnetic field enhanced active ion plasma etching technology (MERIE) or electron cyclotron resonance plasma etching technology (ECR) or traditional active Ion plasma etching technology (RIE), the plasma reaction gas is a mixed gas of trifluorohydrocarbon and argon. 12 · A method of manufacturing dynamic random access memory, which is included on a silicon semiconductor wafer Forming an oxide layer required for isolating the metal oxide half-field effect transistor; forming a metal oxide half-field effect transistor and wordline; depositing a first dielectric layer and a second dielectric layer, and planarizing the second Dielectric layer Using photolithography and etching techniques to etch the first dielectric layer and the second dielectric layer to expose the source electrode of the metal oxide half-field effect transistor to form a billion yuan contact window (node contact); deposit a layer of A polycrystalline silicon; forming dot-shaped silicon particles (siliconparticles); 'oblique nitrogen implantation using ion implantation technology (oblique nitrogen implantation) to implant nitrogen ions into the silicon crystal particles, the The silicon crystal particles become a nitrogen-containing region; the nitrogen-containing region is used as an oxidation shield to thermally oxidize the first polycrystalline silicon to form a polycrystalline silicon oxide layer (poly-oxide); the polycrystalline silicon oxide layer As an etching protection cover, the polycrystalline silicon is etched by uranium using an etching technique to make the first polycrystalline silicon groove; the oxide layer of the polycrystalline silicon is removed; the first uranium is carved by photolithography and etching techniques Polycrystalline silicon 'to form the lower electrode of the capacitor; a capacitor dielectric layer is formed on the surface of the lower electrode of the capacitor; a second layer of polycrystalline silicon is formed; the capacitor dielectric layer and the second capacitor are etched using lithography and etching techniques Polysilicon, to form the upper electrode of the capacitor (top electrode). 13. The manufacturing method as described in item 12 of the patent application scope, wherein the metal oxide half field effect transistor contains a gate oxide layer, a gate electrode, and a source / drain electrode. 10 The size of the paper is in accordance with the Chinese National Standard (CNS > A4 specification (210X297mm) -------- f · Packing-- (Please read the precautions on the back before filling in this I) Order Λ Economy A8 B8 C8 printed by the Beigong Consumer Cooperative of the Ministry of Central Standards. VI. Patent application scope M. The manufacturing method described in item I2 of the patent application scope, in which the first dielectric layer uses low-pressure chemical vapor deposition ( LPCVD) formed doped silicon dioxide, the reaction temperature is between 330 to 370 ° C 'the reaction gas is tetrahexyl silicate (TEOS) and nitrogen oxide (Ν2〇) or methane (silane) and Nitrogen oxide (Ν20), whose thickness is between 800 angstroms and 1600 angstroms. 15 · The manufacturing method as described in item 12 of the patent application scope, wherein the second dielectric layer is made by atmospheric pressure chemical vapor deposition ( APCVD) or sub-atmospheric pressure chemical vapor deposition (SACVD) formed boron-phosphorus doped silicon dioxide (BPSG) or phosphorus-doped silicon dioxide (PSG), the reaction gas is TMB, TMP and nitrogen oxide, the thickness of the Between 3000 and 8000 Angstroms. 16 _As stated in item 12 of the patent application scope Manufacturing method, wherein the planarizing the second dielectric layer uses chemical mechanical polishing (CMP). Π. The manufacturing method described in item 12 of the patent application scope, wherein the first polycrystalline silicon It is formed by low-pressure chemical vapor deposition with simultaneous doping. Its reaction gas is PH3, SiH4 and Ν2 or a mixture of ΑΑΗΗ3, SiH4 and Ν2. The reaction temperature is between 500 and 650 ° C. Its thickness is between Between 2000 and 6000 Angstroms, the impurity ion concentration is between 1E20 and 1E21 atoms / cubic centimeter, and the ideal concentration is 5E20 atoms / cubic centimeter. 18 · The manufacturing method as described in item 12 of the patent application scope , Where the dot-shaped silicon grains refer to polycrystalline cut hemispherical grains (Hemi-Spherical Grain; HSG) 〇19 · The manufacturing method as described in item 12 of the patent application scope, wherein the "oblique "Nitrogen ion implantation, the oblique ion incidence angle is between 0. to 50 °, and ', while performing oblique nitrogen ion implantation, while rotating the silicon semiconductor substrate. 20 · If applying for a patent Manufacturing method described in item 12 of the scope , Wherein the etching that makes the first polycrystalline silicon produce grooves is the use of magnetic field enhanced active ion plasma etching technology (MERIE) or electron cyclotron resonance plasma etching technology (ECR) or traditional active ion type Plasma etching technology (RIE), the plasma reaction gas is a mixed gas of sulfur hexafluoride, oxygen and hydrogen bromide. 21 · The manufacturing method as described in item 12 of the patent application scope, wherein the removal of the complex The crystalline silicon oxide layer is made of plasma! ] Or dilute hydrofluoric acid solution or vapor hydrofluoric acid (vaporHF). 22. The manufacturing method as described in item 12 of the patent application range, wherein the etching of the first polycrystalline silicon to form the lower electrode of the capacitor is a magnetic field enhanced active ion plasma etching technology (MERIE) Or electron cyclotron resonance plasma etching technology (ECR) or traditional active ion type electric leg etching technology (RIE), the plasma reaction gas is a mixed gas of sulfur hexafluoride, oxygen, chlorine and hydrogen bromide. 23. The manufacturing method as described in item 12 of the patent application scope, wherein the second polycrystalline silicon is formed by low-pressure chemical vapor deposition with simultaneous doping, and the reaction gases are PH3, SiH4 and N2 or AsH3, the paper The standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) -------- 1 attack ------ tT ------ ^ (Please read the notes on the back before filling in This page) The scope of the patent application should be against the macro 1 proton and its 20 mixed irs guilt and Η420 want S1 to reason A8 Β8 C8 D8 00較 10而 於, 厚分 間泣 之π oc鼠 11 650E2 (1 到到 或 成 組 12所第挪 (JIG砂 手化mm r 24 述 所 項 氮 化。 氧成 f組 是所 層料 電祐 介等 器3 容10 電ΓΤ 述]s 所和 中02 法55 方20 造Ta 製 漿振應 葡共反 之旋漿 窗迴電 觸子其 接電, 元 her 0^( 成E标 形Μ规 Taftc_ 所術¾ Π 芝會 :4技獎其§翻方s?h iltii。SI?之離昀约項g或泣 12鈣R)nM聽場EC黻 圃嗞C搜 g職術i 時利技氟 f*是刻三 N,趣是 呻刻漿體 $飽電氣 25 (請先閲讀背面之注意事項再填寫本頁) -裝· -訂 經濟部中央標準局貝工消费合作社印裝 本纸張尺度逍用中國囷家揉率(CNS > A4規格(210X297公釐)00 is more than 10, the π oc rat 11 650E2 (1 to the group or 12 groups of the first division) (JIG sand handing mm r 24 nitridation. The oxygen group f is the layer material Equalizer 3 capacity 10 electric ΓΤ narration] s institute and Zhong 02 method 55 square 20 making Ta pulping vibration should be connected to the electrical contact of the rotating window of the Portuguese Communist Party. Technique ¾ Π Chi Club: 4 Awards for its §Front s? H iltii. SI? About the term g or cry 12 calcium R) nM listening field EC 绻 プ 嗞 C search g occupation skill i Shili fluoride f * It is engraved three N, interesting is engraved pulp $ 满 电 25 (please read the precautions on the back before filling out this page) -installed--ordered by the Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed paper size Xiao Using the Chinese rubbing rate (CNS> A4 specification (210X297mm)
TW86100268A 1997-01-10 1997-01-10 Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation TW322621B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW86100268A TW322621B (en) 1997-01-10 1997-01-10 Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW86100268A TW322621B (en) 1997-01-10 1997-01-10 Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation

Publications (1)

Publication Number Publication Date
TW322621B true TW322621B (en) 1997-12-11

Family

ID=51567167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW86100268A TW322621B (en) 1997-01-10 1997-01-10 Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation

Country Status (1)

Country Link
TW (1) TW322621B (en)

Similar Documents

Publication Publication Date Title
US5913118A (en) Method of manufacturing trench DRAM cells with self-aligned field plate
TW320761B (en) Manufacturing method of high density DRAM with cylindrical stack capacitor
JP2820065B2 (en) Method for manufacturing semiconductor device
TW322621B (en) Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation
US5976981A (en) Method for manufacturing a reverse crown capacitor for DRAM memory cell
TW317018B (en) Manufacturing method of high-density random access memory
TW319896B (en) Manufacturing method of memory device capacitor by chemical mechanical polishing technology
TW319895B (en) Manufacturing method of memory capacitor by oxygen ion implant technology
JP2819498B2 (en) Manufacturing method of DRAM having case type capacitor having wrinkles on both sides
TW321786B (en) Production method for memory component with grating capacitor
TW316327B (en) Manufacturing method of capacitor bottom electrode of integrated circuit
TW312834B (en) Manufacturing method of semiconductor capacitor device
TW315509B (en) Manufacturing method of memory with grating bottom electrode
TW319903B (en) Manufacturing method of charge storage node of integrated circuit capacitor
JP2921564B2 (en) Method of manufacturing case-type capacitor having wrinkles on a single side
TW382814B (en) Method of making DRAM device having bitline top capacitor structure of linear bitline shape on substrate
TW302541B (en) Method of improving height difference between memory cell array of memory and peripheral circuit
TW319897B (en) Manufacturing method of stack capacitor
TW382771B (en) Method for producing shell capacitor having single sided corrugated surface
TW314647B (en) Manufacturing method of memory with decreased memory cell layout area
TW411549B (en) A method for shrinking memory cell size
TW304291B (en) The manufacturing method for shell-shaped stacked capacitor
TW382772B (en) Method for making DRAM cell with dual-crown capacitor using polysilicon and nitride spacer
KR960011178B1 (en) Semiconductor memory device fabrication process
TW311255B (en) Improved manufacturing method of stack capacitor